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INTRODUCTION

Background

NASA has been actively supporting the development of earth

resources applications of passive microwave sensors over the last six

to eight years.	 The driving force behind the support of passive

microwave sensors is the high potential for estimating soil water

interaction.	 Application areas that are currently receiving much

attention and to which soil water is a vital requirement for their

success are crop yield production, weather and climate modeling,, and

watershed management. Prior experimental work supporting the poten-

tial of using passive microwave sensors for estimating soil water

information has relied heavily on ground and aircraft based sensors

[1]-[1]. Although these are natural first phase efforts, the eventual

application of such techniques will most likely be their implementa-

tion frail a space platform.

The ground resolution cells associated with spaceborne passive

sensors operating at low microwave frequencies are quite large because

of limitations on the antenna size. 	 Thus, acquisition of data from

homogeneous, uniform areas as done with low altitude sensors will not

be possible with spaceborne systems. At low orbit altitudes, resolu-

tions of spaceborne passive microwave systems on the order of 5 km to

20 km could be achieved with current technology. Resolutions of such

dimensions will contain a mixture of the primary scene component, such

as agricultural fields, as well as other scene components such as

forest, urban areas, lakes, open water and rangeland. Consequently,y	 4
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results that have been demonstrated quite effectively with log

tude "high resolution" sensors might not be obtained with reli

coarse resolution sensors that operate from orbiting platforms.

There are currently no passive microwave sensors in space that

operate within the low microwave frequency range that have reasonable

resolution dimensions. The Nimbus series of satellites have passive

systems, but their lowest frequency is 4.9 GHz and the resolution at

this frequency is on the order of 50 km to 60 km. The only 1.4 GHz

passive system that has flown in space was aboard Skylab for a very

brief period of time. However, it had a resolution of greater than

100 km.	 Even with this extremely coarse resolution, encouraging

implications were obtained when comparing the data to available soil

water information [81-[101.

Since sensor systems that have design specifications applicable

to soil moisture estimation are not currently in orbit, it is not pos-

sible to utilize measurements to directly determine the feasibility of

estimating a soil water parameter from space. More importantly, 11 a

system was currently in orbit, it would most likely have a fixed fre-

quency, resolution, and look angle. It would not be possible to use

such a system for a thorough analysis of the effects of frequency and

resolution on the performance of a soil moisture estimation algorithm.

Objective

A sensor/scene simulation program is required in order to deter-

mine the effects of scene heterogeneity, resolution, frequency, look

angle, and surface moisture and temperature relations on the perfor-

mance of a spacebornd passive microwave system designed to estimate

2

ix:;



information.	 before	 forl= soil	 water	 In	 addition,	 the expenditures	 an

orbiting	 passive	 microwave	 sensor	 system	 can	 be	 justified,	 certain	 a

critical questions relating to its design parameters and expected per-

formance must be answered. 	 The first	 two objectives	 of the project

documented herein were to 1) 	 develop and 2)	 implement a computer pro-

x gram that	 could simulate the operation of a passive microwave sensor

at	 L-band,	 C-band,	 and	 X-band	 frequencies	 for arbitrary	 antenna	 and 

orbit parameters. 	 addition,	 e model	 d	 capabilityr ^t p	 am	 ers.	 Ina	 ttion,	 th	 o	 1	 ha	 to	 have the

of	 simulating	 realistic	 scene	 configurations	 with	 arbitrary	 soil

moisture and temperature spatial 	 variations. A third objective was to

utilize	 the	 model	 to	 perform	 soil	 moisture	 measurement	 feasibility

studies.	 Specifically,	 to	 determine	 the	 maximum	 sensor	 resolution

that	 would	 provide	 a	 reasonable	 sensitivity	 to	 soil	 moisture	 within

r: the	 scene,	 and	 to	 determine	 the	 effects	 of	 scene	 makeup	 or	 the

resolution/performance relationship.

Summary

4A	 ,

To meet the three objectives, the effort consisted of three basic

i
tasks:	 1) model determination, 2) model implementation, and 3) soil

moisture measurement feasibility studies. 	 Each of these tasks are

briefly summarized below.

j

r

Model Definition

The primary purpose of the model is to determine the effects of

geometric and brightness temperature variaticns within the scene on

the output of a radiometer. As a result, the model consists basically

of a digital representation of the scene with algorithms capable of

3,
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integrating the briglELl,,ness temperature of the scene weighted by t

one way antenna pattern. 	 By specifying both the horizontally i

vertically polarized brightness temperatures for each element of 1

scene, effects of the cross polarized antenna pattern can also

coa;.puted.

The model is defined such that the orientation of the anter

with respect to the scene is arbitrary. In other words, the sen,

altitude, incident angle, and azimuth angle with respect to the sc(

are input variables.	 The model is also implemented such that

scene can be updated after each over-flight. This feature can be u

to simulate a flight path across the scene and demonstrate the effei

of scene geometry. 	 It is also useful in predicting the effect OT

changing scene parameters such as sai l moisture, crop type, etc., on

the radiometer output.

The model assumes a flat earth for both scene representation and

flight path simulation.	 Atmospheric effects are not considered in

this effort.	 However, atmospheric effects could be incorporated by

modifying the brightness temperatures representing each element of the

scene, or by implementing a subroutine that calculates the effect of

the atmosphere on the brightness temperature corresponding to each

differential solid angle involved in the antenna/scene integration.

Model Implementa tion

The model was implemented in FORTRAN for ease of implementation

of most computer systems. The scene used in the model consists of an

array of numbers corresponding to the percent of particular scene

classifications contained'in each pixel or array element. The array

4
M1i
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corresponding to the scene was generated from actual Landsa

covering a large area of south-central Texas. Each array el

pixel represents a 240 meter square on the earth's surface.

The brightness temperature correspoinding to each ground scene

pixel is calculated based upon the percentages of each scene component

class contained therein and its relative position in the antenna

beam. The estimated radiometer antenna temperature for each instan-

taneous antenna resolution element within the scene is calcualated by

integrating the weighted contribution of each pixel within the antenna

footprint.

Soil Moisture Measurement Feasibility Studies

After the simulation program was tested and verified, two flight

lines were identified across the scene and used for all simulation

computations.	 These flight lines were chosen so as to provide a

representative sampling of all possible scene configurations and com-

ponents.	 Numerous simulations were computed for L-, C-, and X-band

frequencies over these flight lines and put into a data base for

. 	 .. analysis. Resolution, soil moisture, soil temperature, surface rough-

ness, and look angle were varied between simulation runs. Also, scene

composition in terms of the percentage of each scene class within each

resolution element was computed and maintained by the location of each

a
resolution element within the scene.

The primary parameters investigated in this study were resolution

or instantaneous field of view and soil moisture. The objective was
A .

to determine if the heterogeneity of the scene within the antenna

resolution changes as a function of resolution size, to determine what
na	

5
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effect such a change would have on the antenna temperature soil

moisture dependence, and to determine if there is a resolution that

maximizes this dependence on soil moisture. In order to determine the

effect of scene heterogeneity, soil moisture variations that would

occur across a large scene due to precipitation patterns and soil

composition were not addressed in this study. 	 The effect, of this

moisture variability on the resolution requirements of an orbiting

microwave system would be in addition to the resolution requirements

due to scene heterogeneity. The intent was to address this question

in the follow-on studies.

It was originally thought that as resolution was decreased the

sensitivity of the antenna temperature to soil moisture would

increase. This was based on the assumption that the scene "purity"

within a resolution element would improve as resolution decreased.

This turned out to be an erroneous assumptio, As a result, it was

determined that the average sensitivity of antenna temperature to

..	
soil moisture improves slightly as the antenna footprint size

a
increased.	 Also, the precision (or variability) of the sensitivity

changes as a function of resolution. 	 Surprisingly, however, the

highest variability occurs at middle resolutions, on the order of 20

km. Resolutions of 5 km and 60 km have approximately equal 95% confi-

dente limits on the estimate of the sensitivity to soil moisture. At

horizontal polarization, the average sensitivity to soil moisture at

L-band is approximately	 1.5 0K/percent soil moisture	 at C-band

approximately -0.85°K/percent soil moisture; and X-band approximately	 a

-0.50°K/percent soil moisture. These computed sensitivities to soil

moisture should be reasonable estimates of what can be expected from

6
t
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t

an orbiting passive microwave system operating over non-mountainous

land terrain, with the only limitation being that the pixels are less

than 40% forest covered. Improvements in these sensitivities could be

expected for pixels known to consist of agricultural features.

MODEL DEFINITION AND STRUCTURE

In order to produce a simulation model versatile enough to be of

use in addressing the many unanswered questions concerning the viabil-

ity and system measurement constraints on an orbiting passive micro-

wave system designed for soil water measurement, the system model had

to be capable (within limits) of: 1) handling arbitrary antenna gain

patterns, 2) integration over both like and cross polarized antenna

gain patterns, 3) arbitrary look angle, 4) arbitrary resolution, 5)

arbitrary altitude, 6) antenna scanning, and 7) flight path simula-

tion. In addition, the results obtained from the simulation model are

only as good as the scene simulated. Thus, the scene characterization

had to be realistic in both component make up, geometry, and component

statistics.	 The capability of controlling certain scene parameters

such as roughness, soil moisture, and temperature arbitrarily over the

scene had to be available. And, methods of estimating the brightness

temperature of each scene pixel had to be developed as a function of

soil moisture, soil temperature, surface roughness, microwave fre-

quency, polarization, and emission angle.

The simulation program generated met all of the above require-

ments. Although all of these capabilities were not utilized in this

study, they are expected to be needed in future efforts. Of the two

tasks described above, 1) space platform and antenna coordinate system

7
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definition/implementation, and 2) ground scene definition and deve

ment, the latter proved to be the more difficult task and required

most effort.

Space Platform Coordinate System/Implementation

The center of each ground cell within the scene is defined by

position in the surface-based XYZ coordinate system, Figure 1. T

coordinates are then linked to the satellite platform coordin

X 111y 'lif Z"' by the system of equations;

1

Y'	 Y - So	 (1)
Z	 Z	 YO

and
X"	 Cos A	 Si n	 0	 X'
Y" _

3
-Si no	 Coso	 0 Y (2)

Z$1 0	 1 Z'

^^ x

and
Pty11(

/Y^111
1	 0	 0 X1 'I

{n _ 0	 Coso	 sine Y' (3) A
2111 0	 -Sing	 Coso Z'

i This transformation is accomplished by first displacing the XYZ system

by	 ao,	 6o, Yo to form the X'Y'Z'	 system. Next,	 the	 X'Y'Z' system is

rotated about	 the	 Z'	 axis	 (angle	 ^D) to	 form	 the X"Y"Z"	 system.

' Final lFinally, this latter system is	 rotatedy "about the Y	 axis (angle	 o(	 9	 )	 to

form the X"'Y"'Z"'	 system.	 The angle o (the first	 rotation of X'Y'Z'

about	 Z') is defined as	 azimuth,	 while rotation about Y",	 angle	 a is

defi ned as the roll or incident angle. E

8
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FIGURE 1. Relationship between the scene coordinate system and the

s	 satellite platform coordinate system
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Antenna Temperature Equations

The computation of the radiometer antenna temperature of that

portion of the scene at which the antenna is looking requires an

integration of the product of the scene brightness temperature and the

antenna gain pattern. This integral is performed for both horizontal

and vertical linear polarizations and is denoted by:

BA _ IG
VV(e, ^) BTV (e. ^) d Q + fGVH(9, ^)BTH(e, 0)d n	 (4a )V
	 GVV e , $ dS2	 -rGVH(e, O)dst

+
fGHH (6, O)BTH(e, O)ds2	 jGVH (9, 4) B TV ( e, O)dsi	 (4b)BA 	

GHH a, q dsi	 fGHV e, d Q

k.

where:

BAV, BAH	 computed antenna temperature for

r:

.F

k r

r`.
r,

'e

``	 z
Z4

k

{

vertical	 and horizontal	 polariza-
tions, respectively.

BTV(e,^)	 - brightness temperature of the scene at
BTH(e,^) vertical	 and horizontal polarizations,

respectively

GVV(e,^)	 - like polarized antenna gain patterns for
GHH(6,0 vertical and horizontal polarizations,

respectively

GVH(9,¢) - cross polarized antenna gain patterns for
GHV(e,^) vertical	 and horizontal polarizations,

respectively

dQ - differential	 solid angle.

The angles a and 0 are identified in Figure 2. 	 The second term in

equations (4a) and (4b) constitute a cross polarized contribution to

the antenna temperature. This contribution is small for good anten-

nas.	 However, it is worth having the capability of computing this

10
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FIGURE 2. Definition of parameters used in model equations.
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contribution in order to determine its effect on measurements by real

antennas that might one day be flown in space.

Actual antenna patterns were not used in the program for the pur-

pose of the study presented in this document. An idealized antenna

gain pattern of the form:

G (e, ,^) - G(e) = I
 sinx ^ f

Ywhere

X = n 6

On

en - half of null-to-null beamwidth of the main lobe

For this idealized antenna pattern, there is no cross polarized gain.

The effect of the parameter f in the above expression is indicated in

Table 1.

The horizontal brightness temperatures of the scene in equations

(4a) and (4b) are also corrected for changes in the local plane of
C	 -

incidence within the antenna footprint. If Y is the angle between the

plane determined by the sub-nadir line and the antenna axis, and the

4	 plane defined by the sub-nadir line and a Tine from the antenna and

the pixel of interest in the scene (Figure 2), then the corrected

scene brightness temperature is given by:

BTV(e,¢) = TV(e' )cos 
2Y 

+ TH(e' )si n2Y

BTH(e,^) = TH(e' )cos 2Y + TV(e' )sin2Y

^v

12
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TABLE -. Effects of Parameter f on Gain Pattern Shape

Peak Value of 3 db Bearnvidth
f First Si del obe Compared to Nul 1-

(db down) to-Null	 Width

0.5 3.4 79
1.0 6.7 60
1.5 10.1 50

..	 2.0 13.5 44
2.5 16.8 119
3:0 20.2 37
3.5 23.6 34
4.0 26.9 32
4.5 30.3 30
5.0 33.7 29

5k

3s

^F

r

s

n
_ L
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where

local incident angle at scene pixel defined
by a and ¢

TV(e l ) - vertical brightness temperature of pixel
defined by a and 0

TH(e') - horizontal brightness temperature of pixel
defined by o and m

The parameters TV and TH for each type of scene pixel are computed io

subroutines BRIGHT and CORR described below.

Integral Evaluations

In order to evaluate the integrals in equations (4a) and (4b),

they were transformed as follows:

	

jG(e,^)T(e,^)dn = I ^ T(x,y,env 4,p)G(e,9)cusendA	 (5)
x Y	

(R1„) 2

and

jG(e,o)da =	 G(e, )cosen dA	 (6)

r^ x y	
(R" 2

where

i
(R^^ )2 » aXpY

and

(R" )2z	 (x -«o) 2 + (Y - so) 2	 (z - Yo) 2	 (7)

;.	 14



The angles a and ^ are given by:

o	 cos-1 z,o l
	 (g)

Roll

and

= Tan- I 
Y os t 	 (g)

X1

} 'T'

with X"", Y'll , Z"' as defined in equations (1), (2) and (3).

The above system of equations was implemented on the Texas A&M

computer. The computational algorithm was designed so that for each

nadir position of the satellite, (aj,oj), equation (4) was evalu-

ated over the antenna footprint, Figure 3. Equations (5) and (6) were

used to calculate the value of the indefinite integrals in equation

(4). The footprint limit, were established as the area included with-

in the antenna beamwidth projected onto the ground scene. The beam-

width of the antenna was selected as the angle included between the

first two sidelobes. By design, these two sidelobes are 20 dB down

f rom the gain at the center of the beam.

The basic system algorithm accomplfishes the following:

For each X, Y, Z in the footprint, calculate

i Z^ui
a = cos'	 (10)

R . 111
!l

or

J
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Y.

mi = sin-l(.R--rof n9)	 (11)
i

1	 -(xi - aj)sinocoso + (yi - 9j)cos ocos o 	(Ila)Vii= sin'	 — R^Tsine

^^ w

.	
u

or

u

	

lra
	 where

R i u ^

	 [(Xi _ 
aj )2 + (yi _ Bj)

2 + (zi _ 
Yj)

211l 2	 (12)

The i subscript indexes each pixel in the footprint and j indexes each

position of the satellite nadir. As these parameters are evaluated

for each pixel in the footprint, the two sums for the indefinite

integrals, equations (5) and (6), are accumulated so that for each

footprint, (or for each nadir position, (aj,Bj)), there exists

.: (TiGi Cos 0n AA i )x:. N	 _	
if rf2--R

(13)

1

1

and

(GicosendAi)
Gd	 R^ (14)

i which	 are	 used	 to evaluate apparent	 brightness temperature for that

k

footprint,
y

N.
BAS	

D (15)

m
17
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Simulated Ground Scene

Scene Construction

The dominant criteria used in constructing the ground scene was

that	 it	 must	 be	 capable	 of	 being	 represented	 digitally	 on	 magnetic

tape	 or	 some	 other peripheral	 storage	 medium.	 Next,_ the	 scene	 had

to be large enough to accommodate satellite altitudes of up to 500 km

1
with antenna	 beamwidths of 30 degrees or less,	 and	 incident angles of 	 j

50	 degrees	 or	 less.	 As	 illustrated	 in	 Figure	 4,	 0,1se	 parameters

yield a maximum field of view of 722 km.	 Finally, the minimum resolu-

tion desired was areas of approximately 40 acres. 	 This turns out to

be approximately 0.24 x 0.24 kin; therefore, the ground scene was sized

to be 1444 units wide.

To	 insure	 that	 the	 ground	 scene	 was	 as	 realistic	 as	 possible,

a
actual	 fullframe	 classified	 Landsat	 images	 were	 used	 to	 build	 the

scene.	 Eight Landsat images of central 	 and east Texas classified into

various	 vegetation,	 water,	 and	 urban	 classes by	 the Texas Parks	 and

Wildlife Department were used. 	 Figure 5	 illustrates the area covered

w. by	 the	 eight	 Landsat	 scenes.	 Appendix	 A	 contains	 the	 classified

i
images as	 produced by the Texas 	 Narks	 and Wi l dlife Department,	 along

i with descriptions of what the classifications mean.

Each classified Landsat image contained a maximum of 1824 by 2048

Landsat	 pixels.	 Further,	 each classified map	 had	 different classes.

There was inconsistency in the definition format of the scene classes

l^
on	 different	 maps	 (i.e.,	 the digital	 court	 representing grass would

w appear as	 a	 different	 value on each	 tape	 containing the	 classified

r^
18
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6 AUSTIN
7 BRYAN
8 HOUSTON

}4
v

FIGURE 5. Areas covered by the eight Landsat scenes used to generate the

simulated scene.
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is

data from each scene). In order to use the Texas Parks and Wildlife

classified Landsat images to produce a ground scene, the 80 m by 80 m

Landsat ixels had to be aggregated  to decrease the number of scenep

pixels. Also, the classes as defined by the Texas Parks and Wildlife

Department had to be reassigned into classes meaningful to microwave

emission computations. The class assignments in the Texas Parks and

Wildlife classification were analyzed and transformed into the follow-

ing six classes described in Table 2. The procedure for performing

this reduction reclassification is described below. Models for com-

puting the brightness temperature of each of the classes defined in

s	 Table 2 as a function of soil moisture, temperature, and roughness are

also described below.

Converting Classified Landsat Types to TAMU Percent Class Types

Each pixel in the simul.ated scene was created by aggregating 3 by

3, 80 m by 80 in pixels in the classified Landsat maps to one 240 m by

	

240 m pixel in the simulated scene.	 In order to maintain the class

6.
composition of each aggregated 240 in by 240 m pixel, the percentage

(	 coverage of each class within the aggregated pixel was computed and

maintained. These percentages were used to compute the proper bright-

ness temperature for the mixture of classes within the aggregated

pixel.

m	
The Texas Parks and Wildlife 	 MAPTAP tapes	 were formatted asP	 (	 )

scan lines of up to 2048 pixels per line such that each byte (8 bits)

represented an 80 x 80 meter ground cell. Up to 1824 lines made up a

single scene. The absolute binary value of each byte on the scan line

was indicative of a land cover class (as defined by the Texas Parks

w	 21
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TABLE 2. Class Definitions.

ryClass	 Description

1	 Water

2	 Bare Soil

3	 Urban

4	 Mixed Soil and vegetation

5	 Fully vegetated

6	 Forest

17
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and Wildlife Service) within the respective ground cell. For example,

in the Kerrville scene, MAPTAP No. 0068, the byte va aes range from 0

to 24 (decimal) as indicated in the legend for that scene in Appendix

A.	 To convert these tapes to a more usable size and format, a

reduction/reclassification transformation was performed. As indicated

yin Figure 6, each 6 x 6 set of bytes each byte representing one

Landsat pixel on the MAPTAP was reduced into a set of 2 x 2 words (16
i

bits) of percent class data. Each word represents one 240 m x 240 m

scene pixel
6

Each MAPTAP was scanned to determine the percentage of the six

pre-selected classes identified above that existed within each 3 x 3

Landsat pixel set. Since the MAPTAP vegetation classes did not match

the 6 classes shown above and at the bottom of figure 6, a selective

transformation was made in the MAPTAP data. 	 For example, on the

Kerrville scene all MAPTAP values of 1, 2, 3, or 4 were considered to

be TAMU Class 5; i.e., Fully Vegetated.	 The selected transformation

that was used for each of the eight scenes varied according to the

MAPTAP value assignments. Since each tape was different, a separate

transformation scheme was selected for each tape (scene). 	 The

right-hand column of Appendix A shows the groupings used for each of

the Texas Park and Wildlife scenes used.

Each 240 m by 240 m simulated scene pixel in the TAMU class data

d#	 tape was represented by one 16 word bit. Each octal word within the

${'	 lb bits contained the percent of class coverage within that aggregated
La

pixel for one of the six classes. 	 In this manner, the 16 bit word
<d

,f	 contained the percentage coverages for five of the six classes. The

percentage of the sixth class (forest) was implied by subtracting the

^N
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' 3 words (6 bytes)

Texas Parks and Wildlife MAPTAP
format. Each byte (< 255 counts)
represents a Land cover class and
corresponds to a Landsat 80 x 80
meter resolution element

F	 Each 6 x 6 bytes of MAPTAP infor-
mation was napped into 2 x 2'
words.	 Each word represents per-
cent class data for a 240 x 240...	
meter ground cell.	 Explanation of	 }
how each octal word represents

2 wordsclass assignments is in Figure 7.

CLASS ASSIGNMENTS IN THE "CLASS DATA" TAPE

1	 1 - WATER	 4	 MIXED SOIL & VEGETATION

2 - BARE SOIL	 5 - FULLY VEGETATED

3 - URBAN	 6 - FOREST

{

FIGURE 6. Procedure for aggregating and mapping the Texas Parks and
Wildlife Landsat classifications into the class used in the

 simulation program.

^u	
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suns of the other five from 100. Encoding the percent class data into

the 16 bit word describing each pixel of the simulated ground scene is

illustrated in Figure 7. The [ 	 ]i means the integer equivalent

of the floating point expression.

Another problem was that the map tapes made no distinction

between bare soil and urban area. 	 Since these two areas have dis-

tinctly different brightness temperatures, adjustments had to be

made.	 First, known urban areas were identified manually and their

coordinates were given to the computer. These areas were then auto-

matically changed from bare soil to urban as they were encountered

during the transformation. Next, to get a more general mix of urban

over the entire scene, whenever a 3 by 3 pixel set in the vegetation

tapes was found to he fully bare soil, it was re-defined as urban.
i

After each transformation, the resulting class map was plotted in

grey-scale format to verify that an appropriate distribution had been

achieved.

Using corner coordinates supplied with the Texas Parks and

Wildlife sub-scene map tapes, the entire class data ground scene was

grouped into one tape file as illustrated in Figure B. The tape files

contain 1650 records of 2496 words each. The process of constructing

the composite class data scene was a nine step sequence. Fi rst, the

entire scene was filled with Class 6 (forest.) as a background. Each

sub-scene of class data was over-layed starting in the upper right

hand corner with the Lufkin sub-scene, and continuing with Houston,

Corsicana, Bryan, Waco, Austin, Brownwood, and Finally Kerrville. The

entire class scene was then grey-scaled for each class. These maps

are included in Appendix B.

25
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16 Bit word corresponding to one 240 x 240 m simulated scene pixel

0 1 1	 3	 1	 4- 6	 1	 7- 9	 1 10 - 12	 1 13	 15

CLASS 5

Ei *

( 9 ) 7. 1*4096

CLASS 4

" )* 7. *512

CLASSCLASS 3 "'—I

(9^)* 
7' 

I*64

CLASS 2 -

(
zi

)* 7.	
*8

Notes:

1. Ei is the number of
Landsat pixels in the
3 x 3 array of Landsat
pixels corresponding to
the ith class.

2. The subscript I indicates
that the number in brackets
is an integer.

CLASSCLASS 1---

(^^)* 7.
I

- - - -CLASS 6 IMPLIED

FIGURE 7. Construction of the 16 bit word that describes the percentages
_t	 2- ---L *An -- OAA .....6.... o4—.1%4-"A s p-ewa novel
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Scene Utilization

Use	 of	 the	 composite	 ground	 scene	 and	 the	 related	 computer

^- software	 has	 specific	 limits	 as	 implied	 in	 Figure	 9.	 The	 altitude

limits	 are related to antenna beamwidth.	 The scene pixels	 represent

approximately	 14 acres each.	 The entire scene	 represents a surface 3	 i

area of 396 by 599 km.

L The	 system	 initialization	 and	 operation	 concept	 is	 illustrated

in	 Figure 10.	 It is	 important	 to understand that	 the	 starting point
k

3

is	 defined	 by	 the initial	 coordinates	 of	 the antenna	 beam	 footprint

(center	 line);	 i.e.,	 (Xo,Yo).	 This,	 along with altitude,	 incident and

azimuth angles, define the initial	 system geometry.	 Also required are
7

beamwidth and displacement 	 rates.	 During this phase of the ,project,

zero	 rates were used	 for all	 variables except the nadir coordinates.

Satellite movement was 	 accomplished by	 stepping	 the	 nadir	 coordinate

from	 (ao, Rio) to	 (ai, Oi )	 by the rates	 Aa,	 As.

Since	 the	 initial	 position	 of	 the	 satellite	 is	 specified	 in

terms	 of	 the	 antenna	 beam	 center	 line	 on	 the	 surface,	 the	 initial `	 1

nadir point must be evaluated using the concept	 illustrated in Figure
4

11.	 At the beam center line,

X 111	 =	 Y ,of	 =	 6	 (16)

and l
a

Z oo oZ	
—H

=	 (17)
cost

then

Rs = Z	 sine = -Htano	 (18)

so that

a ..

7F

2$
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FIGURE 9. Major simulation parameters that must be specified properly in

order to maintain consistency between the antenna footprint
si ze and the simulated scene size.
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FIGURE 10. Simulation software initialization with respect to the ground

scene coordinate system.
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Rssino = ao	 xo	 (19)

Rscoso = Yo - so	 (20)

ao	 Rssinm + Xo	 (21)

go	 Yo	 Rscoso	 (22)

Now, knowing the starting condition it remains to determine

reasonable limits on the integration over the antenna footprint

These limits were selected as upper and lower boundaries on a

rectangle which always contains the smaller rectangle whose sides are

parallel to the major and minor axis and tangent to the sides of the

footprint ellipse, Figure 12. The l ower and upper limits  on X and Y

are derived as follows (Figure 12):

a	 -H tano - c	 (23)

b = (H/cosq)tan BW/2 	 (24)

1	 c	 H tan (o - BW/2)	 (25)

d = H tan (o + BW/2) - a - c	 (26)

then
1

YU = Yi + d•cosD + b•s'ino 	 (27)

YL = Yi + a•coso - b-sino	 (28)
r

r^	 XU = Xi + a-sing + b•cos4,	 (29)

E	 R	 Xi + d-sine - b -coso	 (30)

Subsequent program steps in calculating the brightness tempera-

ture over-the antenna footprint are outlined in the Computational Flow

u
Chart in Appendix C. for each nadir position defined by (co + kea, 60

32
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FIGURE 12. Definition of the parameters describing the limits of the

`	 antenna footprint integration.
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+ k no),	 an apparent brightness	 temperature	 is	 calculated.	 Thus,	 the

frequency of the data points calculated, as the satellite passes over

 the	 scene,	 and the	 direction	 of	 the movement	 across	 the	 scene,	 are

G
governed by the selection of na and ns.	 The index k simply increments

t
from zero until	 the edge of the footprint encounters an edge of the

composite scene.

The software	 system was	 implemented using the concept outlined
j

v.

in	 Figure	 13.	 The	 main	 program was	 run	 either	 on	 the	 TI980	 mini-

computer or on the AMOAHL470 	 (IBM 360 Operating System).	 Coding was

all	 in	 FORTRAN.	 Initialization	 was	 through	 the	 card	 reader	 or	 key-

i board	 (T1980).	 Class	 data	 (ground scene)	 was	 on magnetic tape.	 The

brightness temperatures and other associated data were output both 	 in

tabular	 form and on magnetic	 tape	 (compressed data	 set).	 All	 plots

were made on the T1980 with output to a VERSATEC matrix printer.

All	 software code is included in Appendix D.	 These include the

following:

STEP 1 PROGRAM - Maps vegetation 'type' (I to for each of 8 sub-
scenes to each of 8 subscenes of '% class' data
sets. Each unique mapping algorithm is
included."

FILL DATA —Fills composite scene with forest background
prior to performing individual overlays.

STEP 2 PROGRAM - Performs overlay operation; i.e., placing each
subscene onto the composite scene at the
correct position.

SATELLITE MODEL - Accepts initialization data and performs
;Simulation of moving satellite over the scene,
producing brightness temperature estimates for
each position of the nadir point.
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COWUTATION

The models used to compute the brightness temperature of each

pixel in the simulated scene (BTH and BTV in equation (4)) were devel-

oped under subcontract to the University of Houston at Clear Lake

City.

Objective and Approach

The objective of the research performed under the subcontract

was to develop a mathematical model that can be used on a computer

system to simulate passive microwave radiometer measurements over

heterogeneous earth scenes under varying soil moisture, cultural fea-

ture, land cover, and atmospheric conditions.	 The algorithms that

make up the mathematical model are limited to operating frequencies of

1.42 GHz (L-band), 4.8 GHz (C-band), and . 10.7 GHz (X-band), and gen-

era] land cover types of water, forest, grassland, partially vege-

tated, bare soil, and urban classes. The mathematical models predict

the microwave emission of land or water surfaces for each of the six

basic hand cover types (i.e., water, fully vegetated (grassland),

forest, mixed soil and vegetation, bare soil, and urban as specified

in Table 2) . The predicted emissions were designed to be valid at a

nadir viewing angle of 50 degrees and for both horizontal and vertical

polarization.	 Microwave emission at viewing angles other than 50

degrees was obtained through the use of yet another mathematical

model.

To make the various computer models as realistic as possible,

the class emission models were based upon empirical measurements with

truck-mounted or airborne microwave radiometers where possible.	 In
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most cases, such measurements existed and were documented in the open

	

{Fr
	 literature. Some gaps were evident, however. In these cases, theore-

tical models were used. As a matter of procedure, the information and

models developed at the University of Houston at Clear Lake City were

sent to the Remote Sensing Center throughout the contract period. The

^.	 actual encoding of the algorithms on a computer system was done at the

Remote Sensing Center at Texas A&M University.

The various mathematical models are described in detail in the

following sections.

Subroutine BRIGHT

To provide a realistic data base of land cover types for the

simulation program, as previously described, investigators at the

Remote Sensing Center obtained a set of land cover themes based on

classified Landsat images for the general area of central and eastern

Texas. The area had been classified into several land cover catego-

ries which in turn could be assigned to one of the following six

classes: open water, vegetation (total cover)-, bare soil, mixed vege-

tation and bare soil, forest, and urban. These data were given in a

data base where each data cell represented one Landsat picture element

	

w	 having a spatial area of about 1.1 acre. It was determined by members

of this current research effort that the given data base was too large
:

to handle. So, it was decided to reduce the data base by combining 56

Landsat picture elements into one composite area. 	 This procedure

results in the basic information unit for land cover being heterogene-

ous, that is, many classes can be represented in the 40 acre data

cell.37
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It was necessary to preserve some aspect of the mixture of

classes within the composite data cell. 	 Since a 16 bit word was

available to encode the class type, it was decided to include some

information about the percentage area of each class in the single data

word used to represent the composite area in the reduced data base.

After the leading sign bit, the data word was made up of five three-

bit word slices. Each three-bit slice can be interpreted as follows:

Bit Pattern	 Percent of Area Covered

000	 0.0%
001	 18.75

i	 010	 31.25
011	 43.75
100	 56.25
101	 68.7/5
110	 81.25
111	 100.00

For example, suppose that 25% of the picture elements represented

base soil, 15% represented water, and the rest (60%) was mixed

vegetation and soil.	 From left to right, the slices represent

vegetation, mixed soil and vegetation, bare soil, urban, and open

water.	 The class, forest, is included as a residual.	 The above

percentages would then be encoded as follows (after the sign bit):

n 000100001000001.	 In turn, this particular pattern would be

interpreted as follows:

Vegetation 0.0%
n Mixed Soil & 'Vegetation 56.26

Bare Soil 18.75
- Urban 0.0

Open Water 18.75
Subtotal 93.75

-A residual of 6.25% would be assigned to the class of forest
L.J

in this example.	 The example clearly shows the fact that errors exist	 =.
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in the categorical way of expressing the percentage mixture of each

subclass.	 The advantage gained is the increase in the speed of

computation with a data base that has been reduced by a factor of 40.

FORTRAN Code for Subroutine BRIGHT

The FORTRAN code for Subroutine BRIGHT is given in Appendix

p
	 D. The purpose of Subroutine BRIGHT is to calculate the horizontally

G	
and vertically polarized brightness temperature for a given composite

data area at a viewing angle of 50 degrees from the nadir for given

land cover types and conditions. The call for Subroutine BRIGHT is as

fol lows:

CALL BRIGHT(SM,ICW,NB,TP,ROU,BTV50,BTHSO)

The elements of the call are defined as follows:

SM - Soil	 moisture parameter taken to be the volumetric soil
moisture	 content	 in percent	 for Miller Clay.	 A	 field
capacity of 100% is reached when SM=38.

ICW - A 16-bit	 integer binary word that	 contains	 information	 r
about the distribution of ground cover types within the

r	 _ composite area cell,	 (see above for code)	 {

NB - Frequency	 band	 number	 (NB=1	 for	 L-band,	 NB=2	 for
C-band, and NB=3 for X-band)

TP - Temperature	 parameter	 (the temperature that dry, 	 bare
soil	 would	 have	 under	 the	 same	 weather	 conditions,
given in degrees Celsius)

r

ROU - Roughness	 parameter	 (used	 for	 bare	 soil	 and	 mixed
vegetation	 and	 soil	 calculations	 --	 use	 ROU=0.0	 for

' smooth fields and ROU=0.6 for rough soils)
f

BTV50 - Brightness	 temperature	 of the composite 	 area	 cell	 for
vertical	 polarization	 and	 for	 a	 zenith	 angle	 of	 50

. q
degrees (degrees Kelvin)

t	 BTHSO - Brightness	 temperature of the composite area cell for
horizontal	 polarization	 and	 for	 a	 zenith	 angle	 of	 50
degrees (degrees Kelvin)
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Subroutine BRIGHT uses several other subroutines in the pro-

cess of the calculation of the brightness temperatures of the compo-

site cell.	 Also, the information encoded in the parameter, ICW, is

is unpacked and used in the calculation. Subroutine BRIGHT uses the

following subroutines:

M	
Subroutine WATER	 Emission of open water

Subroutine URBAN	 Emission of urban areas

Subroutine BARE	 Emission of bare fields

Subroutine MIX	 Emission of mixed vegetation and
soil

i

Subroutine VEG	 Emission of grassland

Subroutine FOREST	 Emission of forest

The outputs frost Subroutine BRIGHT {ices, BTV50 and BTHSO) are

'	 used in the Subroutine BCORR which estimates the polarized brightness

temperature components at angles other than 50 degrees from the

zenith.

The other' subroutines mentioned above are discussed in detail
Y

in the following sections.

Brightness Temperature as Function of Angle

(Subroutine BCORR)

{	 Based upon the many measurements of the brightness temperature

of various objects as reported throughout the literature, a simple

extrapolation scheme was adopted to extend calculated brightness

temperatures to angles of viewing needed in the program calculations.

a	 A program was developed to calculate the emissivity of a smooth,

homogeneous dielectric material interfacing air.	 The calculations
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were performed for viewing angles (measured from the normal to the

a
interface surface) from 0 to UO degrees in steps of one degree. The

calculations were performed for a number of material types (liquid

water, dry soil, wet soil). 	 It was noted that the normalized

distribution of emissivities with viewing angle was little affected by

the choice of dielectric constant. Thus, it is possible to model the

angular distribution with a tabular function as follows:

BTH = BTHSO + FH*DELBT

BTV = BTHSO + FV*DELBT

where

BTH

	

	 brightness temperature at some given angle for horizontal
polarization

BTU! - brightness temperature at some given angle for vertical
polarization

FH - form factor f or horizontal polarization which is a
function of viewing angle (table lookup)

FV - form factor for vertical polarization which is a function
of viewing angle (table lookup),

DELBT - difference between the brightness temperatures (vertical
and horizontal polarization) at a viewing angle of 50
degrees, i.e.,

DELBT = BTV50	 BTHSO

BTHSO - calculated brightness temperature for horizontal
polarization and for a viewing angle of 50 degrees as
given from Subroutine BRIGHT.

BTV50 - calculated	 brightness	 temperature	 for	 vertical

%G .

	

	 polarization and for a viewing angle of 50 degrees as
given from subroutine BRIGHT

F ?
4

The values for FH and FV adopted in the present algorithm are
4 w

given in Table 3 and plotted in Figure 14.

The appropriate value for FH and FV is obtained by conversion of

T	 the angle to an integer index value. 	 Using the index value, the
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TABLE 3. Values for the form factors, FH and FV, as a
function of nadir angle.

^szszzsssa,^zs	 szsarsssasxassazzssssszsaa^aza
Angle (degrees)	 FH	 FV

0 0.540 0.540
F 1 0.540 0.540

2 0.539 0.540
u 3 0.538 0.541

4 0.537 0.542
5 0.535 0.544
6 0.534 0.546
7 0.531 0.548
8 0.529 0.551
9 0.526 0.554

10 0.522 0.557
r 11 0.519 0.561

12 0.515 0.565
13 0._510 0.569
14 0.506 0.574
15 0.500 0.579
16 0.495 0.584

' 17 0.489 0.590
18 0.483 0.596
19 0.476 0.602
20 0.469 0.609
21 0.461 0.617
22 0.453 0.624
23 0.445 0.632
24 0.436 0.64.1
25 0.426 0.649
26 0.417 0.659
27 0.406 0.668
28 0.395 0.378
29 0.384 0.689
30 0.372 0.699
31 0.360 0.711
32 0.347 0.722
33 0.333 0.734
34 0.319 0.747
35 0.305 0.759
36 0.289 0.773
37 0.274 0.787
38 0.257 0.801
39 0.239 0.815
40 0.222 0.830

F

C
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TABLE 3. (con't). Values for the form factors, FH and FV, as
a tabular function of nadir angle.

t

r

r

*R

a

Angle (degrees) FN FV

41 0.203 0.845
42 0.184 0.861
43 0.164 0.877
44 0.143 0.894
45 0.121: 0.911
46 0.099 0.928
47 0.075 0.945
48 0.051 0.963
49 0.026 0.982
50 0.000 1.000
51 -0.027 1.019
52 -0.055 1.038
53 -0.084 1.057
54 -0.114 1.076
55 -0.145 1.095
56 -0.177 1.115
57 -0.211 1.134
58 -0.245 1.153
59 -0.281 1.172
60 -0.314 1.190
61 -0.356 1.208
62 -0.396 1.225
63 -0.437 1.241
64 -0.480 1.256
65 -0.523 1.270
66 -0.569 1.282
67 -0.616 1.292
68 -0.664 1.300
69 -0.714 1.305
70 -0.766 1.306
71 -0.820 1.304
72 -0.875 1.297
73 -0.932 1.285
74 -0.991 1.266
75 -1.051 1.239
76 -1.114 1.203
77 -1.179 1.157
78 -1.246, 1.098
79 -1.314 1.025
80 -1.385 0.933
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needed value for FH and FV is looked up in the table of values of FH

and FV. The brightness temperatures computed in subroutine BRIGHT at

500 (BTV50 and BTHSO) are computed to the appropriate incident angle

"	 in subroutine BCORR. The listing of this subroutine is contained in

Appendix D. The call for subroutine BCORR is as follows:
i 	 a

i,	 CALL BCORR(BTV50,BTHSO,TN,BTV,BTH)

The elements of the call are determined as follows:

.,	 TN - incident angle at the pixel of interest

t

BTV - vertical brightness temperature at angle TN

BTH - horizontal brightness temperature at angle TN

Subroutine WATER

The emissivity of water at mir,rowave frequencies is a function of

water temperature, water salinity, frequency, angle of viewing, and

polarization [12]. Linear relationships were derived between emissiv-

ity and water temperature at a 50 degree incident angle for both hori-

zontal and vertical polarization based upon calculations made by Paris 	 {

[2] in which the water surface was modeled as being a flat, homgeneous

dielectric material overlain by air.	 These relationships were

derived for the three frequency bands of interest to this research

(i.e., L-, C-, and X-band).	 The results of the calculations are as

ax: follows:

F	 ^

L-band:

EHSO = 0.256 + TWC*0.000467

EV50 = 0.505 + TWC*0.000767

Note: EHSO is the horizontal emissivity at 50 degrees
viewing angle, EV50 is the vertical emissivity at
50 degrees viewing angle, and TWC is the wa ger tem-
perature in degrees Celsius.
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C-band:

EHSO =0.265

EV50 = 0.522

X-band:

EHSO = 0.288- TWC*0.0003

EV50 = 0.557 - TWC*0.0005

With the value of the emissivity, the brightness temperaure is calcu-

lated by the following formulas:

BTVW = EV50*TWK + (1. - EV50)*SKYT

BTHW = EHSO*TWK + (1. - EHSO)*SKYT

where

TWK	 temperature in degrees Kelvin

SKYT - sky brightness temperature at 50 degrees
viewing angle (SKYT = 5.0 for L-band, 8.0 for C-band and
10.0 for X-band)

BTVW - value of the brightness temperature of the water for ver-
tical polarization and for a viewing angle of 50 degrees,

BTHW - the value of the brightness temperature of the water for
horizontal polarization and for a viewing angle of 50
degrees.

The FORTRAN code for Subroutine WATER is given in Appendix D.

The call for Subroutine WATER is as follows:

CALL WATER (NB,TP,BTN,BTHW)

The elements of the call are defined'as follows:

NB - frequency band number (as before)

TP - temperature parameter (as before)

BTVW - brightness temperature of water for veritcal polarization
and a viewing angle of 50 degrees

BTHW - brightness temperature	 of water for horizontal
.na3wi^^t-0nw mwd n	 .wnln of C.n A------
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Subroutine URBAN

An urban area is an extremely complex environment for .....,..

calculation of the brightness temperature is required. Water can pond

on the tops of buildings. Many different types of materials are found

in such areas. Also, natural vegetation and forest are mixed in such

areas.	 A very simple approach was adopted in the face of such

complexity. It was assumed that the emissivity of the urban area over

all was simply the following:

EV50 = 0.96

EHSO	 0.86

Moreover, it was assumed that the temperature of the urban scene

was the same as that of dry, bare soil under the same climatic

conditions.

The assumed values for the emissivity of an urban area were

based upon measurements over asphalt by Straiton and Talbert [13],

over asphalt, gravel road, and other manmade materials by Stratton et

al. [14], and on other such materials by Porter and Florance [15].

The FORTRAN code for Subroutine URBAN is given in Appendix D.

The call for Subroutine URBAN is as follows:

CALL URBAN(TP,BTVU,BTHU)

The elements of the call are defined as follows:

TP - temperature parameter (as before)

BTVU - brightness temperature of an urban area for vertical
polarization and for a viewing angle of 50 degrees

BTHU - brightness temperature , of an urban area for horizontal

H:

t

'I

i
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Subroutine BARE

The microwave emission of bare soil has been under -study for

many years by investigators in the Joint Soil Moisture Experiment

sponsored by NASA.	 In general, they have found that the emissivity

of soil is a function of soil moisture in the upper layers, soil

roughness, soil type, angle of viewing, polarization, and frequency.

The brightness temperature of soils is	 influenced by soil	 temperature

as well as the forementioned parameters.

t' For the	 purpose	 of	 the	 algorithm	 reported	 in this	 report,	 the

time of day	 is taken to be about 2 p.m.	 local	 time,	 a time when the
i

surface of the 'soil	 is near its maximum temperature.	 For a given soil

moisture condition, the microwave radiation that emerges from the soil
► 	 Y.

f	 .
surface is emitted from a	 zone of soil	 bounded on the top by the air-

soil	 surface.	 The thickness of that	 zone is	 determined by soil mois-

ture content	 itself and the	 frequency	 of	 the	 radiometer.	 Also,	 the

relationship	 between	 emissivity	 and	 soil	 moisture	 is	 non-linear.	 In

this algorithm,	 the non-linear function 	 is approximated by two 	 linear

functions	 that are continuous.	 One function covers the range of soil

moisture	 from 0 to	 12%	 (by	 volume),	 and	 another	 function covers	 the

range of soil moisture greater than 12% (by volume).

The most complete study of the microwave emissive properties of

a	 soil	 type	 is	 that	 of Miller	 Clay	 near the	 Remote	 Sensing	 Center,

Texas	 A&M	 University,	 College	 Station,	 Texas.	 The	 main	 results	 of

several summers of measurements from truck-based microwave radiometers

f have been	 reported by	 Newton	 [4].	 Recently,	 Choudhury	 et	 al.	 [11]

E
found	 that	 the	 roughness	 effects	 on	 a	 field	 of	 bare	 soil	 can	 be

48
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modeled by an exponential function. These results have been incorpor-

ated into the algorithms below.

Soil moisture itself has an effect on soil temperature. 	 This

fact is included in the algorithms proposed in this study. Figure 15

demonstrates the manner in which this is taken into account in the

simulation for a temperature parameter (TP defined below) of 40°C.

X-band Algorithm

At X-band, the emission occurs from the uppermost layer for all

ranges of soil moisture. 	 The effect of soil moisture on soil

temperature (TGK in degrees Kelvin) is given as:

TGK = 273.15 + TP - 0.87*SM

R	 where TP is the temperature parameter (degrees Celsius), and SM is the

soil moisture (percent by volume) . For Miller Clay, SM ranges from

3'f	 zero to 38% at field capacity. Moisture contents greater than field

capacity are possible. If SM is greater than 38%, TGK is set equal to

TP plus 240.15.

The equations for the emissivity are as follows:

i	 SM < 12%:

E1150 = 0.91 - 0.00917*SM

i
.,	 EV50 = 0.99 - 0.0025*.SM

SM > 12%:
I

E1450	 0.96 - 0.0135*SM

EV50 = 1.05 0.0077*SM

h`
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C-band Algorithm

Little work has been done at C-band in passive microwave remc

sensing of soils. It is assumed here that the effects of soil mol

ture lie halfway between the effects at L-band and at X-band.

main departure is the modeling of dielectric constant from which emis-

sivities are gathered. The algorithm at C-band is as follows:

TGK = 260.15 - 0.53*SM + TP

SM < 12p:

EH5U = 0.56 - 0.00833*SM

EV50 = 0.97 - 0.0025*SM

SM > 12p:

EHSO 0.92 —0.0135*SM

EV50 = 1.04 - 0.00846*SM

L-band Algorithm

r,

t.
F

The algorithi

TGK = 250.15

SM < 12%:

EHSO =

EV50 =

SM > 12%:

EHSO =

EV50 =

n at L

+ TP

0.90

0.98

0.96

1.047

-band is as follows:

. 0.26*SM

. 0.00917*SM

- 0.0025* SM

- 0.0139*SM

- 0.00808*SM

FORTRAN Code for Subroutine BARE

The FORTRAN code- for Subroutine BARE is given in Appendix D.

The call for Subroutine BARE is as follows:
i"
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CALL t1ARE(NB,TP,SM,ROU,BTVB,BTHB,RH,RV)

r	 The elements of the call are defined as follows:

NB - Frequency band number (as before)

TP - Temperature parameter (as before)

SM - Soil	 moisture	 parameter	 --	 the	 soil	 moisture
for a Miller Clay soil in percent by volume. For other
soils, translate the soil moisture to that of Miller Clay
by use of wilting point (12%) and field capacity (38%).

ROU - Roughness parameter (as before)

BTVB - Brightness temperature for bare soil for vertical polari-
zation and for a viewing angle of 50 degrees.

BTHB - Brightness temperature for bare soil for horizontal
polarization and for a viewing angle of 50 degrees.

RH Reflectivity for horizontal polarization and for a view-
ing angle of 50 degrees (parameter is needed for Subrou-
tines MIX and VEG)

RV - Reflectivity for vertical polarization and for a viewing
angle of 50 degrees

Roughness Algorithm

A rough surface has a higher emissivity than does a smooth

surface.	 The algorithm used to account for the effect of surface

roughness is as follows:

RH	 1.0 - EHSO

RV = 1.0	 EV50

RFAC = EXP(-ROU*0.4132)

RHnew = RHold*RFAC

RVnew = RVold*RFAC



R

Then, to complete the calculation for BTHB and BTVB:

BTHB = EH5O*TGK

BTVB = EHSO*TGK

An example of this effect is seen in Figure 16.

Subroutine VEG

i

In this subroutine,	 it	 is assumed that a	 100 percent grass type

vegetal	 cover exists on the	 land.	 In	 such cases, the temperature of

the	 vegetal	 canopy is moderated by	 the processes	 of evaporation	 and
E

transpiration.	 The	 algorithm	 below	 attempts	 to	 allow	 for	 this

effect.	 Figure	 17	 illustrates	 the	 dependence	 of	 the	 plant	 canopy

temperature on the temperature parameter.

The	 brightness	 temperature	 of	 vegetation	 is	 computed	 using	 the

reflectivities	 and	 brightness	 temperatures	 obtained	 from	 Subroutine

BARE	 under	 smooth	 surface	 conditions	 (i.e.,	 ROU=0.0).	 The

reflectivity	 is	 modified	 according	 to	 a	 computed	 vegetation	 factor,

VFAC,	 which	 depends	 upon	 the	 soil	 moisture	 content.	 This	 factor	 is
is

based upon	 measurements	 made	 by	 Newton	 [4].	 The	 FVAC	 reduces	 the

computed	 reflectivity.	 The	 vegetation	 factor	 is	 applied	 fully	 for

L-band	 calculations,	 partially	 for	 C-band	 calculations,	 and	 is	 not

used	 for	 X-band	 calculations.	 This	 means	 that	 at	 X-band,	 no

penetration	 of the	 vegetal	 canopy occurs.	 In the	 case of	 X-band,	 a

constant	 set	 of	 emissivities	 is	 assumed,	 viz.,	 EHSO=0.92	 and

H' EV50=0.95.	 The L-band algorithm is given below:

TVC = (TP - 25.0)*0.24 + 25.0	 (Correction for canopy

'	 temperature)

TVK = TVC + 273.15

CALL BARE(NB,TVC,SM,O.O,BTVB,BTHB,RH,RV)
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VFAC = 0.8 - 0.00395*SM

XRH	 RH*VFAC

XRV	 RV*VFAC

' The FORTRAN code for Subroutine VEG is given in Appendix D. 	 The
i

call for Subroutine VEG is as follows:

CALL VEG(NB,TP,SM,BTVV,BTHV)

The elements of the call are defined as follows:	 I

NB - Frequency band number (as before)

TP - Temperature parameter (as before)

SM - Soil moisture parameter (as before)

BTVV - Brightness temperature of the vegetal canopy for vertical
polarization and for a viewing angle of 50 degrees

BTHV - Brightness temperature of the vegetal canopy for horizon-
` tal polarization and for a viewing 	 angle of 50 degrees.

G

Subroutine MIX

Subroutine MIX	 is	 a	 subroutine	 that	 calculates	 the brightness

temperatures	 for a	 partially	 vegetated	 field.	 Subroutines	 BARE	 and

VEG are called in the program. 	 The results are averaged together to

get the mixed result.

The FORTRAN code for Subroutine MIX is given in Appendix D.	 The

call for Subroutine Mix is a follows:
p

E_
CALL MIX(NB,TP,SM,ROU,BTVM,BTHM)

The elements of the call are defined as follows:

NB - Frequency band number (as before)

TP - Temperature parameter (as before)

SM - Soil moisture parameter (as before)

3,
ROU - Roughness parameter (as before)
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BTVM - Brightness temperature for the partially vegetated field
for horizontal polarization and for a viewing angle of 50
degrees

BTHM - Brightness temperature for the partially vegetated field
for horizontal polarization and for a viewing angle of 50
degrees.

Subroutine FOREST

Subroutine FOREST simply treats the surface as a thick vegetated

canopy. Subroutine VEG is used with NB=3 regardless of the band used.

The FORTRAN code for Subroutine FOREST is given in Appendix D.

The call for Subroutine FOREST is as follows

CALL FOREST(TP,BTVF,BTHF)

The elements of the call are as follows:

TP - Temperature parameter (as before)

BTVF - Brightness temperature of the forest for vertical polari-
zation and for a viewing angle of O degrees

BTHF - Brightness temperature of the forest for horizontal
polarization and for a viewing angle of 50 degrees.

Summary

Examples of the brightness temperatures for the different classes

and the	 effect	 of	 soil	 moisture	 and	 soil	 temperature are	 shown	 in ,!

Figures	 17 thorugh 21.	 Note in Figures	 18 and 19 that the brightness

temperature	 of	 only	 three	 classes	 are	 dependent	 on	 soil	 moisture.

These	 figures	 are	 for	 L-band	 and	 also	 demonstrate	 the	 effect	 of

f	 vegetation in decreasing the dependence on soil 	 moisture.	 Fig^ares 20

and	 21	 show	 that	 at	 X-band	 there	 are	 only	 two	 classes that have a

dependence	 on	 soil	 moisture.	 Also,	 the	 mixed	 bare	 and	 vegetative

class	 is	 significantly	 less	 sensitive to	 sol	 moisture than the bare
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s	 soil class.

of these cla

'	 and X-band.

parameter on
W

and 12% soil

The effect of soil moisture on the brightness temperature

sses at C-band lies between the effects shown at L-band

Figure 22 shows the effect of the soil temperature

the brightness temperature of each class at X and L-band

moisture.

SIMULATION RESULTS

Simulation Description

t	 Rationale
A"

There are several scene and system parameters that can affect the

ability to use a microwave radiometer for estimating soil moisture

"	 over extended scenes. This study was only concerned with the problems

associated with the estimation of soil moisture assuming a spatially

uniform soil moisture distribution over the scene under consider-

ation.	 No consideration was given to the effects of soil moisture

profile on the emission at the various microwave frequencies. This is

a separate problem and is handled in another study. In addition, the

spatial soil moisture distributions that naturally occur due to preci-

pitation patterns and variations in soil properties were considered to

impose separate restrictions on the resolution of an orbiting micro-

wave radiometer and were not considered in this study. However, these

spatial variations are important and could very well be the limiting
	 l

factor on resolution. Their effect can easily be considered using the

simulation model. This should be investigated in a follow-on study.

	

The scene and sensor parameters that were of concern to this 	 a

study were scene heterogeneity and its relationshp to sensor resolu-

tion, surface roughness, soil temperature, and sensor incident angle.
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1	 !/

Specific simulation runs were made to provide data to address each of

these factors.	 However, the most emphasis in this study centered

around the effect of scene heterogeneity and resolution since these

are the most critical parameters about which the least is currently

known.

The simulation of realistic scene geometry and composition were

vital to the accuracy of the results of this study. As a result, the

scene was simulated based on full frame Landsat images classified into

six categories. These categories were water, bare soil, urban, mixed

bare and vegetation, fully vegetated and forest. The description of

-	 how the original classifications were aggregated into these six, and

the problems of classification consistency between Landsat frames is

described in the section entitled Model Definition and Structure.

These classes were chosen as being representative of the scene para-

meters that are important in affecting the relationship between micro-

wave emission and soil moisture.	 The pixel size over which the

antenna integration was performed was 0.24 by 0.24 km.

Test Runs

In utilizing the simulated scene to simulate microwave radiometer

measurements for ana uses of the effects of scene heterogeneity, it

was necessary to be careful in choosing the ground tracts of the

radiometer flight path.	 The simulated scene contains very diverse

ground cover from very dense forest in East Texas to sparse vegetation

in Central Texas. Analysis of simulated radiometer measurements to

determine the ability to estimate soil moisture from space can be

64



severely biased by the amount of vegetation contained in the radio-

meter resolution elements. As a result, two ground tracts riere chosen

based on two general criteria. The first criteria was that the ground

tract pass over areas of heavy forest vegetation as well as areas of

sparser vegetation, and that the ground tracts pass over features that

would be recognizable from the simulated radiometer measurement. One

ground tract runs from just north of Waco, Texas southeastward to Lake

Livingston, Texas. The other9	 ground tract runs east and west from

approximately Kerrville, Texas eastward to Houston, Texas and out into

the Trinity Bay area.	 These ground tracts are shown on the urban

class map contained in Appendix B. It will be shown below and can be

seen in the class maps contained in Appendix B that these ground

tracts cover areas that are predominantly vegetation.

Numerous radioeter measurement simulations were computed for the

two ground tracts described above. These simulations were run using

the parameters documented in Table 4. 	 The choice of parameters in

Table 4 was based on the desire to determine the effects of resolution

and frequency on the ability to estimate soil moisture with microwave

radiometers over realistic and heterogeneous scenes. 	 The simuation

model computed both the vertical and horizontal brightness temperature

for nadir angles from 0° to 50° in 10° increments.

In order to quantify the effect of scene makeup on the microwave

radiometer brightness temperature computation, the model was con-

structed to compute and keep track of the percentage of each class

contained in each radioemter footprint. These percentages are plotted

as a function of range down the ground tract from west to east in

Figures 23 through 28. Figures 23 and 24 contain the percentages of

F.
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TABLE 4. Simulation parameters used in Test Runs.

Parameter	 Value

Frequency	 L, C, X-band

Soil Moisture	 0%, 35%

Temperature Parameter	 10°C, 60°C

Roughness Parameter	 0.3

Antenna Footprint	 5 km, 10 W, 50 km

r
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each of the classes in each antenna footprint for a 5 kilometer radio-

meter resolution for the Waco to Livingston ground tract. Two water

features show up distinctly on the plot in Figure 23. At a range of

approximately 300 kilometers Lake Conroe shows up distinctly and at a

range of approximately 525 kilometers Lake Livingston shows up

distinctly. In addition, it can be seen that near Waco; the percent-

age of forest in each footprint is on the order of 20% to M while

the percentage of forest begins to increase at approximately 375 kilo-

meters of range and approaches 100% beyond 550 kilometers of range.

Also in figure 23, it can be seen that the amount of bare soil is very

small, never going above approximately i0% of each footprint, except

in the range of 325 kilometers to 374 kilometers where it averages

approximately 25% of the footprint. In Figure 24, it can be seen that

although the ground tract is over several cities, the percentage of

urban area in each footprint is very small. 	 It can also be seen in

Figure 24 that the mixed bare and vegetated class and the fully vege-

tated class made up a significant percentage of each footprint on the

western end of the ground tract and decreases as a function of range.

The same type of observations are made concerning Figures 25 and

26 which show the percentage class of each 5 kilometer footprint for

the Houston ground tract.	 Distinguishing features in this case are

Trinity Ray which begins approximately 550 kilometers of range and the

Houston urban area which spans the area from approximately 490

kilometers to 550 kilometers of range. 	 It can be seen that the

Houston urban area does constitute approximately 40% to 50% of each

footprint within the 500 to 550 kilometer range for the '5 kilometers

antenna footprint.
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Another factor of importance is to note that as the antenna foot-

print size is increased the percentage of each class making up each

radiometer footprint remains approximately the same. Figures 27 and

28 demonstrate this fact for an antenna footprint of 20 kilometers and

60 kilometers for the Waco to Livingston ground tract and the water,

bare	 soil and	 forest classes. It	 can	 be	 seen	 that the increased

radiometer resolutions produce an	 averaging' affect	 on the percent of

class plots.	 It should also be pointed out that for a fixed ground

tract length, the number of brightness temperature simulations

decreases significantly as radiometer resolution is increased.

Figure 23 through 28 illustrate the make-up of the simulated

scene within the radiometer footprint ' spatially along the ground

tracts.	 Figures 29 through 40 provide some additional statistical

data concerning the make-up of the simulated scene along the ground

tracts, but without the spatial information. These figures are fre-

quency bar charts that show distribution of footprints along the

ground tract in terms of the ground cover make up with the foot-

prints. This distribution is computed in terms of 5% increments of

total ground cover within each footprint. Figures 29 through 34 are

for the Waco to Livingston ground tract, while Figures 35 through 40

are for the Houston ground tract. All are computed for an antenna

footprint of 5 kilometers.	 Again, it can be seen that by far the

highest percentage of radioemter footprints is vegetation. The high-

est percentage of bare soil in any footprint along the Houston ground
l 	 ^,

tract is 25%, while the highest percentage of bare soil along the Waco

to Livingston ground tract is 35%. In addition, by far the largest'

number of footprints contain 5% or less of bare soil.
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Since the simulation model is reasonably expensive to run on the

C w	 Texas AM University Amdahl computers, only the two ground tracts were

simulated in this study. However, in the interest of future analysis,

a	 ,.
all simulated outputs were recorded on magnetic tape and stored for

{	
-	 future reference.

I	 ^ y

Analysis
4

Model Validity

The steps in analyzing the simulated radiomter MC-asurements were

to verify that the simulation program behaves properly. It was impor-

tant to demonstract that the brightness temperature computations were

properly dependent on incident angle, temperature, surface roughness,

soil moisture, and resolution. Figure 41 demonstrates the brightness

	

_-	 temperature computation vs. incident angle at L-band for both horizon-

tal and vertical polarizations from nadir to 50 0 .	 It can be seen in

Figure 23 that the antenna footprint containing the largest percentage

of bare soil occurred at a range of 350 kilometers in the Waco to

Livingston ground track. In addition, it can also be seen in the same

fi gure that the antenna footprint containing the largest percentage of

water occurred at the-range of 525 kilometers. Figure 41 demonstrates

that the simulation model adequately predicts angular behavior of the

brightness temperature in that the brightness 'temperature adequately

responds to the scene makeup within the antenna footprint as computed
7

by the simulation model.

Figure 42 demonstrates the effect of the temperature parameter

computed by the simulation model.	 Figure 42 shows the horizontal

brightness temperature computer for L-band at nadir for a 20 kilometer

87	 C _
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antenna footprint along the Waco to Livingston ground track for a tem-

perature parameter of 10°C and a temperature parameter of 60°C. The

effect of the 500 difference in temperature parameter is apparent.

Also, the effect of two large water bodies are readily visible in the

brightness temperature computation.	 Lake Conroe occurs at approxi-

mately the 300 kilometer range and Lake Livingston occurs at approxi-

mately the 525 kilometer range. It can also be seen that the effect

of the temperature is different between footprints containing predomi-

nantly forest and footprints with large percentages of bare soil.

This is apparent by the difference in the two brightness temperature

computations at a range of approximately 325 kilometers where the

highest percent of bare soil occurs, and a range of approximate 550

kilometers where the highest percentage of forest occurs.

Figures 43 through 48 demonstrate the performance of the simula-

tion model as a function of microwave frequency, antenna footprint

size, and soil moisture. Figures 43, 44, and 45 are plots of horizon-

tal brightness temperature computed at 35 0 incidence for an antenna

footprint of 5 kilometers for L, C, and X-band respectively as a func-

tion of range along the Waco to Livingston ground track for two values

of soil moisture, 5% and 35%. These computations were made using a

roughness factor of 0.3 which corresponds to a medium scale rough-

ness.	 There are several observations which can be made concerning

these, three figures. First, in Figure 43, the effect of the increas-

ing density of the forest from a range of approximately 350 kilometers

to 600 kilometers is obvious. The large difference between the hori-

zontal brightness temperature at 5% soil moisture and 35% soil mois-

ture decreases as the forest cover density increases. 	 Beyond the
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range of 550 kilometers, where the percent of forest cover is in the

90% range, the sensitivity to soil moisture is practically elimi-

nated.	 By coinpa ri ng Figure 43, 44, and 45 the effect of microwave

frequency can easily be seen. It is obvious from these figures that

as the frequency goes higher, a difference between the brightness tem-

perature at 5% soil moisture and 35% soil moisture decreases. This is

due primarily to the effect of the vegetation cover that exists in the

simulation scene. The largest percentages of bare soil occur around

the range of 350 kilometers. Again, this is obvious in Figures 43,

44, and 45 since it is in this range interval that the largest differ-

ence occurs between the 5% soil moisture computation and the 35%, soil

moisture computation for all microwave frequencies.

The effect of antenna footprint size can be seen by comparing

Figure 43, 46, and 47.	 The parameters used in generating these

figures are identical except for the fact that the antenna footprint

was increased from 5 kilometers to 20 kilometers and 60 kilometers,

respectively. The effect of the largest footprint is obvious in the

smoothing effect of the brightness temperature computations as a

function of range.	 In addition, the ability to resolve physical

features is diminished. In Figure 46, Lake Conroe and Lake Livingston

are still visible, however, in Figure 47, Lake Conroe is practically

unresol vabl e. However, the effect of the higher percentages of bare

soil in the range around 350 kilometers still is visible in Figure 47

for the 60 kilometer antenna footprint size.

Figures 43and 48 demonstrate the capability of the simulation

model to compute horizontal and vertically polarized brightness

temperatures. Figure 48 is identical to Figure 43 except that it pre-
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sents vertically polarized brightness temperature computations.	 It

can be seen by comparing these two figures that the vertical polarized

brightness temperature at both the 5% soil moisture and 35% soil mois-

ture are several degrees higher than the horizontal brightness temper-

ature.

Analysis Approach

1

	 -

As stated earlier, the objective of this study was to investigate

the effects of scene heterogeneity on the ability of a microwave

radiometer system to estimate soil moisture and to determine if the

effects of scene heterogeneity are dependent upon the size of the

antenna footprint. The most pleasing appraoch to accomplishing this

objective is to quantify the effect of the percent ground cover of

each class on the sensitivity of the brightness temperature computa-

tion to soil moisture. Unfortunately, it is impossible to quantify

the effects of each class independently of one another due to the di-

mensionality of the problem. Therefore, the approach was to quantify

the effects of each ground cover class on the sensitivity of the

brightness temperature tosoil moisture individually without regard to

the other classes, and do this as a function of antenna footprint

size. Care must be exercised in analyzing results presented in the

manner. Obviously at low percentages of the ground cover class being

investigated, there will be larger influences of other classes that

have higher ground cover percentages. This will cause scatter in the

results not due to the class being investigated.	 It is possible,

however, to document the mean sensitivity to soil moisture for the two

ground tracks considered and to approximate a quantitative description
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of the effects of each individual ground cover class on that sensitiv

.,	
ity•

Analysis Results

In this section the simulation results will be analyzed to demon

strate the effect of each scene class, microwave frequency, an

antenna resolution on the sensitivity of brightness ;temperature to

soil moisture.	 This will be done by first considering horizontal

brightness temperature plotted as a function of percent class for two

soil moistures, 5% and 35%. Figures 49 through 52 contain brightness

temperature computation for the Waco to Livingston ground track at a

35° incident angle and a 5 kilometer resolution. These plots demon-

strate the scatter in the brightness temperature computations when the

computations for each ground resolution cell are viewed independently.

Figure 49 shows L-band horizontal brightness temperatures for

bare soil plotted as a function of percent ,lass of bare soil. The

general effect of the soil moisture difference is obvious. .However,

between 0% and S% bare soil there are some very low brightness temper-

atures. These particular footprints are those that occurred over Lake

Conroe and Lake Livingston, thus these low brightness temperatures are

due to water. Note also, that the largest amounts of scatter in the

brightness temperatures occur in the low percentage range of bare

soil, and that as the percentage of bare soil increases the scatter in

t	 the brightness temperature computation decreases.	 In- addition, the

E	
largest scatter occurs for the brightness temperature -computations at

E	 35% soil moisture. These effects are due to the fact that at low

f	 percentages of bare soil the primary class consitutents within the
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,f
resolution footprint is some other class.	 No information is pro-

vided on which class in this particular plot. However, by looking at

Figures 23 and 24 that show the percentage class distribution as a

function of range down the Waco to Livingston ground track, it is

obvious that the majority of the footprint for the low percentage of

bare soil resolution are some form of vegetation, primarily, fully

vegetated and forested.

Figure 50 shows the same type of information except for the mixed

vegetation class.	 It	 can be seen that above approximately 20% mixed

bare	 soil	 and	 vegetation	 the	 scatter	 in	 the	 brightness	 temperature

computations	 are	 significantly	 decreased.	 Figure	 51	 shows	 the

brightness	 temperatures	 for	 5%	 and	 35%	 soil	 moisture	 plotted	 as	 a

function	 of the	 fully	 vegetated	 class.	 Note that there are antenna

footprints where the percentage of this class is much higher than that

for bare soil	 and the mixed vegetation class.	 Also, the scatter for

the 35;t soil	 moisture brightness temperature computation continues to

much	 higher	 percentages	 of the fully	 vegetated class	 than previously

seen for the mixed vegetation class or the 	 bare	 soil	 class.	 This	 is

due to the fact that the resolution elements that contained less than

approximately	 40%	 of	 the	 fully	 vegetated class	 contain	 very	 high

percentages	 of the forest class,	 usually above 50% as can be seen in

Figures 23 and 24.

Figure 52 shows the same type of plot for the forest class. 	 The
x

effect of increasing the percentage forest in each resolution element`

a is obvious.	 It can be seen that above approximately 35% to 40% of the

' forest class there is severe degradation in the ability to distinguish

104
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rt

between the two soil moisture contents. In addition, below approxi-

mately the 40% point there are some extremely low brightness tempera-

ture computations. Again, this is due primarily to Lake Livingston

and Lake Conroe.

Plots such as those shown in Figure 49 through 52 will not be

provided for the urban and water class since there was not a good

enough distribution of resolution elements with different percent

classes to present the data in this manner.

Figures 49 through 52 show brightness temperature computations

for L-band at 5 kilometers for each of the four major classes.

Figures 53 and 54 show the same type computations for the class mixed

vegetation at C-band and X-band, respectively. In Figure 53 it can be

seen that the same general comments that were made concerning Figure

50 (which showed mixed vegetation class for L-band) can be made. The

only difference is that the magnitude difference between the horizon-

tal brightness temperature computed at 5% soil moisture and the

brightness temperature computed at 35 p soil moisture is less at C-band
a

than it was at L-band. In addition, the percent of the mixed vegeta-

tion class must get above approximately 20% in order for the scatter

in the brightnes -s temperature for the 35% soil moisture to decrease

significantly.	 In Figure 54, which is the same plot for X-band, it

can be seen that the effect of the vegetation is more severe. 	 In

fact, the percent class of the mixed vegetation must be above apprc:-i-

mately 35% for the scatter to significantly decrease. It should also

be noted that the ability to discriminate soil moisture increases as

the percent of the mixed vegetation class increases at all three

frequencies. This is due to the fact that the forest class predomi-
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'c
nates the make of the resolution elements for the low percentages of

the mixed vegetation class.

Figures 55 and 56 will be used to demonstrate the effect of

resolution on the scatter seen in the brightness temperature computa-

tions. Figure 55 shows the horizontal brightness temperature computed

for L-band at 5% and 35% soil moisture for the mixed vegetation

class and a 20 kilometer resolution. This figure can be compared to

Figure 50 which is the same plot for the 5 kilometer resolution size.

It can be seen that the general trends in both figures are the same

although the scatter in the data for the 20 kilometer footprint is

significantly less. Although there is less scatter, there is a cor-

responding fewer number of points in Figure 55 than in Figure 50.

This demonstrates the averaging effect of simply increasing the

resolution size of the antenna. Increasing resolution is very nearly

equivalent to averaging measurements taken at smaller resolution. The

effect of going to a 60 kilometer resolution element is essentially

the same, additional averaging and fewer points. 	 This result indi-

cates that in general the ground cover classes behave as if they are

randomly oriented over the scene. 	 Figure 56 demonstrates the s":tie

phenomena as Figure 55. The four points at the 45% forest class cor-

respond to calculations made over Lake Livingston as can be seen from

Figure 27.

Figures 49 through 56 provide a qualitative indication of the

^d
	 distribution of the brightness temperature computations as a function

of scene class. It is informative to investigate the distribution of

the brightness temperature computations for 5% soil moisture and 35%

soil moisture for the entire scene without regard to individual

t.f	
108

K



c

^^v, c

c►
C.>^

x

O E

O ^
u u

3 d
06

azw i

0 0

^ u
c c "?

^t
4j 4A c

F
re	 ^o	 (o

Lom]	
N +1

J Q, G y)
E ^ GJ

^N OL •r •r
N = E
fa
L- O ^-
G! 4A O

L H

4 L O y

H
N 47

C O4j^
-= •r Vf

Q1 Y 4A
•^	 f0
L.

cw u
.	 to c
to	 0
4J 4--1 •rc do
O

a	 08IGINAL PAG9 IS
OF POOR QUALITY

f^

g
-J 	°

J.,4

1,4

I

°CO
^ Q

,	 N

xz
H
inO
r

cc >
J Y

W H N

^o z
W u • O
^r

N O

W O
N

I

a	 ^
f	 1	 m

N
w'
O

LD
r, W

`
A

b IrI 8i ^	
^$ I^i S	 ^. ^	 ci o

^	 ^ N NP^ 111	 N	 N	 N l^l
^ u O

Z 4J >

,

aE

A
01 9M) 4131 SS3WtDlW Zidl

1.	 1`
W

!t W cc

W

>f

l.y
I

^; 109 r

!
T



ORIGINAL PAGE IS
OF POOR QUALITY,

,c
c

ao ♦
O t
O

O t

o
M
Q

0	 ♦+ w 4'r r
M^Q

fA

^	 ♦ ♦

O	 t

pp t	 t
• r+

r.
00 O + ♦

-
♦

o° ^ ♦♦
c ♦

LJ

O ♦ O
0+

•h

o

pao tit

Q,p ♦

o ♦
O * •

c+

a

J

E
m
N
W

O A

pW ps

W Q

{A
N
Q
J
u
.12

N
!.7

OC >
¢J Y

W N

i- uuQ 0
N3 ^
W O

N

l^7	
OL

of
m

N
^C
O
.T.

W
Q

0
c
o ^,b
N

C v►
O +9

W u
c 4j

+r NI
dJ

J O
w

O
4j 41

o au uz L.
a

♦̂+ O

O

C C
A^
w

J ^o.

A

i-► N
O

O G.

CJ O

^o
CJ in •

ch
41 L-

4) ,o
4 
E
dE M

C a lE
}a r— Ln
Z ^r
C1.^L

•r 	 {h
L O w
M N t-

4-3
N

4-) 4.1 .r
C b ^
O E



It

i[

^C

f.
C

classes. Figures 57 and 58 are frequency histograms for the bright-

ness temperature computed at L-band at an incident angle of 35 0 for

the (taco to Livingston ground track at horizontal polarization.

Figure 57 was computed for a 5 kilometer ground resolution. It can be

seen that the distribution of brightness temperatures for a 5% soil

moisture tightly clusters between 250"K and 275°K. 	 The brightness

temperatures for the 35% soil moisture has a peak at 200 0 K but spreads

up to 275°K. It will be seen later that this spreading effect causes

the confidence interval on the sensitivity of the brightness tempera-

ture to soil moisture to be larger than that for the 60 kilometer

resolution. figure 58 shows the same frequency histogram for the 60

kilometer resolution. Again, for the 5; soil moisture the brightness

temperature cluster tightly between 250 and 275°K. However, for the

35	 soil	 moisture,	 brightness	 temperature	 is	 a	 multimodal

distribution.	 One peak occurs at 250 °K while the other occurs at

approximately 230°K.
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Up to now we have only qualitatively investigated the dependence

of brightness temperature on soil moisture by analyzing brightness

temperature computations for 5% soil moisture and 35% soil moisture

over the same ground track. One method of quantifying the sensitivity

of the brightness temperature to soil moisture is to compute the slope

of the best fit straight line between the brightness temperatures com-

puted for 52 soil moisture and 35% soil moisture. Since it is known

from other investigations, that the microwave brightness temperature is

linearly related to soil moisture, this slope can be termed the

sensitivity of the brightness temperitttre to soil moisture in °K per

percent soil moisture. Figures 59 through 61 are plots of the sensi-
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V

tivity of the brightness temperature to soil moisture as a function of

percent class of bare soil for the 20 kilometer resolution along the

Waco to Livingston ground track computed at horizontal polarization

for L-band, C-band, and X-band respectively. It can seen that there

is considerable scatter in the sensitivity up to approximately 20%

bare soil.	 Above approximately 20% bare soil the sensitivity at

L-band is approximately 1.75°K for percent soil moisture.	 Again it

can be noted that the scatter in the sensitivity below 20% bare soil

is due to a very high percentage of forest and fully vegetated in the

ground resolution elements (individual antenna footprints). This can

be verified from Figures 23 and 24. In Figure 23 it can be seen that

only between the range of 325 kilometers and 375 kilometers does the

bare soil go above approximately 20% of the antenna footprint. Also

in Figure 23 it can be seen that above a range of approximately 375

kilometers the majority of the footprint is forest and in Figure 24

below a. range of approximatey 325 kilometer the majority of the foot-

print is Rally vegetated. The same plot for C-band is shown in Figure

CO. The same effects are seen to exist, however, the sensitivity of

the brightness temperature to soil moisture above approximately 20

bare soil only reaches approximately 1,25°K/percent soil moisture.

This is due to the stronger effect of the vegetation at C-band than at

L-band. Figure 51 shows the same information for X-band. Again, th e

same effects are seen to exist, but effects of other classes besides

base soil are obviously more severe. There is more scatter in the

sensitivity computations than for L-band and C-band above 20% bare

soil.	 The average sensitivity at 30% bare soil is approximately

1.1 0K/percent soil moisture.

11.7
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Figures 59 through 61 demonstrated thel effect of microwave

quency on the sensitivities to soil moisture using the bare soil 4

as an example. Figure 62 through 64 will be used to demonstrate

effect of the classes on the sensitivity to bare soil using L-band

horizontal polarization, 20 kilometer footprint size and the Waco to

Livingston ground track. Figure 62 shows the sensitivity plotted as

the function of percent class for L-band and the mixed. vegetation

class. By comparing this figure to Figure 59 it can be seen that the

results are nearly identical to bare soil except that the percentage

of the mixed vegetation class within the footprint goes up to nearly

40% while the percentage of bare soil only went slightly 'above 30%.

In addition, the sensitivity climbs to approximately 2 0K/percent soil

moisture.	 This sensitivity is fairly large since the 40% mixed

vegetation class occurs between the ranges of 125 kilometers to 140

kilometers and a 150 kilometers to 175 kilometers as seen in Figures

23 and 24.	 In these range intervals the percentage of forest is

somewhere between 20% and 25%.

Figure 63 shows the same information except for the fully

vegetated class. The character of this plot looks slightly different

than the previous ones in that it appears that the sensitivity

linearly climbs as a function of percent class although there is some

scatter between 38% and 48p class. This is due to the fact that below

38% class of fully vegetated soil the primary other component of the

ground resolution footprint is forest as can be seen from figure 23

and 24.	 This occurs at a range of above 350 kilometers where the

percent of forest ranges anywhere from 50 to 90%. The scatter in

Figure 63 toward higher sensitivities between 38% class and 48% class
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►̂ 	 occurs due to the significant percentage of bare soil within those

resolution footprints.	 The 38% to 48% of fully vegetated soil occurs
,t

between the ranges of approximately 300 to 350 kilometers where the

bare soil	 approaches	 its maximum.	 At any	 rate,	 it	 can	 be seen	 that

since	 the	 sensitivity	 above	 501/1	 of	 the	 fully	 vegetated	 class	 is

°Kgreater than 1.5percent soil moisture, the fully vegetated class is

not	 the	 controlling	 effect	 on	 the	 sensitivity	 of	 brightness

temperature to soil moisture at least for L-band.

Figure 64	 shows	 the	 same	 information	 for the	 forest class.	 In

the models used to compute the brightness temperature for each class,

it was assumed that the forest class had no sensitivity to soil mois-

ture.	 As a result Figure 64 is an expected result. 	 As the percent of

forest	 increases the sensitivity to soil	 moisture linearly decreases

E

from	 approximately	 2°K/percent	 soil	 moisture	 at	 15%	 of	 the	 forest

class	 to	 zero	 at	 100%	 of	 the	 forest	 class.	 There	 were	 so	 few

resolution	 elements	 with a	 significant	 percentage of	 urban	 or	 water

class that it was pointless to attempt to make similar plots for those

classes.	 The	 general	 conclusion	 that	 can	 be	 drawn	 from Figures	 59

through 64 is that the forest class is probably the controlling effect

on the sensitivity of the brightness temperture to soil moisture.

Figures	 59 through 64 were used	 to show the sensitivity of the

'.
brightness temperature to soil 	 moisture as a	 function of the percent-

ages	 of	 each	 scene	 constituent within	 an	 antenna	 footprint.	 It	 is

KK	 also instructive to compare the sensitivity of the brightness

temperature to soil moisture for all ground resolution elements

without regard to the constituency of the scene within each antenna

footprint as a function of frequency and resolution. Figure 65 is a
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plot	 of	 the	 sensitivity	 of	 the	 horizontally	 polarized	 brightness

temperature	 to	 soil	 moisture	 as	 a	 function	 of	 resolution	 and

frequency without regard to the class make up of the scene.

Since it was previously shown that the forest class is the con-

trolling	 effect	 on the	 sensitivity	 of	 the	 brightness	 temperature to	 {'

soil moisture, there is obviously significant effects of the high per-

centages of forest with the simulated scene on the average sensitivity

to soil	 moisture presented in Figure 65. 	 In an operational	 satellite

system	 put	 up	 for	 the	 purpose	 of	 estimating	 soil	 moisture	 using a

microwave radiometer, the location of each antenna footprint should be

known.	 It	 would	 no*.	 be	 difficult	 to map	 the	 areas	 of	 significant

forest	 cover	 such	 that	 footprints	 containing	 percentages	 of	 forest

cover over a certain threshold are neglected.

The	 improvement	 in	 sensitivity to soil	 moisture when	 it	 is	 pos-

sible	 to	 partition	 ground	 resolution	 elements	 by	 the	 percentage	 of

forest within each element is 	 investigated	 in	 Figures 66 and 67. 	 In

order	 to	 obtain	 enough	 points	 to	 be	 statistically	 significant,	 both

the Waco to Livingston and Houston ground tracks were used to compute

the numbers shown	 in figures 66 and 67.	 Figure 66 shows	 a plot of

sensitivity in	 °K per percent	 soil	 moisture plotted as a	 function of

resolution and frequency.	 The sensitivity plotted in Figure 66 is an

average computed only for antenna footprints containing less than 40%

j
forest cover.	 In addition, 95% confidence intervals for these average

i;	 t.
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sensitivities are also provided.	 It can be seen that at L-band the

sensitivity is approximately 1.5°K/percent soil moisture for all

resolution with a very slight increase as the resolution increases.

At C-band the sensitivity is approximately 0.8 0K/percent soil moisture

and at X-band approximately 0.5 0K/percent soil moisture. Figure 68

provides the same information except at the sensitivities plotted in

figure 68 were computed only for antenna footprints containing less

than 30 percent forest cover. A major effect is that the sensitivity

at L-band increases from approximately 1.5 0K/percent soil moisture to

1.64 0K/percent soil moisture from the 5 kilometer resolution to the 60

kilometer reslution. Similar effects occur at C-band and X-band but

to a lesser degree. In both Figure 66 and 67 the tremendous sensitiv-

ity reduction at C-band and X-band relative to L-band is due to the

effects of vegetation. Another very important fact to notice is that

the confidence interval computed for the average sensitivity is the

largest at the 20 kilometer resolution. For all frequencies the con-

fidence intervals are comparable at the 5 kilometer and 60 kilometer

resolutions. There were not enough data points for antenna footprints

containing only 10% and 20% forest cover to provide similar plots

based on these partitioning percentages.

CONCLUSIONS

A simulation model of an orbiting microwave radiometer has been

implemented and demonstrated. A realistic. scene was also constructed

over which the radiometer could be arbitrarily flown in a line scan or

side to side scanning mode. The ground scene is based on classified

Landsat images and thereby provides realistic ground classes as7 well
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as geometries. It was shown that the realism of the scene make up in

both ground cover class and geometry is critical to the accuracy of

the simulation results. The model is capable of computing brightness

temperatures for L-band, C-band and X-band frequencies as a function

of orbit and antenna characteristics.

An analysis of the e ffects of scene heterogeneity and antenna

resolution on the sensitivity to soil moisture was performed. It was

assumed in executing this analysis that the soil moisture was uniform

over the entire scene (i.e. no precipitation patterns were overlaid on

the scene) such that effects of the different scene components on the

sensitivity to soil moisture could be investigated. A sensitivity to

soil moisture as a function of the percentage of each ground cover

class was shown. It was demonstrated that the forest cover class was

the limiting factor on the sensitivity of brightness temperature to

soil moisture. The average sensitivity to soil moisture as a function

of frequency and resolution without regard to ground cover classes was

also shown. In addition, since the forest cover class was the limit-

ing factor on sensitivity to soil moisture, average sensitivities for

each frequency and resolution were computed based on partitioning out

antenna footprints containing greater than 40 0% of the forest cover

class.	 It was shown under this condition that the L-band frequency

could achieve a resolution of 1.5°K/percent soil moisture, C-band a

sensitivity of 0.$ a
 K/percent soil moisture and X-band a sensitivity of

0.5 0K/percent soil moisture. The significant reduction as frequency

increases is due to the effects of vegetation. It should be pointed
P

out that the scene was made up primarily of the fully vegetated and

forest cover classes. The largest percentage of the bare soil class
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was	 in	 the	 range	 of	 30%	 to	 35%	 for only	 approximately	 10% of	 the

ground track simulated.

Another important result was that the effect of increasing reso-

lution	 size	 (antenna	 footprint	 size)	 is	 to	 provide a	 data	 averaging

effect.	 However,	 it was seen that	 increasing resolution did improve

the	 average	 sensitivity.	 This	 is most	 likely	 due	 to	 the	 manner	 in

which the larger, antenna footprint size averages the forest and fully

vegetated	 classes.	 In	 addition,	 it	 was	 seen	 that	 the	 confidence

interval	 on	 the	 average sensitivity	 computation was	 the	 largest	 for

the	 20 kilometer	 footprint	 and	 smallest	 for	 the 5	 kilometer	 and	 60

kilometer footprints, which were approximately the same.

This model	 is a very useful	 tool	 for a	 very wide	 ranging set of

investigations.	 Although atmospheric	 effects were not considered in
r

this	 study,	 the	 model	 is	 well	 suited	 for	 including	 an	 atmospheric

F,

model.	 In addition, the model would be well suited for quantitatively

testing	 soil	 moisture	 estimation	 algorithms	 derived	 from	 other

W studies.	 It	 car: also be used to develop test efficient soil moisture

estimators based on the Kalmen filtering approach.
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APPENDIX A

TEXAS PARKS & WILDLIFE MAPTAP VALUES

VS

TAMU CLASS ASSIGNMENTS

A limited number of vegetation type maps were produced in color.

Additional information contained on the maps may be obtained by

contacting the authors of this report.
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n.
Corsicana 1704••16225

Legend Nomenclature and Color Assignments

for Respective Values on MAPTAP 0062 Y

MAPTAP TAMU
Value Legend Nomenclature CLASS

i

1 - 0 Unclassified

1 Grasses 5

2 Grasses 5

3 Grasses 5

4 Post Oak-Black Hickory Forest 6

5 Mesquite-Elm Parks 6

6 Post Oak-Black Hickory Forest 6

r
{i 7 Mesquite Woods 6

1

8 Pecan-Elm/Water Oak-Elm/E1m=Hackberry Forest 6

9 Pecan-Elm/Water Oak-Elm/Elm-Hackberry Forest 6

10 Pecan-Elm/Water Oak-Elm/Elm-Hackberry Forest 6

11 Pecan-Elm/Water Oak-Elm/Elm-Hackberry Forest

7

6

l 12 Loblolly Pine-Sweetgum Forest 6

13 Post Oak-Black Hickory Forest 6

14 Post Oak-Black Hickory Forest 6

^. 15 Post Oak-Black Hickory Forest 6

16 Loblolly Pine-Sweetgum Forest 6

r 17 Water 1

18 Water 1

19 Water 1

20 Water 1

21 Crops 4

f^
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Corsicana (2)

t4APTAP TAMU

Value Legend Nomenclature CLASS

22 Crops 4Y

23 Crops 4

C
24 Crops 4

i Cropsrops

LL
26 Crops 4

I 27 Crops 4

28 Crops 4

29 Sparsely Vegetated/Urban 2

30 Sparsely Vegetated/Urban 2

31 Sparsely 	 9Vegetated/Urbanetated/Urban 2

32 Sparsely Vegetated/Urban -2

I 33 Sparsely Vegetated/Urban 2	 s
r

34 Sparsely Vegetated/Urban

2

;f •
1

35 Sparsely Vegetated/Urban 2

36 Sparsely Vegetated/Urban 2

126 Latitude-Longitude Tick Marks

127 Background

a
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y7_

MAPTAP
Value

0

*^ 1

2

3

4

5

6

7

8

9

R _ 10

11

12

13

14

15

16

17

r

a
18

19

1

Kerrville. 1706-16343

Legend Nomenclature and Color Assignments

for Respective Values on MAPTAP 0068

TAMU
Legend Nomenclature CLASS

Unclassified -

Grasses 5

Grasses 5

Grasses
j

5

Live Oak-Ashe Juniper/Live Oak-Mesquite Parks 5
(Sparse)

Sparsely Vegetated/Urban 2`

Live Oak-Mesquite Park (Sparse) 5

Live Oak-Ashe Juniper/Live Oak-Mesquite Parks 5
(Sparse)

Live Oak-Ashe Juniper/Live Oak-Texas Oak/Live 6
Oak-Mesquite Parks (Dense)

Live Oak-Ashe Juniper/Live Oak-Texas Oak/Live 6
Oak-Mesquite Parks (Dense)

Live Oak-Ashe Juniper/Live Oak-Texas Oak/Live 6
Oak-Mesquite Parks (Dense)

Live Oak-Ashe Juniper Woods 6

Live Oak-Ashe Juniper Woods 6

Live Oak-Ashe Juniper Woods 6

Pecan-Elm Forest 6

Pecan-Elm Forest 6

Live Oak-Ashe Juniper/Live Oak-Texas Oak/Live 6
Oak-Mesquite Parks (Dense)

Crops 4

Crops 4

Crops 4
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Kerrville (2)

2

MAP TAP TAMU
Value , Legend Nomenclature CLASS

20 Water 1

E
21 Sparsely Vegetated/Urban 2

l" 22 Sparsely Vegetated/Urban 2

1
` 23 Cloud Cover -

C

24 Cloud Cover -

'
r

To be designated by specified colors but not included in the legend

126 Latitude-Longitude Tick Marks

127 Background -

r

pry

VV

f
6
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Brownwood 1706-16341

Class Arrangement as Desired on Map Legend
. (MAPTAP No. 0069)

NOTE:NOME. occur only once oClass names and . color assignment	 w	 n y	 n the
MAPTAP and follow the Legend.

MAPTAP TAMU
Value Legend Nomenclature CLASS

k 1 Grasses 5

2 Oak/Mesquite/Juniper/Mixed Parks (Sparse) 5

3 Oak/Mesquite/Juniper/Mixed Parks (Dense) 6

4 Oak/Mesquite/Juniper/Mixed Woods 6

5 Crops 4

6 Water 1

M
7 Sparsely Vegetated/Urban/Crops 293

8 Unclassified

To be designated by colors but not included in the Legend.

f 126 (Latitude-Longitude Tick Marks)

127 (Background)

i

r

jw

k

t
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Austin 1363-16362

Legend Nomenclature and Color Assignments

for Respective Values on MAPTAP 0060

12

13

14

15

16

17

18

19

MAPTAP
Val ue

0

1

2

3

4

Legend Nomenclature

Unclassified

Grasses

Grasses

Grasses

Live Oak-Ache Juniper/Post Oak-Live Oak Parks
(Dense)

Live Oak-Ashe Juniper/Post Oak-Live Oak Elm-
Hackberry Parks (Sparse)/Grasses

Live Oak-Ashe Juniper/Post Oak-Live Oak/Elm-
Hackberry Parks (Sparse)/Grasses

Live Oak-Mesquite Parks (Sparse)

Live Oak-Ashe Juniper/Post Oak-Live Oak/Elm-
Hackberry Parks (Sparse)/Grasses

Ashe Juniper Parks (Dense)

Live Oak-Ashe Juniper/Post Oak-Live Oak/Elm-
Hackberry Parks (Sparse)/Grasses

Live Oak-Ashe Juniper/Post Oak-Live Oak/Elm-
Hackberry Parks (Sparse)/Grasses

Live Oak-Ashe Juniper Woods

Post Oak-Blackjack Oak/Elm-Hackberry Woods

Pecan-Elm/Live Oak Forest

Crops

Crops

Crops

Crops

Sparsely Vegetated/Urban

TAMU!
CLASS

5

5

5

6

5

5

5

5

6

4

4

r

F

,r

5

6

7

8

9

10

11



Austin (2)

2

MAPTAP TAMU
Value Legend Nomenclature CLASS

20 Crops 4

21 Crops 4

22 Live Oak-Ashe Juniper Woods 6

23 Cloud Cover 0

24 Cloud Cover 0

25 Water 1

26 Water 1

27 Water 1

28 Sparsely Vegetated/Urban 2

29 Sparsely Vegetated/Urban 2

30 Sparsely Vegetated/Urban 2

31 Sparsely Vegetated/Urban 2

32 Sparsely Vegetated/Urban 2

33 Post Oak-Eastern Redcedar Woods 6

34 Post Oak-Eastern Redcedar Parks (Dense) 6

To be designated by specified colors but not included in legend.

126	 Latitude-Longitude Tick Marks

127	 Background
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r	 i Waco 1759-16263

Class Arrangement as Desired on
Map Legend (MAPTAP No. 0086)

NOTE: Class names and color assignnment now occur only once on the
MAPTAP and follow the Legend.

j

MAPTAP
Value Legend Nomenclature

TAMU
CLASS

1 Grasses 5	 1ig"

2 Oak/Mesquite/Juniper/Mixed Parks (Sparse)/

a

5
Grasses

f	 l 3 Oak/Mesquite/Juniper/Mixed Parks (Dense) 6

4 Oak/Mesquite/Juniper/Mixed Woods 6

5 Pecan-Elm/Live Oak Forest 6	 1

6 Crops 4

f 7 Water 1

8 Sparsely Vegetated/Urban 2,3

9 Cloud Cover

10 Unclassified

{ To be designated by colors but not included in the Legend.

126 (Latitude-Longitude Tick Marks)

127 (Background)

r

s

i

G

4
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Lufkin 1757-16151

Le end Nomenclature and Color Assignments
or Respective Values on RPTAP 0046r-

MAPTAP TAMU
Value Legend Nomenclature CLASS

0 Unclassified 0

I1 Grasses 5

2 Grasses 5

3 Water Oak-Elm Forest 6
i

r.
4 Shortleaf Pine'-Post Oak/Loblolly Pine- 6

f

Sweetgum/Post Oak-Black Hickory Forest:

!	
r

5 Shortleaf Pine-Post Oak/Loblolly Pine-
Sweetgum/Post Oak-Black Hickory Forest 6

6 Shortleaf Pine-Post Oak/Loblolly Pine- 6
Sweetgum/Post Oak-Black Hickory Forest

k 7 Loblolly Pine-Shortleaf Pine Forest 6

8 Loblolly Pine-Shortleaf Pine Forest 6

9 Loblolly Pine-Slash Pine Young Forest/
Eastern Mixed Hardwood Brush/Woods 6

10 Water 1

11 Sparsely Vegetated/Urbanetated/UrbanP	 9 2,3

r
12 Crops 4

13 Crops 4 .

f 14 Crops 4

To be designated by specified colors but not included in the Legend.
El

126 Latitude-Longitude Tick Marks
r

127 Background
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Houston 1703-16173

Legend Nomenclature and Color Assignments

for Respective Values on MAPTAP 0031

MAPTAP

q Value Legend Nomenclature

0 Unclassified 0

1 Grasses 5

(` 2 Grasses 5

3 Grasses 5
r

4 Water Oak-Elm/Pecan-Elm/Willow Oak-Blackgum 6
Forest

5 Post Oak-Black Hickory Forest 6

6 Post Oak-Black Hickory Forest 6

7 Loblolly Pine-Sweetgum/Loblolly Pine- 6
Shortleaf Pine Forest

8 Loblolly Pine-Sweetgum/Loblolly Pine- 6
Shortleaf Pine forest

9 Loblolly Pine/Sweetgum/Loblolly Pine-
Shortleaf Pine Forest

10 Water Oak-Elm/Pecan-Elm/Willow Oak-
Blackgum Forest

11 Loblolly Pine-Sweetgum/Loblolly Pine-
Shortleaf Pine Forest

12 Water Oak-Elm/Pecan-Elm/Willow Oak-

^u
Blackgum Forest

13 Loblolly Pine-Slash Pine Young Forest/
Eastern Mixed Hardwood Brush/Woods

14 Loblolly Pine-Sweetgum/Loblolly Pine-
Shortleaf Pine Forest

15 Crops

116 Crops

j 17 Crops

6

6

6

6

6

6

4

4

4
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Houston (2)

MAPTAP TAMU
Value Legend Nomenclature CLASS

18 Crops 4

19 Crops 4

20 Crops 4

21 Crops 4

22 Cloud Cover 0

23 Elm-Hackberry Woods/Baccharis Brush 5

24 Elm-Hackberry Woods/Baccharis Brush 5

25 Urban/Sparsely Vegetated 2

26 Urban/Sparsely Vegetated 2

27 Urban/Sparsely Vegetated 2

28 Urban/Sparsely Vegetated 2

29 Urban/Sparsely Vegetated 2

30 Urban/Sparsely Vegetated 2

31 Urban/Sparsely Vegetated 2
i

32 Urban/Sparsely Vegetated 2

33 Urban/Sparsely Vegetated 2

34 Marsh/Cultivated Wetlands 1

35 Marsh/Cultivated letlands 1

36 Loblolly Pine-Sweetgum/Loblolly Pine- 6
Shortleaf Pine Forest

37 Water 1

38 Loblolly Pine-Sweetgum/Loblolly Pine- 6
Shortleaf Pine Forest }

39 Urban/Sparsely Vegetated 2

40 Cloud Cover 0

41 Cloud Cover 0
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Houston (3)

1 00

1

To be designated by specified colors but not included in the legend.

126	 Latitude-Longitude Tick Marks

127	 Background
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Bryan 1308-16311

Legend Nomenclature and Color Assignments

for Respective Values on MAPTAP 0067

MAPTAP TAMU
Value Legend Nomenclature CLASS

0 Unclassified 0
t

1 Grasses/Elm-Hackberry Parks 5

2 Post Oak-Blackjack Oak/Elm-Hackberry
Woods

6
/Forest

ti 3 Grasses/Elm-Hackberry Parks 5

4 Grasses/Elm-Hackberry Parks 5
k
15

4 5 Grasses/Elm-Hackberry Parks 5

6 Grasses/Elm-Hackberry Parks 5

' 7 Post Oak-Blackjack Oak/Elm-Hackberry 6
Woods/Forest

8 Sparsely Vegetated/Urban
1.

2

9 Crops 4

10 Post Oak-Blackjack Oak /Elm-Hackberry 6
Woods/Forest

11 Water Oak-Elm/Pecan-Elm Forest 6

12 Post Oak-Blackjack Oak/Elm-Hackberry 6
Woods/Forest

j
13 Crops 4

M14 Grasses/Elm-Hackberry Parks 5

15 Crops 4

16 Water Oak-Elm/Pecan-Elm Forest 6

17 Loblolly Pine-Pinst Oak forest 6

18 Crops 4

19 Crops 4
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MAPTAP TAMU
Value Legend Nomenclature CLASS

20 Water Oak-Elm/Pecan-Elm Forest 6

21 Sparsely Vegetated/Urban 2

22 Sparsely Vegetated/Urban 2

23 Sparsely Vegetated/Urban 2

24 Water 1

25 Loblolly Pine-Post Oak Forest 6

26 Water 1

27 Crops 4

28 Loblolly Pine-Post Oak Forest 6

29 Crops 4

30 Crops 4

31 Crops 4

32 Grasses/Elm-Hackberry Parks 5

33 Sparsely Vegetated/Urban 2

34 Sparsely Vegetated/Urban 2

35 Crops 4

36 Crops 4

37 Crops 4

38 Sparsely Vegetated/Urban 2

39 Crops 4

To be designated by specified colors but not included in the legend.

126 Latitude-Longitude Tick Marks

127 Background
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APPENDIX B

FULL SCENE GREY-SCALE MAPS BY CLASS
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APPENDIX C

COMPUTATION FLOW OF COMPUTER ALGORITHM



I

i

I

t

^	 a

I,

f

ORIGINAl- PAGE iS
OF POOR QUW"

START

INPUT (D,	 0 9 B,
PARAMETERS eno, `Yo,	 H,	 II

Xo = 825., Yo=O., Zo=O
4X = AY = 1., AZ = 0.
Au

= Ay = 0., AR
1.

NITIALIZED oe = ;1./57.3, C = 273. 
VARI ABLES N = 2496, M = 1650,

S = 0.24

Rso= Htan eno EVALUATE INITIAL NADIR COORDINATES

ao = Xo - RsoCos'Y

Ro =	 RsoSinYNo-yo
KEY

OPEN
(D, azimuth, -90 0 < 0 < 900

UNIT 8
p , roll, -90 0 < p< 900
B,, -1 1beam width,< B < 30°

eno, incidence, 00 <0 no < 500
Yo, radial , 00 <	 Yo	 < 359c

H, altitude, 50 < yo < 500 KM
No scene length, 2496 units
M, scene width, 1650 units

2A C, background temp., 273°K
S, scale factor, 0.24 KM/unit

II, nadir step, 1.< II _< 16



GC IS
ORIGINAL P UALI^
OF 900R Q

2A

	

1=1
	

STOP
I> N?

I=1+II

	

28
	

REt4I ND

UNIT 8

Reset numerator &denominator
accumulators
NU=DE=O, Reset max/min angles &

0MX,6MN,0X,	
Set coordinates of nadir to next

STEP
Rs '	 cx = a + (I-1)Aa

STEP a,S,Y	
S	 ^o + (1-11a

RESET NU,DE,	 range sum

Y = Yo + (I -1)AY

position

EVALUATE XL, XU,	
Compute limits of antenna foot-

YL, YU	
print on the ground plane. Reset

NR = 0	
scene line count.

SET LIMITS	 Set integration limits to cover
;I	 OF INTEG.	 only the antenna foot-print.



1

ORIGINAL PAGIF iS

OF POOR QUALITY
F^

1

r	 i 	 a
T

L= K1	 yes	 Integration over antenna

'	 L>K2?	
4A	 footprint completed

i

	

	 no 1

L=L+1

i
r

READ	 Read a strip of ground
t	 B	 UNIT 8	

scene data
i

NR=NR+1	 Increment scene record/
line counter

i

NR: K1	
Read scene records until

i	 within antenna footprint

>

X=AX(L-1)
+0.5

r
M= I 1	 yes	

B	
ay

MM> I2	
no

M 
+1	 !

Y=AY(MM-1)	 Evaluate R,e,^,
+0.5	 ^MX,ft:eN,eMX,

MMN
e ,ZNU,EDE, Rs
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4I#

BT-

-	 Display BT, R, X, Y, XL, XU, YL, YU
PRINT	 and Satellite Characteristics;

RESULTS	 i.e., (P, o, B, Eno, Yov N, II
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C a>>> STEP - 1 PROGRAM <<
C
C	 ## VEGETATION-CLASS SUB-SCENE TO MODEL CLASS COUNT SUB-SCENE
C
C

INTEGER ASGR
DIMENSION ITBUFF( 912 ► 6), ASOR (6, 6), CCLAS(6, 4), IWORD(4)
DIMENSION MSLINE(608,2)

C
C UNIT ASSIGNMENTS FOR THE TI-980;
C	 B4 == CRT
C	 B5	 CRT OR CDR (RECORD COUNT INPUT)
C	 B6 = LP (MSG FILE)
C	 B7	 INPUT(VEGETATION MAP) TAPE, x;1824 BYTE RECORDS
C	 B8 = OUTPUT(MODEL SCENE) TAPE, 1216 BYTE RECORDS
C	 B9 = LP OR CRT DIAGNOSTICS PRINT OUT
C
C

• .0 RESET CYCLE COUNTER AND END-OF-FILE FLAG
ICYC=O
I END= 0
ICNT=O
IEOF=0

C OPEN TAPE UNITS FOR INPUT AND OUTPUT
CALL SVC( 183, 7) 1824, ITBUFF)
CALL SVC ( 184, 7, 1216, MSL I NE )

C
C CALL FOR INPUT DATA

WRITE(4, 3)
3 FORMAT(IH )`INPUT RCD COUNT AND DUMP FLAG(2I5)',/,1X)

C
C READ IN THE NUMBER OF TAPE RECORDS EXPECTED AND DUMP FLAG
C

READ( 5, 10) IREC, ID
10 FORMAT(2I5)

WRITE (6, 11) IREC, I D
11 FORMAT(IH , 'EXPECT', I6, ' RODS', 5X, 'DUMP FLAG', 16)

IRM5=IREC-50
5 CONTINUE

I TRCD=O
I F (I END. LT. 0) GO TO 16

C RESET END OF DUFFER LINES BEFORE READING TAPE
C

DO 8 M=1,6
DO 7 L=800, 912

7 ITBUFF(L,M)=32639
8 CONTINUE

C
C GET A TAPE RECORD 6-TUPLE, EACH <=912 BYTE PAIRS
G
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ORIGINAL PAGE IS
OF POOR QUALITY

6 DO 15 N=1, 6
IF(ICNT. EG). IREC) GO TO 150

C
C INPUT A TAPE RECORD FROM UNIT NDR 7

CALL SVC ( 183, 1, 1824, I TBUFF (1, N) )
IF(ICNT.GT .IRM5) CALL TCK(IEOF)
I F (IEOF, NE, 0) GO TO 150

C
ICNT=ICNT+1
ITRCD=ITRCD+i

15 CONTINUE
16 CONTINUE

C
C BUILD 2 LINES OF MODEL SCENE DATA

DO 125 K=1#304
I=I+(K-I )*3

C
C. BUILD 6-BY-6 WORD-BOX FROM 6-BY -6 VEGETATION BYTE-BOX

DO 34 J=1#6
DO 29 L- 1, 3
LK=I.-1
LL=LK*24 1
TEMP=I TBUFF (I f,LK, J )

C RIGHT JUSTIFY L-H BYTE
ASOR(LL,J)=TEMPI256

C FIND VALUE OF R--H BYTE
ASOR (LL+ 1, J) =TEMP- (ASOR (LL, J) *256 )

29 CONTINUE
30 CONTINUE

C
C
C RESET THE COUNTERS FOR CLASSES IN EACH MODEL SCENE BOX

DO 35 J1, 4
DO 34 I K= 1, 6
CCLAS(IK,J) =0

34 CONTINUE
35 CONTINUE

C
C COUNT CLASSES IN 6"BY-6 BYTE-BOX FOR 4 -BY-4 WORD-BOX

DO 44 JI=1, 6
DO 43 KI =1, 6
IK=KI/4+1+(JI /4)*3

C
"C VALUE OFJI INDEXES LINE NBR
C VALUE OF IK	 "	 COLM NDR
C COUNT NUMBER OF VALUES IN EACH OF 6 CLASSES FOR EACH
C	 Or 4 BOXES IN ASOR (INDEXED BY IK)

CALL COUNT(JI, KI, IK, ASG1R, COLAS)
43 CONTINUE
44 CONTINUE

167	
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C
C BUILD 2 MODEL SCENE WORDS FOR EACH OF TWO LINES
C

DO 75 IK= 1, 4
IWORD(IK)=0

C
C	 BUILD MODEL SCENE DATA SUB —WORD INDEXED BY IK

DO 70 KK=1, 5
KP=KK-1
IWORD( IK)=IWORD(IK)+IFIX(( CCLAS(KK,IK)/9.)*7.+0.5)*IFIX(@.**KP)

70 CONTINUE
75 CONTINUE

C PUT 4 SUBWORDS INTO TWO MODEL SCENE LINES
C

II=1 +(K-1)*2
DO 80 LL=1 o 2
MSLINE(II,LL)=IW0RD(2*LL-1)
MSLINE(I I'+"I, LL)=IWORD(2*LL)

80 CONTINUE
C ***** DIAGNOSTICS**

I F (I D. E0. 0) GO TO 125
I F((K. GT. 265) ANA. (K. LE. 270) . AND. (ICYC. GE . 5) AND. ('ICYC. LE, 10) )

$ GO TO 140
C

I F ((K. LE. 265) . OR. (K. GT, 270) . OR. (ICYC. LE. 252) . OR. ( ICYC. GT . 267) )
$ GO TO 125

C
140 CONTINUE

IP3=I+2
IIPI=II+1
WRITE(9, 142) ( (ITBUFF(L, N), L=I, IP3), N=1, 6), ASGR, COLAS,

*IWORD, ((MSLINE(MM, NN), MM =I I, I IP'1 ), NN=i, 2), K, -"
142 FORMAT (1 H , ' TRCD: ', /, 6 (1 X, 3I7, /) , 1 X, ' BYTE—BO

$IX, 'CLASS CNT', /, 4(1X, 6I7, /), 1X, /,
$1X, 'WORD BITS', /, 1X, 418, /,
$1 X, ' TAPE RCD WORDS',/,	 2 (1 X * 2I7, / ), i_X, /,
#1X, 'K= ', I71 5X, 'CYCLE=', 17, /, IX)

C
C *** END OF DIAGNOSTICS ***

125 CONTINUE
ICYC=ICYC+1

C COMPLETED 2 LINES OF MODEL SCENE 608 WORDS/LINE
C WRITE 2 LINES TO TAPE UNIT NBR 2

CALL SVC ( 184, 3, 1216, MSLINE(1, l) )
CALL SVC ( 184, 3, 1216, MSL I NE (1, 2) )
WRITE(4,141)ICNT

141 FORMAT(IH , 5X, 'RCD CNT', 16)
I F (I END. LT.. 0) GO TO 151
GO TO 5

150 I F (I.TRCD. NE. 0) GO TO 300
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C COMPLETED TAPE FILE AND MODEL SUB-SCENE
151 IRCD=ICYC*6

ILINES=ICYC*2
ENDFILE 8
WRITE(6, x:00) IRCD, ILI.NES, ICYC, I1'RCD, IREC, ICNT

200 FORMAT(IOX, '... END OF INPUT TAPE: ') 16, ' RECORDS',
$5X, 16, ' MODEL SCENE LINES', 5X, I6, ' LINE-PAIR CYCLES', /,
$5X ► I6, ' TAPE RECORD RESIDUE', /,
#5X, I6, ' RECORDS EXPECTED, RECORD COUNT=', I6 )
STOP

300 CONTINUE
C
C FINISH OFF MODEL-SCENE WITH BACKGROUND DATA, ^'7F7F

NXL=ITRCD+1
DO 310 LL= NXL ► 6
DO 309 LC=1, 912
ITBUFF(LC,LL)=32639

309 CONTINUE
310 CONTINUE

IEND=-1
GO TO 5
END
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SUBROUTINE TCK(IEOF)
IBK=O

` A DATA	 :,C385 ;TURN OFF MPB
A 200 LDM	 P910 ;GET STATUS WORD

' A DATA	 >C38D
A RMO	 M, A ;MOVE IT TO ACCUM

T A STA	 PA23, I ;STORE AT ISTAT
A CPL	 tai 1 ;":,,E;000,	 COMPLETE;'

' A SEO
^ - A BRU	 &500 ; NOT COMPLETE,	 CHECK FOR EOF

A BRU	 &777 ;UP COMPLETE
A 500 SNZ	 A ;SKIP IF NOT ZERO STATUS
A BRU	 &200 ;WHIT FOR CHANGE
A CRA	 8 ;PUT EOF 7--BIT INTO LUC 15
A SEV	 A ;SKIP IF NOT -EOF
A BRU	 ?x666 ;EOF FOUND
A CRA	 2 ;NOT EOF,	 CK PARITY
A 'SEV	 A ;SKIP IF NO	 "	 ERROR
A BRU	 11;999 ;SIGNAL. ERROR
A BRU	 °x777 ;RETURN

999 WRITE(4,1000)
1000 FORMAT(5X,'TAPE ERROR')
600 CONTINUE

A DATA	 ::>C386 ;TURN ON MPB
WRITE(6)900)	 ISTAT

900 FORMAT(5X,'STATUS',I6)
A BRU	 &777 ;RETURN

[ Ct
666 IEOF=1
667 CONTINUE

A DATA	 >C386 ;TURN ON MPB
800 RETURN'
777 IEOF=0

r` GO TO 667
A 10 DATA	 >009C
A 11 DATA	 ."8000
A 23 DATA	 ISTAT
C

END
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ti»
' SUBROUTINE COUNT (J, K ► I , ASO, CCL_ )

INTEGER ASO
DIMENSION ASO (6, 6)	 ► CCL (6, 4 )'

C # #*#fit	 ###*	 3^##	 a^
i C

A C INSERT COUNTING RULES FOR VEGETATION SCENE HERE
C
C# KERRVILLE	 KERRVILLEiE
C

I F ((ASO (K, J) . LE. 0) . OR. (ASO (K, J) . GE. 23)) GO TO 100
t GO	 TO	 (1, 2, 3, 4, 5, 6, 7, 8, 9, 101 11, 12, 131 14, 15, 16, 17, 16, 19#20o 21, 22) ►

<.
$ASO (K, J )

100 RETURN
i C

C WATER — — — — --- — — — -- — — — —	 -- — -- —CLASSI
C

20 CCL(1, 1) =CCL(1, I)+1
GO TO 100

C
C URBAN & BARE SOIL — — — — — — — — — -- — — --CLASS 2,	 3
C

s 5 CONTINUE
21 CONTINUE
22 CCL(2, I)=CCL(2, I)+1

GO TO 100
C
C MIXED SOIL AND VEGETATION — — — — — - — — — —CLASS 4
C

17 CONTINUE
18 CONTINUE
19 CCL(4, I)=CCL(4) I)+1

GO TO 100
C
C FULLY VEGETATED(NON-FOREST) — —	 — — ---CLASS 5

C
1 CONTINUE
2 CONTINUE
3 CONT rNUE

y , 4 CONTINUE
6 CONTINUE
7	 CCI..(5, I)=CCL(5, I)+1

GO TO 100
C
C FOREST LAND -- — — - — — - — - — — — — — — — CLASS 6
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13 CONTINUE

IF
14 CONTINUE

. 15 CONTINUE

., 16 CCL(6. I)=CCL(6, I)+l
i GO TO 100 a

C
C	 END OF COUNTING RULES

END

I ^

z

p

;

gry^

o	 {

f

i

i
1

f

q

r

i

L

5
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C	 **#	 AUSTIN	 AUSTIN*	 i
C	 e

IF((ASO(K, J). LE. 0), OR. (ASO(K, J). GE. 34)) 	 GO TO	 100
s	 GO	 TO	 ( i , 2, 3, 4, 5, 6, 7) 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
`	 $21, 22, 23, 24, 25, G6, 27, 28 ► 29, 30, 31, 32, 33) , AS4 (K, J )

100 RETURN
C	

1C	 WATER -- -- -- -- -- -- -- -- -- ---_ - _ _ -CLASS i

C,25 CONTINUE
26 CONTINUE
27 CCL(1, 1) =CCL(1, I)+1

k :	 GO TO	 100
C
C	 URBAN & BARE SOIL - - - - - - - - - - - - ---CLASS 2, 	 3
C	 y,i	

19 CONTINUE
28 CONTINUE

'	 29 CONTINUE
30 CONTINUE
31	 CONTINUE	 ti
32 CCL (2, I) =CCL (2, 1) +1

'.	 t	 GO TO	 100
C
C	 MIXED SOIL	 VEGETATION -- - - - - - - - - - - CLASS 4,
C

10 CONTINUE
11 CONTINUE

1 15 CONTINUE
16 CONTINUE

-	 17 CONTINUE
18 CONTINUO
20 CONTINUE
21	 CCL(4, I)=CCL(4, I )+1

GO TO 100
C

i	 C	 FULLY VEGETATED(NON-FORESTED)- - - - - - - - - - CLASS 5
C

1 CONTINUE
` u	 t	 2 CONTINUE

3 CONTINUE
5 CONTINUE
6 CONTINUE
7 CONTINUE
8 CCL(5, 1)=CCL(5, I) +1

z	
w	

GO TO 100-...	
C
C	 FOREST LAND - - - - - - - - - - - - - - - - - CLASS 6
C

4 CONTINUE
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9 CONTINUE
12 CONTINUE
13 CONTINUE
14 CONTINUE
22 CONTINUE

P
33 CONTINUE
34 CCL (6, I) =CCL (6, I) +1
23 CONTINUE
24 CONTINUE

GO TO 100
C
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C *## BROWNWOOD DROWNWOOD ###
C

IF((ASG(K, J). LE, 0), OR. (ASO(K, J). GE, 8)) GO TO 100
GO TO (1, 2, 3, 4, 5, 6, 7) , ASG (K, J )

100 RETURN
C
C	 WATER —	 — — — — — — — — — — _ — — — — — — --CLASS 1
C

6 CCL(1, I)=CCL( 1, I)+1
GO TO 100

C
C	 URBAN ?s BARE 50IL — — — — — — — — — — — — — — ri ems ^.
C

7 CCL(2, I)=CCL(2, I)+1
GO TO 100

C
C	 MIXED SOIL & VEGETATION — — 	 —	 - — —
C

5 CCL (4, I) =CCL (4, I)+i
GO TO 100

C
C	 FULLY VEGETATED(NON —FOREST) — — — — — — — —
C

1 CONTINUE
2 CCL(S, I )=CCL(5, I )+1

GO TO 100
C

/	
C	 FOREST—LAND — — — — — — — — — — — — — - -- —

I	

C	
C

3 CONTINUE
4 CCL(6, I)=CCL( 6, I)+1

GO TO 100
C

END



ORIGINAL PAGE ISOF POOR QUALlry

C **	 WACO	 WACO**
C

IF((ASO(K, J). LE. 0), OR, (ASO(K, J). GE,, y )) GO TO 100
GO TO	 (1, 2, 3, 4, 5, 6, 7, 8) , ASO (K, J )

100 RETURN
C
C WATER	 — — —	 — — — — — — _	 — — — — -- — — —CLASS 1
C

7	 CCL(1, I)=CCL(1, I)+i
GO TO 100

C
C URBAN & DARE SOIL — — — — — — — — — — — — — -CLASS 2s3
C

8 CCL(2, I)=CCL(2, I)+1
GO TO 100

C
C MIXED SOIL & VEGETATION --------- -- -- — — — --CLASS 4
C_

" 6 CCL(4, I)-CCL(4, I)+1
GO TO 100

C
C FULLY VEGETA'TED(NON —FOREST) — — — — — — — — —CLASS 5
C

1 CONTINUE
2 CCL(5, I)=CCL(5, 1)+1

GO 'TO 100
C
C FOREST—LAND — — — — — — — — —— — — — — — — — CLASS 6
C

3 CONTINUE
4 CONTINUE
5 CCL(6, I)=CCL(6, I)+1

GO TO 100
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C *	 BRYAN	 BRYAN	 ** a
s Cv C

IF((AS4(K, J). LE, 0). OR. (ASO(K, J). GT. 39) )GO TO 100
E GO TO	 ( 1, 2, 3, 4, 5 ► 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19#20o
i *21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 331 34, 35, 361 37, 38, 39) . ASO (K, J)

100 RETURN
C
C OPEN WATER --- CLASS i

I C

24 CONTINUE

j I 26 CCL(1, I)=CCL(1, I)+1
GO TO 100

C
C URBAN AND DARE SOIL------ - - - - -	 - - - - CLASS 2,	 3` C

8 CONTINUE
21 CONTINUE
22 CONTINUE

r 23 CONTINUE
33	 CONTINUE
34 CONTINUE
38 CCL(2, I)-CCL(2, I )+l

GO TO 100
N C

C MIXED SOIL AND VEGETATION
C
C MIXED SOIL AND VEGETATION------------- - - --CLASS 4

I Cg
9 CONTINUE

13 CONTINUE
15 CONTINUE
18 CONTINUE
19 CONTINUE
27 CONTINUE
29 CONTINUE

! 30 CONTINUE
31 CONTINUE
35 CONTINUE r`
36	 CONTINUE

' 37	 CONTINUE
39 CCL(4, I)=CCL(4, I)+1

GO TO 100
C
C FULLY VEGETATED t NON-FOREST) ------ - - - - CLASS 5

i CONTINUE
3 CONTINUE
4 CONTINUE 
5 CONTINUE
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6 CONTINUE
14 CONTINUE
32 CCL(5, I)=CCL(5, I)+i

GO TO 100
C
C	 FOREST -LAND ------ - - - - - - - - --	 -	 CLASS 6
C

2 CONTINUE
7 CONTINUE
10 CONTINUE
11 CONTINUE
12 CONTINUE
16 CONTINUE
17 CONTINUE
20 CONTINUE
25 CONTINUE
28 CCL(6, I)=CCL(6, I)+1

GO TO 100
C
C END OF BRYAN RULES

END
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C	 *** CORSICANA CORSICANA ***
C

IF((ASO(K, J). LE. 0). OR. (A30(K, J). GT. 36) )GO TO 100
GO TO( 1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 ► 19, 20,

*21, 22, 23, 24, 25 ► 2 6, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36) , ASO (K, J )
100 RETURN

C
C	 WATER ---------------------	 CLASS i
C

17 CONTINUE
18 CONTINUE
19 CONTINUE
20 CCL (1, I) =CCL (1, I) +1

GO TO 100
C
C	 URBAN t̂4 BARE SOIL	 ------------ CLASS 2, 3
C

29 CONTINUE
30 CONTINUE
31 CONTINUE_
32 CONTINUE
34 CONTINUE
33 CONTINUE
35 CONTINUE
36 CCLr2, I )=CCL( 2, I )+1

GO TO 100
C
C	 MIXED SOIL. & VEGETATION -----------CLASS 4
C

21 CONTINUE
22 CONTINUE
23 CONTINUE
24 CONTINUE
25 CONTINUE
26 CONTINUE
27 CONTINUE
28 CCL (4, I) =CCL (4, I) +1

GO TO 100
C
C	 FULLY VEGETATED ( NON-FAIREST)	 -----CLASS 5
C

i CONTINUE
2 CONTINUE
3 CCL(5, I)=CCLC5, I)+1
GO TO 100

C
C FOREST LAND	 -r------------ CLASS 6
C

4 CONTINUE
5 CONTINUE
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CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CCL(6, I)=CCL(6, I)+1
GO TO i00

D OF RULES FOR CORSICANA it#**
END
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C **# HOUSTON HOUSTON * *
C

IF((ASO(K, J). LE. 0), OR, (ASO(K, J). GT. 39) )GO TO 100
GO TO (1) 2# 3, 4, 516o 7, 8, 9, 10p 1-1, 12, 131 14,15p 16, 17r 18 ► 19, 20, 21 ► 22 ►

#23, 24, 25, 2 6, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39) , ASO (K, J )
100 RETURN

C
C	 *	 WATER *	 - --- ---	 -- ---- CLASS 1
C

34 CCL(1, I)=CCL(1, I)+1.
GO TO 100

35 GO TO 34
37 GO TO 34

C
C
	

URBAN !c BARE SOIL ---	 ---	 ---	 --- CLASS 2, 3
C

25 CCL(2, I)=CCL(2, I)+i
GO TO 100

26 CONTINUE
27 CONTINUE
28 CONTINUE.
29 CONTINUE
30 CONTINUE
31 CONTINUE
32 CONTINUE
33 CONTINUE
39 GO TO 25

MIXED ';iO T L 8, VEGETATION ----------------	 ---CLASS 4
15 CONTINUE
16 CONTINUE
17 CONTINUE
18 CONTINUE
19 CONTINUE
20 CONTINUE
21 CCL(4, I)=CCL(4, I )+ l
a4 GO TO 100

C
C FULLY VEGETA'TED(NON/FOREST) ------------------- CLASS 5
C

1 CONTINUE
2 CONTINUE
3 CONTINUE

23 CONTINUE
24 CCL (5) I) =CCL (S, 1) +1

GO TO 100
C
C FOREST-LAND ---------------------------------- CLASS6

4 CONTINUE
5 CONTINUE
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6 CONTINUE
7 CONTINUE
8 CONTINUE
9 CONTINUE
10 CONTINUE
11 CONTINUE
12 CONTINUE
13 .CONTINUE
14 CONTINUE
36 CONTINUE
38 CCL(6, I)=CCL(6r :)+1

GO TO 100

END
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C ** LUFKIN LUFKIN ***
C
C

IF((ASO(K, J). LE, 0), OR, (ASO(K, J). GT, 14)) GO TO 100
GO TO	 (1, 2) 3, 4, 5, 6, 7o 8, 9, 10, 11, 12, 13,14)) ASO (K, J )

100 RETURN
C
C	 WATER--	 — — — — — — — — — —	 _ - — _ — — — -- CLASS 1
C

10 CCL(1, I)=CCL(1) I)+1
GO TO 100

C
C	 URBAN & BARE SOIL --CLASS 2,	 3
C

11	 CCL(2, I)=CCL(2, I)+i
C	 CLASS 3 = SAME AS CLASS 2
GO TO 100

C
C	 MIXED SOIL & VEGETATION —CLASS 4

12 CCL(4, I)=CCL(4, I)+1
GO TO 100

13 GO TO 12
14 GO TO 12

C
C	 VEGETATED(NON—FOREST) --	 —	 — — — — — — — —CLASS 5
C

1	 CCL(5, I)=CCL(5, I)+1
GO TO 100

2 GO TO 1
C
C	 FOREST— — — -- — — — — — — — — —	 — —	 -	 — - —CLASS 6
C

3 CCL(6, I)=CCL(6, L)+1
GO TO 100

4 GO TO 3
5 GO TO 3
6 GO TO 3
7 GO TO -3
8 GO TO 3'
9 GO TO 3

END
C
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C FILL TAPE DATA SCENE WITH BACKGROUND
C
C
C ASSIGN D7 TO MT
C ASS-IGN B4• CRT
C

INTEGER ISCENE(2496)
C FILL SUPER-SCENE 	 LINE BUFFER WITH BACKGROUND

DO 12 IC=1, 2496
ISCENE(IC)	 =0

12 CONTINUE
C OPEN TAPE UNIT FOR 2496 WORDS PER RECORD

CALL SVC ( 183, 7, 4992, I SLE;4E (1) )
ICNT=O

^I WRITE(4,10)ICNT
10 FORMAT(1H ,'TAPE UNIT OPEN, 	 RCD CNT=')I6)

DO 24 KR=1, 1650
C OUTPUT A RECORD FROM THE BUFFER FILLED WITH ZERO

CALL SVC ( 183, 3, 4992, I SCENE (1) )
ICNT=ICNT+1

24 CONTINUE
C OUTPUT TWO END OF FILE MARKS ON THE TAPE

CALL SVC ( 183, 10, 4992, I SCENE (1) )
WRITE(4,30)ICNT

30 FORMAT(iH , 'TAPE UNIT CLOSED,	 RCD CNT=', I6)
STOP
END
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C ******** STEP 2 PROGRAM *#******

il	 C

	

C	 MODEL SUPERSCENE FROM MODEL SUBSCENES
C

	

C	 UNIT ASSIGNMENTS:

	

C	 8 = INPUT MODEL SCENE:

	

C	 9 = INPUT SUPERSCENE
	C	 10 = OUTPUT SUPERSCENE

C
C ISCN = (INPUT SCENE IEG NBR: 1 THROUGH 8)

	

C	 1	 LUrK 7 i,q

	

C	 2 = HOUSTON

	

C	 3 = CORSI'CANA
	C	 4 = BRYAN

	

C	 5 = WACO

	

C	 6 = AUSTIN

	

.0	 7 = BROWNWOOD

	

C	 8 = KERRVILLE
C IMSL NBR OF LINES IN THE SCENE BEING PROCESSED
C
C SYSTEM OPERATION:

	

C	 1, READS UNIT 5 FOR OPERATION PARAMETERS
±	 C	 2, OVERLAYS SUPER--SCENE WITH MODEL SUB--SCENE SPECIFIED BY ISCN

	

C	 THREE TAPES SHOULD BE MOUNTED, INPUT = MODEL SUBSCENE

	

C	 INPUT = OLD SUPERSCENE

	

C	 OUTPUT NEW SUPERSCENE
C

INTEGER*2 ISCENEi,MSCENE
DIMENSION ISCENE(2496,2),MSCENE(608,2)
COMMON/FILLER/ISCENEC

C GET RUN PARAMETERS FROM CARD READER

READ (5, 10)	 ISCN, IMSL
10 FORMAT(3I5)

C
C BACKGROUND FILLED WITH >0000

WRITE(6, 12) ISCN, IMSL
12 FORMAT(1H1, 10X, 'STEP 2 PROGRAM RUN PARAMETERS:',/,

 #20X, 'INPUT SCENE	 I6, IOX, ' INPUT SCENE LINE COUNT=', I6, / )C 

C CHECK MODEL SUB-SCENE SEG NBR
C

15 CONTINUE
GO TO ( 100, 200, 300, 400, 500, 600, 700, BOO) ,ISCN

C
C THIS SECTION FOR LOADING MODEL SUBSCENE

100 CONTINUE
C

LCOL=1888
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LNBR=O
LN=O
WRITE (6, 1 10) I SCN, LNBR, LCOL

110 FORMAT(1H , 10X, 'BEGINNING SCENE', I6, 	 LUFKIN AT LINE', I6)
*', COLUMN', I6, /)

C
225 CONTINUE

C GET LINE FROM NIDEL-SCENE INTO BUFFER PAIR NBR 1
READ (8, 226, E,"4.0= 1777) (MSCENE (M, 1 ) , M = 1, 608)

226 FORMAT(19(32A2))
C
C	 GET LINE FROM SUPER-SCENE INTO NBR I BUFFER PAIR

READ(9, 227) (ISCENE(I I, 1 ), I I=1, 2496)
227 FORMAT(39(64A2))

C
C	 OVER-LAY 1ST SUB-SCENE LINE ONTO 15T SUPER-SCENE LINE
C

DO 230 MC= 1, 608
IC=LCOL+MC-1
IF(ISCENE(IC, 1), EG. 0)ISCENE(IC, 1)=MSCENE(MC) 1)

230 CONTINUE
C	 OUTPUT THE REFORMATTED SUPER-SCENE LINE FROM DUFFERS 1
C

WRITE(10, 227) (ISCENE(I I, 1 ), I I=1) 2496)
LNBR=LNBR+1
LN=LN+1
I'F (LN	 GE, I MSL) GO TO 1777

C	 GET ANOTHER PAIR OF LINES INTO NBR 2 BUFFERS
C

6	 READ ((B, 226, END='1777) (MSCENE (M, 2) ) M =1, 608 )
READ (9, 227) (I SC ENE (I I , 2) , I I =1, 2496 )

CC	 OVER=-LAY 2ND SUB-SCENE LINE ONTO 2ND SUPER-SCENE LINE
DO 240 MC=1, 608
IC=LCOL+MC-1
IF(ISCENE(IC, 2), EG. O) ISCENE(IC, 2)=MSCENE(MC, 2)

['	 240 CONTINUE
C OUTPUT THE REFORMATTED SUPER-SCENE LINE FROM DUFFERS 2

WRITE(10, 227) (ISCENE(II, 2), I I=1, 2496)
LNBR=LNBR+1
LN=LN+1

C COMPLETED TWO LINES INTO THE NEW-SUPER-SCENE
IF(LN	 GE.IMSL) GO TO 1777
GO TO 225C 

C FINISH°WRITING THE SUPER-SCENE ONTO NEW TAPE
k	 C POINT TO THE NEXT LINE TO PROCESS

1777 LAST = LNBR •.
1800 I F ( LNBR. GE. 1650) GO TO 1801

READ (9, 227) (1 SCENE (I I , i) , I I=1, 2496 )
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WRITE (10, 227) ( I SCENE ( I I ► i) , I I	 , 2496 )
LNDR=LNBR+l
GO TO 1800

1801	 C£?I'.IT I-NUE
C
C SUPER-SCENE NOW ON (NEW) TAPE

ENDFILE 10
WR I TE (6) 1900) LAST, LNBR, LN

1900 FORMAT( 10X, ' y---L.AST MODEL SCENE LINE=') I6, ' ON SUPERSCENE',
^$/, l 1 X, '--- LAST LINE NBR=', I6, ' LAST MODEL SCENE LINE-' ► I6, / )

STOP
C
C FOR LOADING HOUSTON SUBSCENE ONTO SUPER SCENE

200 LNBR=680
LCOL=1848
WRITE (6, 210)	 I SCN, LNBR, LCOL

210 FORMAT(1H , IOX, 'BEGINNING SCENE', 16, ', HOUSTON	 AT LINE', I6,
*',	 COLUMN', I6, /)

250 CALL SKIP(LNBR)
C
C INITIALIZE MODEL SCENE LINE NUMBER

L.N=O
GO TO 225

C
C FOR LOADING SUB-SCENE FROM CORSICANA

300 LNBR=99
LCOL=1330
WRI TE(6)310)	 I SCN, LNBR, LCOL

310 FORMAT(IH , 10X) 'BEGINNING SCENE', I6, ', CORSIC.	 AT LINE', I6,
*I i	 COLUMN, 16) / )
GO TO 250

C
C FOR LOADING SUB-SCENE FROM BRYAN

400 LNDR=7@0
LCOL=1292
WRITE (6, 410)	 I SCN, LNBR, LCOL

410 FORMAT(1H , 10X, 'BEGINNING SCENE', 16, ', BRYAN	 AT LINE', I6,
*',	 COLUMN', I6, /)

GO TO 250
C
C FOR LOADING SUB-SCENE FROM WACO

500 LNDR=212
LCOL=772
WRITE(6, 510)	 ISCN, LNBR, LCOL

510 FORMAT ( 1H , 10X, 'BEGINNING SCENE', I6, ', WACO	 AT LINE', I6,
*',	 COLUMN', I6, / )
GO TO 250

C
C FOR LOADING SUB-SCENE FROM AUSTIN
600 LNBR=892
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LCOL=734
WRITE (6, 61 O) ISCN, LNDR, LCOL

610 FORMAT(IH , lOX ► 'BEGINNING SCENE', I6, ', AUSTIN AT LINE'', I6,
*', COLUMN', I6, / )
GO TO 250

C
C FOR LOADING SUB-SCENE FROM BROWNWOOD

700 LNDR=281
LCOL=216
WRITE (6, 710) ISCN, LNBR, LCOL

710 FORMAT(1H , 10X, 'BEGINNING SCENE', 16, ', BROWNW. AT LINE', 16,
*', COLUMN', I6, / )
GO TO 250

C
C FOR LOADING SULK-SCENE FROM KERRVILLE

800 LNBR=563
LCOL=170
WRITE (6, 810) ISCN, LNBR, LCOL

810 FORMAT{ 1H 10X, 'BEGINNING SCENE', 16, ', KERRVI, AT LINE', I6,
*', COLUMN', I6, I )
GO TO 250

C
END
SUBROUTINE SKYP(LCNT)
INTEGER*2 I SCE IE ( 2496, 2 )
COMMON /FILLER /ISCENE

C
DO 310 K-1, LCNT
READ(9, 10) (ISCENE(J, l ), J=1, 2496)
WRITE (10, 10) (I SCENE (L, l) , L=1, 2496 )

10 FORMAT(32(7BA2))
310 CONTINUE

RETURN
END
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C	 NJDEL OF ORBITING MICROWAVE RADIOMETER
C
C I' 4PUT O CARDS FOR EACH PASS:
C	 CARD #1:
C	 5F 5. 0--A Z I M, BMW I D, I NC I D, ALT, TEMP

`	 C	 DEG DEG DEG KM DEG CI	
2I5--DOWN & CROSS RANGE SCENE SIZE

`	 CARD#2:
C	 4F5 . 0--SOI L MOIST X °c Y DELTA
C	 ROUGHNESS X P, Y DELTA

I	 C	 2I5--NADIR MOTION STEP SIZE,
C	 BAND IDENTIFICATION #
C	 2F6.1--SOIL MOIST & ROUGHNESS
C	 CARD #3:
C	 2F5.0--X & Y STARTING COORD, 01;" ANTENNA F00'^ PRINT
C
C INPUT UNITS:
C	 5=CDR
C	 7=MT1(MOIST,ROUGH)
C	 B=MT2(VEG CLASS)
C OUTPUT UNITS:
C	 6=LP(BT'HISTORY)

(	 C	 9=t1T3(PT HISTORY & PARMS)i .	 C

'	 SYSTEM BAND: 1=L, 2=C, 3=X
l	 AZ I M—AZIMUTH ( >0, =<?0) ALT—SATELLITE ALTITUDE
C	 BWID—BEAMWIDTH	 TEMP—BACKGROUND TEMP.(DEG C)
C	 ANGI—INCIDENT ANGLE	 SCENE BOUNDARY LIMITS:
C	 (=>0,=-l'_45) 	 LMDR—DOWNRANGE
C	 LMCR—CROSSRANGE
C	 TARGET COORDINATES:	 SCENE INTEGRATION STEPS: NADIR DISPLACEMENT

_	 C	 TOP—X COORDINATE	 DOWN—DOWNRANGE STEP	 DNAD—DOWNRANGE
C	 CENT—Y COORDINATE	 CROS—CROSSRANGE STEP	 CNAD—CROSSRANGE
C

	

	 iFC—SURFACE	 ELEV—ELEVATION STEP	 ENAD—ELEVATION
C *#rt#tt#^tt^#n aa^#aaa^b##nit*#

DOU'LE PRECISION RSUM,RCNT
INTE6^R*2 ILINE,IMOIST

i	 DIMENS,qN ILINE(2496), IMOIST(2496), BY(325), BRITV(325), DRITH(325)
EGU I VALEI ,,' E (X, TOP) (Y, CENT) , (ANG I ► ROLL )
COMMON/COORL,.' Y , XL, XU, Y, YL, YU, X1, X2, Y1, Y2
COMMON/DAT/ILINr—.TMOIST
COMMON/ROUGH /RH, RU
COMMON/GAN/BWID, XPI, IF
COMMON /ORIEN /ROLL, AZIM, ALT, A, H
COMMON/TRIG/COSR, SINR, COSA, SINA

`	 COMMON/CLAS/CLASUM(6)
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C INITIALIZE RECORD NBR
C SCAN PARAMETERS READ IN, VARIABLES INITIAL14tV

IRCD=O
200 CALL INPUT (AZ I M, BW I D, ANGI , LMDR r LMCR, ALTO, TEMP )

C
C READ MOISTURE ROUGHNESS RATES, INTEGRATION STEP SIZE ► BAND

READ (5, B) DSMY, DSMX, RUFY, RUFX, I STEP, NDND, SOILK, ROUK
C
C INITIALIZE SATELLITE NADIR COORDINATES

READ (5, 13) X, Y, RESL, DNACs
13 FORMAT(3F5, 0, F5, 4)

C
C INITIALIZE SURFACE ELEVATION(MSL)

SFCO=O. O
C
C SET DOWN AND CRCSS RANGE INTEGRATION UNIT SIZE, SET ELEV. UNIT STEP

DOWN=1. 0
CROS=1 " 0
ELEV=O, 0

C INITIALIZE, ALTITUDE FOR SPECIFIED RESOLUTION
I F (RESL " NE. 0. ) CALL CALT (RESL, ALTO )

C SET NADIR DISPLACEMENT UNIT SIZES
CNAD=1. 0
ENAD= 0. 0
DELZ=O. 0

C INITIALIZE LINE COUNTER,
C AND SET DELTA—THETA STEP

II=O
C INITIALIZING COMPUTATIONAL VARIABLES

DA=DOWN*CROS
C
C SET UNIT SCALE FACTOR & SCALE ALTITUDE

S=0,24
SALT=ALTO
ALTO=ALTO/S
WR ITE (b, 2) AZ I M, TEMP, BW I D, ANGI, LMDR, LMCR, SALT, TOP, DOWN ►

$DNAD, CENT, CROS, CNAD, SFCO, ELEV, ENAD
WRITE(9, 210)AZIM, TEMP, DWID, ANGI, LMDR, LMCR, SALT, TOP, DOWN,

$DNAD, CENT, CR.OS^, CNAD, SFCO ► ELEV ► ENAD
ANGSV=ANGI

C CONVERT ANGLES TO RADIANS
AZSV=AZIM
DWSV=BWID
TPSZ=TEMP
ANGI=CONRAD(ANGI)
AZ IM=CONRAD ( AZ Iii )
BWID=CONRAD(DWID)
COSR=COS(ROLL)
SINR-SIN(ROLL)
COSA-COS(AZIM)
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SINA=SIN(AZIM)
C EVALUATE SURFACE RANGE, AND INITIALIZE NADIR COORDINATES

SFRG=ALTO*TAN(ROLL)
SRSINA=SFRG*51NA
AO=TOP+SPSINA
SRCOSA=SFRG*COSA
BO=CENT-SRCOSA
IF (I STEP. NE . O) GO TO -53
ISTEP=IFIX(ALTO*TAN(BWID/2.))

53 WRITE (6, 3) SFRG, A0, BO) SO I LK, ROUK
WRITE ( 6) 9) ISTEP, NBND, REEL	 j

C BEGIN COMPUTATION ***************^r+r***a^**a^^r*****a^***************^ !
DO 10 J 1, LMDR, I STEP

C RESET NUMERATOR & DENOMINATOR ACCUMULATOR
D=0.0	 1XNH=O.O
XNV=0.0
II=LI+1	 a

DO 57 LL=1, 6
57 CI.ASUM (LL) =0. O

C INCREMENT NADIR COORDINATES TO NEXT POSITION
L=J-1
A=AO+L*DNAD
B=130+L*CNAD

C PUT NADIR POINT IN PLOT BUFFER
BY(II)=B+SRCOSA

C STEP ALTITUDE AND SURFACE
ALT=ALTO+L*ENAD
SFC=SFCO+L*DEL.Z

C INITIALIZE RANGE SUMMATION REGISTER
RSUM=O. 0

C FIND UPPER AND LOWER LIMITS OF ANTENNA SPOT SIZE
X=A—SRSINA
Y=BY(II)
CALL XYLMIT(DX,DY)

I F (J. NE. 1) GO TO 101
WRITE (6, 12) XU, YU, XL, YL, DX, DY
WRITE ( 9, 211) SFRG, A0, B0, SO I LK, ROUK, I STEP, NBND, RESL,

@XU, YU, XL, YL, DX, DY
WRITE(6, 5)

101 CONTINUE	
n

C SET LIMITS ON INTEGRATION IN X—DIRECTION
K1=IFIX (XL— . 5) a
IF(Ki. LE. O)Ki=1
IF(K1. GT. 1650)K1=1650
K2=IFIX ( XU+.5)
IF(K2. LT, i)K2=l
I F (K2. GT, 1650) K2=1650

C SET LIMITS ON Y—DIRECTION
II-IFIX(YL—.5)
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k C

C

C

C

C

C

IF(I1, LE. 0)I1^1	 `
I F (I 1, GT. 2496) I 1=2496
I2=IFIX(YU+.5)
I F (I 2. LE. 0) I 2=1
I F (I 2. GT. LMDR) GO TO 110

INITIALIZE RANGE AVERAGING COUNTER
SKIP DOWN GRND SCENE TO FOOT-PRINT

RCNT=O. 0
IF ( IRCD. LT. (K1-1)) CALL ISKIP ( IRCD, K1 )
IF'(IRCI). GT. (Ki`-1) )CALL IBACK( IRCD, K1)

SCAN DOWN FOOT-PRINT, LINE-BY- LI'NE
DO 30 K=K1, KG

INPUT SCENE DATA
READ STRIP OF DATA FROM GROUND SCENE AND MOISTURE OVERLAY

READ(713OO)IMOIST
READ(8, 300, END='110) ILINE

INCREMENT OVER ANTENNA-FOOT-PRINT
IRCD=IRCD+1
TOP=(K-1)*DOWN+0.5

SCAN ACROSS FOOT-PRI14T
DO' 20 I=I1r I2

SCAN SCENE,ACCUMULATE BRIGHTNESS COMPONENTS
CENT=(I-1)*CROS+0.5

COMPUTE RANGE TO GROUND CELL UNIT
RVEC=SGRT((TOP-A)**2f(CENT-B)*'*2+(SFC-ALT)**2)

EVALUATE THETA, ZEN, ANT, ANGLE
T=ARCOS(((TOP-A)*SINR*SINA-(CENT-B)*

L+SINR*COSA+(SFC-ALT)*COSR)/RVEC)
EVALUATE PHE, ANTENNA AZIM. ANGLE

XDP=(X-A)*COSA+(Y-B)*SINA
YDP=(Y-B)*COSA-(X-A)*SINA
P=ATAN(XDP/YDP)

COMPUTE ACTUAL INCIDENCE ANGLE TO GND CELL UNIT
TN=ARCOS(ALT/RYEC)

tf	 UNIT AREA, RANGE SUM, RANGE COUNT
RSUM=RSUM+RVEC
RCNT"=RCNT+1. 0

C EVALUATE ANTENNA TEMPERATURES
SM=SOILK*(1,0+DSMY*Y/2496.+DSMX*X/1650.)
ROU=RLUK*(1.O+RUFY*Y/2496.+RUFX*X/1650.)
CALL BRIGHT ( SM ► ILINE ( I) , NBND, TEMP, ROU, BTVSO, BTHSO )
CALL BCORR (BTVSO, BTHSO, TN, BTV, BTH)
TBV=BTV
TBH=BTH
BTH=BRTMP ( TBH, TBV, P )
BTV=BRTMP (TBV, TBH, P )
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D=D+SAVE
20 CONTINUE
30 CONTINUE

RAVG-SNGL(RSUM/RCNT)*S
DO 36 LL=1, 6

36 CLASUM(LL)=CLASUM(LL)/RCNT
C COMPUTE AND PRINT BRIGHTNESS VALUES

BRITV(II)-XNV/D
BRITH(II)=XNH/D
WRITE (6 , 4) J, SALT ► RAVE, BR I TV ( I I) , BR I TH (I I) , A, BY ( I I) ,CLASUM
WRITE (9, 400)J, SALT ► RAVG, BRITV( I I ), BRITH ( II ), A, BY ( I I ), CLASUM

C
10 CONTINUE

110 WRITE(6o7)
ENDFILE9
GO TO 200

2 FORMAT('1','SATELLITE ATTITUDE t.^ CHARACTERISTICS'/' 	 AZIMUTH(HEAC
DING)', 3X, F4, 0, 'DEG', 15X, 'BACKGROUND TEMP', F5, 0, 'DEG '/' 	BEAMWIDTF
U', 10X, F4. 0, 'DEG', 16X, 'SCENE BOUNDARY LIMITS:'/'	 INCIDENT ANGLE',
H5X, F4. 0, 'DEG', 16X) 'DOWNRANGE', 7X, I4/' 	 ', 9X,
020X, 'CROSSRANGE', 6X, I4/' 	 ', 227X,

'SATELLITE ALTITUDE ' , F4. 0, ' KI L_ OMETERS', /,
i1X, /' TARGET COORDINATES', i1X, 'SCENE INTEGRATION S'T'EPS', iOX, 'NADIR
R DISPLACEMENT STEPS'/' 	 INITIAL X	 ', F7. 1, BX, 'DOWNRANGE STEP',
, 4X, F3. 1, 12X, 'DOWNRANGE STEP 	 ', F5, 3/'	 INITIAL Y'
, , 4X, F7, 1, 8X, 'CROSSRANGE STEP 	 , F3. 1, 12X, "CROSSRANGE STEP
, F3. 1 /'	 INITIAL Z', 4'X,
, F7, 1, 8X, 'ELEVATION STEP	 , F3. 1, 12X, 'ELEVATION STEP	 ', F3, i )

3 FORMAT('OSURFACE RANGE ', F6, 1, 5X, ` NADIR COORDINATES (', F7, 1, ', ', r

@F7. 1, ' )', SX, 'SOIL MOIS t , CONST. ', F6. 1, 5X, 'ROUGHNESS CONST, ', F6. 2)
4 FORMAT(. 1H , I5, 7X, F4, 0, SX, F9, 2, 10X, F8, 2, 4X, F8, 2, 7X, 2F8. 2, 1 X,

@6 (F6. 2, 1 X))
5 FORMAT('ORNG STEP', 2X, ''ALTITUDE(KM) ', 4X ► 'RANGE(KM) ', 6X,

@'BRIGHTNESS VER/HOR (J EG K)', 7X, 'BEAM COORD(X, Y)', IOX,
@'AVG CLASS PERCENTS')

7 FORMAT(iH , 'END OF SCENE',//)
8 FORMAT(4F5. 0, 2I5, 2F6, 1 )
9 FORMAT('OSTEP SIZE= ', I2, 5X, 'BAND IDENT, ', I3, 5X, 'RESOLUTION=', F5, 1 )

12 FOR11AT('0', 'XU=', F9. 2, 2X, 'YU=', F9, 2, 2X ► 'XL	 F9. 2, 2X, 'YL=', F9._2,
, 2X, 'ANTENNA SPOT STZE', F7. 2, ' BY', F7. 2)

210 FORMAT (4F4, 0, 2I4, F4. 0, :i (F7. 1, 2F3. 1) , 65X )
211 FORMAT (4F6. 1, F6. 2 ► 2I,3, F5. 1, 6F7. 2, 49X )
300 FORMAT(64(39A2))
400 FORMAT (I 5, 6 (F8. 2, 2X) , 6Fb. 2, 3 i X )

END
SUBROUTINE INPUT ( A, B, I, D, C, H, T )
REAL I
INTEGER D, C
READ ( 5, 10, END=20) A, B, I , H, T, D, C

10 FORMAT (5F5. 0, 2I 5 )
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RETURN
20 ENDFILE9

STOP
END
FUNCTION TAN(X)
TAN-SIN (X)/COS(X)
RETURN
END
FUNCTION G(Ts'P)
COMMON/GAN/BWID,XPI ► IF
X=((XPI—T)*XPI)/( BWID/2,)
IF (X. EG. 0.) GO TO 7
G=ABS((SIN(X)/X)**IF)

5 RETURN
i	 7 G=1.0

GO TO 5
END
SUBROUTINE ISKIP(IR,K`
INTEGER*2 ILINE(Qy^96),IMOIST(2496)
COMMON /DAT/ILINE,IMOIST
KM-K-1

5 I F (I R. EQ. KM ) GO TO 7
C	 READ(7, 20) IMOIST

REAT) ( 8, 20, END=30) I L I NE.
20 FORMAT(64(39A2))

IR=IR+l
GO TO 8

7 RETURN
f	 30 WRITE (6,35) IR, K

35 FORMAT(' IR= ', I6, IOX, 'K ',16)
ENDFILE9
STOP
END
SUBROUTINE IBACK ( I_R, K)
INTEGER*2 ILINE(2496),IMOIST(2496)
COMMON/DAT/ILINE, IMOIST

^	 KM=K-1
ll,	 5 IF(IR. Ea. KM ) GO TO 7

C	 BACKSPACE 7
BACKSPACE 8

r	 IR=IR-1
GO TO 5

7 RETURN
END

F
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SUBROUTINE OR IGMT( SM ► ICW, N8, TP, ROU, BTV50, BTHSO)
INTEGER*2 ICW
COMMON/ROUGH/RH#RV
COMMON/CLAS/CLASUM(6)
REAL W(8)
DATA W(1) ► W(2),	 W(3),	 W(4),	 W(5),	 W(6),	 W(7),	 W(8)

!/	 0. 0, 18. 75 ► 31. 23, 43, 75, 56. 25, 68. 75, 81, 	 5, 93. 75/
C
C UNPACK ICW TO GET % AREA CODES FOR OPEN WATER(11),BARE SOIL(I2) ►
C URBAN ( 13),	 MIXED SOIL AND VEGETATION ( I4),	 AND VEGETATION(I5)

I5=ICW/4096
ICW= ICW-I5*4096
I4=ICW/512
ICW=ICW- I4*512
I3=ICW/64
ICW=ICW-I3*64
I2=ICW/S
I1-ICW-I2*8 C

C ZERO BRIGHTNESS TEMPS FROM LAST CALL(IF ANY)
BTVW=O. 0
BTHW=O. 0
BTVB =O. 0

' BTHB=O, 0
BTVU=O. 0
BTHU=O. 0
BTVM=O, 0
BTHM=O,0
STVV=O. 0
BTHV=O, 0
BTVF=0, 0
BTHF=O. 0 C

C CALL SUBROUTINES IF CODE WORDS 11... 15 ARE NOT =0
I F (I 1, NE. 0) CALL WATER ( NB, TP, BTVW, BTHW )
IF (I2. NE. 0) CALL BARE ( NB, TP, SM, ROU, DTVB, BTHB )
IF (I3. NE. 0) CALL URBAN ( TP, BTVU, BTHU )
IF (I4. NE. 0) CALL. MI X(NB, TP ► SM, ROU, BTVM, BTHM)
I F (I 5. NE. 0) CALL VEG (NB, TP, SM ► BTVV, BTHV ) C

C DETERMINE I != SUBROUTINE FOREST NEEDS TO BE CALLED
SUM=W(11+1)+W(I2+1)+W(I3+1)+W(14+1)+W(I5+1)
WFOR = 100. -SUFI
I F (WFOR. LT. 0. ) WFOR=O. 0

Rt	 C SUM % OF EACH CLASS IN EACH UNIT CELL
CLASUM(i)=W(I1+1)+CLASUM(l)
CLASUM (2)-W(I2+1) +CLASUM(2)
CLASUM(3)-W(I3+1)+CLASUM(3)
CLASUM(4)=W(14+i)+CLASUM(4)A
CLASUM(5)-W(I5+1)+CLASUM(5)
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CLASUM(6)=WFOR+CLASUM(6)
IF(WFOR, GT, 5, )CALL. FORE$T(TPP BTVF, BTHF)

C
C CALCULATE COMPOSITE BRIQHTNESS TEMPERATURES

SUMBTVYW(11+1)*BTVW+W(I2+1)*BTVB+W(I3+1)*BTVU+W(14+1)*BTVM
Q+W(I5+1)*BTVV+WFOR*BTVF
SUKUTH=W(I1+1)*BTHW+W( 12+ 1)*BTHB+W(13+1)*BTHU+W(I4+1)*BTHM

!+W(15+1)*BTHV+WFOR*BTHF
BTV50=SUMBTV/100,
BTHSO=SUMBTH/100..
RETURN
END
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SUBROUTINE WATER(NBP TP) BTVWr BTHW)
C CORRECT WATER TEMP(TWC(DEGC)--TWK(DEG K))

TWC= (TP-25. ) *0. 25*25,
T'WK=TWC+273. 15

C
C ROUTE ACCDNG TO BAND#, NB

GO TO ( 100 ► 2000 300) NB
C
C CALCULATION FOR L-BAND

100 EHSO=0. 2 56+TWC*0, 000467
EV50=0. 505+TWC*0. 000767
SKYT=6. 0
GO TO 400

C
G C-BAND

200 EHSO=0. 265
EV50=0, 522
SKYT=8, 0
GO TO 400

C
C X-BAND

300 EHSO=0. 288-TWC*0, 0003
EV50=0. 557-TWC*O. 0005
SKYT=10, 0

c
C COMPLETE CALCULATIONS
400 BTVW=EV50*TWK+(2.-EV50)*SKYT

BTHW=EHSO*TWK+(1,-EHSO)*SKYT
RETURN
END

f
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SUBROUTINE WATER(NB,TPoBTVW#DTHW)
C CORRECT WATER TEMPfTWC( QEG C)-•—TWK(DE(; K))

TWC- (TP--25. ) *0. c23+25,
' TWK=TWC+273, 15

C
C ROUTE ACCDNG TO DAND#4	 ND

GO TO ( 100, 200, 300) , NDI C
C CALCULATION FOR L—BAND

100 EHSO=0.256+TWC*0.000467
^ EV50=4, 5`75+TWC*0. 000767 i

SKYT=6. 0
GO TO 400

Î

C
C C—RAND

200 EHSO=0.265
EV50=0.522
SKYT=8. 0
GO TO 400

C
C X—BAND

300 EHS0=0. 28G -TWC*0. 0003	 3
t, EV50=0. 557-T WC*o. 0005

SKYT,10. 0
C

C COMPLETE CALCULATIONS
400 BTVW=EV50#TWK+(1.—EV50)*SKYT

BTHW=EHSO*TWK+( . —EHSO)*SKYT
RE.TOR14

t END

^	

^	 y

°	

k
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x

xx

1

199

. a » y.t	 .	 ._ 3r	 =:.se ... ^	 r+-i	 s	 ..	 ' 	 ewixx_.n rura_.



ORIGINAL PAGE IS
OF POOR QUALITY

SUBROUTINE BARE ( NB, TPA SM, ROU, BTVB, BTHB)
COMMON/ROUGH /RH, RV

C
C ROUTE ACCDNG TO BAND#, NB

GC TO ( 100, 200) 300) , NB
C
C L-BAND ALGORITHM

100 'TGK =250, 15-0. 26*SM+TP
1 := (SM. GT. 38. )'TGK=TP+240, 15
I F (SM. GT. 12, ) GO TO 101
EHSO=0. 9-0. 00917*SM
EV50=0. 98-0. 0025*SM
GO TO 500

101 EHSO=0.96-0.0139*SM
EV50=1. 047-0. 00808*SM

r : GO TO 500
C
C C-BAND

200 TGK=260. 15-0. 53*SM+TP
I F (SM. GT. 38. ) TGK=TP+240. 15
IF (SM. GT, 12. ) GO TO 201

i	 EHSO=0. 86-0. 00833*SM
EV 50=0. 97-0. 0025*SM
GO TO 500

201 EHSO=0.92-0.0135*SM
EVHSO=1.04-•0. 00846*SM
GO TO 500

C
C X-BAND

300 TGK=273. 15+TP-0. 8i7*SM
I F (SM. GT. 38. ) TGK=TP+240. 15

_	 I F (SM. GT. 12. ) GO TO 301
EHSO=0. 91-0. 00917*SM
EV50=0. 99-0. 0025*SM
GO TO 500

301 EHSO=0.96-0.0135*SM
EV50=1.05-0. 0077*SM

C
C COMPLETE CALCULATIONS

500 RH=1. =EHSO
' RV=1. --EV50

f RFAC=EXP(-ROU*0.4132)
RH=RH*RFAC

^ RV=RV*RFAC
EHSO=1. -RH
EV50=1. -RV'
BTHB=EHSO*TGK
BTVB=EV50*TGK
RETURN

t'

END
200
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SUBROUTINE MIX (NB, TP, SM) ROU, BTVM, BTHM)
COMMON/ROUGH/RH,RV
CALL BARE (NB, TPr SM, ROU, BTVB, BTHB )
CALL VEO (Na, TP, SM, BTVV, BTHV )
BTVM=(BTVV+BTVB)*0.3
B THM= ('BTHV+BTHB) *0. S
RETURN
END



C
C BRANCH IF C-BAND

IF (NB. EG . 2) GO TO 200
BTVV=TV
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SUBROUTINE VEG (NB ► TP ► SM ► BTVV, BTHV )
COMMON/ROUGH/RH.RV

- IL

I
i

C
C ADJUST CANOPY TEMP, TVC

TVC= (TP-25, ) *0. 25+25,
TVK=TVC+273.15

C
C CALL BARE FOR BASIC EMISSION DATA

CALL BARE (NB, TVC ► SM) 0. 0, BTVB, BTHB )
C
C COMPUTE VEGETATION CORRECTION FACTOR ACCDNG TO SOIL MOISTURE

VFAC=O. 8-0, 00395*SM
C
C APPLY VEGETATION CORRECTION FACTOR

XRH=RH*VFAC
XRV=RV*VFAC
SOLTMP=BTVB/( 1.-RV)
BTVV=(1.•-XRV)*SOLTMP
BTHV=(1.-XRH)*SOLTMP

C
C RETURN IF L-BAND

IF (NB. EG. 1) RETURN'
C
C X-BAND CALCULATION(CONSTANT EMISSIVITY FOR CANOPY)

TV=TVK*0. 95
TH=TVK*0. 92
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FUNCTION BRTMP (TA, TB, P )

BRTMP=TA*COS(P)**2+T6*SIN(P)**2
RETURN

` END

x

t

^

i

a

1

a
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SUBROUTINE BCORR(EVSO, EHSOR ANGLE, ©TV, DTH)
REAL FH(81),FV(81)
DATA FV(	 1)p FV(	 2), FV( 3), FV(	 4), FV(	 5), FV(	 6)

e/ . 539745, . 539915, .54042B# .5412831 , 342481, .544022/
DATA FV(	 7), FV(	 8), FV( 9), FV(10), FV(11), FV(12)

e/ .545907, .548136, .5507131 .553637, .556910, .560535/
DATA FV(13), FV(14), FV(15), FV(16), FV(17), FV(18)

e/ .564511# , 568844, .573533# .578682# . 5839 193, .589768/
DATA FV(19), FV(20) ► FV(21 ), FV(22), FV(23), FV(24)

@/ .595911) , 602424, .609311# , 6165741 624216, .632241/ 
DATA FV(25), FV(26) ► FV(27), FV(28), FV(29), FV(30)

e/ 640652., .6494531 .658646, .668234, .678221, .688610/
DATA FV(31), FV(32), FV(33), FV(34), FV(35), FV(36)

e/ .699404, .710604, .722215, .734237, 7466721 .759522/
DATA FV(37), FV(38), FV(39), FV(40), FV(41), FV(42)

@/ 772787, .786467# 800562, 8150701 . 829987, .845311/ 
DATA FV(43), FV(44), FV(45), FV(46), FV(47), FV(48)

@ / . 861037, . 877156, , 893661, . 910541, . 927783, .945371/ 
DATA FV(49), FV(50), FV(51), FV(52), FV(53), FV(54)

@/ 963285, . 981504, 1.	 , 1.018742#1.037694#1,056812/
DATA FV(55), FV(56), FV(57)o, FV(58)

@/ 1, 076046, 1. 095339, 1. 114622, 1. 133818/
DATA FV(59), FV(60), FV(61), FV(62),	 FV(63)

@/ 1, 152837, 1,171573) i.te99O7,	 1.207700#	 1.224790/
DATA FV(64), FV(65), FV(66), FV(67) ► 	 FV(68)

@/ 1.2409911 1,256089) 1. 269835,	 1.281941)	 1,292072/
DATA FV(69), FV(70), FV(71), FV(72)o,	 FV(73)

@/ 1.299842, 1.304801, 1.306423,	 1.304097,	 1.297109/
DATA FV(74), FV(75), FV(76), FV(77),	 FV(78)

@/ 1,2846191 1, 265646, 1. 239028,	 1.203400s	 1.157136/
DATA FV(79'), FV(80), FV(81)

@/ 1. 098311, 1. 024620, 0,933305/
DATA FH(	 1), FH(	 2), FH(	 3), FH(	 4), FH(	 5), FH(	 6)

@/ .539745, .539574, .539061, .538206, .537007, .535463/
DATA FH(	 7), FH(	 8), FH(	 9), FH(10), FH(11), FH(12)

@/ . 533572, . 531333, 528742, 525796, , 522494, .518829/
DATA FH(13), FH(14), FH(15), FH(16), FH(17), FH(18)

@/ . 514799, .510399s . 505623, . 500466, . 494922,, .4138986/
DATA FH(19),, FH(20), FH(21 ), FH(22), FH(23), FH(24)

@/ 482649, .475906, .468747, .4611651 453150, 444695/
DATA FH(25), FH(26), FH(27), FH(28), FH(29), FH(30)

a/ .435788, .426421, .4165811 .406258, 395440, .384113/
DATA FH(31), FH(32), FH(33), FH(34), FH(35), FH(36)

e/ . 372266, . 359884, . 346953, 333459, , 319385, .304715/
DATA FH(37), FH(38), FH(39), FW40), FH(41 ), FH(42)

e/ .289434, .273522, .256961, .239734 ► .221819, .203198/
DATA FH(43), FH(44), FH(45), FH(46), FH(47), FH(48)

8/ .183846P .163745s . 142870, .121198, .098705, 075365/
DATA FH('49)0 FH(50), FH(51), FH(52), FH(53), FH(54)

e/ . 051152, . 026040, .000000,-.026996,-.054978,-,083974/
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SUBROUTINE CALT(RESL,ALTO)
COMMON/GAN/BWID, XPIo IF
COMMON /OR TEN/ROLL, AZ IM, ALTP A, B

XJ=TAN( (ROLL+BWID/2. ) /37, 3) —TAN( (ROLL —BWID/2. ) /S7. 3)
XM=TAN((BWID/2.)/57.3)/COS(ROLL/57.3)
ALTO=RESL/SGRT('2.*XJ*XM)
RETURN
END
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