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I. Introduction

The NAVSTAR Global Positioning System (GPS) is a satellite navigation

system currently under development by the Department of Defense. A

joint-Service program office was established in 1974 at the Air Force Space

and Missile Systems Organization in Los Angeles, California. Tests conducted

between 1974 and the present have verified the system concept and the

predicted system performance. GPS will consist of twenty four satellites,

inclined 60 degrees to the equator, in twelve hour orbits. The GPS signal

is a spread spectrum signal with two pseudo-random noise codes in quadature.

A 50 bit per second data bit stream is modulated on both codes. The data

stream contains system time, satellite clock characteristics data, satellite

ephemerides, plus other status indicator data.

The National Aeronautics and Space Administration (NASA), Goddard

Space Flight Center, has developed a concept utilizing a geostationary

reference satellite (REFSAT) that broadcasts every four seconds updated

GPS satellite coordinates. This procedure reduces the complexity of the

GPS receiver. For an overview of the NASA concept, reference (1) is an

excellent paper. This paper should be reviewed to understand the REFSAT

and GPS receiver interface.

NASA initial direction was to:

1. Quantify the economic and performance payoffs associated with

replacing maritime shipborne navigation systems with NAVSTAR, and

2. Evaluate the use of NAVSTAR for measurements of ocean currents in

the broad ocean areas of the world.
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During this contract period, a single channel GPS receiver was developed

by Systematics General Corporation. This unit includes the RF/IF hardware,

L-band synchronizer and frequency reference, code tracking loop, carrier

tracking loop and digital processor. The software control and signal

processing software were developed by Howard University, Washington, D.C.

There was a requirement to develop a dynamic software program to position

a ship at sea. Colorado State University (CSU) was redirected to develop

this software and integrate the software into the REFSAT receiver.

2. Initial Research

Cargo and transport ship velocities in the range of 10 to 20 knots can

have their speed through the water reduced by 10-20% by ocean currents.

The general trend in ocean currents is quite well understood and has been

the subject of numerous analytical efforts (2) and also many empirical

studies with resulting sea charts published by the United States Navy. The

Pilot Charts include recommended sea-lanes and make the distinction between

full and low-powered ships(3).

These currents are time-varying. In particular, both the Gulf Stream

and the Japanese Current, two of the predominant sources of general oceanic

circulation for the Northern Hemisphere, can have marked variations,

particularly along the edges of the mainstream of the current itself. As a

result, it is worthwhile to seek minimum-fuel ocean passages which rely on

an understanding of the fine grain, time-varying structure of those ocean

currents.

Receivers using the GPS signal have the capability to accurately

measure ocean currents. This information could be relayed via satellite to a

central data reduction center where the real-time current data could be

integrated into the computer data banks. The updated data file could then

be used to project the minimum sailing time route back to the ship.
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If the use of GPS would al low an improvement of half a knot in forward

speed, there is a rather remarkable cost savings in dollars-per-year for the

tanker fleet. From Table 1, one can see that a tanker in the 100,000-ton

class can realize savings of as much as $90,000 per year, if the knowledge of

ocean currents allows a speed improvement of .46 knots. Figure 1 is an

extract from the pilot chart of the North Atlantic for July 1978. It shows

a path which is prescribed for low-powered ships to gulf ports; the path passes

through regions of extremely confused currents.

TANKER PERFORMANCE CHART (4)

Tanker Avg. Speed 3% Speed ATTU** Savings/
Displacement Knots TTU/Year* $/TTU Improvements A3% Speed Year

19,000
(FOMALHAUT)

52,000
(VIRGO)

94,090
(DRACO)

14

16

15

.5

.25

.3

873

2882

4810

$1

$

$

,276

892

666

.435

.487

.459

kts.

kts.

kts.

2

2

2

.86%

.80%

.81%

31

71

90

,858

,980

,017

* A TTU is 106 ton miles
** 10,000 mile round voyage

Table 1. Cost Savings Due to Speed Improvements

Note that the dashed lines on Figure 1 reflect current uncertainty. The

pilot charts reflect many examples of such unpredictable currents. An

important case is that in the Gulf of Alaska, in which the area has extensive

dashed currents for the month of July,1978. This is the area currently being

traversed by the Alaskan tanker fleet. Shown on Table 1 are the overall

savings in dollars-per-year versus speed improvements for three classes of

ship.
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Figure 1. Ocean Currents from North Atlantic Pilot Chart
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The initial research was directed toward constructing an algorithm that

would give the minimum sailing time route between two points on the earth.

To specify a position on the earth's surface we need two angles, 6 and 4> .

Let (GQ.CJJQ) be the position of the point of origin and (6, ,$, ) the destination,

Using 9 as a parameter, a function $(6) is determined which provides the

minimum sailing time.

First an integral is developed which provides the sailing time in terms

of ocean currents, ship speed and $(6). To find the function that minimizes

this integral we apply calculus of variations methods to a second order differ-

ential equation - Euler's equation with boundary conditions. The Euler's

equation is quite long and nonlinear. Solving the equation numerically, the

interval from 6Q to 6, is divided into n subintervals. The first and

second derivatives of $(9) at each end point of the subinterval are approxi-

mated by using Taylor's theorem. In place of the Euler's equation we now

have a system of n-1 nonlinear algebraic equations in the unknowns

$(9Q+iA9)(i=l ,. . . ,n-l ) plus the boundary conditions.

Let £ be this system of equations and X. the n-1 vector of values of

$(9Q+iA9). Next the system £(X_)=0 is solved. This system can be rewritten

This system is solved by iterating on an initial guess X^ using the equation

4+1 = K^) where k = 0,1,3...

CSU was in the process of implementing the system on the computer when

we were redirected to develop a navigation filtering algorithm to support the

REFSAT approach to low cost GPS terminals.

Some analytical approaches to solving this optimization problem are

described in Appendix A.
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3. Development of Navigational Filtering Algorithms.

CSU was directed to support the REFSAT development by developing naviga-

tion filtering algorithms. This research includes coordination with Howard

University and Systematics General. The hardware developed by Systematics

General Corporation was to be integrated with the digital processing and

operational software developed by Howard University. Development problems

delayed the integration. CSU was requested to have the software available

for integration in the summer of 1981. Unfortunately, funding to the hardware

and software activities was not available. Funds set aside for the integra-

tion of the navigation software have been returned by CSU to NASA.

The navigation software was to be resident in the REFSAT receiver

processor. As the digital processing and operational software developed, it

appeared that insufficient space would be available, both from a throughput

and a memory point of view. It was therefore concluded that the software

should not be developed independent of the operating REFSAT receiver.

Information on the Navigation Function Driver (NAVFUNC) has been received

from Howard University. It is possible that some of the data calculated in

the subroutines could be used to reduce the computation time of the navigation

filter. If the NAVFUNC data is not retrievable, then a method similar to the

one used by A. J. Van Dierendonck (5) must be used to obtain the NAVSTAR

satellite coordinates.

Time to calcualte the navigation solution is very limited. It is estimated

that it will take from 5-10 seconds to calculate the necessary variables

needed for the navigation algorithm. The solution of the ship's position will

take from 15-30 seconds. For example, to solve for the linear system repre-

sented by
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Hx = y (rank 5)

takes from 1.7 to 2.1 seconds to solve. A listing of the program to solve this

system is listed in Appendix B. The dead reckoning portion will take another

5-10 seconds, for a total computational time of slightly less than one minute.

Times are based onan8080/Z80 based microprocessor (^ 2MHZ clock).

The accuracy of the position and velocity of the ship will be impacted

by the ship's motion: headway, surge, leeway, sway, heave, roll, pitch and

yaw. Of these motions, roll will have the greatest adverse impact. Large

ships (over 150 meters in length) can have roll periods up to 13 seconds.

By taking a sampling period much greater (^ 5i) than the period of roll the

short term vessel's motion could be treated as increased noise.

The initial navigation algorithm will be based on the work of Noe, Myers

and Wu (6). The navigation solution will be strongly dependent upon system

noise. Since the REFSAT receiver performance has not been fully defined,

the navigation accuracy can not yet be determined.

4. Future Efforts

The incorporation of the navigation filter into the REFSAT receiver should

take approximately one month. If the receiver is not operational or persons

familiar with the receiver are not available for consultation then the period

of effort would extend several months. CSU has the personnel capable of making

the receiver operational and would be pleased to continue this effort if and

when funding becomes available.
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Appendix A

The trajectory optimization problem discussed in Section 2 is described

in more detail in this appendix. A simplified analytical formulation is

presented based on a kinematical analysis and a closed form solution to this

simplified problem is presented. Next, various complications are added and

the form of the optimal controller for each variation is presented. Finally,

a dynamical formulation is presented and its solution is discussed.

The problem of determining the optimal trajectory for a ship may be

described in simplified terms as follows. Consider the situation represented

on Figure A.I. The problem is to determine the steering angle, 6(t), that

results in a transfer of the ship from its initial position (L ,a ) to

a final position (Lf,af) in minimum time. Without loss of generality we may

assume that the final latitude, L^, is zero. Also, without loss of generality,

we may assume that the motion takes place on a unit sphere and that the

ship's speed relative to the water is unity.

Model No. 1. No Ocean Currents

For this initial problem we assume that there are no ocean currents.

This provides a starting point for which we can obtain a closed form analytical

solution. We may then add the ocean currents to the model and attempt to

build a solution in steps.

The kinematic equations may be written as



ORIGINAL PA2 £3
OF POOR QUALITY

Figure A.I . Ship 's Trajectory
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^=r = sin 0 (A.I)

.44. r (A.2)dt cos L

The payoff function may be defined as

4. = -tf (A.3)

where tf is the final time. We wish to determine 0(t) such that <(> is

maximized as this is equivalent to minimizing the time required for the

transfer to take place. The terminal constraints are

*-, = L(tf) = 0 (A.4)

\|>2 = a(tf) - af = 0 (A.5)

The Hamiltonian function is

""" Qr ( A - 6 )

A necessary condition for optimality is that the control, 6(t), maximizes the

Hamiltonian. Therefore the optimal control is determined unambiguously by

the equations

sin 9 = X. IVL ' y X? + X2 / cos2 L (A.7)
L. LX

cos 6 = (Xa/cos L) / / xj + X2 / COS2 L (A<8)
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Equations (A.7) and (A.8) specify the optimal control in terms of the adjoint

variables A., and A. . These, in turn, are determined from the following
L— UC

equations.

dt 9L

= - A cos 6 sin L / cos L (A.9)

a
dt

111
3L

= 0 (A.10)

The adjoint variables are determined at the final time, t^, from the trans-

versal ity condition

(A.11)

where x = (L,a). From equation (A.3),

= (o o) (A.12)

and from equations (A.4 ) and (A.5)

3X

1 0

0 1
(A.13)
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Therefore

(AL, x ) = (-v] -v2) (A.14)
tf

The components of v represent the sensitivities in the payoff function, <j),

to changes in the components of the state vector at the final time.

Consequently

and

v-| = -sin

= -cos 6,

and therefore

= sin (A.15)

and

(tf) = cos 6f (A.16)

An additional necessary condition is that

Expanding,

= 0

= 0

(A.17)

(A.18)
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Recalling equations (A.I), (A.2), (A.6), and (A.11), and using the fact that

-1 and - = °> this reduces to

H , = 1 (A.19)|tf

Also, since the Hamiltonian is not an explicit function of time it must be

constant along an optimal trajectory. Therefore, necessarily

H 5 1

along the optimal path. This provides us with the following equation for X. :

\L
2 = 1 - cos2 6f / cos2 L (A.20)

The above system of equations may be solved in closed form; the solu-

tions are

L(t) = -sin"1 [sin 6f sin(t f - t)] (A.21)

a(t) = af - tan"
1 [cos 6f tan (tf - t)] (A.22)

XL(t) = cos (tf - t) / /Cot2 Q + CQS2(t _ t) (A.23)

Xa(t) = cos 6f (A.24)

and

6(t) = tan"1 [tan 6f cos (tf - t)] (A .25)
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These solutions may be verified by substituting them back into the differential

equations. For any given value for a*, the above equations define a two-

parameter family of trajectories on the sphere. The two parameters are

0f and tf.

Given any arbitrary state (L,a) at some time t < tf one may solve for

0.c and tf in terms of L, a, and t. The results are

-1 r -tan L -|
9f = tan Lsin (af - a)

J (A.26)

and

tf = t + cos" [cos L cos (af - a)]. (A.27)

These relations for 0f and tf may be substituted into equations (A.23),

(A.24) and (A.25) to obtain the optimal values for the adjoint variables and

the control. The results are

(L,a.t) = - sin L / /sir,2 L + tan2 ((X . o) (A.28)

V (L'a't} = cos L tan (af - a) / / sin2 L + tan2 (af - a)
 (A'29)

and

8" (L>B.t) - tan'1 [ -^" [ a) ] (A.30)

The optimal value for the payoff function is

<J>* (L,a,t) = -tf* (L,a,t) - cos"1 [cos L cos (af - a)] (A. 31)
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Model No. 2. Constant Current (East or West)

We next consider a situation in which there is a constant ocean current

in the easterly or westerly direction. In this case the kinematical equations

are

4- = sin 6 (A.32)

da _ cos 9 ± k (/L33)
dt cos L

The Hamiltonian is

H = X cos 9 + X (C°* k) (A.34)

The Hamiltonian is again maximized by the control

A. X cos L
sin 9 = L , cos 6-= a (A.35)

L / V + V '

That is, the optimal control is determined by the same equations as for the

first problem.

Also, we still have that

_ = Q
dt v dt tf

 U

+ (ii . V
T 3*) I = o (A 37)tf ^9t v 3t; |tf

 u IA.J/;
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Therefore AT F I + (|i - vT ||) L = 6 (4.38)
' f f

But

3<1> _ n 3^ _ n In OQ\
•^r ~ -I > ~!Tf ~ u ^ t . jy ;

Also

AT F = H

Therefore HL = + 1 (A. 40)

-rr

H = 1 along the optimal trajectory. Hence

Also H ^ H(t) ; ."- -rr = 0 along the optimal trajectory; also, we have that

A. sine -H A -+A - h - E l (A. 41)L a cos L — a cos L

The adjoint equations are

. y c o s e ± k ) i l n_k ( A .4 2 )

and

dA
9L = _ l = n (A 431

dt 8a ° IA- JJ

Also, we still have

Xa (tf = = COS
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Also, from H = 1,

X 2 (X / cos L)2 X k

"X. 2 + X 2 / cos2 L / X 2 + X 2 / cos2L
L a L a

— — cos L

* + A 2 . Xak

X k 9 X2k2 2X k
(A-45)

L cos2 L

The solution proceeds along the same lines as for the first problem.

Model Number 3. Constant Current (North and South)

Let VG = constant in the north or south direction. Then

^[r = sin 6 + k (A.46)

da _ cos 9
dt ~ cos L

H = XL (sin 9 +_ k) + X

X
= XL sin 6 + ~~L cos 6 + kXL (A.48)

Again the control law will remain the same.
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That is

A, A / cos L
sin 6 = , cos 9 = a (A.49)

A. 2 + ^a A. 2 + Aa2

cos2 L cos2 L

But the adjoint equations are

dA. H A cos 9
= - - s 1 n L (A'50)

dA
Ot. _ on n

dt 9oT = 0

Again we see that the addition of a constant current to the model results in

the same form of solution. Clearly the second and third models may be

combined.

Model No. 4. Linearly Increasing Currents (East and West)

Now suppose that the ocean current is a linearly increasing function of

latitude. That is

Vc = + kL (A.52)

Then the system equations are

- = sin 9 (A.53)

da = cos_9±kL
dt cos L
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The Hamiltonian is

H = XL sin 6 + X (cos 6 + kL)/cos L (A. 55)

The optimal control law still remains the same as before; the adjoint variables,

which actually determine the optimal control as a function of time are given

in this case by

dX. .._ kX

dA
"° ( A '5 7 )

The solution technique proceeds in the same manner as before

Model No. 5. Linearly Increasing Currents (North or South)

In this case consider

Vc = + ka (A. 58)

Then the system equations are

^i- = sin 9 + ka (A. 59)

da = cos 9 ,
dt cos L I

The Hamiltonian is

H = X. (sin 8 + ka) + X- cos 6/cos L (A.61)
L — a
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Again there is no change in the optimal control law.' The adjoint equations are

cRT = - A cos 9 sin L/cos^ L (A.62)

and

(A.63)

Thus we are no longer have that A is constant along an optimal trajectory.

Model No. 6. Dynamical Model

The problem of determining the optimal steering angle to minimize transfer

time is similar to the problem of steering a ship to minimize propulsion losses.

This latter problem has been addressed [A.I], [A.2] and is briefly discussed

below. Comsider the representation depicted in Figure A.2. The ship's

equations of motion may be written as

(m - V) - Y.
v r

-N' (I

-K; -or +

Y'p 0

I )0xz
K ' ) 0

P

v

r

P

.*_

Yv Y r - » u Y
p %

Nv N
r
 Np N^

K K K K.v r p <£

0 0 1 0
^ _

v

r

P

-<t)-

+

Y6r
N6r

K6r

_0

6r +

"YD"

ND

KD

0

(A.64)

where

fy = yaw

v = sway

p = roll

and YD, ND> 1C represent the external disturbances on the ship due to the

seaway. In addition, the ship's lateral motion is defined by

y = v + Uijj (A.65)

fy = r. (A.66)
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Fig. A.2 Ship coordinate system-body axes coordinates,
forces, and moments. Abstracted from [A.I].

Equations (A.64), (A.65), and (A.66) may be written in state space representa-

tion as

AX = BX + Cu + DW , (A.67)

or, rewriting in standard form

X = FX + B u + GW (A.68)

where F=A~ B, B =A~ C, and G=A D. The state vector is X, the control vector

is u, and the disturbance vector is W.

Representative open loop lateral plane system eigenvalues for a highspeed

containership at full-load design condition for speeds of 16, 23, and 32

knots are [A.I]:
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r™ARqS
-0.0584 x 10"2

-0.792 x 10"1

23 Knots 0.00

-0.839 x 10"2

-0.114

32 Knots 0.00

-0.117 x 10"1

-0.158

A simulation model for this system has been developed [A.I] and is represented

pictorially by the block diagram shown on Figure A.3.

6Y

is

roc

COMPASS
REPEATER

/

STEP

*

GEAR BAC

Af

KLASM,

/~7.i*

OMPASS

«*co"*ss ( i H-

GYROCOMPASS KINEMATICS

A = p SIN P SEC R

R • - p COS P

P = - q - p SIN P TAN R

SHP HYOROOYNAMC EQUATION

X'FX^ffV0"

SEAWAY DISTURBANCE

-PSEUDO PITCH OYNAMCS

Figure A.3 Nonlinear simulation model. Abstracted from [A.I].

The problem is to determine the controller that will minimize propulsion

losses due to steering. These losses may be shown to result from excess

power consumption per unit distance travelled in the X-direction caused by

the added resistance due to steering. This is related to the instantaneous

surge due to steering, which is
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AX = (m + (p/2) LAX' ) vr + (l/2)](p/2) AX',] v2 (A.69)

+ (l/2)[(p/2) AX'66 U
2] 62

where m denotes mass of ship; p, density of sea water; L, ship length between
2

perpendiculars; A=L ; U, ship's water speed; v, sway velocity of ship; r, yaw

rate of ship; 6, rudder angle; X1 , force coefficient due to yaw/sway (+ve);

X'r-r. force coefficient due to rudder angle (-ve); X' , force coefficient due

to sway. From this, the mean surge relevant to steering may be written as:

AX = [m + (p/2) LAX;r] (va rg/2) cos (4>v - <f>r)

+ (1/2) [(p/2) AX;v](v
2/2)

+ (1/2) [(p/2) AX' U2](62/2) (A.70)
O O Q

Since the ship motions resulting from seaway disturbances are oscillatory, a

performance criterion for added resistance due to steering may be formulated

as:

J = (1/2) r [-A" vr + nv2 + <52] dt (A.71)
o

where

X" = 2[m + (p/2) LAX;r]/[(p/2) AX£6 U
2] (A.72)

n = x;v/x-6 u
2 (A.73)

both inversely proportional to speed squared.

The simulation program described in Ref. [A.I] has been used for the

purpose of evaluating controllers to minimize the cost function, J, defined

by equation (A.71).
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By combining the two methods of analysis described in this appendix the

global optimal controller may be determined.
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APPENDIX B

This appendix includes the listing of the program to solve the linear

system Hx = y of rank five. Two routines are used to solve the same linear

system.

Subroutine SOLVED is written in the normal FORTRAN manner using Do-loops,

double subscripting, etc. Subroutine SOLVE is written in a more primitive

way. SOLVE evaluates all subscripts by single additions, uses no Do-loops, and

isolates floating point operations in a way that will facilitate an easy

transition to an assembly language version of the code.

Code developed for the navigation filter will incorporate the features of

SOLVE. If the time required to obtain a ship's position needs to be reduced

then the program could be written with a minimum of effort.

On the MDS-230 system (^2 MHz) the approximate times required for the

two methods are:

SOLVED 2.1 sec.

SOLVE 1.7 sec.
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c
c
c
c
c

PROGRRM NS
D1 MENS I ON H < 24, 5 > , HTHCi < 5, 6 >, HTH C 5, 6 > , V C 24 > , XO < 5 > , X < 5 >
DRTR IW.-"' e.--1

C
OPEN •:: Uf-J I T= I W, F 1 LE = - : Fl : OUTPT "' >
RERDO, *.. END=999.. ERR=999> ITER
WRITECIW,5> ITER

5 FORMRT <:.-•'"• NUMBER OF ITERRTIONS ON ERCH LOOP = - , 14.••'':.<
C

DO 20 1=1, 24
V •:: I > = SI N •:: FLORT C I > --1 C 24. *3. 14±6 > >
DO Id -J=l, 5
H •:: I, . J ::• = F L O R T •:' I + ..T > + ±. . -' FLORT < I +. J >

IS CONTINUE
20 CONTINUE

C
DO 40 1=1, 24
w F;: i T E (. i t-j, 3 e > < H •:: i, j >, j =1,5 >, v •:: i >

3:8 FORMRTCS-^IX, E10. 4>, 4X, E10. 4>
40 CONTINUE

C
PRUSE •- BEGIN FIRST LOOP
DO 50 1=1, ITER
CRLL SOLVE0':.H, HTHUL V, X0 .:•

50 CONT I NIJE
PRUSE ' END OF FIRST LOOP

C
kWRITE-::iW, 60 >

60 FORMRT-,.-•':•.'
DO 70 1=1,5
WR I TE •:: I W, 3:0 > < HTH0 < I, J > , .J=l, 6 >

70 CONT I NLIE
WR I TE •:: I W, 80 > •:: X0 •:: I >, 1=1, 5 ::>

S0 FORMRT <..'"• SOLUTION VECTOR XO" V5< IX, Ell. 5>^>
C

PRUSE '• BEGIN SECOND LOOP
DO 90 1=1, ITER
CRLL SOLVE <:H, HTH, V, X >

90 CONTINUE
PRUSE " END OF SECOND LOOP

C
DO 100 1̂ =1, 5 '
WRITE CIW/20 > <HTH <I, J >, J=l, 6 >

100 CONTINUE
WR I TE < I W, 110 > <! X C I > , I =1, 5 ::•

110 FORMRT C/' SOLUTION VECTOR X"V5-:: IX, Ell. 5>,'' >
C
999 STOP

END
C:
C
C
C
C



SUBROUTINE SQLVECKH.. G", V.. X>
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OF P°OR «UAUTYDO iee ..T=L 5
DO 80 1=1.. 5
I F<; I. GT. J> GO TO 80
s= 0.
DO 5© K = l, 24
s= s + H<K, .J>*I-KK, i

50 CONT I NUE
G <: I , J > = S
G>:: J, I >= S

89 CONTINUE
100 CONTINUE

DO 15O 1=1, 5
-•= 0.
DO 120 -J = l, 24
s= s + V<J::'*H <-T, i>

120 CONTINUE
G (. I .. 6 > = S

15O CONT I NUE

DO 300 .J =
R8= —1. /G<
JP1= ,

DO 280 I = JP1, 5
R= R0*G< I .• J >

C
DO 250 K=.JP1, 6
G < I, K > = R+G •:; .J, K > + G '•. I, K '.'•>

250 CONTINUE
280 CONTINUE
300 CONTINUE

C
X-::5::-= G<5, 6 > .•-'G':: 5, 5 >
DO 350 I 1=1, 4
1= 5-I I
IP1= 1+1

C
S= G1'. I.- €• :•'
DO 320 J=IP1,5
S= S - G-:: I, -J > *M •:: J >

320 CONTINUE
xt: I >= S/G-;: i, i ::•

350 CONTINUE '.
RETURN
END

C
C
C
C



i'Ue'r,(_"_' i A HC. i'UuS'E kH> U- V> A.-1

DI MEMS I ON H <: 1 > , G < 1 >, V < 1 >, X C1 >
INTEGER GRDR, HRDR, VRDR, GPTR, GTBRSE, HBRSE, GTPTR,

HTBRSE, HPTR, HTPTR, VERSE, VPTR

INTEGER XRDR, R0PTR, G-JBRSE, GIBRSE, RPTR,
-•- GIPTR, GJPTR, GBRSE, XPTR
INTEGER*! I, J, K

C:
HRDR= 1
GRDR= 1
VRDR= 1
XRDR= 1

GPTR= GRDR - 1
GTBRSE:= GRDF? - 6
HBRSE= HRDR - 25

C
J= €.

1.0 J= J—l.

IF'-.J. EG!. & :.• GO TO
GTBRSE= GTBRSE + 1
GTPTR= GTBRSE
HTBRSE= HF-.DR - 25
HBRlT.E= HBRSE -i- 24

C
1= €.

£0 1= 1-1
IF«::i. EQ. e> GO TO 1O
GPTR= GPTR + 1
GTPTR= GTPTR + 5
HTBRSE= HTBRSE + 24
IF< I. LT. J > GO TO 2M

C
HPTR= HBRSE
HTPTR= HTBRSE
S= ft.
K= 25

2tt K= K-l
IFCK. EQ. 0> GO TO 50
HPTR= HPTR H- ±
HTPTR= HTPTR + ±
S= S -i- H •:. HPTR >*H':: HTPTR >
GO TO 30 .

JF<I. EQ. > GO TO 20
GC GTPTR >= S
GO TO 20

ORIGINAL PAGE IS
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106 HPTR= HRDR - 1 - ORIGINAL PAGE IS
VE:RSE= VRDR - i OF POOR QUALITY

c
J= 6

ne j= j-i
IFCJ. EQ. 0> GO TO 140
GPTR= GPTR + 1
VPTR= VBRSE
S= 0.
1= 2t.

120 1= 1-1
I F' C 1. EQ. 0'.:• GO TO 12:0
HPTR= HPTR + 1
VPTR= VPTR + 1

S= S -t- H <: HPT R ::•* V'::VPTR >
GO TO 120

i3u G'::GPTR>= s
GO TO 11.0

c
c
140 R0PTR= GRDR - 6

GJBRSE= GRDR - e
c

J= 0

210 .J= J+l
1FGJ EQ. 5 i.'1 GO TO 2:00
R0PTR= R0PTR + 6

RPTR= R0PTR
C

G,TBRSE= G.JBRSE + 6
GIBRSE= GJERSE

C
1= J

220 1= 1+1
I F X I . EQ. 6> GO TO 210
RPTR= RPTR + 1
fs = R VJ:+: 1J t; Ft p T R >

GIBRSE= GIBRSE + 1
GIPTR= GIBRSE
G,TPTR= GJERSE

C
K= J '•"/

230 K= K>1
IF«::K. EQ. 7> GO TO 220
GIPTR= GIPTR * 5
GJPTR= GJPTR + 5
GCGIPTR>= R*G<:GJPTR::- * G < GIPTR >
GO TO 22:0
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c
200 GBRSE= GRDR + 30

1= 6
210 1= 1-1

IFcil. EQ. 0> GO TO 340
GBRSE= GBRSE - 1
GPTR= GBRS-E
XPTR= XRD-R + 5
S= G<GPTR)

C:
j= «=•

328 J= -1-1
IFCJ. EG-!. I> GO TO 330
GPTR= GPTR - 5
XPTR= XPTR - 1
S= S - G <. GPTR }*X<: XPTR :>
GO T O 3:20

C
330 XF'TR= XPTR - 1

GPTR= GPTR - ̂ i
X-::XPTR:>= S/GCGPTR;:-
GO "TO 310

c
340 RETURN

END

SOLUTION VECTOR J<@
-. 12363E+00 . 29913E+00 -. 62771E-01 -. 21159E+00 . 11195E+00

SOLUTION VECTOR X
-. 12363E+00 . 29913E+00 -. 62771E-01 -. 21159E+0Q . 11135E+0O




