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ABSTRACT

The presence of positive serial correlation (autocorrelation) in

remotely sensed data rosults in an underestimate of the ^eariance-

covariance matrix when calculated using rontiguous pixels. This under-

estimate produces an inflation in F statistics, For a set of Thematic

Mapper Simulator data (TMS), used to test the ability to discriminate a

known geobotanical anomaly from its background, the inflation In F

statistics related to serial correlation Is between 7 and 70 times. This

means that significance tests of means of the spectral bands initially

appear to suggest that the anomalous site is very different in spectral

reflectance and emitance from its background sites. However, this

difference often disappears and is always dramatically reduced when

compared to frequency distributions of test statistics produced by the

comparison of simulated training sets possessing equal means, but

which are composed of autocorrelated observations.
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THE INFLUENCE OF AUTOCORRELATION IN
SIGNATURE EXTRACTION — AN EXAMPLE FROM

A GEOBOTANICAL INVESTIGATION OF COTTER BASIN, MT

INTRODUCTION

Recently researchers have demonstrated that remotely sensed data from a number of sensor

systems are autocorrelated. Such conclusions have been documented for Landsat, (Coberly, 1973;

Craig, 1976, 1979; Tubbs and Coberly, I P78; Tubbs, 1979; Craig and Labovitz, 1980), Thematic

Mapper Simulator (TMS) (Labovitz et al., 1981) and the Viking Lander (Craig et al,, 1981), Along

with these findings, researchers have been studying what effects the violation of the assumption of
r

independenve has upon maximum likelihood, Bayesian classifiers and parameter estimation, This
r

paper explores the influence of autocorrelation upon statistics in a hypothesis testing situation,
C

BACKGROUND AND PREVIOUS RESEARCH

Autocorrelation is a property defined for sequences, X i , X21 • • ., Xi_!, Xi , Xi+ i , • • •, Xn

and is a measure of the randomness of the sequence. In a remote sensing context she sequence is

a scan line and Xi is the digital number (DN) for the Ith pixel. The autocorrelation in a scan line

is measured for specific distances between pixels. For example, the autocorrelation of adjacent

pixels, known as the lag 1 autocorrelation, is estimoed by

n-1 (X l — X)(Xi+l _ X)

01	
S2 

(n 
—21)

where; X is the sample mean of the scan line;

SX is the sample variance of the scan line;

n is the number of pixels in the scan line.

In general, the autocorrelation can be measured for lag k (k = 1, 2, , .., n 1), and is estimated

by

n-k (Xi — X)(Xi+k — X)iE 
S 2 (n — (k + 1))
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The function which maps a lag number to the degree of autocorrelation is known as the

autocorrelation function (acf), The acf can be thought of as taking a sequence, sliding It incre-

mentally along itself and calculating a correlation coefficient at every increment, The autocor-

relation is, therefore, proportional to paired deviations from the mean at a specific spacing, If the

acf is not zero for all lags, then there is a nonrandom pattern in the deviations; and this pattern

can be expressed by a function which relates the DN for the ith pixel to DN's for the previous

pixels, In this situation we speak of the system as having a memory and say that the data is

autocorrelated.

Basu and Odell (1974) found that use of autocorrelated data produced biased estimates of

the variance-covariance matrix. This conclusion was based upon the assumption of a equicorre-

lation dependence structure, i.e. the correlation between X l and Xi = p, for all i 0j, Basu et al,

(1970 showed that if the simple equicorrelation had a positive coefficient, i.e. p > 0, then the

bias in estimation of the variance-covariance matrix, r, resulted in confidence limits, about the

mean, for example, which were too narrow. Intuitively, the assumption of equicorrelation is not very

appealing because it implies that the correlation between pixels in a scene is the same no matter

what the value of the spacing or distance between the pixels. However, the general direction of the

bias appears to be correct because Cliff and Ord (1981) have described a related bias in the distri-

bution of the t-statistics (student's t) when calculated on the estimated means from two popula-

tions, X 1 and XZ , when X1 and X. are autocorrelated. Positive autocorrelation results in the

underestimation of the standard error of the mean and consequent inflation of the t value. Gast-

wirth and Rubin (1971) found the presence of even slight serial correlation (autocorrelation) had a

strong influence on the confidence levels of the distributions of not only the mean but also the

two one-sample nonparametric tests, the sign test and the Wilcoxon test. Tubbs and Coberly

(1978) and Tubbs (1979) proposed an autoregression model of order 1 AR(I) as being more real-

istic than equicorrelation for the dependence structure among the pixels from a Landsat scan line.

The authors then went an to investigate the influence of the AR(l) structure upon estimation of fre-

quency distribution parameters and the Bayesian and maximum likelihood classification procedures.

2
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The authors found that the estimate of the variance-covariance matrix wa. 'onger unbiased,

that Is the commonly used estimate, S, of T, resulted in an underestimate If,alculated from Adja-

cent pl,"d-, which were positively autocorrelated,* For the Bayesian classification procedure, the

`	 authors showed that the misclassification probabilities were unaffected only when the costs of mis-
S

,
	 classifying were equal and the prior probabilities were assumed to be equal, Further, the proba.

bility of misclassification errors from a maximum likelihood classifier were appropriate only when

the training set sizes were equal. Clearly, there are circumstances, Including the need to obtain

unbiased estimates of other parameters such as type I and type Ii errors which would result in

experimental situations where these requirements are not met, Tubbs (1980) extended the results

of Basu et al, (1976) and examined the influence of an AR(1) dependenc y: structure (instead of

egttcorrelation) upon the confidence regions of the mean and variance, The author found that

when the observations possesed positive serial correlation, the assumption of stochastic inde-

pendence, resulted in confidence intervals that are too restrictive, This meant that a 100 (l a)

percent confidence region calculated under the assumption of random samples was <100 (l — a)

percent if the data were positively serially correlated,

Craig (1976, 1979) demonstrated for Landsat data that an autoregressive moving average of

order one-one, an ARIMA (1, 0, 1) (Box and Jenkins, 1970) was a more appropriate model than

the AR (1) model, (We will discuss the ARIMA (1, 0, 1) model In greater detail later,) Further,

Craig (1979) suggested that a sampling scheme with a minimum of 10 pixels between samples be

employed in order to produce independent observations, Craig and Labovitz (1980) suggested

that the ARIMA (1, 0, 1) was a general model for Landsat data and that certain physical Otributes

of the scene were related to the degree of autocorrelation through systematic changes in. the r glues

of the coefficients of the ARIMA (1, 0, 1).
k

Craig (1981) showed that autocorrelated data, in comparison to independent observations

tended to show smaller variability for short distances (contiguous pixels) and larger variation for

longer distances. He 21so demonstrated that the inflation in the uO,riation behaved as a function of

3



ORIGINAL PAGE IS
OF POOR QUALITY

the coefficients In the ARIMA (1, O, 1) model. Craig suggested three methods for compensating for

autocorrelation In data — 1) filtering out the ARIMA (l, 0, 1) model; 2) resampling the data with

an appropriate spacing between pixels, and 3) adjusting the classification algorithms. 	 ,

Campbell (1981) used a sampling scheme to adjust his classification for the presence of auto

correlation. In this paper the author demonstrated effects of autocorrelation by comparing classifl-

cation errors between classifications based on contiguous pixels and classifications based on training

sets composed of randomly selected pixels. The data used was Landsat MSS data from near Rich-

mond, VA. The results showed an almost universal improvement in classification accuracies under

the random sampling alternative. This result held for data acquired during several portions of the

year, Since the random sampling scheme used did not guarantee independent observations, it Is

passible that a further improvement might be achieved by a systematic sample with a suitable

spacing.

OBJECTIVE OF STUDY

The objective of this paper is to examine what influence autocorrelation has upon the re-

searcher's decision concerning the presence of distinguishable populations and his ability to assign

explanatory power to sources of variation. When the researcher makes these decisions based upon

the behavior of functions of samples (statistics) from the respective populations, the problem is

recast as examination of the relationship between the degree of atitocorrelation and the decision

statistic.

This work arose out of ongoing research in the utility of remote sensing for geobotanical

exploration. In this area of geobotany, the explorationist is trying to recognize differences in the

spectrum of vegetation growing in soils containing anomalously high concentrations of stragetic 	 i

metals (e.g. copper, lead, zinc, molybdenum, and chromium) as compared to vegetation growing

in soils containing background concentrations of trace metals. This search is performed with the

r

4
i
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hope that the soil is derived from a nearby ore body, It such a difference could be detected in

vegetation spectra, explorationists could use this difference to "map" promising areas,

THE STUDY REGION — THE COTTER BASIN GEOBOTA-V1gA.L TEST SITE

The Cotter Basin geobotanical test site Is located in Lew;s and Clark County, Montana and

can be found on the Stonewall Mountain Quadrangle- (see Figure 1). The area Is In the Northern

Rocky Mountains Region and possesses considerable relief, The test site region has been studied

previously by Collins et ul. (1977) and Collins et al. (1980). The remotely sensed data used in their

research were acquired by a prototype high resolution (500 channels from 0,400 µm to 1,0 µm)

airborne spectroradiometer system (Chia and Collins, 1978)  during one overflight In 1976 and a

second during 1978,

Mineralization at the Cotter Basin test site occurs in westerly striking shear zones in Precam=

brian sedimentary rocks (Collins et al., 1980). The mineralization is primarily sulfides of copper

and lead with ancillary high concentrations of zinc, silver and gold. Soil concentrations along shear

zones are as high as 10,000 parts per million (ppm) copper, 1,500 ppm lead and 400 ppm zinc

(Collins et al,, 1980).

Description of Data Used in th4 Present Study

The data used were acquired using the Landsat Thematic Mapper Simulator (TMS)-NS001-

(Richard et al., 1978) mounted aboard a NASA 0130 aircraft. The data came from flight line

number 3, flown on August 29, 1979 commencing at 1830 GMT (12:30 p.m, MDT). The flight line

was flown in a south-to-north direction at about 3.0 km (10,0(0 feet) above ground level. Since the

instantaneous field-of-view of the NS001 is 15 milliradt`ans, the pixels are approximately 7.5 m (25

"	 feet) on a side at nadir. Table 1 gives the spectral bands for which data were collected,

Training Site Selection

For the purposes of this study two classes were defined; anomalous and background. The

r	 training site for the anomalous class was locate&so that it fell within the intersection of the soil and

_	 ^	 5



MIGINAL PAGE IS

OF POOR QUALITY

0
M
n

Ocy) an
M ^
0
N
r-
r-

co I

eN
r- O
r- M

O
0n
d'

a

M
0Nr

^C
saw
O
O
s^A

CJ

U

L
O
C
O
n
v

aA
•
L

6



r

r

ORIGINAL PAGE 13
OF POOR QUALITY

Table 1
TMS (NSOO l) Spectral Bands

,

Channel Number
Band Width

(Micrometers)

1 0.42-	 0,52
2 0,52 —	 0,60
3 0,63—	 0,69
4 0.76—	 0.90
5 1.00—	 1.30
6 1.55—	 1.75
7 2.08—	 2,35
8 10.40— 1:,50

remote sensing anomalies defined by Collins et al. (1980). The location of the anomalous training

site was also constrained by the selection of two background sites such that all three sites were

located on the same slope and aspect and at the same angle off-nadir with respect to the KS001

flight line. The three training sites were composed of squares of contiguous pixels, 10 pixels on a

side (100 pixels per training site).

Initial Comparisons of Training Sites

Table 2 contains the sample means by training site for each of the eight bands. The results

of tests of the hypotheses of mean vector equality for combinations of the anomalous and back-

ground sites is given in Table 3. We clearly reject the null hypothesis not only for comparisons of

anomalous versus background sites, but also for the comparison of the two backgrounds. Thus all

three sites are very significantly different from one another. Further examination of the differences

in mean reflectance was accomplished by looking at univariate (by band) comparisons. Table 4

gives the results from 32 univariate tests (8 bands X 4 combinations of training sites). The F ratios

formed were highly significant (a = 0.006) for 30 of the 32 tests, indicating that the significance

found in the multivariate tests was not attributable to some systematic subset of the spectral bands.

Thus, we find significant differences among all three sites for virtually all spectral bands, that

is both for bands containing vegetative information as well as for bands which are insensitive to the

presence of vegetation. Therefore, geobotanical sources of variation are unlikely to account for

such pervasive significance. In looking for explanatory effects, we start with the testing procedure.

7
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Table 2
Samp le means for the eight TMS bands for each test site. Each mean is computed

0.

Band
Center
N (um)

--
11",

Site

B 1 B,w

1 0,48 8815 116,8 115,6
2 0.56 57.1 68.4 92,7
3 0.66 2818 32,4 $ l.3
4 0.83 66.2 68.3 108.7
5 1,15 66,3 73.9 124,6
6 1.65 32.9 38.0 77.5
7 2.2 52.0 62.5 87,0
8 11.4 35.9 47.4 77.2

A - anomalous site
B 1	 background site 1
B, - background site 2

Table 3
Results from tests of null hypotheses of mean vector equality, nobs is the observed
Wilks' Lambda value, G is the related value of the F statistic, F0,0 1 is the preselect

critical value of a = 0.0 1, and P (F > G) Is the probability that an F random variable
with the appropriate degrees of freedom would be greater than G under the

null hypotheses.

Comparison Aobs G F0101 P (F > G)

• vs B 1 0.23 80.89 -2.51 3.03 x 10"58

• vs BZ 0.13 165.37 -2.51 1.42 x 10"81

B, vs BZ 0.27 65.06 -2.51 1.75 x 10"50

All 0.08 92.76 -2.04 6.79 x 10"78

A - anomalous so
B 1 -background site 1
B2 background site 2

8
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Table 4
Results from univadate tests of moan difference in reflactAnce for

combinations of training sites.

All AvsBI

Contrastl

AvsB2 BI vs B2

Band 1 161.23 2119.52 420.33' 0.36
* * * NS

Band 2 308.11 87.06 658.67 193.54

Band 3 278,58 106.62 338.96 233.39

Band 4 162.77 1.'$ 192.55 187,64
NS

Band 5 211.33 18.53 265.20 204.63

Band 6 265,54 42.88 312.72 240.00

Band 7 488,63 198,71 745,78 340.56

Band 8 406.02 297.73 559.91 275.51
w

!Y

i Test statistiq Is an F-ratio with, degrees of freedom for; two sites — 1, 198;
three sites — 2, 297.

*Test significant at a = 0.05/8 0.006 (Bonferroni adjustment for each contrast, (Neter and
Wasserman, 1974)).
NS — Test not significant at a $ 0.006,
A — anomalous site
B i — background site I
B2 — background site 2

9
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HYPOTHESIS TESTING PROCEDURE	
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The test procedure used is called multivariate analysis of variance (MANOVA) and procedes In

the following manner;

1. Postulate a nto el.

Ytj Mj + to

(t " I t 2, ..., 100; j 0 1, 2, 3)

where

Yq Is an 8 x 1 random vector of spectral observations of the td' pixel from the J`h site, dis-

tributed as a multivariate normal vector deviate with mean equal to g j and the covariance

given In an 8 x 8 matrix Z j whose diagonal elements are the variances of the spectral bands and

whose off diagonal elements arW covariances, This Is symbolized as

Yd — iNiN (pj , T j) ► 	 (')

F	 yj is an 8 x i vector of means for the j d' site;

Stt is an 8 x 1 random vector — MN (Q, j )	 (3)

wit:'	 T	 ;j,I=k and mxn
E'(91m fknl

08x8 ► 10 k or mom; m,n = 1, 2, 3

This last assumption arose from the additional assumption that the error for one pixel is un-

correlated with the error for any other pixel. Thus for 10 k at one site,

E(€lm 1kmI - E(g lm ) Ergkm l m 0 • OT = 08x8.

This property is called stochastic independence and is more commonly written as

EUIL- 1 -- 9-fm )  (ekm — µ€m )T I - 08x8, 10 k	 (4)

and (4) results when we recall µ
gm	

0, Since the jtj 's are the random portion of the model, the

saute stochastic independence assumption applies to the `ytj 's. The four modeling assumptions (1)e

to (4) will be collectively known as 42 in further discussion.

2. Collect Data and Estimate Parameters

The observed data used has previously been described. The estimates of µ j and Z j will be

denoted as YJ and Sj respectively and

10
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YJ a 1/1 00 ^T' Ytj

Sj 	 1/92	 1 (Ytj — Yj) (Ytj -- yj )T.
to

Two other quantities are also estimated from the date. These are the within-groups (sites) sums of

squares and cross products (WSSCP) matrix, W with the estimate,

^v • 
J
1 92 Sj

and the total sums of squar es and cross products (TSSCP) matrix T, estimated by

T 	

It ^^gt

J u l

YtJ ~ Y) (Yo y)T

where Y	 1/3 
u,wl 

Yj

3. Test Statistics

The SSCP associated with W is calculated about the Individual test site means, while the SSCP

associated with T used the grand mean over all pixels as a correction factor. Clearly if any of the

different, the deviation vectors (Y, - 4) of the pixels in this population will be smaller

",an ne deviation vectors formed by the difference of the same pixels and the band mean M

Aµj. This observation is the basis for the test statistic used. The determinant of a square n x n

matrix A, written I A,, can be thought of as a measurement of the volume in n dimensional space

of the hyperdimensional solid whose vertices are the columns of the matrix A. Tlie relation be-

tween the correction factor used in tho deviation vector (µj or u) and the determinant function is

that the volume of the matrix gets smaller if aJ # µ, for at least one j. The maximum value IWI can

take on then is when Lii = fie, in this case W ^ T and IWI - ITI. This motivates the test statistics

which is attributed to Wilks, 1932, and is known as the Wilks-Lambda or A, where

. IWI
A

ITI

Since we only have samples from the population, A is estimated by A with A = IWI / IT1, Since

A is a function of Y j , it is itself a statistic and under St and the null hypothesis, (n n Ho) a func.



tion of A is distributed approximately as an X2 statistic or In special cases an F statistic s with

degrees of freedom dependent upon the number In the sample, the number of groups (sites) and

the number of properties (bands). To the calculated value of the statistic A, 'Robs (an arbitrary but

fixed real number), is applied the F statistic transformation which yields the value G. After

choosing the level of type I error willing to be risked (commonl y called the a level), the researcher

compares G to a critical value, F c , corresponding to the a level of the F distribution present under

St n Ho , the decision rule is then

G G Fc retain null hypothesis

G > Fc reject null hypothesis and conclude, at least one u j :* µ.

The hypothesis testing environment is pictured in Figure 2. The purpose of this paper is now recast

as whether F. as just constructed yields the desired decision rule when the previously stated

assumption (4) under n is rela ^.;I, Do we still have a Pr (type 1 error) = u when we- allow the

observation vectors to be dependent?

The presence of a dependence structure in the remote sensing data has been documented by a

number of researchers whose work was summarized previously. Based on these previous papers we

will assume that the TMS data follows the autoregression iniegrated moving average model —

ARMIA (1, 0, 1) — of Box and Jenkins (1970). This model is given by

it = 0 1 Yt- 1 — 01 a t- 1 + at	 [ 1 l

where;	 Yt = Yt — A; is the deviation of the gray scale value at pixel t from its mean;

a c s at-1 are random variables — N (0, a) and cov ( at , a t-1 ) = 0 [covariance

between at and a t-i I

1 and 0 1 are coefficients.

Under this model we examine assumption (4) as follows;
r

1The function of A is an exact F distribution for the special cases of properties (bands) = 2,3 or groups (training
sites) - 2,3 (Tatsuoka, 1970). The work herein does fail into one of these special cases.

12
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EI(Yt -A) (Yt-1 1^))

a cov (Yt, Yt-1) (since Yt = Y  - µY)

= cov (0 1 Yt-1 -01 a t-1 + a t , Yt-l ) (b y 111)

= cov (01 Yt_ 1, Yt _ l ) + cov (-0 1 at-,, Yt-1) + cov (a t , Y t _ t ) (since cov Is a linear

operator)
9

= 01 cov (Yt 1 , Y t_l ) - 0, cov (a t-1 , at_l) (by independence of a's)

_ 01 var (Y t) - 0 1 , a (by stationarity)

r 0 (since var (Y t ) 0 0 oa ),

Thus the presence of the ARIMA (1, 0, 1) Implies that the observations are independent.

SETTING UP THE SIMULATION

Examination of the effect of lack of independence was accomplished through a simulation

procedure. A simulation approach was adopted because the question we examined concerned the

adequacy of the central F distribution when the null hypothesis was correct, but the data was de-

pendent in the fashion described, So the significance of the value of the test statistic yield by the

training set must be determined by comparison with a frequency distribution occurring under the

Ho (all class mean vectors are equal), and the suitable lack of independence assumptions. No such

frequency distribution is tabled. Therefore, the gist of the simulation was to use a Monte Carlo

approach to generate such a frequency distribution. This was accomplished by cal=,'ating G

values from randomly generated data sets whose means are identical (µ l = 82 ` A-3 = g), validating

Ho , and which possessed covariance and autoeorrelation structures calculated from the Cotter

Basin test sites. To provide a control, these frequency distributions were then compared with

frequency distributions generated from data with the same mean and covariance structure but not

possessing the ARIMA (1, 0, 1) relationship, To create this simulation a set of assumptions was

needed;. These assumptions dealt with the model and error structure model.

Assumptions

The simulation used the following set of assumptions:

14
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1. The first 3 assumptions under St, with assumption (1) reduced to Y J = e + ej , i.e. HQ;

2. Each band is adequately represented by an univariate ARIMA (1, 0, 1) model; a further

implication of this assumption is that the sequences, formed by scan lines, are stationary

in the mean and variance, t.e. possess "wide sense" stationarity;

3. The transfer function between bands has a zero value for the delay parameter. This means

that any correlation across bands is In phase, or equivalently if Ymt is related to Yn t-1 t it

can be stated as the cross correlation between Ymt and the ARIMA model relating Ynt

and Yn t-1, where n and m are bands.

The Variance-Covariance Matrix of Independent Observations

The system of ARIMA equations are parameterized by the 0 1 's, 8 1 's and the variances of at,

a NID deviate vector. Under the assumptions for the simulation we obtained an estimate of this

variance-covariance matrix of the independent random vectors as follows.

Let Yit and Yit be the values of the gray scale for the bands i and j at pixel t of a scan line for

the same site, then

Yit " Oil Yit-1 _ 81l ait-1 + ait
[2a

Yjt = Oj l Yjt- 1 _ 
8j I ajt-1 + ajt

(By assumption of ARIMA (1, 0, 1) model).
f

	

	 4
Using-Equations (2

cov (Yit , Yjt ) = cov ( àil Yit-1   6i  alt-1 + ait, 	 l q̂-I — 8j I ajt-1 + ajt)

(Expanding)	 = cov (ail Y1t-1 j 1 Yjt-1)

+ cov (Oil Yit-1 , -8j 1 ajt-1) + cov (O il Yt-1 , ajt)

+ cov (-8i 1 alt-1, Oj 1 Yjt-l ) + cov Fe i 1 ait-1 , -6j 1 ajt-1)

+ cov (-8 i1 ait-1 , ajt) + cov (ait , Oj 1 Yjt-1)

+ cov (ait, -8jI 
ajt-1) + cov (ait , ajt)

(By stationarity and coincident cross band relationships)

i

I5
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0 Oil oi l cov (Yit , Yjt ) Olt 9 j l aij + 0 — 0 11 Oj 1 aij

+0 11 9jI aij +0 +0 +0 +aij

°	 where aij is the covariance of bands i and; based on the independent random vectors. Therefore,

=	 (1 _ a il Ojl)
aij 

	
cov (Yit , Yjt)	 (3)

a	 1 + 9 ij I;1 `"oil 6j  ` e it Oji

and olj is the estimate of a lj formed by estimating all the quantities on the right-hand side of (31,

Estimates of 0 and 0

The coefficients of the ARIMA ( 1, 0, 1) model, 0 1 and 9 1 were estimated for each of the sites.

For each test site and for the eight spectral bands, three scan lines were chosen with each scan line

composed of 100 pixels Incorporating the test sites and the surrounding region in the east-west

direction. The 0, and 9 1 coefficients were estimated using a maximum likelihood procedure as

implemented in the program by Pack et al. (1972). The value of ai l did not vary significantly over

bands within one test site. However 9 1 did exhibit significant variation with spectral band over a

test site and so we decided to run the simulation three times using the maximum, median and

minimum value of s 1 as these coincided with the range of values of 9 1 found at each site. The

values of $ t and 0 1 used are given in Table 5,

SIMULATION PROCEDURE

Figure 3 displays the steps in the simulation procedure, The first two steps were previously

described and are the estimation of descriptive statistics such as the mean vectors, variance-

covariance matrix and ARIMA coefficients, some of which were inpu ts at later points in the simu-

lation. The variance -covariance matrices were then adjusted for the presence of autocorrelation as

previously described. This yielded a new set of variance -covariance matrices, T j *. Then using the

subroutine GGNSM from the International Mathematical and Statistical Libraries (IMSL, 1979) 	 '

three sets (one for each site) of 150 random vectors were generated so that the individual vectors

were stochastically independent and followed a MN (0 ^ j *) distribution. The appropriate ARIMA
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Figure 3. Flow in simulation procedure.
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Table 5
'Values of $ 1 and #1 used in simulation.

Degree of
Autocorrelation A

Site

B i B2

$1 0.948 0.927 0.926
Maximum

1 0,275 -0,583 -0.112

¢i 1 0.907 0,895 0.901
Median

#1 0.212 0,452 -0,296

$1 0.714 0,734 0,870
Minimum

1 -0.1-159 -0.057 -0.322

A — anomalous test site
B 1 —background site 1
B2 — background site 2

i

models for each site was then added to the vectors. This was accomplished by letting a l = Y 1 and

then using the recursive relationship formed by the ARIMA ( 1, 0, 1) model. The first 50 vectors
A A

were discarded to protect against tran!^ient or start up effects. From these three data sets, W, T

and their determinants were calculated (using the LINV2P subroutine of IMSL), followed by

Aobs and G. This procedure was repeated 1000 times for each set of $ 1 and e l used and yielded

a frequency distribution of G. Using the same random seed string, 1000 values ox G were calcu-

lated for each of the following:

1. Maximum Autocorrelation

2. Median Autocorrelation

3. Minimum Autocorrelation 	 a

4. No Autocorrelation2

2The `no autocorrelation' iteration of the process was performed using both "adjusted" and "nonadjusted" co-
variance matrices, The results were identical..
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RESULTS

Table 6 gives the critical or 95 and 98,75 percentile 3 values of the frequency distribution

formed from the four iterations for the four comparNons (three paired site comparisons and one

comparison of all three sites) plus the corresponding observed values which were calculated using

the training sets selected, for Cotter Basin. The same information for the comparison of all three

sites is shown in Figure 4, which is the generated frequency distributions of C. The critical values

for the generated data were determined from the observed cumulative frequency distribution,

such that the desired proportion (either .05 or 0.0125) of the observations were greater than

the critical vaik!t.

Table 6
Critical percentile values from generated frequency distributions versus C observed at Cotter Basin.

Observed
Values

Simulated Values
Degree of Autocorrelation

None	 Most	 Median Least

Comparison oi l 0.05	 0.0125 0.05 0.0125 0,05 0.0125 0,05 0.0125

2.50	 3.05 216 328 10215 140.0 28,0 3 5. 2All	 92.8

A, B 1 80.9 2.00	 2.80 140 196 75.2 105.6 13,5 20.4

B l , B 2 65,0 2.00	 2.68 107.5 157.5 67,2 805.4 22,0 30.5

A, B2 165.4 2.04	 2.68 122.5 162.5 60.0 79.2 25,2 33.2

A - anomalous site
B l - background site 1
B 2 - background site 2

The critical values from the iteration waif no autocorrelation are slightly greater for all four com-

parisons than they would be under n n Ho (compare Tables 3 and 6). We attribute this to the

unequal variance-covariance matrices from the three sites. The inflation of the critical value under

the other three iterations in which autocorrelation is present is considerable, In three of the four

3The 98.75 percentile correspponds to an a - 0,0125 significance level representing a Bonferroni level adjusted to
yield an overall a level of 0.05 for the four comparisons within a given iteration of the simulation.
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comparisons the observed value Is less than the critical value of the frequency distribution generated

from the "maximally" autocorrelated data, This Implies that If observations were autocorrelated to

the maximum degree, autocorrelation and not mean differences could account for the variation

I	 seen In the observed data (recall that the mean vectors of the generated data sets are not significantly

different from► 0). The fourth comparison, that between the anomalous and second background
I

site, is Just significant at the 0,0125 probability level and this result suggests a need for further

examination. The Important point here Is that even for this comparison, the observed value of G as

a test of mean differences is not, as it first appeared to be, so overwhelmingly significant when

compared to the critical values derived from the-simulation.

A similar result held true for the first three comparisons under the median iteration, that Is

none of the comparisons were significant at an a = 0,0125 level, Only under the minimum Iteration

did all four com parisons appear significant at the a = 0.0125 level, Even for this iteration the

critical values were inflated by at least time times.

The relationship between the simulated, data possessing varying degrees of autocorrelation and

the uncorrelated data is summarized In Table 7. For each comparison, 50 sets of values of G were

randomly selected, Each set contained four values of G, one from each Iteration; all values of G

In a set were based on the same random number seed. Figure 5 uses the data generated from the

comparison of all three sites to display the values of G from the three autocorrelated iterations

plotted individually against their corresponding non-autocorrelated values, The inflation in the

value of G, as was indicated earlier, Increases with the degree of autocorrelation, The slope

(Table 7), as the inflation multiplier, varied between 7 and 70, Clearly r 2 must increase as the

.degree of autocorrelation is decreased since G based on autocorrelation data approaches the value

of G based on non-autocorrelated data. This is an outcome of the common generation procedure,
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M	 y

^	 O
M z
O ^

M ^ y

W	
Gr

^ ^ 0
0

M u
	 "{

N 0

OI Q	 ^

Oz y

s:r

22



ORIGINAL PAGE IS
OF POOR QUALITY

'Fable 7
Relationship between F statistics calculated from observations possessing differing degree of

autocorrelation, Abscissa F values are calculated from corresponding non—autocorrelated
data sets,

A

Comparison Y Slope Intercept R2

Most 67.85 2,46 0.401
All Median 30.24 6.39 0.418

Least 11.00 —0,81 0.783

Most 47,18 12.94 0,397
A, B I Median 28,15 4.10 0,534

Least 6,42 0,22 0,820

Most 36,23 13,88 0,374
B I , B2 Median 20.72 9,12 0.360

Least 9,80 0.72 0,757

Most 39.76 15.29 01391
A, B, Median 18.64 8.82 0,374

` Least 10.31 1,78 0.692

A -- anomalous site
B I —background site 1
B2 — background site 2

SUMMARY AND CONCLUSIONS

For a geobotanical test site at Cotter Basin, Montana, we have examined the MANOVA hypo-

thesis testing situation for differences in the mean vectors, replacing the assumption ofIndepend-

ence among the pixels (random vectors) In the training set by the assumption of an ARIMA (1, 0, 1)

model for sequence of pixels. The examination was accomplished by a simulation which results in

frequency distributions of variables which should be distributed as F under the null hypothesis that

the mean vectors are equal.

Using TMS data acquired over Cotter Basin and previous re curch in this area, we selected test

sites from a geobotanical anomaly and two suitably constrained background Area. From initial

compririsons of the mean vectors, we concluded that the test sites were very significantly different

from one another based on reflectance and emittance in the eight TMS bands, Using estimates of
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the covarlances and autocorrelation developed from the test sites, data sets with mean vectors

equal to zero were generated, The generated data was then manipulated to form the test statistics.

Comparison of the frequency distributions of these test statistics with the Initial result led us to

conclude that the variation In mean reflectance from the test sites could be explained by the

presence of autocorrelation in the data and not differences related to the presence of a geobotanical

anomaly, From this result and those of other researchers, we believe It is a grevious, indeed fatal

error, to use contiguous pixels as the training or testing set with most conventional statistical

procedures; and conclusions drawn from analyses which do not observe this constraint should be

treated circumspectly, This claim includes both parametric and nonparametric procedures. If

procedures requiring indpendent observations are needed then a grid sample (often with a spacing

> 10 pixels (Craig, 1978-, Labovitz and Masuoka, 1981)) or a suitable filtering algorithm should

be used to remove the autocorrelation,
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