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I. Introduction

The NAVSTAR Global Positioning System (GPS) is a satellite navigation
system currently under development by the Department of Defense. A
joint-Service program office was established in 1974 at the Air Force Space
and Missile Systems Organization in Los Angeles, California. Tests conducted
between 1974 and the present have verified the system concept and the
predicted system performance. GPS will consist of twenty four satellites,
inclined 60 degrees to the equator, in twelve hour orbits. The GPS signal
is a spread spectrum signal with two pseudo-random noise codes in quadature.
A 50 bit per second data bit stream is modulated on both codes. The data
stream contains system time, satellite clock characteristics data, satellite
ephemerides, plus other status indicator data.

The National Aeronautics and Space Administration (NASA), Goddard
Space Flight Center, has developed a concept utilizing a geostationary
reference satellite (REFSAT) that broadcasts every four seconds updated
GPS satellite coordinates. This procedure reduces the complexity of the
GPS receiver. For an overview of the NASA concept, referenee (1) is an
excellent paper. This paper should be reviewed to understand the REFSAT
and GPS receiver interface.

NASA initial direction was to:

1. Quantify the economic and performance payoffs associated with
replacing maritime shipborne navigation systems with NAVSTAR, and

2. Evaluate the use of NAVSTAR for measurements of ocean currents in

the broad ocean areas of the world.



During this contract period, a single channel GPS receiver was developed
by Systematics General Corporation. This unit includes the RF/IF hardware,
L-band synchronizer and frequency reference, code tracking loop, carrier
tracking loop and digital processor. The software control and signal
processing software were developed by Howard University, Washington, D.C.
There was a requirement to develop a dynamic software program to position
a ship at sea. Colorado State University (CSU) was redirected to develop

this software and integrate the software into the REFSAT receiver.

2. Initial Research

Cargo and transport ship velocities in the range of 10 to 20 knots can
have their speed through the water reduced by 10-20% by ocean currents.
The general trend in ocean currents is quite well understood and has been
the subject of numerous analytical efforts (2) and also many empirical
studies with resulting sea charts published by the United States Navy. The
Pilot Charts include recommended sea-lanes and make the distinction between
full and low-powered ships(3).

These currents are time-varying. In particular, both the Gulf Stream
and the Japanese Current, two of the predominant sourceé of general oceanic
circulation for the Northern Hemisphere, can have marked variations,
particularly along the edges of the mainstream of the current itself. As a
result, it is worthwhile to seek minimum-fuel ocean passages which rely on
an understanding of the fine grain, time-varying structure of those ocean
currents.

Receivers using the GPS signal have the capability to accurately
measure ocean currents. This information could be relayed via satellite to a
central data reduction center where the real-time current data could be
integrated into the computer data banks. The updated data file could then

be used to project the minimum sailing time route back to the ship.



If the use of GPS would allow an improvement of half a knot in forward
speed, there is a rather remarkable cost savings in dollars-per-year for the
tanker fleet. From Table 1, one can see that a tanker in the 100,000-ton
class can realize savings of as much as $90,000 per year, if the knowledge of
ocean currents allows a speed improvement of .46 knots. Figure 1 is an
extract from the pilot chart of the North Atlantic for July 1978. It shows
a path which is prescribed for low-powered ships to gulf ports; the path passes

through regions of extremely confused currents.

TANKER PERFORMANCE CHART (4)

Tanker Avg. Speed 3% Speed ATTU** Savings/
Displacement Knots TTU/Year* $/TTU Improvements A3% Speed Year
19,000
( FOMALHAUT) 14.5 873 $1,276  .435 kts. 2.86% 31,858
52,000 | |
(VIRGO) 16.25 2882 $ 892  .487 kts. 2.80% 71,980
94,090
(DRACO) 15.3 4810 $ 666  .459 kts. 2.81% 90,017

* A TTU is 106 ton miles
** 10,000 mile round voyage

Table 1. Cost Savings Due to Speed Improvements

Note that the dashed lines on Figure 1 reflect current uncertainty. The
pilot charts reflect many examples of such unpredictable currents. An
important case is that in the Gulf of Alaska, in which the area has extensive
dashed currents for the month of July,1978. This is the area currently being
traversed by the Alaskan tanker fleet. Shown on Table 1 are the overall
savings in dollars-per-year versus speed improvements for three classes of

ship.
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Ocean Currents from North Atlantic Pilot Chart



The initial research was directed toward constructing an algorithm that
would give the minimum sailing time route between two points on the earth.

To specify a position on the earth's surface we need two angles, ©6 and ¢ .
Let (60,¢O) be the position of the point of origin and (6],¢]) the destination.
Using © as a parameter, a function &(6) is determined which provides the
minimum sailing time.

First an integral is developed which provides the sailing time in terms
of ocean currents, ship speed and ®(6). To find the function that minimizes
this integral we apply calculus of variations methods to a second order differ-
ential equation - Euler's equation with boundary conditions. The Euler's
equation is quite long and nonlinear. Solving the equation numerically, the
interval from 6y to 9, is divided into n subintervals. The first and
second derivatives of &(6) at each end point of the subinterval are approxi-
mated by using Taylor's theorem. In place of the Euler's equation we now
have a system of n-1 nonlinear algebraic equations in the unknowns
@(60+iAe)(i=1,...,n-1) plus the boundafy conditions.

Let F be this system of equations and X the n-1 vector of values of

o(6,+i06). Next the system F(X)=0 is solved. This system can be rewritten

0
F(X) + X = G(X) = X.

This system is solved by iterating on an initial guess 50 using the equation
Xeeq = 8(X) where k = 0,1,3...

CSU was in the process of implementing the system on the computer when
we were redirected to develop a navigation filtering algorithm to support the
REFSAT approach to low cost GPS terminals.

Some analytical approaches to solving this optimization problem are

described in Appendix A.



3. Development of Navigational Filtering Algorithms.

CSU was directed to support the REFSAT development by developing naviga-
tion filtering algorithms. This research includes coordination with Howard
University and Systematics General. The hardware developed by Systematics
General Corporation was to be integrated with the digital processing and
operational software developed by Howard University. Development problems
delayed the integration. CSU was requested to have the software available
for integration in the shmmer of 1981. Unfortunately, funding to the hardware
and software activities was not available. Funds set aside for the integra-
tion of the navigation software have been returned by CSU to NASA.

The navigation software was to be resident in the REFSAT receiver
processor. As the digital processing and operational software developed, it
appeared that insufficient space would be available, both from a throughput
and a memory point of view. It was therefore concluded that the software
should not be developed independent of the operating REFSAT receiver.
Informétion on the Navigation Function Driver (NAVFUNC) has been received
from Howard University. It is possible that some of the data calculated in
the subroutines could be used to reduce the computation time of the navigation
filter. If the NAVFUNC data is not retrievable, then a method similar to the
one used by A. J. Van Dierendonck (5) must be used to obtain the NAVSTAR
satellite coordinates.

Time to calcualte the navigation solution is very limited. It is estimated
that it will take from 5-10 seconds to calculate the necessary variables
needed for the navigation algorithm. The solution of the ship's position will
take from 15-30 seconds. For exampie, to solve for the linear system repre-

sented by



Hx =y (rank 5)
takes from 1.7 to 2.1 seconds to solve. A listing of the program to solve this
system is listed in Appendix B. The dead reckoning portion will take another
5-10 seconds, for a total computational time of slightly less than one minute.
Times are based onan 8080/Z80 based microprocessor (v 2MHZ clock).

The accuracy of the position and velocity of the ship will be impacted
by the ship's motion: headway, surge, leeway, sway, heave, roll, pitch and
yaw. Of these motions, roll will have the greatest adverse impact. Large
ships (over 150 meters in length) can have roll periods up to 13 seconds.

By taking a sampling period much greater (~ 5t) than the period of roll the
short term vessel's motion could be treated as increased noise.

The initial navigation algorithm will be based on the work of Noe, Myers
and Wu (6). The navigation solution will be strongly dependentvupon system
noise. Since the REFSAT receiver performance has not been fully defined,

the navigation accuracy can not yet be determined.

4, Future Efforts

The incorporation of the navigation filter into the REFSAT receiver should
take approximately one month. If the receiver is not operational or persons
familiar with the receiver are not available for consultation then the period
of effort would extend several months. CSU has the personnel capable of making
the receiver operational and wou1d be pleased to continue this effort if and

when funding becomes available.
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Appendix A

The trajectory optimization problem discussed in Section 2 is described
in more detail in this appendix. A simplified analytical formulation is
presented based on a kinematical analysis and a closed form solution to this
simplified problem is presented. Next, various complications are added and
the form of the optimal controller for each variation is presented. Finally,
a dynamical formulation is presented and its solution is discussed.

The problem of determining the optimal trajectory for a ship may be
described in simplified terms as follows. Consider the situation represented
on Figure A.1. The problem is to determine the steering angle, 6(t), that
results in a transfer of the ship from its initial position (Lo,ao) to
a final position (Lf,af) in minimum time. Without loss of generality we may
assume that the final latitude, L, is zero. Also, without loss of generality,
we may assume that the motion takes place on a unit sphere and that the

ship's speed relative to the water is unity.

Model No. 1. No Ocean Currents

For this inftia] problem we assume that there are no ocean currents.
This provides a starting point for which we can obtain a closed form analytical
solution. We may then add the ocean currents to the model and attempt to
build a solution in steps.

The kinematic equations may be written as
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Figure A.1. Ship's Trajectory



%= sin 6 (A.1)
do. _ cos ©
dt " cos L (A.2)

The payoff function may be defined as

where te is the final time. We wish to determine 6(t) such that ¢ is
maximized as this is equivalent to minimizing the time required for the

transfer to take place. The terminal constraints are

vy = L(tg) =0 (A.4)
The Hamiltonian function»is
- . cos ©
H AL sin 6 + A el (A.6)

A necessary condition for optimality is that the control, 8(t), maximizes the
Hamiltonian. Therefore the optimal control is determined unambiguously by

the equations

sin 6 =% / ‘[Ai + A2 / cos? L | (A.7)

cos 0 = (Aa/cos L) / Vﬁ;ﬁ + xé / cos? L (A.8)



Equations (A.7) and (A.8) specify the
variables AL and Aa' These, in turn,

equations.

il

dt

optimal control in terms of the adjoint

are determined from the following

oH
oL
Aa cos 6 sin L / cosZL (A.9)
9H
oL
(A.10)

The adjoint variables are determined at the final time, tf, from the trans-

versality condition

T = (3% _ T 3y
Mte) = (5 - v 5 )t (A.11)
f
where XT = (L,a). From equation (A.3),
29 -
3y (0 0) (A.12)
te
and from equations (A.4 ) and (A.5)
1 0
Wl - (A.13)
X1, 0 1
te



Therefore

(s Ay

(A.14)

The components of vT represent the sensitivities in the payoff function, ¢,

to changes in the components of the state vector at the final time.

Consequently

v] = -sin ef

and

<
|

= -C0S ef

and therefore

AL(tf) = sin O¢

and

Ay (tf) = cos O
An additional necessary condition is that
d T ,
It Lo-viy ]I
L

Expanding,

at

R - ]l

(A.15)

(A.16)

(A.17)

(A.18)



Recalling equations (A.1), (A.2), (A.6), and (A.11), and using the fact that

%%.: -1 and %% = 0, this reduces to
H =1 (A.19)

Also, since the Hamiltonian is not an explicit function of time it must be
constant along an optimal trajectory. Therefore, necessarily

H=1

along the optimal path. This provides us with the following equation for AL:

ALZ =1 - cos2 6f / cos2 L (A.20)

The above system of equations may be solved in closed form; the solu-

tions are
L(t) = -sin” [sin 8, sin(t - t)] (A.21)
a(t) = o - tan”' [cos 6, tan (t, - t)] (A.22)
KL(t) = cos (tf -t/ /Eotz 0e + cosz(tf - t) (A.23)
A (t) = cos 6 (A.24)
and

o(t) = tan"! [tan 6, cos (tg - t)] (A.25)
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These solutions may be verified by substituting them back into the differential
equations. For any given value for Ofs the above equations define a two-

parameter family of trajectories on the sphere. The two parameters are

ef and tf.
Given any arbitrary state (L,o) at some time t < tf one may solve for
ef and tf in terms of L, a, and t. The results are
_ -1 -tan L
% = tan o a) (A.26)
and
te=t+ cos'] [cos L cos (af - a)l. (A.27)

These relations for ef and tf may be substituted into equations (A.23),
(A.24) and (A.25) to obtain the optimal values for the adjoint variables and

the control. The results are

)\L* (L,a,t) = - sin L / /sinz L + tanz (af _ OL) (A.28)
* = -
Aa (L,a,t) = cos L tan (af a) / /7sin2 L + tan? (af _ a) (A.29)
and
o* (L,a,t) = tan! [ -sin L ] (A.30)
s tan (&f - o) .
The optimal value for the payoff function is
¢* (L,a,t) = -tf* (L,a,t) - cos'] [cos L cos (af - a)] (A.31)



Model No. 2. Constant Current (East or West)
We next consider a situation in which there is a constant ocean current
in the easterly or westerly direction. In this case the kinematical equations

are

g—‘£= sin © (A.32)
d *
_% ) Cozog L : (.33)
The Hamiltonian is
H = X cos 8+, (EQ%Bé?i?_E) (A.34)

The Hamiltonian is again maximized by the control

AL Au cos L
sin 6 = , COS 6 = (A.35)

'/ 2 2 2 '/ 2 2 2
AL + Aa / cos“ L AL + Aa / cos“ L

That is, the optimal control is determined by the same equations as for the
first problem.

Also, we still have that

gt-ng—‘Ht = 0 (A.36)
f

9 _ T 9y, dx 3¢ _ Ty -

3x -V 5 dt Itf g o v te° (A.37)



T 3¢ T 3y _ g
Therefore A (§$‘- v ETJ ¢ =0 (4.
f f
But
9 - W
T -1, 5 0 (4.
Also
ATFIt = K
f
Therefore Hk = + ] (A.
f
Also H # H(t) ; ~ %%-= 0 along the optimal trajectory; also, we have that
H =1 along the optimal trajectory. Hence
. cos 6 k  _
>\L Sind + Xa cos L-i o cos L 7 ! (A
The adjoint equations are
dx .
L -9H sin L
- =—-= - X (cos & + k) (A
dt oL a — coszL
and
?A_a.::_ﬁzo (A
dt oo
Also, we still have
. atf
Xy (tf) = 3 = cos O (A.

38)

39)

40)

.41)

.42)

.43)

44)



Also, from H = 1,
2 2
AL (A, /7 cos L) \ A, K _
/ 2 2 2 ¥ / 2 2 2 - cos L
XL + Aa / cos® L AL + Aa / cos“L
WA W
costL  ~cos b
2 _ Xk A2k? 2> k
) 2 ¢ Ao (17— )2 .7 4sa 7 a
L cos? L cos L cos 2L cos L

The solution proceeds along the same lines as for the first problem.

Model Number 3. Constant Current (North and South)

Let Vc = constant in the north or south direction. Then

%% =sin 6 + k
do _ Cos 6
dt cos L
= i cos &
H=2x (sing +k)+ A, Cos L
A
= A sin 8 + 2 cos 0 + kA

Again the control law will remain the same.

(A.45)

(A.46)

(A.47)

(A.48)
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That is

KL Aa /] cos L
sin 8 = , COS 8 = (A.49)
‘/ALZ + A3 ‘/xLZ + a2
cos? L cos? L
But the adjoint equations are
dA A Cos B
.at_L = o g_[{. = o ._(.}' > sin L (A.SO)
cos L
dx
H
at—“'=-g—a=o (A.51)

Again we see that the addition of a constant current to the model results in
the same form of solution. Clearly the second and third models may be

combined.

Model No. 4. Linearly Increasing Currents (East and West)
Now suppose that the ocean current is a linearly increasing function of

latitude. That is

Vo =+ ki (A.52)

Then the system equations are
%% = sin 0 (A.53)
da _ cos 6 + kL (A.54)
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The Hamiltonian is

H=2X sing + Aa(cos 6 + kL)/cos L (A.55)

L

The optimal control law still remains the same as before; the adjoint variables,
which actually determine the optimal control as a function of time are given

in this case by

dA . kA
L sinlL  —""a
— = - A (cos 6 + kL) + (A.56)
dt o c052 L cos L
dx
o _
T 0 (A.57)

The solution technique proceeds in the same manner as before.

Model No. 5. Linearly Increasing Currents (North or South)

In this case consider

Vc = + ka (A.58)
Then the system equations are
S =sino+ke (A.59)
do _ cos © '
dt ~ cos L (R.60)

The Hamiltonian is

H = AL(sin 6 + ka) + A, cos 8/cos L (A.61)
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Again there is no change in the optimal control law. The adjoint equations are

di

L _ . 2
rrail Aa cos 6 sin L/cos” | (A.62)
and
dA, _
2= Tl (A.63)

Thus we are no longer have that Aa is constant along an optimal trajectory.

Model No. 6. Dynamical Model

The problem of determining the optimal steering angle to minimize transfer
time is similar to the problem of steering a ship to minimize propulsion losses.
This latter problem has been addressed [A.1], [A.2] and is briefly discussed
below. Comsider the representation depicted in Figure A.2. The ship's

equations of motion may be written as

(m-Y") - v, -y ; Y -
" v . r v Yp 0 v v Yp-mu Yp ¢ v Sr YD
- - - (N’ N N
v 2z r (Np +Ix2)0 r ) v - Np N¢ r o ND (A 64)
_KV _(Kz‘ * Ixz) (1 - K)o P + st ¢
0 L K, K K K p K. |°F K
0 0 1 & v r p () ér D
0 0 1 0 ¢ 0 0
where
Y = yaw
V = sway
p = roll

and YD’ ND’ KD represent the external disturbances on the ship due to the

seaway. In addition, the ship's lateral motion is defined by

v + Uy (A.65)

. .
L]

Yy = r. (A.66)
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Fig. A.2 Ship coordinate system-body axes coordinates,
forces, and moments. Abstracted from [A.1].

Equations (A.64), (A.65), and (A.66) may be written in state space representa-
tion as

AX = BX + Cu + DW , (A.67)

or, rewriting in standard form

X = FX +Blu+ 6w | (A.68)
where F=A'1B, BT=A']C; and G=A—]D. The state vector is X, the control vector

is u, and the disturbance vector is W.
Representative open loop lateral plane system eigenvalues for a highspeed
containership at full-load design condition for speeds of 16, 23, and 32

knots are [A.1]:



16 Knots

23 Knots

32 Knots

.839 x 10°

17 x 107
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.00

.0584 x 1072

792 x 107

.00

2

114
.00

1

.158
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A simulation model for this system has been developed [A.1] and is represented

pictorially by the block diagram shown on Figure A.3.
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Figure A.3 Nonlinear simulation model.
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Abstracted from [A.1].

The problem is to determine the controller that will minimize propulsion

losses due to

steering.

These losses may be shown to result from excess

power consumption per unit distance travelled in the X-direction caused by

the added resistance due to steering.

surge due to steering, which is

This is related to the instantaneous
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AX = (m + (p/2) LAX! ) vr + (1/2)1(p/2) AX! ] v2 (A.69)
+ (1/2)[(0/2) X' o UP] 67

where m denotes mass of ship; p, density of sea water; L, ship length between
perpendiculars; A=L2; U, ship's water speed; v, sway velocity of ship; r, yaw
rate of ship; &, rudder angle; X&r’ force coefficient due to yaw/sway (+ve);

XIGG’ force coefficient due to rudder angle (-ve); X&v’ force coefficient due

to sway. From this, the mean surge relevant to steering may be written as:

AX

[m + (p/2) LAXS 1 (v, r./2) cos (¢, - ¢.)

r

<+

(172) [(p/2) AX} 1(vE/2)

(172) [(p/2) AXys UP1(62/2) (A.70)

-+

!

Since the ship motions resulting from seaway disturbances areoscillatory, a

performance criterion for added resistance due to steering may be formulated

as:
3= (1/2) £ [ vr + nv? + 627 dt (A.71)
0
where
A = 2[m + (p/2) LAY, J/[(p/2) AX}g U°] (A.72)
no= X kg U (A.73)

both inversely proportional to speed squared.
The simulation program described in Ref. [A.1] has been used for the
purpose of evaluating controllers to minimize the cost function, J, defined

by equation (A.71).
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By combining the two methods of analysis described in this appendix the

global optimal controller may be determined.
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APPENDIX B

This appendix includes the 1isting of the program to solve the linear
system Hx = y of rank five. Two routines are used to solve the same linear
system.

Subroutine SOLVEO is written in the normal FORTRAN manner using Do-loops,
double subscripting, etc. Subroutine SOLVE is written in a more primitive
way. SOLVE evaluates all subscripts by single additions, uses no Do-loops, and
isolates floating point operations in a way that will facilitate an easy
transition to an assembly language version of the code.

Code developed for the navigation filter will incorporate the features of
SOLVE. If the time required to obtain a ship's position needs to be reduced
then the program could be written with a minimum of effort.

On the MDS-230 system (w2 MHz) the approximate times required for the
two methods are:

SOLVEO 2.1 sec.

SOLVE 1.7 sec.
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COMT IMNUE

FRU=SE - EHWD OF FIFRST LOOF

MMEITECIM, a2

FORMRAT D
) 7T I=1.
WMEITEC I, =
0T IMUE
WREITECIM, 261y C@@acIx, I=s1, S0

FORMAT AT SOLITION YECTOR =87 ASd0dx, EAL. S0

:
'

G CHTHOCI, o0, J=1, &2

FRJSE < BEGIM SECOMD LOOE
ol =@ I=1. ITEFR

CALL SOLYECH. HTH. . 5

COMT IMUE

FRIJSE * END OF SECOND LOOF

DO 166 Bl 5 -
WRITECIM, ZG2 (HTHCI. Jo,/ J=1. &7
ZOMT INUE

WRITECIW, 4182 CXCI>», I=1., 50
FORMAT (A7 SOUlLUT IO JEITUF AKRUOSSCAEELYL Sa0
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Erl
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SUEBRDUTINE SOLVEDCH. G, W, M0
CIMEMNSION HOZ3, S, GCS, S, Yolgn, HoSs
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O
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[xv]
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J=1.95
5] I=1.5
1500 T =
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C
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foed
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=1, 24
N JawHOkL I
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CONT IHUE
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TTN ol O o
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F
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0T IMNUE
Gel.sn= =

COMTIMNUE

COMT IMNUE
CONT IMNUE
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HOn 2
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o

CONTINUE
FRETLRM
EMD
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p=Y W] ¥ SN P W Y 8
DIMENSTOM HOC1l», Gody
INTEGER GRDF. HADR. YA

INTEGER »ADR. ROFTFR.
GIFTR, GIFTR,
INTEGEFR#+1 I, 3.}

-+

HADR=
GHDF=
YRDR=
AHRDE=

1
1
i
1

GETR= GRDE

HTERZE. HFTE.

‘LL\"E'\H) U W, 2

t.T'(i)f' X(1>
ADR. GFTR, GTERSE., HERSE.
HTFTR. YEBRSE, YFTR

GIBASE. GIEBASE. RFTER.
GEASE. =FTE

STER=ZE= GRHDF - &
HER=ZE= HALFR - =%

J= &

J= J-1

IFCY Ex g GO T 1868
STERSE= GTEARSE + 1

GTFTRE= SGTEASE

HTERZE= HRDFR — 25
HERZE= HEHZE + =%
I= &

I= 1I-1

IFCI. B &y G0 To aa

GRETR=
GTRTR=

GFTR + 1
GTFTR + 5

HTEARZE= HTEARZSE + =4
IFCTI, LT, Joa &0 T 26
HFTRE= HEHRZE

HTFTRE= HTEHZE

o= F

E= 25

k= k-1

IFCE, EG 0 G0 TO S&

HF TR=
HTFTF=

HFTF + 1
HTFTRE + 1

S= S + HOIHFTR M
GO TO e,
GCGFTRYM=.<

IFCI ER. I3 GO TO Zi

GIGTFTR M=
GO TO za

HTFTR

ORIGINAL PAGE 1S
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Xy

HETR= HEDE - 1 ' ORIGINAL PAGE IS
YERSE= VRDFE - 1 OF POOR QUALITY

= 8,
= =%

I= 1-1
TFCL. Eqn @ GO T 136
HETR= HETR + 1
wETR= YETR + 1

S= S 4 HiREPTR Y OYPTRD
30 T A3
GosPTR»= =
L T 116

FOFTR= GRDFE - &
GIERSE= GROE - &

1
J
JOEG S G TO Z0E
TR= FEAOFTE + &

1. A5 RBFTRE Y
= ROFTE

GIEBARSE= GJERSE +
SIER=SE= GJIERSE

Ty

I= J
I= I+1
IFCI. B &3 G50 TO
FFTRE= RFTR + 41
= RO+®GIREFTRE?
SIEBARSE= GIEBARZE + 1
GIFTR= GIEAZE
SIFTR= GJEASE

r!l-l
e

b= I
b= k<41
IFCK. EQ. Vo GO TO 226
GIFTRE= GIFTR + S
GJFTR= GJFTR + S
SGCGIFTR»= RxGCGIFTRE Y + GCGIFTE
GO TO 2=z '

-’



SOLUTION VECTOR W

L AZZEZE+GR S9SIZTE+ON — S27FTV1E-91 - 21159E+130
E'LHTIHN WECTOR
— 1Z2ZEZE+4HE | 2R TE+OE — E2TT1E-B1 - Z115S3E+308

R
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W
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OR!GINAL PAGE iS
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GBERZE= GRDFR + 26
I= &

I= I-1

IFCI. EG @ GO TO I3
GERSE= GERASE - 1
GFTR= GBEAR:SE

WFPTRE= HADR + S

= GCGFTR

J= £

J= -1

IFCI Ece I S0 TO ZZ64
GFTR= GFTR - S

#FTR= ®FTFR - 1

= 5 — GOCGRTRI#MOHFPTR
GO T =28
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