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AERODYNAMIC PERFORMANCE OF HIGH TURNING CORE TURBINE VANES

IN A TWO-DIMENSIONAL CASCADE

John R. Schwab

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio

Summary

Experimental and theoretical aerodynamic performance data are presented

for four uncooled high turning core turbine vanes with exit angles of 74.9,

75.0, 77.5, and 79.6 degrees in a two-dimensional cascade. Data for a more
conservative 67.0 degree vane are included for comparison. Correction of the
experimental aftermix kinetic energy losses to a common 0.100 centimeter

trail i ng edge thickness yields a linear trend of increased loss from 0.020
to O.U25 as the vane exit angle increases from 67.0 to 79.6 degrees. The
theoretical losses show a similar trend. the experimental and theoretical

vane surface velocity distributions generali; agree within approximately
five percent, although the suction surface theoretical velocities are
generally higher than the experimental velocities as the vane exit angle
increases.

Introduction

The increased specific work requirements for the core turbines in

advanced high bypass ratio turbofan engines are forcing the stator vane exit
angle to approach 90 degrees from the axial direction in order to maintain

an acceptable vane height. Aerodynamic performance data for such high
turning vanes are not readily available, since most present core turbines
have exit angles of less than 70 degrees.

A research program has been underway at the NASA Lewis Research Center

to investigate the performance of high turning vanes. This paper presents

experimental and theoretical kinetic energy loss coefficients and surface
velocity distributions for four uncooled vane designs with exit angles of
74.9, 75.0, 77.5, and 79.6 degrees. A more conservative 67.0 degree vane

was also tested to provide data for comparison.

The experimental data were obtained by testing constant-section solid

vanes in a two-dimensional cascade with inlet room temperature air.
Cross-channel surveys of total pressure, static pressure, and flow angle
were conducted for ideal exit critical velocity ratios of 0.65 to 0.95. The

loss coefficients were calculated from the actual and ideal velocities.
Vane surface static pressures were also measured and used to calculate the
vane surface airflow velocities.

The theoretical data were obtained from a finite difference inviscid

stream function solution on the vane-to-vane stream surface (refs. 1
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and 2). The theoretical vane surface velocity distributions were used as
input to an integral method boundary layer solution (ref. 3), which provided
boundary layer parameters for an aerodynamic loss calculation (ref. 4) to

obtain the loss coefficients.

Symbols

b	 trailing edge blockage factor, t/s cos a

cx	vane axial chord, cm

e	 kinetic energy loss coefficient, 1 — (V/Vid)2

p	 absolute pressure, N/cm2

s	 vane pitch, cm

t	 trailing edge thickness, cm

V	 velocity, m/sec

w	 mass flow rate per unit vane span, kg/sec—cm

C9	 flow angle, degrees

a	 ratio of inlet total pressure to U.S. standard sea—level

atmospheric pressure, p o/10.132 N/cm2

e cr	 ratio of inlet critical velocity to critical velocity of

U.S, standard sea—level air, Vcr,0/310.6 m/sec

ax	 axial solidity factor, cx/s

T	 Zweifel loading factor

Subscripts:

cr	 critical condition

A	 ideal process

s	 vane surface

0	 vane inlet station

1	 vane exit station

2	 aftermix station
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Superscript:

total state condition

Apparatus and Pr.)cs-dure

Vane Design

The design parameters for the subject vanes are given in table 1.

Velocity diagrams for all the vanes except the 67.0 * vane were selected with
a meanline turbine design calculation using the data given in table 2.
These conditions are representative of an advanced high bypass ratio

turbofan engine. For a fixed stator exit angle, the mean diameter was
varied parametrically to obtain a subsonic stator and rotor while
maintaining a suitable blade height (hub-to-tip diameter ratio of less than

0.85). The design stator exit velocity ratio was selected such that the

absolute stator exit velocity was equal to the relative rotor exit
velocity. This criterion minimized the stage kinetic energy in order to

minimize losses. Since the 74.9 0 and 79.6' vanes were originally designed
using different criteria, the optimum diameters and exit velocities

determined for the new conditions were different from those in the original

design. Through judicious selection of the number of vanes for the new
diameters, the vane pitch, axial solidity, and Zweifel loading were
maintained very close to the original design values. Since the 67.0 0 vane

was used as a standard to compare the performance of the high turning vanes
against, the original design velocity diagram was used. The vane profiles
and coordinates are shown in figure 1, while the four high turning vanes are

shown in the photograph in figure 2.

Cascade Tunnel

The vanes were tested in the two-dimensional cascade tunnel shown in

figure 3. The test sections consisted of 7, 8, or 9 constant-section solid

vanes, depending on the vane pitch, with a span of 10.2 centimeters.

In operation, room air was drawn through the cascade tunnel, the test

section, and the exhaust control valves into the laboratory exhaust system.
The vanes were tested over a range of inlet total pressure to exit static
pressure ratios corresponding to ideal exit critical velocity ratios from
0.65 to 0.95.

Instrumentation

The center vane in each test section was instrumented at midspan with

static pressure taps. The vane surface static pressures were measured with
a multichannel scanner using a strain gage transducer. The pressure data

were recorded by the laboratory data acquisition system.

The vane exit total pressure, static pressure, and flow angle were

surveyed simultaneously using the rake shown in figure 4. The total

pressure was measured with a square-ended probe while the static pressure
was measured with a wedge probe having an included angle of 15 degrees. The
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angle probe was a two-tube type with the tube ends cut at 45 degrees; it
measured a differential pressure proportional to the flow angle. The probes
we ,•e calibrated over a range of velocities and angles in an open-jet tunnel.

she rake was fixed at the design aftermix flow angle which placed the

probe sensing elements at the survey plane shown in figure 5. The rake was
traversed cver a distance of approximately two vane pitches in order to

obtain a full wake profile. The traverse speed was 2.5 centimeters per
minute. An actuator-driven potentiometer provided a voltage signal
proportional to the rake position. This signal and the output of the three

strain gage transducers used to measure the probe pressures were recorded by
the laboratory data acquisition system. Typical total and static pressure

data for an aftermix survey are shown in figure 6.

Data Reduction

Vane surface critical velocity ratios were calculated from the recorded

surface static pressure data. The recorded flow angle and pressure data
from the surveys were used to calculate velocity, mass flow, and tangential

and axial components of momentum as a function of the probe position. These
quantities were then integrated to obtain the overall values at the survey
plane. The aftermix kinetic energy loss coefficient, e2, was calculated

at the hypothetical aftermix station where flow conditions were assumed to
be uniform downstream of the survey plane by assuming a constant area

process and conservation of the tangential component of momentum. The
details of these calculations can be found in Appendix B of reference 5.

Theoretical Analysis

A finite difference inviscid stream function solution on the

vane-to-vane stream surface (refs. 1 and 2) was used to obtain the
theoretical vane surface velocity distributions. The stream sheet thickness
values used in the code were modified to account for the effects of boundary
layer growth and contraction on the endwalls of the cascade tunnel and the
test section. A one percent total pressure loss from vane inlet to exit was
assumed. The theoretical surface velocity distributions were then used as
input for an integral meted boundary layer code (ref. 3). This code
provided boundary layer r • ameters for an aerodynamic loss calculation (ref.4).
Transition from laminar ,o turbulent was forced to occur where laminar
instability was predicted by the code, which corresponded to a momentum
thickness Reynolds number of 200-300.

Results and Discussion

Overall Performance

The experimental aftermix kinetic energy loss coefficients, e 2 , are
shown in figure 7 along with the theoretical loss for each vane at the

design ideal aftermix critical velocity ratio. The repeatability of the
experimental data is approximately ±0.0025. The experimental and
theoretical losses agree within ±0.005.

The experimental and theoretical aftermix flow angle data are shown in

figure 8. The uncertainty in the experimental data is primarily dependent
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upon the accuracy of the probe reference angle which is approximately t0.5
degrees. The experimental and theoretical angles agree within the limits of

this uncertainty, although the experimental angles are slightly larger than

the theoretical angles.

The experimental and theoretical total equivalent mass flow data are

shown in figure 9. These data are presented as mass flow per unit of vane
height. The experimental and theoretical data agree within approximately

t 0.001 kg/sec—cm.

Surface Velocity Distributions

The experimental and theoretical surface velocity distributions are

shown in figure 10. The data show excellent agreement on the pressure
surface for all the vanes; however, the agreement on the suction surface is

generally not as good, especially for the vanes with larger exit angles.

The 67.0° vane has excellent agreement over the first 80 percent axial

chord on the suction surface, but then the theoretical data begin to show

diffusion eariler than the experimental data. The 74.9 0 , 75.0 , and 77.'°

vanes all have good agreement within approximately 5 percent on the suction

surf ace; the agreement for the 74.9 0 and 75.0° vanes is better than that for

the 77.5° vane. The theoretical data for the 79.6 9 vane have a peak about

10 percent higher than the experimental data from 40 to 70 percent axial
chord on the suction surface. It appears that the solution becomes unstable
in such a region of high curvature. The agreement over the last 30 percent
axial chord is excellent. The suction surface velocities for all the vanes
were generally higher than the experimental velocities as the vane exit
angle increased.

Kinetic Energy Loss Coefficients

In order to eliminate the incomparabilty caused by different trailing

edge thicknesses, the experimental loss data were corrected to a common
0.100 centimeter trailing edge thickness using the one percent loss per ten
percent blockage relationship suggested in reference 6. This thickness is
representative of that required for cooling purposes in an advanced high
bypass ratio turbofan engine. The theoretical losses were also recalculated
using the common thickness. These data are presented in figure 11 at the

design ideal aftermix critical velocity ratio for each vane. A linear trend

in the experimental data of increased loss from 0.020 to 0.025 can be seen
as the vane exit angle increases from 67.0 to 79.6 degrees. Although the
theoretical data appear to exhibit a nonlinear trend, they are in close
agreement with the experimental data, with the exception of the 79.6 0 vane,

which has a theoretical loss 0.005 higher than the experimental loss.

Since the theoretical surface velocity distributions used to calculate

the theoretical losses had higher peak velocities than the experimental
distributions, the boundary layer and loss calculations were redone using
the experimental distributions. These data are presented in figure 12 at
the design ideal aftermix critical velocity ratio for each vane. The two
vanes with the largest exit angles, 77.5 and 79.E degrees, had the largest
deviation in the theoretical distributions and subsequently show a 0.0025

f,^	
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reduction in predicted loss and better agreement with the experimental loss
data when the experimental distribution is used.

Summary of Results

Four uncooled high turning vane designs with exit angles of 74.9, 75.0,

77.5, and 79.6 degrees were tested in a two-dimensional cascade to obtain

experimental aerodynamic performance data. Theoretical performance data
were obtained from an inviscid vane-to-vane strewm surface code and a
boundary layer code. A more conservative 67.0 degree vane was also tested
to provide data for comparison.

When the experimental aftermix kinetic energy loss data were corrected

to a common 0.100 centimeter trailing edge thickness, a linear trend of
increased loss from 0.020 to 0.025 was shown as the vane exit angle
increased from 67.0 to 79.6 degrees. The theoretical losses calculated for

the common thickness showed a similar trend, but with somewhat higher losses
for the 17.5° and 79.6 9 vanes. Subsequent recalculation of the theoretical
losses using the experimental surface velocity distributions showed a 0.0025
reduction in predicted losses for the 77.5° and 79.6° vanes and thus better
agreement with the experimental loss data.

The theoretical surface velocities obtained from the inviscid solution

agreed with the experimental distributions within approximately five percent
for all the vanes except the 79.6' vane, which had an unsubstantiated peak

in the theoretical distribution. The theoretical suction surface velocities
were generally higher than the experimental velocities as the vane exit
angle increased.
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TABLE 1 - VANE DESIGN PARAMETERS

Aftermix Aftermix Trailing-edge Axial Zweifel

flow angle, velocity ratio, blockage solidity loading

a, degrees (V/Vcr)2 factor, b factor, o x factor, Y

67.0 0.778 0.111 0.929 0.774

74.9 .843 .079 .716 .701

75.0 .833 .122 .630 .792

77.5 .810 .124 .537 .790

79.6 .795 .076 .439 .813

^'	 7
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TABLE 2 — TURBINE DESIGN PARAMETERS

Inlet total temperature, To , K . . . . . . . . . . . . . . . . . . . . . .	 1533

Inlet total pressures, po , N/cm . . . . . . . . . . . . . . . . . . . . . 124.1

Mass flow, w, kg/sec . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.21

Rotative speed, N, rpm . . . . . . . . . . . . . . . . . . . . . . . . . . 13000

Specific work output, oh', J/g . . . . . . . . . . . . . . . . . . . . . 	 288.7

Total efficiency, n, percent . . . . . . . . . . . . . . . . . . . . . . 	 0.89

Overall stator pressure loss, ( po — P;)/PO, , percent . . . .	 . . . . . . 0.02
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Figure 10, - Surface velocity distribution.
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Figure 11. - Comparison of experimental losses corrected to
4100 cm trailing edge thickness with theoretical losses
calculated using 4100 cm trailing edge thickness.
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Figure 12. - Comparison of experimental losses corrected to
0.100 cm trailing edge thickness with theoretical losses
calculated using 4100 cm trailing edge thickness and
experimental surface velocity distributions.
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