WA T77- T4 2

NASA Technical Memorandum 84482 D -

NASA-TM-84482 19820017935

An Assessment of the Real-Time Application

Capabilities of the SIFT Computer System

CTTY e h A :
Bl b s Cond e
v PR) =
" &'
r
R A N “

Ricky W. Butler

APRIL 1982

A SN RS s tiaa
Légtiinss ¥ Sl d

A7 201082

LANGLEY RESEARTH CENTER

LIBRARY, NASA
HAMPTON, VIRGINIA

National Aeronautics and
Space Administration

Langle‘ylnesearch Center
Hampton, Virginia 23665

SUMMARY

The SIFT experimental computer system was designed to meet extremely
high reliability requirements and to facilitate a formal proof of its
correctness. These severe design constraints have impacted the user-
interface in several ways. The system provides the user with static,
nonpreemptive scheduling and requires that all tasks execute in less than
3 milliseconds. A tedious generation of vote and schedule tables is
required of the user to coordinate the redundancy management capabilities of
the SIFT system with his application workload. The characteristics of this
uéer interface and its impact on application systém design are assessed in

this paper.
INTRODUCTION

The SIFT computer system developed by SRI International for NASA
Langley Research Center is an experimental computer designed‘tb éﬂﬁbbft tﬁe
flight controls of a relaxed static stability aircraft. Because the flight
control functions are crucial in such aircraft, fhe reliability requirement
for SIFT is a probability of failure not to exceed 10-92 for a 10-hour
flight. The SIFT computer exploits an innovative approach to fault
tolerance utilizing software controlled task replication and
reconfiguration. The design of SIFT produced a new distributed clock
synchronization algorithm and an interactive consistency algorithm of
generic significance. Furthermore, the development of SIFT, using a formal
proof hethodology, has demonstrated the feasibility of such techniques on a ‘

nontrivial system-level problem.

7
N52-2550

The fault-tolerant characteristics of SIFT have been discussed in
detail in the literature (refs. 1, 2, and 3); however, the application Tevel
capabilities have not been openly discussed. This paper will consider the
SIFT system as it appears to the application user. Although the details of
the user interface are not of concern, the capabilities which are inherently
Timited by the underlying redundancy management system are of much
interest. Such limitations will be explored in this paper. Furthermore,
this paper will describe the current state of the SIFT system which, after
several major changes, is a system of less power and f]exibi1ity than the

system described in the 1978 IEEE paper (ref. 1).
BASIC CHARACTERISTICS OF SIFT

The SIFT hardware consists of a set of Bendix BDX930 avionics compufers
fu]lybinterconnected by a serial, point-to-point broadcast network. Up to
8 processo}s may be included in the configuration. Each processor has 32K
words of 16-bit memory and an instruction speed of approximately 1 million
instructions per second. Two blocks of memory (1024 words each) aré'
allocated for interprocessor communication. One of these blocks, called the
"transaction file" is used to control the output information of a
processor. The other block, the "datafile," is partitioned into 8 sections
of 128 words each. One of these sections holds the output variables which
are to be broadcast to the other processors. The seven remaining sections
serve as "mailboxes" to receive information from the other processors in the

system. The SIFT processors also contain a MIL STD 1553A bus interface for

communications with the other aircraft systems.

The fundamental coordination of the SIFT system is accomplished through
the use of a clock synchronization algorithm. Each processor cohtains ?ts
own real-time clock which must be synchronized with the other clocks in the
system. Each clock in the system "corrects" itself relative to all other
clocks in the system through use of a periodic broadcast technique. SRI has
demonstrated that With a set of four or more processors, their synchroni-
zation algorithm will insure that the clocks will remain synchronized to
within 50 microseconds, even-in the presence of an arbitrary failure of one
clock (ref. 2). Previously developed algorithms were found to be incapable
of maintaining synchronization 1in the presence of a malicious lying clock
(i.e. a clock that broadcasts different values to different clocks). The
development of the SIFT synchronization algorithm is a significant
accomplishment by the SRI team. |

The basic mechanism of fault tolerance in SIFT is task replication and
voting. ‘Several replicates (i.e. identical copies of a task) are;assigned
to different processors in the SIFT confiquration. Each replicate receives
identical input and performs identical computatioés. The outputs of these
replicates are "voted" to prevent propagation of hardwa}e faults and to
detect the failed processor. The vote discrepancies are noted‘by the
exécutive system and later used to reconfigure the failed processor out of
the working set of processors. Various deqrees of reliability can be
obtained for each task by using different amounts of task replication on
different processors. The coordination of task replication and voting is
accomplished through use of precalculated schedule and vote tables in each
processor. Since task replicates on- the various processors are controlled
by schedule tables which are synchronized, all replicates receive the same

data. Furthermore, through use of an "interactive consistency algorithm,”

deve]oped by SRI, single source input data can be accommodated in the
system (ref. 4). Without the algorithm, a failed processor, transferring
single source data to the task replicates, could send different values to
"~ each rep]icate. This, in turn, could lead to the elimination of good
processors from the system. The kecognition and solution of this problem
represents another significant échievement of the SRI team.

The SIFT operatihg,system was designed so that a formal mathematical
proof-of-correctness of the operating system could be made. This approach
has had significant impact on the system structure and its capabilities.
Because of the inherent complexity of the formal proof process, the system
design has been kept extremely simple. The SIFT proof-of-correctness has
demonstrated that formal techniques are applicable to system-level problems
of much greater size and complexity than the problems found in most research
papears on this-subject. However, in many ways, this approach has resulted
in.a SIFT system of less power and flexibility than otherwise would- have--
been possible. (See table 1.) In particular, a major simplification in the
scheduling and voting strategies became necessary in order to fbrmai]y prové
tha system correct. A priority-driven preemptive scheduler Qou]d have
introduced unrestricted concurrency - the logically simultaneous execution
of several tasks - into the system. The problem of proving a system of B
cooperating concdrrent processes is still an open question, though progress
has been mada since the design of SIFT. Future generations of SIFT-like
fault-tolerant systems may be able to incorporate the flexibilities and
power of concurrency through priority-based schedulers as the formal
verificatioﬁ technology advances. Nevertheless, the SIFT computer
represeﬁts an important step in the evolution of formally verifiable

fault-tolerant systems. -

TABLE 1. - A COMPARISON OF SIFT TODAY WITH THE
1978 IEEE PAPER DESCRIPTION

IEEE Paper SIFT Today
Priority based periodic scheduling Static preplanned scheduling
(preemptiye) (nonpreemptive)
Arbitrary task length : A11 tasks must fit in a

subframe time slot

Dynamic allocation of tasks to processors Static assignment of tasks to.. -

processors
Task replication is transparent to the The application designer must

application designer build schedule tables and
. statically assign task
replicates to processors

Voting is franSparent to the application The application designer must
designer through use of operating system build a vote table which
routines to obtain interprocess data corresponds to the

precalculated schedule table
THE APPLICATION DESIGNER INTERFACE TO SIFT

The SIFT operating system provides an interface to the'applications
designer which is significantly different from traditional real-time
systems. The most striking feature of the SIFT system from the user's
perspective is. the requirement that all tasks must execﬁte in less than
3 mi]]isecqnds.' The reason for this restriction is that the voting
algorithm in SIFT is based on a static schedule table and a vote table which
consist of 3 millisecond time slots for the tasks. The schedule table
determines the set of tasks and their order of execution on a SIFT
processor. Since aircraft guidance and control functions consist of

periodic sensor sampling, transfer function computations and actuator

command generation, this schedule table is executed repetitively. Functions
with higher iteration rate requirements can appear more than once ih_the
schedule table. Functions with Tower rate requirements can use a flag to
cause alternate skipping of a particular task. The schedule table corre-
sponds to one major frame which consists of 30 subframes. Each task is
statically assigned to one or more subframes and if é'function requires more
than 3 milliseconds to execute, it must be subdivided into 2 or more tasks.
(See figure 1. - Function G, for example, has been subdivided into tasks G
and G' and has been replicated on processors 4, 5 and 6). The creation of

the static schedule table is the responsibility of the application designer.

FIGURE 1., - STATIC, NONPREEMPTIVE SCHEDULE TABLE CONCEPT

PROCESSOR
N A T T T N T Tl Tt Tt N etk N N O
. lXIBlB'[B"lElAII!I'LJi‘ Lt o
3 IXIAJCJDIE!A!III'IJIAILLRL)
SR R TS BN R N R R B
N A A L B B Bl B B Rl N B B I
S LA AT R LSRR
— o

3 milliseconds

The tqsks must be ordered according to their functional dependencies aﬁd
structure the schedule table accordingly. However. this is only a small
part of the initialization which must be done. SIFT is designed to support
task replication - identical tasks executing on different computers in the
SIFT network - and is capable of reconfiguration. The applications designer
must allocate the task replicates to the various processors to meet various
reliability requirements. Some tasks may require 5 replicates, whereas

others require only 1 or 3.

As long as there are no precedence constraints on the execution of the
tasks (i.e., a pérticu]ar ordering of tasks is not required), this is not an
intractable problem. However, if precedence constraints exist, then the '
resulting "scheduling" problem can be very complex. Even 1gh0riﬁg the. need
to synchronize the task replicates, the complexity of finding an optimal
schedule is NP-complete when 3 or more processors are to be scheduled (ref.
5). Furthermore, it is inevitable that precedence constraints will be
present since the bartition'of a function (longer than 3 ms) into tasks
generates a sequence of tasks which must be executed sequent1a11y
(A1though optimal schedules may not be necessary, this 111ustrates that
generating such schedules is not trivial - especially good ones.) The
reconfiguration capability of SIFT also increases the wbrk]oad of the
- application designer. One table must be generated for every proceéssor for
every configuration (i.e., as processors fail and are removed we have a
6-procé$sor configuration, then a 5-processor configuration, then a

4-pfbcessor configuration, etc.). If there are n processors in the system

initially, the user must generate n + (n-1) + (n-2) +...+ 2 tables or'(n2 +
n-2)/2 tables. For the present SIFT éonfiguration of 6 processors,
20 different schedule tables must be generated.

The SIFT processor achieves its fault tolerance from the voting of the
 task replicates. Whenever a task produces output data it must be voted.
This is not transparent to the application designer. The application
designer must enter the index of the output data in a "vote" table which
must be generated for each system configuration. Hence, the designer must
generate another n-1 vote tables for an n-processor SIFT. The total number
- of vote and schedule tables which must be created hy the application
designer on an n-processor SIFT is thus (n2 + 3n - 4)/2 or 25 for a
6-processor system.

It should be noted that the proof of correctness of the SIFT system does
not cover the application domain. The proof demonstrates that SIFT |
correctly masks and reconfigures single faults out ofifhe system and will
schedule tasks according to the user generated tables. The abi]ify o%ufﬁé
system to mask and isolate faults, however, is dependent upon the inc]usion
of the necessary intertask variables in the vote table. If an error is made
in the schedule tables or vote tab]es, system failure is possib]é.
Therefore, a reliable application system of SIFT requires a systematic and
reliable approach to the generation of schedule and vote tables. Clearly,
such a systematic approach must also use formal proof-of-correctness
techniques since the entries of the vote table and schedule tables depend on
the interaction of the application tasks (e.g., the presence or absence of
entries in the vote table depends on what information must be sent ffom one
task to another and this is determined by the formally specified functions

these tasks must perform). :

ANALYSIS OF SIFT CAPABILITIES

The primary constraint on the f]exibi]itx of the SIFT system is the
nonpreemptive, unit-execution time scheduling philosophy. The advantages of
problem decomposition and modularity have been widely discussed in the
literature (refs. 6, 7, and 8), yet an artificial execution time constraint
can only serve to complicate the system structure. To enhance program
simplicity and re1iabi1ity, the partition must be made on the basis of
functional utflity, not because of an arbitrary sizing consfraint. This
unit-execution constraint will cause the fntroduction of inefficient module
interfaces and a conseduent increase in intertask communication variables.
This compounds another allocation problem in SIFT--the mapping of intertask
variables to the 128 data file locations. If more than 128 intertask
variables are needed, they must be "multiplexed" in time by the app]icétionv_
user. This time-multiplexed allocation of intertask variables, however, |
’wou1d haye to be carefully coordinated with the processbr's.téskmééhedulé.

The nonpreemptive characteristic of the SIFT schedu]er limits the
performance and flexibility of the system. A preemptive scheduler would
offer_several advaﬁtages over a nonpreemptive scheduler:

1) rapid responsé to asynchronous events (c¢f. in a nonpfeémptive system

a task must be cbntinually dfspatched which "polls" an event.
repetitively) (ref. 9);

2) more effective CPU utilization (i.e. a preemptive schedu]é.gan
always bg constructed which is shorter or equal to a nonpreemptive
schedule when the number of processors > 2) (ref.10);

3) accommodation of fransient system bverloads of cruciq] functions by
not dispatching low-priority tasks (ref. 11); |

4) support of arbitrary iteration rates for the tasks (cf. in a static
table nonpreemptivé schedule, all iteration rates must be multiples

9

of a base rate; hence, tasks sometimes must be scheduled to run at a
higher rate than the function requires) (refs. 11 and 12);'andv

5) support of periodic task sets with up to 100 percent processor

utilization while still guaranteeihg that all real-time deadlines
will be met on a single processor (ref. 12).

Another consequence of the nonpreemptive scheduler of SIFT is that
support for high-level languages with flex%ble concurrent processing
capabilities such as Ada or Concurrent Pascal is not possible. The
flexibilities of the preemptive approacﬁ listed above are incorporated into
these languages. The unit execution restriction on task length further
aggravates this problem. Furthermore, task replication should be
transparent at the application language level. But since asynchronous
communication is possible in these languages and SIFT's replicates are

controlled by static vote tables, the mapping to SIFT is impossible.
A LOOK TOWARDS THE NEXT GENERATION AIRCRAFT CONTROL SYSTEMS "™~

The traditional approach to the development of an aircraft electronics
system has been to partition the system functions and to design each
independently (e.qg., into flight controls, navigation, guidance, etc.).
Often these functions are assigned to different computers. These functions
ar2 implemented as a set of tasks scheduled on the computers by a
nonpreemptive cyclic executive with a predetermined execution sequence,
vhera each cycle fs initiated by a clock interrupt and every task is run to

completion. In such a federated system approach, the SIFT computer could

10

support the f]ight'critical functions such as stability augmentation and

flutter-mode suppression in a relaxed static stability aircraft.

The new techniques of modern control theory, research for advanced
aerodynamic concepts, and functional integration research are revealing
significant benefits to be obtained from an integrated system approach
(refs. 13). Through the integration of traditionally separate functions;
higher aircraft performance is promised, but this will come at the cost of
increased logical complexity and an increased computational wofk]oad.
Capabilities exceeding the nonpreemptive cyclic executive approach will be
needed to cope with the high degree of functional interaction and to provide
rapid response to asynchronous events such as pilot commands ahd failed
sensors or actuators. Also, the nonpreemptive, cyclic executive wili be j
undesirable .since it impacts the application system design in several
adverse ways: ‘

1) The static nature of the task schedule causes a pro]iferaf%dﬁﬂof
discrete (Boolean) variables in order that the tasks can be
responsive to changes in flight phase and other asynchronous
events. The availability of dynamic scheduling enables the
designer to build tasks tailored to a single flight phase which are
only dispatched when needed.

2) The addition of new low priority tasks necessitates a redesign of
the static schedule table (ref. 9). -

3) Task.execution length variability results in inefficient
utilization of the CPU since the schedules must be built for
vorst-case execution times. The proliferation of discrete
variables as described above further compounds this probTém

(ref. 11).

11

Because of the inefficiencies and inflexibility of the task management
approach presented above, the next generation aircraft systems will need the
capabilities of a priority-driven preemptive approach (ref. 14).
Furthermoré, the software engineering methodologies are already extolling
the virtues of high-level languages with concurrent processing capabilities
(e.g., Ada) (ref. 15). These languages provide additional safety through
detection at compile time of many time-dependent errors which are
traditiona11y extremely hard'to discover through testing alone. It appears
to be desirable that the fault-handling systems of future fault-tolerant
architectures be compatible with these high-level languages. It is
important, therefore, that the future generations of SIFT-]ike architectures
have capabilities beyond those of SIFT today. If this flexibility is |
unobtainable then future aircraft system designer§ are going to be 1im1ted

in many ways.
CONCLUSIONS

The development of the SIFT computer system represents a major
accomplishment in fault-tolerant systems technology. However, the high
reliability requireménts and the use of formal proof techniques have
restricted the capabilities of the system in several ways and have placed
severe demands on the application designer using the system. In particular,
the requirements that the application designer must partitioh all functions
into 3 millisecond tasks and manually delineate task replication,
scheduling, voting, and reconfiguration are especially severe. Perhaps

future generations of SIFT will be able to bring the redundancy management -

functions totally under the control of the operating system and present a

12

user-friendly interface to the applications designer. This‘hndoubted]y will
only come through major improvements in the software techniques used to '
accommodate hardware failures. If such improvements are unattainable, the

users of SIFT-like computers will face new obstacles in the implementations

of their application systems.

13.

5.

10.
11.

12.

13.

REFERENCES

Wensley, J. H.; Lamport, L.; Goldberg, J.; Green, M.; Levitt, K. N.;
Melliar-Smith, P. M.; Shostak, R. E.; and Weinstock, C. B.: SIFT:
Design and Analysis of a Fault-Tolerant Computer for Aircraft Control.
Proceedings of the IEEE, Vol. 66, No. 10, Oct. 1978, pp. 1240-1255.

Goldberg, Jack: SIFT: A Provable Fault-Tolerant Computer for Aircraft
Flight Control. Proceedings IFIP Congress 80, 1980, pp. 151-156.

Weinstock, Charles B.: SIFT: System Design and Implementation. The
10th International Symposium of Fault-Tolerant Computing, Oct. 1980,
pp. 75-77.

Pease, M.; Shostak, R.; and Lamport, L.: Reaching Agreement in the
Presence of Faults. Journal of the ACM, Vol. 27, No. 2, April 1980,
pp. 228-234.

Lenstra, J. K.; and Rinnooykan, A. H. G.: Complexity of Scheduling
Under Precedence Constraints. Operations Research, Vol. 26, No. 1,
1978, pp. 22-35.

Parnas, D. L.: On the Criteria for Decomposing Systems into Modules.
Communications of the ACM, Vol. 15, No. 12, Dec. 1972, pp. 1053-1058.

Liskov, B. H.: A Design Methodology for Reliable Software Systems.
AFIPS Fall Joint Computer Conference, 1972, pp. 191-199.

KLOS, Larry C.: An Interface Management Approach to Software- - -
Development. NAECON, 1978, pp. 741-747.

Post, David L.: Executive Architecture for Digital Avionics Systems.
NAECON, 1978, pp. 714-724.

Coffman, Edward G.; and Denning, Peter J.: Operating Systems Theory.
Prentice-Hall, Inc., 1973, pp. 115-116.

Maclaren, Lee: Evolving Toward Ada in Real-Time Systems. Sigplan
Notices, Vol. 15, No. 11, Nov. 1980, pp. 146-155.

Liu, C. L.; and Layland, James C.: Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment, Journal of the ACM,
Vol. 20, No. 1, Jan. 1973, pp. 46-61.

Deyst, John J., Jr.; and Hopkins, Albert L., Jr.: Highly Survivable

Integrated Avionics. Astronautics and Aeronautics, Sept. 1978, pp.
30-410

14

14.

15.

Bate, Roger R.: Distributed Microprocessors in Avionic Systems.
Conference on Computers in Aerospace, Oct. 1979, pp. 252-257.

Wirth, Niklaus: Toward a Discipline of Real-Time Programming.
Communications of the ACM, Vol. 20, No. 8, Aug. 1977, pp. 577-583.

15

2nd

1. Report No.
NASA TM-84482

2. Government Accession No.

3. Recipient’s Catalog No.

4. Title and Subtitle

An Assessment of the Real-Time Application
Capabilities of the SIFT Computer System

5. Report Date
A April 1982

6. Performing Organization Code

7. Author(s)
Ricky W. Butler

8. Performing Organization Report No.
505-34-43-06

9. Performing Organization Name and Address :

National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia 23665

10. Work Unit No.

11. Contract or Grant No. !

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

16. Ahstract

are assessed.

This paper discusses the real-time capabilities of the SIFT computer system, a

highly reliable multicomputer architecture developed to support the flight controls
of a relaxed static stability aircraft. The SIFT computer system was designed to

meet extremely high reliability requirements and to facilitate a formal proof of

its correctness. Although SIFT represents a significant achievement in fault-tolerant
system research’ it presents an unusual and restrictive interface to its users. The
characteristics of the user interface and its impact on application system design

17. Key Words {Suggested by Author(s))

Flight Computers
Fault-Tolerance
Operating Systems

18. Distribution Statement

Unclassified -~ unlimited

Subject Category 61

Scheduling.
18. Security Classif. {of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price
Unclassified Unclassified A02

N-305 ' For sale by the NahonalTechnmalhﬁormauonServme,Spdngﬁeld,nginm 22161

w)
EEEEEEEEEEEEEEEEEE ;

U o

| 31176 00504 1448 |

