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ABSTRACT

We present a new explanation for the nature and evolution of the

extremely hydrogen-deficient binary v Sgr which is consistent with all

observational and theoretical facts. First, the system goes through a Case

B mass exchange in which most of the hydrogen-rich envelope of a massive

primary (S to 14 %) is lost, The remaining envelope still contains about

50% hydrogen (by number), but is now of negligible mass, so that the star

will evolve like a pure helium star. If its mass is between 1 and 2 Me$

the star Dill reach low surface temperatures and become a supergiant before

the onset of carbon burning. This star (the original primary) will then

fill its Roche lobe a second time, spilling its now helium-rich envelope

over onto the secondary (Case BB mass exchange). We argue that U Sgr is in

this state at the present time, and that the visible star is an evolved

helium star of about 1 M  with a degenerate carbon-oxygen core and a

helium-burning shell which provides the high luminosity.

Key words: hydrogen-deficient binaries; binary evolution

Author's address: Department of Physics and Astronomy
Louisiana State University
Baton Rouge, Louisiana 70803-4001

1Contributio^ns of the Louisiana State University Observatory No. 000.

2 O leave of absence from Institut fur Theoretische Physik and Sternwarte,
University of Kiel, Federal Republic of Germany.

r



i

'	 2

Hollings et al. (1981) have proposed the following evolutionary status

for the hydrogen-deficient binary u Sgr. According to them, the system

consists of a 13 M  primary and a 10 M  secondary. The primary in "the

hydrogen exhausted core of a star which has evolved through phases of

stellar wind mass loss during core hydrogen burning and eventually during

core helium burning, and v,,ass Joss By Roche lobe overflow". The original

mass of the primary was estimated to be between 40 and 50 M 0 , Only Case B

and Case C binary evolution were considered, neither of which is able to

explain the observed low hydroge ► abundance.

In this paper, we present a new, completely different interpretation of

the nature of u Sgr. Our main conclusions are as follows. We are now

seeing a binary system in its second mass exchange, i.e., the primary, now

a helium supergiant, has filled its Roche lobe a second time (Case BB mass

exchange) after having lost nearly all of its hydrogen-rich envelope during

an earlier, Case B, mass exchange. This provides a natural explanation for

the unusual surface composition of the primary. The total mass of the

system is much lower than that proposed by Hollings et al. (1981), and the

initial mass of the primary was less than 14 Me.

;

II. THE FACTS

E

	

	 First we want to summarize the relevant observational and theoretical

facts. It is well known that v Sgr is a supergiant (M v = -7) with an

effective temperature of about 10,000°K and very weak hydrogen lines

(W(HY) '° 0.5 A), that it is both a single-line spectroscopic binary and an

eclipsing binary with a period of 138 days (Hack and Pasinetti 1963, Eggen
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et al. 1950). Hnck and Pasinetti (1963) estimate that n(H)/n(He) - 0.025

on the basis of a coarse analysis of the spectrum. How dangerous such an

analysis can be is illustrated convincingly by Fig. 3 of Wallerstein et al.

(1967), in which theoretical HY profiles based on model atmospheres

computed by Bohm-Vitense are given for Teff " 10
0 0000K, log g w 2, and

n(H)/n(He) - 0.0005, 0.005 E 0.05, 0.5, and 5. According to these profiles,

HY is stronger for n(H) /n(He) = 0.025 than it is for a normal hydrogen

abundance!

Comparison of the HY profile given by Hank and Pasinetti (1963) with

Fig. 3 of Wallerstein et al. (1967) yields n(H)/n(He) < 0.0005 for a Sgr.

This is very similar to the hydrogen abundance found by Wallerstein et al.

(1967) for the single-line spectroscopic binary KS Per (HD 30353), which is

not surprising since these stars have sinu.lar effective temperatures,

surface gravities, and HY profiles. The primaries of both of these

systems can therefore be considered to be extreme helium stars. In

contrast to the apparently single extreme helium stars, they show nitrogen

to be much more overabundant than carbon, indicating that CNO-processed

material has been exposed at the surface (Hack and Pasinetti 1963, Danziger

et al. 1967).

Observations made by spacecraft show that most of the radiation

0
shortward of 1700 A comes from a hot companion. Hack et al. (1980) adopt a

spectral type of 09V for the secondary on the basis of WE observations.

However, inspection of the WE spectral atlas of Wu et al. (1981) shows

that the spectrum of 0 Ara (B21b) is a much better match to that of v Sgr

shortward of 1700 X than that of any other star in the atlas (Drilling and

Schonberner 1982). This is consistent with the earlier conclusion of

s	 7t
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Duvignau et al. (1979) that the spectrum of the secondary was similar to

that of a BO-B3 supergiant baser: on Copernicus and TD1 satellite

observations.

If the hot. component does have the spectrum of an early B-type

supergiant, then its visible spectrum must be 5 magnitudes fainter than

that of the primary (Drilling and Schonberner 1982). This'is supported by

the light curve of Eggen et al. (1950), which shows the visual magnitude of

the secondary to be 3 magnitudes fainter than that of the primary if the

eclipses are total, and explains why spectral lines due to the seconda"O,y

have never been observed in the visible spectrum. The hot component must

therefore be much less luminous than a normal B-type supergiant.

Duvignau et al. (1979) have concluded that M p/Ms < 0.5 from the

smallness of the radial velocity variations in the ultraviolet. Since the

mass function for v Sgr is 1.68 M 0 , it follows that Mp sin 3 1 < 1.9 Mo , so

that even for i=600 the mass of the primary is less than 2.9 Mo . The

primary must therefore be a highly evolved object to account for its high

luminosity (L a 50,000 L0 for B.C.- 0 according to Duvignau et al. 1979).

On the other hand, we have M s sin 3i < 3.8 M0 , much too sma%l for the

secondary to be an early B-type Supergiant, or even an 09 main sequence

star. However, because L/M determines the spectral appearance for a given

temperature, a star of low mass and low luminosity with an extended

envelope can mimic the spectral appearance of an early B-type supergiant.

If we take MV = -3 and B.C. = -1.5 for the secondary, we get L 5000 L 0 .

In order to have the same L/M as an early B-type supergiant 	 2500 times

solar), the mass of the secondary would have to be about 2 M o , which is

consistent with the above discussion. We therefore conclude that the hot

component of 0 Sgr is neither an early B-type supergiant nor a main

.
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'	 sequence star, but rather a lower mace object with an ext( 	 , envelope,

i.e. a star which is not in thermal equilibrium because of the accretion of

matter lost by the primary (Kippenhahn and Meyer-Hofineister 1977; Packet

and de Greve 1979). This star may have a distorted shape due to non-

spherical accretion, but the existing light curves are not detailed enough

to determine whether or not this is the case.

Coming back to the primary, we want to emphasize that it is hard to

believe that it is a helium supergiant of 13 M  as suggested by Hellings et

al. (1981) for a number of reasons. According to Stothers and Chin (1977),

helium stars of 8 to 15 M  are able to reach low surface temperatures at

the end of carbon burning, but only if there is no neutrino emission! Even

if this were the cane, their visual brightness would be too large M y z -9.

The corresponding moaels of racLyn'aka. (1971) do not evolve to low surface

temperatures at all. We therefore conclude that the suggestion of Hellings

et al. (1981) concerning the mass of the primary is in conflict with theory

and observation.

Furthermore, neither Case B nor Case C mass exchange can expose

processed material with a sufficiently low hydrogen abundance to satisfy

the observations, even if ^:e accept the value n(H)/n(He) - 0.025 given by

Hack and Pasinetti (1963). Case B mhis exchange stops when matter with X

0.2 is exposed (de Greve and de Loore 1976). For Case C, the final hydrogen

content of the envelope is also X " 0.2 as a result of the dredge-up

phenomenon whidb occurs in all stars with core masses > 0.8 M  just prier

to hydrogen shell re-ignition (Lauterborn 1970, Kippenhahn et al. 1965).

Any further mass loss is governed by he nuclear timescale of the hydrogen,-

shell-burning primary, and no further changes in the surface composition
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are possible. In both cases, the radius of the region where hydrogen has

been totally depleted is at all timas much smaller than the Roche radius.

III. THE EVOLUTIONARY STATE OF UPSILON SGR

In the previous section we have shown that the present appearance of

v Sgr cannot be the result of a single mass exchange. We can resolve this

riddle by assuming that we are now seeing the second mass exchange, and

that the primary lost nearly all of its original hydrogen-rich envelope

during a first, Case B, mass exchange, The first mass exchange stops when

X - 0.2 is reached at the surface. The prime--y then shrinks and ends up

near the helium main sequence (Kippenhahn and Weigert 1967, de Greve and de

Loore 1976). The border between the pure helium layers and the somewhat

Rydrogen-rich layers; i.e., the position of a weak hydrogen-burning shell,

is now at Mr/M ;z 0.9. The primary will therefore evolve Me a puree helium

star.

It is well known that helium stars between 1 and about 2.5 M® are able

to expand to a supergiant configuration during the helium shell-burning

phase, reaching low surface temperatures (T Z 10,000 0K) prior to the onset

of core carbon burning (Paczynski 1971, de Greve and de Loore 1977). Note

that now layers of nearly pure helium are expanding to large radii., and

that the primary is now able to fill its Roche lobe a second time, first

spilling any remaining hydrogen-rich material and then nearly pure helium

onto the secondary (i.e. the Case BB mass exchange of Delgado and Thomas,
3 	 5

1981). At 10,000°K these helium supergiants have radii of 40 to 60 Ro,

which is comparable to the present size of the Roche lo ge of u Sgr (60 Ro
4{

for q - 0.5 and sini = 1).	 1
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This evolutionary scenario is coasistetiat with the observations. It

predicts the observed abundances for the primacy, a mass between 1 and 2.5

Mm , and a luminosity between 10,000 and 60,000 Lp , depending on the initial

mass and evolutionary state, The most likely mass for the primary is

around 1 Mo because Delgado and Thomas (1981) show that a helium star of 2

M  looses half of its mass in only 10,OOU years. This rapid phase of mass

transfer is followed by a much slower one which changes the mass only

marginallysand this is probably the state which we now observe. In any

case, the interior of the visibla component of v Sgr must consist of an

inert, condensed carbon-oxygen core surrounded by a helium-burning shell

which provides the luminosity (Paczynski 1971; Biermann and Kippenhahn

1971). This star will evolve into a massive white dwarf while the secondary

i °o Still ne ar the main sequence: d third mass transfer may,  occur when the

secondary evolves away from the main sequence, but due to the large

separation of the components this will probably not happen before the end

of core helium burning (Case BBC of Delgado and Thomas, 1981).

We find from the theory of Case B mass exchange that the original mass

of the primary must have been between 5.6 and 14 M0 (de Loore 1980).

Therefore the primary must have lost between S and 12 M0 . Because th;!

present mass of the secondary is less than 4 M0 , modt of this mass has

probably left the system. In other words, we have a typical example of

binary evolution with a substantial loss of total mass (and total angular

momentum), at least during the first Roche lobe overflow. Therefore, we

cannot say anything about the period of revolution before the Case B mass

transfer. The lass during the Case BB mass exchange cannot, however,

exceed about 1 H0 , so that the period of 'evolution after the Case B mass

transfer cannot be greatly different from what it is now (138 days). De
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Greve and Vanbeveren (1980) Und that of the 40 systems believed to be the

result of Case H mass transfer, only 1 has a period longer than 24 days.

It is not surprising then that systems like v Sgr are rare. In fact, only

two other objects are known which are similar to v Sgr: KS Per (HD 30353),

with a period of 360 days, and LSS 4300 •(HDE 320156), for which the period

is not known. All three of these objects have very similar effective

temperatures (Drilling and Schonberner 1982).

IV. CONCLUSIONS

We have presented an explanation for the evolution of v Sgr which is

consistent with all known observational and theo%,atical facts. The basic

idea is that we are now seeing a second, Case BB, mass Lass by a primary

which has already lost -.o--t of its mass in a previous, Case B, mass

exchange. An interesting prediction of this theory is that the hot

secondary should also be helium-rich. A definite statement concerning the

shape of the secondary or the existence of a (thick) accretion disk may be

possible when a more accurate light curve becomes available. Finally, the	 3a

following question needs to be answered: Why do we not observe Case BB

binaries with higher effective temperatures (for the primaries)? De Greeve

and Vanbeveren (1980) find that roughly 10% of the systems believed to be

the result of Case $ evolution have primaries of 1 to 4 M o . Because most

of these stars have orbital periods of less than 25 days, they should go 	 3,

through Case BB mass loss at much higher effective temperatures than

v Sgr. A possible explanation may be that due to their small separations,

these systems become contact binaries.

M_ ,
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