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SUMMARY

The SIFT experimentalcomputersystemwas designedto meet extremely

• high reliabilityrequirementsand to facilitatea formal proof of its

correctness. These severe designconstraintshave impactedthe user-

interfacein severalways. The system providesthe user with static,

nonpreemptiveschedulingand requiresthat all tasks executein lessthan

3 milliseconds. A tedious generationof vote and scheduletables is

requiredof the user to coordinatethe redundancymanagementcapabilitiesof

the SIFT systemwith his applicationworkload. The characteristicsof this

user interfaceand its impacton applicationsystemdesign are assessed in

this paper.

INTRODUCTION

The SIFT computer system developed by SRI International for NASA

LangleyResearch Center is an experimental Computer designed to support the

flight controls of a relaxed static stability aircraft. Because the _ight

control functions are crucial in such aircraft, the reliability requirement

for SIFT is a probability of failure not to exceed 10-9 for a lO-hour

flight. The SIFT computer exploits an innovative approach to fault

tolerance utilizing software controlled task replication and

reconfiguration. The design of SIFT produced a new distributed clock

synchronization algorithm and an interactive consistency algorithm of

generic significance. Furthermore, the development of SIFT, using a formal

proof methodology, has demonstrated the feasibility of such techniques on a

nontrivial system-level problem.



The fault-tolerant characteristics of SIFT have been discussed in

detail in the literature (refs. I, 2, and 3); however_ the application level

capabilities have not been openly discussed. This paper will consider the

SIFT system as it appears to the application user. Although the details of

the user interface are not of concern, the capabilities which are inherently

limited by the underlying redundancy management system are of much

interest. Such limitations will be explored in this paper. Furthermore,

this paper will describe the current state of the SIFT system which, after

several major changes, is a system of less power and flexibility than the

system described in the 1978 IEEE paper (ref. I).

BASlC CHARACTERISTICSOF SIFT

The SIFT hardware consists of a set of Bendix BDX930avionics computers

fully interconnected by a serial, point-to-point broadcast network. Up to

8 processors may be included in the configuration. Each processor has 32K

words of 16-bit memory and an instruction speed of approximately I million

instructions per second. Two blocks of memory (1024 words each) are

allocated for interprocessor communication. One of these blocks, called the

"transaction file" is used to control the output information of a

processor. The other block, the "datafile," is partitioned into 8 sections

of 128 words each. One of these sections holds the output variables which

are to be broadcast to the other processors. The seven remaining sections

serve as "mailboxes" to receive information from the other processors in the

system. The SIFT processors also contain a MIL STD 1553A bus interface for o

communications with the other aircraft systems.



The fundamentalcoordinationof the SIFT system is accomplishedthrough

the use of a clock synchronizationalgorithm. Each processorcontainsits

o own real-timeclock which must be synchronizedwith the other clocks in the

system. Each clock in the system "corrects"itselfrelative to all other

clocks in thesystem through use of a periodicbroadcasttechnique. SRI has

demonstratedthat with a set of four or more processors,their synchroni-

zation algorithmwill insurethat the clockswill remain synchronizedto

within 50 microseconds,even in the presenceof an arbitraryfailureof one

clock (ref. 2). Previouslydevelopedalgorithmswere found to be incapable

of maintainingsynchronization in the presenceof a maliciouslying clock

(i.e. a clock that broadcastsdifferentvalues to differentclocks). The

developmentof the SIFT synchronizationalgorithmis a significant

accomplishmentby the SRI team.

The basic mechanismOf fault tolerancein SIFT is task replicationand

voting. "Severalreplicates(i.e. identicalcopies of a task) areassigned

to differentprocessorsin the SIFT configuration. Each replicatereceives

identicalinput and performsidenticalcomputations. The outputsof these

replicatesare "voted"to preventpropagationof hardwarefaults and to

detect the failed processor. The vote discrepanciesare noted by the

executivesystem and later used to reconfigurethe failed processorout of

the working set of processors. Variousdegrees of reliabilitycan be

obtainedfor each task by using differentamountsof task replicationon

differentprocessors. The coordinationof task replicationand voting is

o accomplishedthroughuse of precalculatedscheduleand vote tables in each

processor. Since task replicatesonthe variousprocessorsare controlled

by scheduletableswhich are synchronized,all replicatesreceivethe same

data. Furthermore,through use of an "interactiveconsistencyalgorithm,"
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developedby SRI, single source inputdata can be accommodatedin the

system (ref.4). Withoutthe algorithm_,a failed processor,transferring

single sourcedata to the task replicates,could send differentvalues to
-:

each replicate. This, in turn, could lead to the eliminationof good

processorsfrom the system. The recognitionand solutionof this problem

representsanothersignificantachievementof the SRI team.

The SIFT operatingsystem was designed so that a formalmathematical

proof-of-correctnessof the operatingsystemcould be made. This approach

has had significantimpacton the system structureand its capabilities.

Becauseof the inherentcomplexityof the formal proof process,the system

design has been kept extremelysimple. The SIFT proof-of-correctnesshas

demonstratedthat formaltechniquesare applicableto system-levelproblems

of much greatersize and complexitythan the problemsfound in most research

paperson this subject. However,in many ways, this approachhas resulted

in a SIFT syst_emof less power and flexibilitythan otherwisewould have

been possible. (See table 1.) In particular,a major simplificationin the

schedulingand voting strategiesbecame necessaryin order to formallyprove

the systemcorrect. A priority-drivenpreemptiveschedulerwould have

introducedunrestrictedconcurrency- the logicallysimultaneousexecution

of severaltasks - intothe system. The problemof provinga system of

cooperatingconcurrentprocessesis still an open question,though progress

has been made since the design of SIFT. Future generationsof SIFT-like

fault-tolerantsystemsmay be able to incorporatethe flexibilitiesand -

poIverof concurrencythrough priority-basedschedulersas the formal

verificationtechnologyadvances. Nevertheless,the SIFT computer

representsan importantstep in the evolutionof formallyverifiable

fault-tolerant systems.



TABLE I. - A COMPARISONOF SIFT TODAYWITH THE
1978 IEEE PAPERDESCRIPTION

IEEE Paper SIFT Today

" Priority based periodic scheduling Static preplanned scheduling
( preempt i ve) (nonpr eempt i ve)

Arbitrary task length All tasks must fit in a
subframe time slot

Dynamic allocation of tasks to processors Static assignment of tasks to
proces sors

Task replication is transparent to the The application designer must
application designer build schedule tables and

statically assign task
replicates to processors

Voting is transparent to the application The application designer must
designer through use of operating system build a vote table which
routines to obtain interprocess data corresponds to the

precalculated schedule table

THE APPLICATIONDESIGNERINTERFACETO SIFT

The SIFT operating system provides an interface to the applications

designer which is significantly different • from traditional real-time

systems. The most striking feature of the SIFT system from the user's

perspective is the requirement that all tasks must execute in less than

3 milliseconds. The reason for this restriction is that the voting

algorithm in SIFT is based on a static schedule table and a vote table which

consist of 3 millisecond time slots for the tasks. The schedule table
!

determines the set of tasks and their order of execution on a SIFT

• processor. Since aircraft guidance and control functions consist of

periodic sensor sampling, transfer function computations and actuator



command generation,this scheduletable is executed repetitively.•Functions

with higher iterationrate requirementscan ap_ar more than once in the

scheduletable. Functionswith lower rate requirementscan use a flag to _

cause alternateskippingof a particulartask. The scheduletable corre-

spondsto one major frame which consistsof 30 subframes. Each task is

staticallyassignedto one or more subframesand if a functionrequiresmore

than 3 millisecondsto execute,it must be subdividedinto 2 or more tasks.

(See figure 1. - FunctionG, for example,has been subdividedinto tasks G

and G' and has been replicatedon processors4, 5 and 6). The creationof

the static scheduletable is the responsibilityof the applicationdesigner.

FIGURE1, - STATIC, NONPREEMPTIVESCHEDULETABLECONCEPT
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The tasks must be ordered according to their functional dependencies and

structure the schedule table accordingly. However this is only a small

part of the initialization which must be done. SIFT is designed to support

task replication - identical tasks executing on different computers in the

SIFT network - and is capable of reconfiguration. The applications designer

must allocate the task replicates to the various processors to meet various

reliability requirements. Sometasks may require 5 replicates, whereas

others require only I or 3.

As long as there are no precedence constraints on the execution of the

tasks (i.e., a particular ordering of tasks is not required), this is not an

intractable problem. However, if precedence constraints exist, then the

resulting "scheduling" problem can be very complex. Even ignoring theneed

to synchronize the task replicates, the complexity of finding an optimal

schedule is NP-complete when 3 or more processors are to be scheduled (ref.

5). Furthermore, it is inevitable that precedence constraints will be

present Since the partition of a function (longer than 3 ms) into tasks

generates a sequence of tasks which must be executed sequentially.

(Although optimal schedules may not be necessary, this illustrates that

generating such schedules is not trivial - especially good ones.) The

reconfiguration capability of SIFT also increases the workload of the

application designer. One table must he generated for every processor for

• every configuration (i.e., as processors fail and are removed we have a

6-processor configuration, then a 5-processor configuration, then a

4-processor configuration, etc.). If there are n processors in the system
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initially,the user must generate n + (n-l)+ (n-2)+.o.+ 2 tables or(n2 +

n-2)/2tables. For the presentSIFT configurationof 6 processors,

20 differentscheduletablesmust be generated."

The SIFT processorachievesits fault tolerancefrom the voting of the

task replicates. Whenever a task producesoutput data it must be voted.

This is not transparentto the applicationdesigner. The application

designermust enter the index of the output data in a "vote" table which

must be generatedfor each systemconfiguration. Hence, the designermust

generateanothern-1 vote tables for an n-processorSIFT. The total number

of vote and scheduletables which must be createdby the application

designer on an n-processorSIFT is thus (n2 + 3n - 4)/2 or 25 for a

6-processorsystem.

It shouldbe noted that the proof of correctnessof the SIFT system does

not cover the applicationdomain. The proof demonstratesthat SIFT

correctlymasks and reconfiguressinglefaults out of the system and will

scheduletasks accordingto the user generatedtables. The abilityof the

system to mask and isolatefaults,however, is dependentupon the inclusion

of the necessaryintertaskvariablesin the vote table. If an error is made

in the scheduletables or vote tables,system failure is possible.

Therefore,a reliableapplicationsystemof SIFT requiresa systematicand

reliable approachto the generationof scheduleand vote tables. Clearly,

such a systematicapproachmust also use formal proof-of-correctness

techniquessince the entriesof the vote table and scheduletables depend on

the interactionof the applicationtasks (e.g.,the presenceor absenceof

entries in the vote table dependson l_,_atinformationmust be sent from one

task to anotherand this is determinedby the formallyspecifiedfunctions
J

these tasks must perform).
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ANALYSIS OF SIFT CAPABILITIES

The primaryconstrainton the flexibilityof the SIFT system is the

• nonpreemptive,unit-executiontime schedulingphilosophy. The advantagesof

problemdecompositionand modularityhave been widely discussedin the

literature(refs.6, 7,and 8), yet an artificialexecutiontime constraint

can only serve to complicatethe systemstructure. To enhance program

simplicityand reliability,the partitionmust be made on the basis of

functionalutility,not because of an arbitrarysizing constraint. This

unit-executionconstraintwill cause the introductionof inefficientmodule

interfacesand a consequentincreasein intertaskcommunicationvariables.

This compoundsanotherallocationproblemin SIFT--themapping of intertask

variablesto the 128 data file locations. If more than 128 intertask

variablesare needed,they must be "multiplexed"in time by the application

user. This time-multiplexedallocationof intertaskvariables,however,

would have to be carefullycoordinatedwith the processor'stask schedule.

The nonpreemptivecharacteristicof the SIFT schedulerlimitsthe

performanceand flexibilityof the system. A preemptiveschedulerwould

offer severaladvantagesover a nonpreemptivescheduler:

1) rap'idresponseto asynchronousevents (cf. in a nonpreemptivesystem

a task must be continuallydispatchedwhich "polls"an event

repetitively)(ref.9);

2) more effectiveCPU utilization(i.e.a preemptiveschedulecan

always be constructedwhich is shorteror equal to a nonpreemptive

schedulewhen the number of processors> 2) (ref.lO);

3) accommodationof transientsystem overloadsof crucialfunctionsby

not _ispatchinglow-prioritytasks (ref. 11);

4) supportof arbitraryiterationrates for the tasks (cf. in a static

table nonpreemptiveschedule,all iterationrates must be multiples
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of a base rate; hence, tasks sometimesmust be scheduledto run at a i.;_

higher rate than the function requires)(refs. 11 and 12); and

5) supportof periodictask sets vdth up to 100 percent processor .....

utilizationwhile still guaranteeingthat al! real-timedeadlines

will be met on a single processor(ref. 12). o

Anotherconsequenceof the nonpreemptiveschedulerof SIFT is that

support for high-levellanguageswith flexibleconcurrentprocessing

capabilitiessuch as Ada or ConcurrentPascal is not possible. The

flexibilitiesof the preemptiveapproachlisted above are incorporatedinto

these languages. The unit executionrestrictionon task lengthfurther

aggravatesthis problem. Furthermore,task replicationshould be

transparentat the applicationlanguagelevel. But since asynchronous

communicationis possible in these languagesand SIFT's replicatesare

controlledby static vote tables,the mappingto SIFT is impossible.

A LOOK TOWARDS THE NEXT GENERATIONAIRCRAFTCONTROLSYSTEMS ........

The traditionalapproachto the developmentof an aircraft electronics

system has been to partitionthe system functionsand to design each

independently(e.g., into flight controls,navigation,guidance,etc.).

Often these functionsare assignedto differentcomputers. These functions

are implementedas a set of tasks scheduledon the computersby a

nonpreemptivecyclic executivewith a predeterminedexecutionsequence,

where each cycle is initiated by a clock interrupt and every task is run to

completion. In such a federated system approach, the SIFT computer could
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supportthe flight criticalfunctionssuch as stabilityaugmentationand

flutter-modesuppressionin a relaxedstatic stabilityaircraft.

° The new techniquesof modern controltheory,researchfor advanced

aerodynamicconcepts,and functionalintegrationresearchare revealing

significantbenefitsto be obtainedfrom an integratedsystem approach

(refs.13). Throughthe integrationof traditionallyseparatefunctions,

higher aircraftperformanceis promised,but this will come at the cost of

increasedlogicalcomplexityand an increasedcomputationalworkload.

Capabilitiesexceedingthe nonpreemptivecyclic executiveapproachwill be

needed to cope with the high degree of functionalinteractionand to provide

rapid responseto asynchronouseventssuch as pilot commandsand failed

sensorsor actuators. Also, the nonpreemptive,cyclic executivewill be

undesirablesince it impactsthe applicationsystemdesign in several

adverseways:

1) The static natureof the task schedulecauses a proliferationof

discrete (Boolean)variablesin order that the tasks can be

responsiveto changes in flight phase and other asynchronous

events. The availabilityof dynamic schedulingenablesthe

designerto build tasks tailoredto a single flight phase which are

only dispatchedwhen needed.

2) The additionof new low prioritytasks necessitatesa redesignof

the static scheduletable (ref. 9).

3) Task executionlengthvariabilityresultsin inefficient

" utilizationof the CPU since the schedulesmust be built for

worst-caseexecutiontimes. The proliferationof discrete

variablesas describedabove furthercompoundsthis problem

(refo 11)o
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Becauseof the inefficienciesand inflexibilityof thetask management

approachpresentedabove, the next generationaircraft systemswill need the

capabilitiesof a priority-drivenpreemptiveapproach(ref. 14).

Furthermore,the softwareengineeringmethodologiesare alreadyextolling

the virtuesof high-levellanguageswith concurrentprocessingcapabilities

(e.g.,Ada) (ref. 15). These languagesprovideadditionalsafety through

detectionat compiletime of many time-dependenterrors which are

traditionallyextremelyhard to discoverthroughtestin9alone. It appears

to be desirablethat the fault-handlingsystemsof future fault-tolerant

architecturesbe compatiblewith these high-levellanguages. It is

important,therefore,that the future generationsof SIFT-likearchitectures

have capabilitiesbeyondthose of SIFT today. If this flexibilityis

unobtainablethen future aircraft systemdesignersare going to be limited

in many ways.

CONCLUSIONS

The development of the SIFT computer system represents a major

accomplishment in fault-tolerant systems technology. However, the high

reliability requirements and the use of formal proof techniques have

restricted the capabilities of the system in several ways and have placed

severe demands on the application designer using the system. In particular,

the requirements that the application designer must partition all functions

into 3 millisecond tasks and manually delineate task replication,

scheduling, voting, and reconfiguration are especially severe. Perhaps .

future generations of SIFT will be able to bring the redundancy management

functions totally under the control of the operating system and present a
s,
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user-friendlyinterfaceto the applicationsdesigner. Thisundoubtedlywi.ll

only come through major improvements in the software techniques used to

o accommodatehardwarefailures. If such improvementsare unattainable,the

users of SIFT-like computers will face new obstacles in the implementations

of their applicationsystems.
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