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ABSTRACT

The presence of positive serial correlation (autocorrelation) in
remotely sensed data rosults in an underestimate of the variance-
covariance matrix when calculated using sontiguous pixels. This under- ‘
estimate produces an inflation in F statistics, For 2 set of Thematic
Mapper Simulator data (TMS), used to test the ability to discriminate a
known geobotanical anomaly from its background, the inflation in F
statistics related to serial correlation is between 7 and 70 times, This
means that significance tests of means of the spectral bands initially
appear to suggest that the anomalous site is very different {n spectral
reflectance and emitance from its background sites. However, this
difference often disappears and is always dramatically reduced when
compared to frequency distributions of test statistics produced by the
comparison of simulated training sets possessing equal means, but

which are composed of autocorrelated observations.
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THE INFLUENCE OF AUTOCORRELATION IN
SIGNATURE EXTRACTION — AN EXAMPLE FROM
A GEOBOTANICAL INVESTIGATION OF COTTER BASIN, MT

INTRODUCTION

Recently researchers have demonstrated that remotely sensed data from a number of sensor
systems are autocorrelated, Such conclusions have been documented for Landsat, (Coberly, 1973;
Craig, 1976, 1979; Tubbs and Coberly, 1978; Tubbs, 1979; Craig and Labovitz, 1980), Thematic
Mapper Simulator (TMS) (Labovitz et al., 1981) and the Viking Lander (Craig et al,, 1981), Along
with these findings, researchers have been studying what effects the violation of the assumption of
independence has upon maximum likelihood, Bayesian classifiers and parameter estimation. This

paper explores the influence of autocorrelation upon statistics in a hypothesis testing situation,

BACKGROUND AND PREVIOUS RESEARCH

Autocorrelation is a property defined for sequences, X Xg0 0 XH, Xp Xyt o0 Xn
and is a measure of the randomness of the sequence, In a remote sensing context the sequence is
a scan line and X, is the digital number (DN) for the ith pixel. The autocorrelation in a scan line
is measured for specific distances between pixels. For example, the autocorrelation of adjacent
pixels, known as the lag 1 autocorrelation, is estimuted by

ot X; = X)Xy = X)
= s% (n-2)

where: X is the sample mean of the scan line;
S;"c is the sample variance of the scan line;

n is the number of pixels in the scan line,

In general, the autocorrelation can be measured forlagk (k =1, 2,...,n—1), and is estimated

by

nck (X X)Xk = X)
=l S2 (n=(k+1)
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The function which maps a lag number to the degree of autocorrelation is known as the

autocorrelation function (acf), The acf can be thought of as taking a sequence, sliding It incre-
mentally along itself and calculating a correlation coefficient at every increment, The autocor-
relation is, therefore, proportional to paired deviations from the mean at a specific spacing, If the
acf is not zero for all lags, then there is a nénrandom pattern in the deviations; and this pattern
can be expressed by a function which relates the DN for the ith pixel] to DN's for the previous
pixels, In this situation we speak of the system as having a memory and say that the data is

autocorrelated,

Basu and Odell (1974) found that use of autocorrelated data produced biased estimates of
the variance-covariance matrix, This conclusion was based upon the assumption ot a equicorre-
lation dependence structure, i.g, the correlation between X, and Xj = p, for all { #j. Basu et al,

(1976) showed that if the simple equicorrelation had a positive coefficient, i.e. o > 0, then the

bias in estinvl‘a’ti;nhéfQ the vat.'iancue~covariance matrix, &, resulted in confidence limits, about the
mean, for example, which were too narrow. Intuitively, the assumption of equicorrelation is not very
appealing because it implies that the correlation between pixels in a scene is the same no matter
what the value of the spacing or distance between the pixels. However, the general direction of the
bias appears to be correct because Cliff and Qrd (1981) have described a related bias in the distri-
bution of the t-statistics (student’s t) when calculated on the estimated means from two popula-
tions, X, and X,, when X, and X, are autocorrelated, Positive autocorrelation results in the
underestimation of the standard error of the mean and consequent inflation of the t value. Gast-
wirth and Rubin (1971) found the presenqe of even slight serial correlation (autocorrelation) had a
strong influence on the confidence levels of the distributions of not only the mean but also the

two one-sample nonparametric tests, the sign test and the Wilcoxon test. Tubbs and Coberly
(1978) and Tubbs (1979) proposed an autoregression model of order | AR(1) as being more real-
istic than equicorrelation for the dependence structure among the pixels from a Landsat scan line.
The authors then went 9n to investigate the influence of the AR(1) structure upon estim‘ation of fre-

quency distribution parameters and the Bayesian and maximum likelihood classification procedures.

2
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The authors found that the estimate of the variance-covariance matrix wa=  onger unbiased,
that is the commonly used estimate, S, of ¥, resulted in an underestimate it . alculated from adja-
cent pixe’r which ware positively autocorrelated, For the Bayesian classification procedure, the
authors showed that the misclassification probabilities were unaffected only when the costs of mis-
classifying were equal and the prior probabilities were assumed to be equal, Further, the probav
bility of misclassification errors from a maximum likelihood classifier were appropriate only when
the training set sizes were equal, Clearly, there are circumstances, including the need to obtain
unbiased estimates ot other parameters such as type [ and type II errors which would result in
experimental situations where these requirements are not met, Tubbs (1980) extended the results
of Basu et al. (1976) and examined the influence of an AR(1) dependence structure (instead of
squicorrelation) upon the confidence regions of the mean and variance, The author found that
when the observations possessed positive serial correlation, the assumption ot stochastic inde-
pendence resulted in confidence intervals that are voo restrictive, This meant thata 100 (I =~ «)
percent confidence region calculated under the assumption of random samples was <100 (1 = «)

percent if the data were positively serially correlated.

Craig (1976, 1979) demonstrated for Landsat data that an autoregressive moving average of
order one-one, an ARIMA (1, 0, 1) (Box and Jenkins, 1970) was a more appropriate mode] than
the AR (1) model. (We will discuss the ARIMA (1, 0, 1) model in greater detail later,) Further,
Craig (1979) suggested that a sampling scheme with a minimum of 10 pixels between samples be
employed in order to produce independent observations, kCraig and Labovitz (1980) suggested
that the ARIMA (1, 0, 1) was a general model for Landsat data and that certain physical attributes
of the scene were related to the degree of autocorrelation through §yste‘matic changes in the v;_\glues

of the coefficients of the ARIMA (1, 0, 1).

Craig (1981) showetl that autocorrelated data, in comparison to independent observations l
tended to show smaller variability for short distances (contiguous pixels) and larger variation for

longer distances. He zlso demonstrated that the inflation in the veriation behaved as a function of
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the coefficients in the ARIMA (1, 0, 1) model, Craig suggested three methods for compznsating for
autocorrelation in data — 1) filtering out the ARIMA (1, 0, 1) model; 2) resampling the data with

an appropriate spacing between pixels; and 3) adjusting the classification algorithms.

Campbell (1981) used a sampling scheme to adjust his classification for the presence of auto-
correlation. In this paper the author demonstrated effects of autocotrelation by comparing classiti-
cation errors between classifications based on contiguous pixels and classifications based on training
sets composed of randomly selected pixels. The data used was Landsat MSS data from near Rich-
mond, VA, The results showed an almost universal improvement in classification accuracies under
the random sampling alternative, This result held for data acquired during several portions of the
year, Since the random sampling scheme used did not guarantee independent observations, it is
possible that a further improvement might be achieved by a systematic sample with a suitable

spacing,

OBJECTIVE OF STUDY

The objective of this paper is to examine what influence autocorrelation has upon the re-
searcher's decision concerning the presence of distinguishable populations and his ability to assign
explanatory power to sources of variation, When the researcher makes these decisions based upon
the behavier of functions of samples (statistics) from the respective populations, the problem is
recast as examination of the relationship between the degree of autocorrelation and the decision

statistic,

This work arose out of ongoing research in the utility of remote sensing for geobotanical
exploration. In this area of geobotany, the explorationist is trying to recognize differences in the
spectrum of vegetation growing in soils containing anomalously high concentrations of stragetic
metals (e.g. copper, lead, zinc, molybdenum, and chromium) as compared to vegetation growing

in soils containing background concentrations of trace metals. This search is performed with the
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hope that the soil is derived from a nearby ore body, If such a difference could be detected in

vegetation spectra, explorationists could use this difference to “map" promising areas,

THE STUDY REGION —~ THE COTTER BASIN QEOB'OTAMCAL TEST SITE

The Cotter Basin geobotanical test site Is located in Lew s and Clurk County, Montana and
can be found on the Stonewall Mountain Quadrangle (see Figure 1), The area is in the Northern
Rocky Mountains Region and possesses considerable relief, The test site region has been studied
previously by Collins et 4l, (1977) and Collins et al, (1980). The remotely sensed data used in their
research were acquired by a prototype high resolution (500 channels from 0.400 umn to 1,0 um)

airborne spectroradiometer system (Chiu and Collins, 1978) during one overtlight in 1976 and a

second during 1978,

Mineralization at the Cotter Basin tes

"y

site occurs in westerly striking shear zones in Precam-
brian sedimentary rocks (Collins et al., 1980). The mineralization is primarily sulfides of copper
and lead with ancillary high concentrations of zine, silver and gold, Soil concentrations along shear

zones are as high a3 10,000 parts per million (ppm) copper, 1,500 ppm lead and 400 ppm zinc
(Collins et al,, 1980),

Description of Data Used in tha Present Study

The data used were acquired using the Landsat Thematic Mapper Simulator (TMS)-NS001-
(Richard et al,, 1978) mounted aboard a NASA C130 aircraft. The data came from flight line
number 3, flown on August 29, 1979 commencing at 1830 GMT (12:30 p.m, MDT). The flight line
was flown in a south-to-north direction at about 3.0 km (10,000 feet) above ground level. Since the
instantaneous field-of-view of the NSQ0! is 2.5 milliradians, the pixels are approximately 7.5 m (25

feet) on a side at nadir, Table | gives the spectral bands for which data were collected.

Training Site Selection

For the purposes of this study two classes were defined: anomalous and background. The

training site for the anomalous class was located so that it fell within the intersection of the soil and
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Table 1
TMS (NS001) Spectral Bands

Band Width
(Micrometers)

0-42 ol 0»52
0,52~ 0.60
0.63 ~ 0.69
0'76 - 0»90
1.00 - 1030
15§ = 1,75
2.08 hand 2;35
10,40 - 12,50

Channe] Number

0O~ 3 H WK —

remote sensing anomalies defined by Collins et al. (1980). The location of the anomalous training
site was also constrained by the selection of two background sites such that all three sites were
located on the same slope and aspect and at the same angle off-nadir with respect to the NS001

flight line, The three training sites were composed of squares of contiguous pixels, 10 pixels on a

side (100 pixels per training site),

Initial Comparisons of Training Sites

Table 2 contains the sample means by training site for each of the eight bands, The results
of tests of the hypotheses of mean vector equality for combinations of the anomalous and back-
ground sites is given in Table 3. We clearly reject the null hypothesis not only for comparisons of
anomalous versus background sites, but also for the comparison of the two backgrounds. Thas all
three sites are very significantly different from one another. Further examination of the differences
in mean reflectance was accomplished by looking at univariate (by band) comparisons. Table 4
gives the results from 32 univariate tests (8 bands X 4 combinations of training sites). The F ratios
formed were highly significant (a = 0.006) for 30 of the 32 tests, indicating that the significance

found in the multivariate tests was not attributable to some systematic subset of the spectral bands.

Thus, we finad sigaificant differences among all three sites for virtually all spectral bands, that
is both for bands containing vegetative information as well as for bands which are insensitive to the
presence of vegetation, Therefore, geobotarical sources of variation are unlikely to account for

such pervasive significance, In looking for explanatory effects, we start with the testing procedure.
7
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Table 2
Sample means for the eight TMS bands for each test site. Each mean is computed
from 100 contiguous pixels,

- Site
Center —
Band N (um) B, B,
| 0.48 88.5 116.8 115.6
2 0.56 57.1 68.4 92,7
3 0.66 28.8 324 513
4 0.83 66.2 68.3 108.7
5 .15 66.3 73.9 124.6
6 1.65 329 38.0 77.5
7 2.2 52,0 62.5 87.0
8 11.4 35.9 47.4 77.2
A ~ anomalous site
Bl ~ background site |
B, — background site 2
Table 3

Results from tests of null hypotheses of mean vector equality. Ay, is the observed
Wilks' Lambda value, G is the related value of the F statistic, Fg g1 is the preselect
critical value of &= 0.01, and P (F > G) is the probability that an F random variable
with the appropriate degrees of freedom would be greater than G under the

null hypotheses.

Comparison Agps G ¥o.01 P(F>G)
AvsB, 0.23 80.89 ~2,51 3.03 x 1038
A vs B, 0.13 165.37 ~2.51 1,42 x 10781
B, vs B, 0.27 65.06 ~2.51 1,75 x 10~30
All 0.08 92.76 ~2.04 6.79 x 10°78

A — anomalous site
B; — background site |
B2 — background site 2
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Table 4
Results from univariate tests of mean differencés in raflectance for
combinations of training sites.

Contrast!
All Avs Bt Avs 82 | By vs 82
Band | 161,23 259.52 42033 0.36
’ » » ] NS
: Band 2 308,11 87.06 658.67 193,54
] » ] L]
Band 3 278,58 106,62 338,96 233,39
» " » "
Band 4 162.77 128 192.55 187,64
L] NS » [ ]
Band 5 211,33 18.53 265.20 204.63
" ] ] ]
Band 6 265.54 472,88 312.72 240,00
[ ] ] ] [ ]
Band 7 488,63 198,71 745,78 340,56
» ] - »
Band 8 406.02 297.73 559.91 275.51
» L] »” h

ITest statisti;; is an F-ratio with, degrees of freedom for: two sites — 1, 198;
A ; three sites — 2, 297,

*Test significant at a = 0.05/8 = 0,006 (Bonferroni adjustment for each contrast, (Neter and
Wasserman, 1974)).

NS — Test not significant at o = 0,006,

A — anomalous site

B, - background site |

4 B, — background site 2
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The test procedure used s called multivariate analysis of vardance (MANOVA) and procedes in

the following manner:

Yy =yt gy (1)
(t=1,2,..,100;) = 1,2,3)
where
Y, Isan 8 x | random vector of spectral observations of the tth pixel from the J™ site, dls-
tributed as a multivariate normal vector deviate with mean equal to g and the covariance
giveninan 8 x 8 matrix X J whose diagonal elements are the variances of the spectral bands and
whose off diagonal elements are covariances, This is symbolized as
Yy~ MN (uy, X (2)
By is an 8 x | vector of means for the J site:
grjis an 8 x 1 random vector ~MN (Q, I)) (3)
witiy Ipl=kandm=n

x T
Elgm &knl =
Im Skn 08)(8’ |#k or m*n;myn' 192y3

This last assumption arose from the additional assumption that the error for one pixel is un-
correlated with the error for any other pixel. Thus for | #k at one site,
Elgim iﬁ.m] = Elg)y] Elﬁfcm] =00l = 0gyq,
This property is called stochastic jzdependence and is more commonly written as
El(gy — #g ) (ekm —#g '] = Ogyg | %k | 4)
and (4) results when we recall Hfm = 0, Since the ftj's are the random portion of the model, the

same stochastic independence assumption applics to the'Ytj's. The four modeling assumptions (1 )"
to (4) will be collectively known as £ in further discussion.
2. Collect Data and Estimate Parameters
The observed data used has previously been described. The estimates of 4 and I will be

denoted as Yj and §; respectively and

10
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Y, = 1/100 ‘g Yy

§ = 1/92 % (Ytj-Yj)(Ytj“Yj)T»

tel

Two other quantities are also estimated from the data, These are the within-zroups (sites) sums of
squares and cross products (WSSCP) matrix, W with the estimate,

=i oy

=1
and the total sums of squares and cross products (TSSCP) matrix T, estimated by
=2 ¥ x,-D-DT
TR T 4

where ¥ = 1/3 J%l Yj.

3. Test Statistics

The SSCP associated with W is calculated about the individual test site means, while the SSCP

associated with T used the grand mean over all pixels as a correction factor. Clearly if any of the
B are different, the deviation vectors (Ya - g!) of the pixels in this population will be smaller
#1.an tine deviation vectors formed by the difference of the same pixels and the giand mean g =
;?‘1 e This observaticn is the basis for the test statistic used, The determinant of a squaren X n
matrix A, written | A,, , can be thought of as a measurement of the volume in n dimensional space

of the hyperdimensional solid whose vertices are the columns of the matrix A. The relation be-

_ tween the correction factor used in the deviation vector (gj or ) and the determinant function is

that the volume of the matrix gets smaller if g, # g, for at least one j. The maximum value [W| can
take on then is when g; = &, in this case W =T and [W| = |T|. This motivates the test statistics
which is attributed to Wilks, 1932, and is known as the Wilks-Lambda or A, where
Wi
A= —,
IT}
Since we only have samples from the population, A is estimated by Awith A= IW] / I’T‘I. Since

IA\ is a tunction of }_’:j, it is itself a statistic and under £ and the null hypothesis, (2 N H,) a func-

11



tion of A is distributed approximately as an x? statistic or in special cases an F statistic! with
degrees of freedom dependent upon the number in the sample, the number of groups (sites) and

the number of properties (bands). To the calculated value of the statistic ./A\, A ... (an arbitrary but

obs
fixed real number), is applied the F statistic transformation which yields the value G. After
choosing the level of type [ error willing to be risked (commonly called the « level), the researcher
compares G to a critical value, F ,, corresponding to the o level of the F distribution present under
N H,, the decision rule is then

G <F, retain null hypothesis

G > F reject null hypothesis and conclude, at least one By # U,
The hypothesis testing environment is pictured in Figure 2, The purpose of this paper is now recast
as whether F | as just constructed yields the desired decision rule when the previously stated
assumption (4) under Q is relasicid. Do we still have a Pr (type [ error) = o when we allow the
observation yectors to be dependent?

The presence of a dependence structure in the remote sensing data has been documented by a

number of researchers whose work was summarized previously, Based on these previous papers we

will assume that the ‘TMS data follows the autoregression integrated moving average model —

ARIMA (1,0, 1) — of Box and Jenkins (1970). This model is given by

Ye = ¢ Yo =013ty (1]
where; \'(t =Y, — u;is the deviation of the gray scale value at pixel t from its mean;

. A3, are random variables ~ N(O, ag) and cov (a,, at_l) = 0 [covariance
between a, and a,_; |;
¢, and 6, are coefficients.

Under this model we examine assumption (4) as follows:

1 The function of A s an exact F distribution for the special cases of properties (bands) = 2,3 or groups (training
sites) = 2,3 (Tatsuoka, 1970), The work herein does fall into one of these special cases.

12
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E[(Yy =) (Yeoy =)

= cov (\.(t, ?t-l) (since Y"t = Y = My)

= cov (g fft RULSEEY Y (oy [1])

= cov(d Y., Yo )tcov(-¢, 2., Y, l)-i-cov(at, 11 ) (since cov {s a linear
operator)

= ¢, cov (Yt 1' l) ¢y cov (a,, a,.) (by independence of a’s)

¢, var (Y )=9,, o (by stationarity)
# 0 (since var (Y,) #002),

Thus the presence of the ARIMA (1, 0, 1) implies that the observations are independent.

SETTING UP THE SIMULATION

Examination of the effect of lack of independence was accomplished through a simulation
procedure. A simulation approach was adopted because the question we examined concerned the
adequacy of the central F distribution when the null hypothesis was correct, but the data was de-
pendent in the fashion described, So the significance of the value of the test statistic yield by the
training set must be determined by comparison with a frequency distribution occurring under the
H, (all class mean vectors are equal), and the suitable lack of independence assumptions. No such
frequency distributi;)n is tabled, Therefore, the gist of the simulation was to use a Monte Carlo
approach to generate such a frequency distribution. This was accomplished by calcuiating G
values from randomly generated data sets whose means are identical (4, =u, = 43 =0), validating
H,, and which possessed covariance and autocorrelation structures calculated from the Cotter
Basin test sites. To provide a contro!, these frequency distributions were then compared with
frequency distributions generated from data with the same mean and covariance structure but not
possessing the ARIMA (1, 0, 1) relationship. To create this simulation a set of assumptions was
needed. These assumptinns dealt with the model and error structure model.

Assumptions

The simulation used the following set of assumptions:

14
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1. The first 3 assumptions under 2, with assumption (1) reduced to Yij=utg ie. Hy;

2. Each band is adeguately represented by an univariate ARIMA (1, 0, |) model; a further
im‘plication of this assumption is that the sequences, formed by scan lines, are stationary
in the mean and variance, i.e, possess ‘‘wide sense” stationarity;

3, The transfer function between bands has a zero value for the delay parameter, This means
that any correlation across bands is in phase, or equivalently if Y, isrelated to Y, ,_;, it
can be stated as the cross correlation between Y, and the ARIMA model relating Ynt

and Y, ,_,, where n and m are bands.

The Variance-Covariance Matrix of Independent Observations

The sYstem of ARIMA equations are parameterized by the ¢,'s, 8| 's and the variances of a,,

a NID deviate vector, Under the assumptions for the simulation we obtained an estimate of this

P B

Let Y;; and th be the values of the gray scale for the bands i and j at pixel t of a scan line tor

the same site, then

Yit = 8i1 Yie-1 = 011 2je-1 T34 (2
Yit = 951 Yjt-1 — 051 3jt-1 T3t

(By assumption of ARIMA (1, 0, 1) model).

Using Equations [2]
cov (Y'it, Y.J-t) = cov (¢;; {(it-l — 01 3jt-1 * 3 1 {(jt-l =051 By * ajf)
(Expanding) = cov (#}) Yig 1, %1 ‘.fjt-l)
+ cov (¢ ?it-l’ =01 aj_1) + cov (¢ ?t..p a¢)
+ cov (-6;) 3jt-1, 1 ?jt-l)"'coveoil 31> ~9j1 2jt-1)
+ cov (=6; aj_1, 3j) +cov (ayy, ) {(jt-l)
+ cov (a4, ~8j1 3j¢-1) + 00V (ajp, 2jp)

(By stationarity and coincident cross band relationships)

15
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= 911 #j1 cov (Yiy, Yip) = ¢y 8 oy + 0 = 6y 9y o
+0j 85105 +0+0+0 + oy
where ajj is the covariance of bands i and j based on the independent random vectors. Therefore,
(I -y ¢51)
L+ 055951 — i1 951 — 651 95

O'ij = cov (Y.it' ?jt) ‘3]

and 311 is the estimate of 9y formed by estimating all the quantities on the right-hand side of [3].

Estimates of ¢ and 8

The coefficients of the ARIMA (1, 0, 1) model, ¢, and 6, were estimated for each of the sites.
For each test site and for the eight spectral barids, three scan lines were chosen with each scan line
composed of 100 pixels incorporating the test sites and the surrounding region in the east-west
direction. The ¢, and 8, coefficients were estimated using a maximum likelihood procedure as
implemented in the program by Pack et al. (1972). The value of ¢, did not vary significantly over
bands within one test site, However 8, did exhibit significant variation with spectral band over a
test site and so we decided to run the simulation three times using the maximum, median and
minimum value of $l as these coincided with the range of values of 51 found at each site. The

values of $1 and 91 used are given in Table §,

SIMULATION PROCEDURE

Figure 3 displays the steps in the sirnulation procedure. The first two steps were previously
described and are the estimation af descriptive statistics such as the mean vectors, variance-
covariance matrix and ARIMA coefficients, some of which were inputs at later points in the simu-
lation. The variance-covariance matrices were then adjusted for the presence of autocorrelation as
previously described. This yielded a new set of variance-covariance matrices, I j"'. Then using the
subroutine GGNSM from the International Mathematical and Statistical Libraries (IMSL, 1979)
three sets (one for each site) of 150 random vectors were generated so that the individual vectors

were stochastically independent and followed a MN (0 ¥ j"') distribution. The appropriate ARIMA

16
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Figure 3. Flow in simulation procedure,



I L5 S £ e e AT

ORIGINAL PAGE 1S
OF POOR QUALITY

Table §

Values of @) and 8 used in simulation,

Degree of Site ]
Autocorrelation A B, B,
Maximum

8, 0.275 -0.583 -0.112

8 0.907 0.895 0.901
Median

8, 0.212 0452 -0.296

31 0.714 0.734 0,870
Minimum

8 -0.259 -0.057 ~0.322

A ~ anomalous test site
B| - background site |
By —- background site 2

models for each site was then added to the vectors, This was accomplished by letting a | = }Zl and
then using the recursive relationship formed by the ARIMA (1, 0, 1) model, The first 50 vectors
were discarded to protect against trangient or start up effects. From these three data sets, W, T
and their determinants were calculated (using the LINV?2P subroutine of IMSL), followed by
Agps attd G. This procedure was repeated 1000 times for each set of ¢ | and 51 used and yielded
a frequency distribution of G. Using the same random seed string, 1000 values of G were calcu-
lated for each of the following:

1. Maximum Autocorrelation

2. Median Autocorrelation

3. Minimum Autocorrelation

4. No Autocorrelation?

9 , . . .
“The ‘no autocorrelation’ iteration of the process was performed using both “adjusted” and *nonadjusted” co-
variance matrices, The results were identical,

18
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RESULTS

Table 6 gives the critical or 95 and 98,75 percentile? values of the frequency distribution
formed from the four iterations for the four comparisons (three paired site comparisons and one
comparison of all three sites) plus the corresponding observed values which were caleulated using
the training sets selected for Cotter Basin, The same information for the comparison of all three
sites is shown in Figure 4, which is the generated frequency distributions of G, The critical values
for the generated data were determined from the observed cumulative frequency distribution,

such that the desired proportion (either .05 or 0.0125) of the observations were greater than

the critical vaiue,

Table 6
Critical percentile values from generated frequency distributions versus G observed at Cotter Basin.

Observed | Simulated Values
Values Degree of Autocerreiation
None Most Median Least
Comparison «|0.05 0.0125 0.05 0.0125 0.05 0.0125 0,05 0.0125
All 92.8 250 3.05 Zie 328 102.5 140.0 28,0 35.2
A, B, 80.9 2,00 280 140 196 75.2 1056 135 204
B,B, 65.0 2,00 2.68 1075 1575 672 864 22,0 305
A,B, 1654 2,04 2.68 1225 1625 600 792 252 332

A ~— anomalous site
B, — background site 1
82 -~ background site 2
The critical values from the iteration witii no autocorrelation are slightly greater for all four com-
parisons than they would be under 2 N H, (compare Tables 3 and 6). We attribute this to the

unequal variance-covariance matrices from the three sites, The inflation of the critical value under

the other three iterations in which autocorrelation is present is considerable, In three of the four

3The 98,75 percentile correspponds to an a = 0,012 significance level representing a Bonferroni level adjusted to
yield an overall o level of 0,05 for the four comparisons within a given iteration of the simulation.

19
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comparisons the observed value is less than the critical value of the frequency distribution generated
from the *maximally” autocorrelated data. This Implies that If observations were autocorrelated to
the maximum degree, autocorrelation and not mean differences could account for the variation

seen in the observed data (recall that the mean vectors of the generated rata sets are not significantly
different from 0), The fourth comparison, that between the anomalous and second background
site, Is just significant at the 0,0125 probability level and this result suggests a need for further
examination, The important point here is that even for this comparison, the observed value of G as
a test of mean differences is not, as it first appeared to be, so overwhelmingly significant when

compared to the critical values derived from the simulation,

A similar result heid true for the first three comparisons under the median iteration, that is
none of the comparisons were significant at an a= 0,0125 level, Only under the minimum iteration
did all four comparisons appear significant at the a = 0.0125 level. Even for this iteration the

critical values were inflated by at least time times.

The relationship between the simulated data possessing varying degrees of autocorrelation and
the uncorrelated data is summarized in Table 7. For each comparison, 50 sets of values of G were
randomly selected, Each set contained four values of G, one from each iteration; all values of G
in a set were based on the same random number seed. Figure 5 uses the data generated from the
comparison of all three sites to display the values of G from the three autocorrelated iterations
plotted individually against ctheir corresponding non-autocorrelated values, The inflation in the
value of G, as was indicated earlier, increases with the degree of autocorrelation, The slope
(Table 7), as the inflation multiplier, varied between 7 and 70, Clearly r? must increase as the
degree of autocorrelation is decreased since G based on autocorrelation data approaches the value

of G based on non-autocorrelated data, This is an outcome of the common generation procedure.
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Table 7
Relationship between F statistics calculated from observations possessing differing degree of
autocorrelation. Abscissa F values are calculated from corresponding non-autocorrelated

data sets,

Comparison Y Slope Intercept R?
Most 67.85 246 0.401
All Median 30,24 6.39 0418
Least 11.00 -0.81 0.783
Most 47.18 12,94 0.397
A, By Median 28,15 4,10 0.534
Least 6.42 0.22 0.820
Most 36.23 13.88 0.374
Bl' 82 Median 20.72 9.12 0.360
Least 9,80 0.72 0.757
Most 39.76 15.29 0.391
A, B, Median 18.64 8.82 0.374
- Least 10,31 1,78 0.692

A - anomalous site
B, - background site |
B, — background site 2

SUMMARY AND CONCLUSIONS

For a geobotanical test site at Cotter Basin, Montana, we have examined the MANOVA hypo-
thesis testing situation for differences in the mean vectors, replacing the assumption of Independ-
ence among the pixels (random vectors) in the training set by the assumption of an ARIMA (1, 0, 1)
model for sequence of pixels. The examination was accomplished by a simulation which results in
frequency distributions of variables which should be distributed as F under the ﬁull hypothesis that

the mean vectors are equal,

Using TMS data acquired over Cotter Basin and previous reszarch in this area, we selected test
sites from a geobotanical anomaly and two suitably constrained background area, From initial
comparisons of the mean vectors, we concluded that the test sites were very significantly different

from one another based on reflectance and emittance in the eight TMS bands, Using estimates of



cpas i
the covariances and autocorrelation developed from the test sites, data sets with mean vectors
equal to zero were generated, The generated data was then manipulated to form the test statistics.
Comparison of the frequency distributions of these tust statistics with the initial result led us to
conclude that the variation in mean reflectance from the test sites could be explained by the
presence of autocorrelation In the data and not differences related to the presence of a geobotanical
anomaly, From this result and those of other researchers, we believe it is a grevious, Indeed fatal
error, to use contiguous pixels as the training or testing set with most conventional statistical
procedures; and conclusions drawn from analyses which do not observe this constraint should be
treated circumspectly, This claim includes both parametric and nonparametric procedures, [f
procedures requiring indpendent observations are needed then a grid sample (often with a spacing
# 10 pixels (Cralg, 1978 Labovitz and Mastioka, 1981)] or a suitable filtering algorithm should

be used to remove the autocorrelation,
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