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The problem of designing robust corn of systems for the safe landing
of VTOL aircrafts on small ships is addressed for the lateral motions.
A precise ship model is derived, using hydrodynamic data for the DD963
destroyer. The issues of estimation and prediction of ship motions are
discussed, using optimal linear estimation techniques. The roll motion
is the most important of the lateral motions, and it is found that it
call be predicted for up to 1.0 seconds in perfect conditions.

The automatic landing of the VTOL aircraft is considered, and a
lateral controller, defined as a ship motion tracker, is desiqned,usin^j
optimal control techniques. The tradeoffs betweei, the tracking errors and
the control authority are obtained. The important couplings between the
lateral motions and controls are demonstrated, and it is shown that the
adverse couplings between the sway and the roll motion at the landing pad
tire significant constraints in the tracking of the lateral ship motions.

The robustness of	 control system, including the optimal estimator,
is studied, using the singular values. analysis. Through a robustification
procedure, a robust control system is obtained, and the usefulness of the
singular values to define stability margins that take into account general
types of unstructured modellin(j errors is Oemonstrated. The' 	 desto-
bilizing perturbattons indicated by the singsJar values analysis are
interpreted and related to the multivariable Nyquist diagrams.
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CHAPTER 1

INTRODUCTION

1.1 Introduction and Motivation

The landing of small VTOL aircraft on destroyers is an extremely

challenging problem if it is to be realized under high sea. state conditions

and zero visibility. Without special aids, this task is almost impossible

for a human pilot.

There arc basically two possible strategies in the solution of this

problem. The first is to leave to the pilot the complete control of the

aircraft, but help him with advanced displays. These give him information

about the aircraft position and attitude, as well as those of the ship

(and possibly some prediction of the ship motions). They may also indicate

some desirable flight path (flight director). Advanced controls may be

provided to partly relieve the pilot from the high load of controlling the

VTOL aircraft.

The second strategy is to leave the task of landing the aircraft

completely to an automatic controller. The role of the pilot is then to

supervise the correct landing of the aircraft. This would allow him to

take care of other tasks he might not have been able to carry out other-

wise.

Note that both strategies could be mixed. For example, the tracking

of the lateral ship motions may be left to an automatic controller/tracker,

while the task of vertical tracking and landing would be left to the pilot,

-14-



possibly with the help of some display indicating him the preser

future ship vertical position.

r ' w__,

in this thesis, the emphasis is focused on the design of an automatic

controller. A previous study [11 has addressed the problem of the longitu-

dinal motions, i.e. the motions in the vertical plane. The most significant

ship motion in this plane is the vertical motion, called heave. The pitch

motion is not very significant, except for the heave motion it induces at

the landing pad (which is significantly behind the ship center of rotation).

The present study addresses the ship motion tracking problem for the lateral

case. Then, the most significant motion is the ship roll motion, which can

be very large. The lateral translation motion, called sway, is also impor-

tant, especially due to the large sway component induced by the roll at the

landing pad (located above the ship center of rotation).

The challenge of the tracking of the ship motions by the VTOL lies in

the strong limitations of the control authority available, in the high

level of the perturbations (wind disturbances, ground effects, ship airwake),

in the strong couplings present in the system, and in the need for a highly

robust control system.

Usually, studies of this problem use loop-by-loop control system

designs, using classical control theories [2], [3), [4], [5], [6]. In this

case, the controller ignores the internal couplings of the system. Similarly,

the issue of robustness is often addressed on a loop-by-loop basis, but

almost never in a real multivariable sense (although individual loop sta-

bility margins may not represent at all the overall system stability

-15-
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margins). The design process used in this thesis does not suff(a , from

such limitations.

The limitations on the available control authority justify the use

of some optimization criterion, and of related modern control theories

(I,Q/LQG) . These me • lyads have the advantage of naturally handling multi-

variable systems, and of recognizing the coupling present in such tuystel1w.

Some recent results in the analysis of the robustness of multivariable

systems (and its improvement for LQG based designs) are also important

tools in the (osign of control systems operating under critical condi-

Hons.

The purpose of this thesis is not to produce an onginuering design.

Nor does it provide new theoretical results. It illustrates how modern

control theories and related recent results can be used to design a

control system for such an advanced application, and evaluate the

controller performance and robustness. This work also analyzes the physi-

cal constraints of the tracking process of the lateral ship motions.

These constraints are independent of the control system design methodo-

logy adopted. The requirements and physical limitations related to the

VTOL landing problem are studied.

Although this thesis mainly details the design of an automatic

controller, the accuracy achievable in the prediction of ship motions is

also assessed, as it is a key element in any piloted VTOL landing.

-16-



1.2 Contributions of the Research

The main contributions of the research are:

rl

- the derivation of an accurate ship model, that retains the stochastic

nature of the ship motions,and the couplings amongst them

- the analysis of an optimal predictor of the ship motions for

applications in piloted landings, and the assessment of lower bounds on

the prediction errors

- the design of an optimal controller/tracker for applications in

automatic landings, the indication of the tradeoffs between tracking errors

and control authority, and the analysis of the important couplings and

physical constraints related to the tracking of the lateral ship motions

- the demonstration of the use of the singular values analysis, and

the robustificati.on procedure, to obtain a robust control system.

1.3 Thesis Overview

Chapter 2 indicates the general problems of the landing of VTOL

aircraft, and introduces the methodology used to design the control system,

as well as some aspects specific to this particular application.

Chapter 3 details the derivation of the ship model from hydrodynamic 	 '

data, and indicates the important characteristics of the model.

Chapter 4 is an analysis of the issues of estimation and prediction of

the ship motion, using the model derived in chapter 3.

Chapter 5 summarizes the aircraft model obtained from [11, and gives

a brief description of this model,and of the important couplings present

-17-



between the motions and controls.

Chapter 6 details the design of an optimal control system based on

LQ theory to track the ship motions. Important characteristics such as

root-locus, step responses, and tracking errors versus control authority

are analyzed, with their relation to the couplings amongst the motions

and contials.

Chapter 7 shows the design of an optimal estimator for the aircraft

motions, and indicates the degradation of performance due to the presence

of noise in the sensor measurements.

Chapter 8 addresses the important issues of robustness of the control,

system to modelling errors, and demonstrate the usefult)(iss of the singular

values analysis and of the robustification procedure.

Chapter 9 concludes with some general comments and suggestions for

further research.

_18-
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CHAPTER 2

OVERVIEW : OBJECTIVES AND METHODOLOGY

2.1 Introduction

The landing of VTOL aircrafts on small platforms is a delicate

operation that interests civilians (oil platforms) as well as military

(destroyers). In this research, we consider a moving platform, specifi-

cally the landing pad of a destroyer, type DD-963, in sea state 5. Such

soa state corresponds to waves of heights around loft, and winds arcund

20 kts. Until now, this is still a goal,, and it justifies studies as

this to assess the navigation systems, the aircraft performance, and

the control system required to perform such an operation.

A previous study by McMuldroch (1) has addressed the VTOL landing

problem for longitudinal motions. These are called heave (vertical

motion), surge (fore and aft motion), and pitch. The aircraft considered

in this work (as in the present work) is the Lift/Fan Cruise Research

Technology Aircraft (RTA). More details about this aircraft; can be found

in III and in chapter 4. The specific aircraft studied is not really of

great importance, as most VTOL's have the same kind of limitations and

possibilities. The main characteristic of an RTA-type of VTOL aircraft

- which makes it different from a helicopter for example - is the possi-

bility of deflecting the engine thrusts to produce translation motions

without rotating the aircraft. In other words, this kind of VTOL has as

many controls as it has degrees of freedom, so that, to the limit,



perfect tracking of the landing pad motion can be acheived.

In the present work, we use the model derived in (1) for the RTA

aircraft. Our goal is to complete McMuldroch's work with a study of the

controls needed for the lateral motions. The lateral motions are called

sway (lateral translation), roll and yaw. The longitudinal and lateral

motions can be decoupled to a good approximation for the ship motions.

This does not mean that they are independent: in fact, they are strongly

correlated because they are generated by the same wave. However, except

for this commrn excitation force the dynamic equations for longitudinal

and lateral motions can be decoupled to first order and can be analyzed

separately. The decoupling of longitudinal and lateral motions for the

aircraft is a little less obvious, due mainly to gyroscopic cross-cou-

pling terms [7) . These terms can be quite important, due to the large

size of the engines of a VTOL aircraft. To a first approximation, however,

they can be negl3cted, so that longitudinal and lateral motions can be

studied separately.

In fact, the issues for the longitudinal and for the lateral case

are quite different. For the longitudinal case, the important motion is

heave. Pitch is quite small and surge is negligible. Moreover, they can

be controlled easily. Heave is more critical, as it requires an increase

in the overall engine power (or thrust to weight ratio). This is a control

which is strongly limited in amplitude, and also in its speed of response.

The limitations are so strong that one may look for an end-point

controller, instead of a tracking controller.

r
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In the lateral case, two of the three motions are about as important.

they are the sway and the roll motion. The yaw motion is almost insignifi-

cant, and can be controlled very easily. In many situations, the aircraft

roll may be left uncontrolled, or, more precisely, stabilized to zero

(so that it does not track the ship's roll). In this case, the landing gear

will simply damp the shock at the landing. However, ship roll can be as

large as 30 degrees peak to peak (even more in the case of decaying seas),

so that this strategy is not always satisfactory. Then, both ship roll and

sv ►ay motions have to be tracked.

The limitations in control authority are less severe than in the

longitudinal case. In particular, a lateral side force can be produced by a

deflection of the thrusts, and a roll moment by an exchange of power

between the engines. These controls can be generated very quickly, so

that there is no significant problem with bandwidth in the lateral case.

The problem is probably more in the adverse couplings present in the

lai •.o a1 motions and in the robustness of the closed -loop system. These

tvt -,cdpects will be examined in more detail later. The consequence of

thes e remarks is that the problems are slightly different for the longitu-

dinal and lateral cases. The lateral controller can be a tracking

controller, while the landing itself occurs at a moment decided by the

longitudinal controller. The res ponsibility of the lateral controller is

then to minimize the tracking errors at impact.

As the research on the longitudinal motions had shown that precise

ship modelling was essential to obtain meaningful results, a large part

-21-
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of this thesis is devoted to accurate ship motion modelling, c

and prediction. The prediction part of the study is irrelevant

automatic controller design part, but has applications in piloted landings,

when some indication has to be given to the pilot about where the ship

deck is now and will be in the near future.

2.2 Control System Design Methodology

2.2.1 Introduction

Different methodologies have been proposed recently for the design

of multivariable control systems. Whether applied in the time domain or

in the frequency domain, each method has its own advantages and limita-

tions.

For aerospace applications, the linear-quadratic-gaussian (LQ-LQG)

methodology has shown successful, especially because:

- the ,limited control authority available makes the optimization

imperative

- the number of states is small (with a good approximation)

- the equations of motion (and of the system in general) are quite

well known, and the stake-space description is natural

- the systems are often unstable and strongly coupled.

2.2.2 LQ Methodology

We summarize in this section the LQ methodology to specify the

notation used subsequently. More detailed descriptions can be found in 181
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and 19 1.

Given the system:

is =Ax+Bu+L
	

(2.1)

x (0) e X
	

(2.2)

where :

x is the state vec tor (nxl)

xo is the initial state vector (nxl)

u is the control. vector (mxl)

F; is a white Gausaian noise vector (nxl)	 (driving noise)
of spectral intensity matrix (nxn)

A is a matrix (nxn)

B is a matrix (mxm)

one wants to minimize the quadratic optimization criterion:

J a 1 i E ( 1 fT (xT Q x + um R u) dt }	 (2.3)
T-0-

T
 0 1

	 _	 _

where:

Q is the positive semi. -definite matrix (nxn) of the state weights

R is the ;positive definite matrix (mxm) of the control weights

The pair (A,B) is assumed to be stabilizeable and the pair (A,Q^)

detectible (two conditions easily satisfied).

The solution is a time-varying control law u(t) which, for large t

(far from the origin of time), becomes a linear, time-invariant,

r
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state feedback:

u - - G x

where G is an (mxn) matrix given by:

G - R
-Y BT 

r

(2.

(2,

and K is the (nxn) positive matrix solution of the matrix algebraic

Riccatti equation:

KA + A T K - KBR-1 BTK + Q - 0
	

(`l.6)

2.2.3 LQy Methodology

The LQC methodology is the extension of the LQ methodology when the

state x is not available for measurement but, instead, we have a measure-

ment vector y, which is a noisy linear combination of the state x:

Y- Cx +Q 	(2.7)

where:

Y is a measurement vector (pxl)

C is a matrix (pxn )

g is a white Gaussian noise vector (pxl) (measurement noise)
of spectral intensity matrix (pxp) p

The optimization problem is the same and, from the separation principle,

it is known that the solution is the cascade of an optimal estimator

(Kalman filter) providing an estimate R of the state vector x, and of
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the same control law as before, acting on a instead of x:

u a - G R	 (2.0)

The Kalman filter structure is:

R - AR + Bu + ti (y -c^)	 (2.9)
	 I

where H is an (nxp) matrix given by:

H-PCT O -1 	(2.:10)

and P is an (nxn) matrix, positive solution of the matrix algebraic

RiccattJ equation:

PAT + AP + E - PCTO-lCP m 0	 (2.11)

The solution of Riccatti equations is now done routinely by the use of

a modern control system design package [10].

2.2.4 L9 _Controller and Shy Tracking

In the VTOL landing problem, we are interested in the tracking,

by the aircraft, of certain ship states (ship motions and velocities).

We have a situation in which we w4 	 to track an uncontrollable system

(the ship deck) by a controllable system (the VTOL).

For the ship, we have the following state-space description:

XS _ AS ES +
	

(2.12)
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(2.13)w S - W 
S,!cS

where 
WS 

are the ship states that we want to track.

For the aircraft:

4 - A 
A4 + "All + '-A

WA Y WA4

where 4 
are the aircraft states corresponding to

The general system equations are:

k = Ax + BU + ^

where:

I

?^S

x _ kni
AS -0 

A
0 AA

B 0[BA]

^^C^l
^A
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(2.15)

(2. 16)

(2.17)

(2.18)

(2.19)

(2.20)
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We want to minimize the tracking errors and the control authority,

J	 E(J((wS-4)TQw(WS-wA) + uTRu) dt)	 (2.21)
U

E(jOO (xTQx + uTRu) dt)	 (2.22)

where:

T	 T

Q = %Q
WWS 	-WTQWWA	

(2.23)
rp

-WAQwWS	 NVA

The optimal LQG controller is:

u	 - G ii = - ( GS , GA ) xG = - Gsx^ - GA xA	 (2.24)

Al

Since the ship is uncontrollable, the ship states and the gain

matrix GS appear as a feedforward path, while the feedback path is

coming from the aircraft states only, through the gain matrix GA.

As indicated in the next paragraph, the estimation problems are also

decoupled, so that the controller structure is that of Fig. 2.1.

A

n	 n
X^

^s

Figure 2.1: VTOL Controller Structure
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A.n important remark is that the gain matrix GA is the same than the

mate°ix obtained by solving the optimization problem:

J- E( f
OO

(wwTTQ w + uTRu) dt)	 (2.25)--

The gain matrix GA is then independent of the ship model.

To see this, we assume that the solution of the Riccatti equation

corresponding to (2.21) is

K	 K11	 K12
(2.26)

T 

K12	 K22

Then:

G - R-1BTK	 (2.27)

-1BAK12 , R-1
(R	

BA K22)	
(2.28)

and:

-1 T
GA ° R BAK22	 (2.29)

depends only on K22.

The Riccatti equation is (2.6), and can be partitioned in terms of the

ship and the aircraft parts:

K11AS 
+ ASK11 - 

K12BAR-1B
AK12 

+ W 
S 
Q 
w 
W S - 0	 (2.30)

K12AA + AS
T
	 - K12 BAR

-1
BAK22 - WSQWWA - 0	 (2.37)
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K22AA + AA K22 - K22f3AR -1 A
AK22 -WAQwWA - 0	 (2.32)

The equation giving K22 is independent of the others and is actually

Hie same as the one corresponding to the quadratic criterion (2.25). The

same is true for the gain matrix G A . This means that the feedback gain

matrix 
GA 

is independent of the dynamics of the signal that is tracked,

namely the ship in this case. The ship only influences the feedforward gain

matrix. In other words, the closed-loop dynamic behavior of the system is

only dependent on the Q and R matrices, and is the same whether we want to

track the ship or simply to stabilize the aircraft (track a zero reference

signal). For this reason, the closed-Loop behavior fo the system can be

;studied independently from the ship model (in this, we include the optimal

root-locus, the step responses, and the robustness characteristics of the

:system). Note however that the ship model influences the system performance

(tracking errors) which, in turn, may influence the specific choice of the

Q and R matrices.

2.3 State Estimation and Implementation Issues

The accuracy of the measurements of the ship and aircraft motions will

be a determining factor of the performance attainable in the landing of VTOL

aircraft in high sea states and poor visibility conditions. It is expected

that., in a practical realization, the measurement process will involve:

- accelerometers and gyroscopes aboard the aircraft

- a combined microwave landing system / distance measuring equipment

(MLS/DME) giving measurements of the relative position of the ship and the
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the aircraft.

Theoretically, the estimation of the aircraft and of the ship motions

are coupled, in the sense that the relative position measurement would

influence the estimation of the ship motions if a Kalman filter is used

for the overall system. In practice, the estimation of the ship motion,

and the estimation of the aircraft motion can be reasonably decoupled.

A justification for this is that the instruments aboard the ship will be

of somewhat greater precision than those aboard the aircraft, and the

estimation errors obtained will be smaller than the errors on the aircraft

motion. The estimation part of the LQG algorithm can then be separated in

an estimation of the ship states by a Kalman filter, and a similar but

independent estimation process for the aircraft.

Practically, the estimation of the ship states is done aboard the

ship, and the results are data-linked to the aircraft. With the combined

use of the accelerometers, gyroscopes, and MLS/DME measurements, a

computer aboard the aircraft estimates the aircraft-ship relative positions

and velocities, and through the use of a Kalman filter, obtains optimal

estimates of the aircraft states. The control law is then easily obtained

aboard the aircraft.

As the computing capabilities aboard the ship can be more powerful, a

high order model can be used. In our case, it is a 16 states model (see

chapter 3). On the aircraft, the computing capabilities are more limited,

so that a low order model is desirable. The aircraft model used here is a

6 states model (see chapter 5). The importance of robustness becomes,

-3 0-
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critical, however. While the approximations on the ship model have conse-

quences only on the performance of the controller., those on the aircraft

model come in the feedback structure, and influence the robustness as well

as the performance of the controller.

2.4 Summary

In this chapter, we discussed the general aspects of the VT7L landing

problem. The decoupling between the longitudinal and lateral motions was

explained, and it was indicated that the controller for the lateral motions

can be conceived as a ship motion tracker.

The LQ/LQG control system design methodology was introduced, and its

use for this application was justified in view of the limited control

authority available. it was demonstrated that the application of this

methodology to the VTOL landing problem leads to a decoupling of the ship

and of the aircraft effects, so that the ship motion and the ship dynamics

only influence the feedforward structure of the control system, while those

of the VTOL impact the feedback structure.

Finally, the issues of estimating the ship and aircraft states were

briefly addressed, and it was shown that the problems of estimation of

ship and aircraft motions could be reasonably decoupled.
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CHAPTER 3

SHIP MODEL DERIVATION

3.1 Introduction

The importance of accurate ship modelling in VTOL landing has been

indicated by McMuldroch in [I]. Ship motions have relatively narrow band

power spectra (between 0.2 and 2 rad/s) that require high order models

to be represented accurately. A good ship model, that is often used in

studies of VTOL landings, is available in [11]. The motions are modelled

as sums of 6 to 32 sinusoYds, with random phases. For simulations (espe-

cially for flight simulators), such a representation is adequate.

However, it fails to represent the random nature of ship motions for

longer periods of time, and it is not appropriate for estimation of ship

motions from noisy measurements, and for ship motion prediction.

In this chapter, we derive a ship model that retains the stochastic:

nature of the ship motions and the important couplings among the various

motions. The model is derived in state-space form, so that the powerful

techniques of linear estimation in the time domain can be applied. The

equations are obtained from hydrodynamic considerations, that lead to

linear differential equations with frequency dependent coefficients, and

infinite dimensional transfer functions. Finite dimensional approximations

are considered, and the model finally includes 16 states for the lateral

motions. The following sections indicate the structure of the model and

the approximations made. More details can be found in [121, 1131 and [141.
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3.2 Ship Model Structure

The lateral ship motions, and the sign conventions used here, are

shown on Fig. 3.1. The origin of the reference system is located in the

plane of symmetry of the ship, at the level of the waterline, and at the

middle of the ship. This point is close to the center of gravity and has

the advantage of being independent of the ship load conditions.

The ship motions are assumed to be small, in order to derive linear

equations of motion. This assumption is justified by the fact that waves

have limited wave to length ratio (at most 1/7, and usually much smaller),

since waves having higher heights break and loose their energy. As a

result, the major part of the force is linear and can be obtained by a

first order perturbation expansion of the non-linear fluid equation.

The wave spectrum is typically contained in the 0,2--2 rad/s range. Given

the large mass of the vessel, the resulting motions, within this frequency

range, ,are of the order of a few feet and a few degrees, so that the

linearity assumption can be justified. Roll motion requires more attention,

however. Due to the slender form of the ship, the roll motion may become

large and then, the non-linear damping is predominant.

The ship model is basically divided into three parts. The first part

represents the incoming waves (sea model) which are described by the wave

elevation at a reference point located amidships. The wave elevation is

known to be a stochastic process, defined by a relatively narrow band

power spectrum to wh^;ch various approximations have been proposed.
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Figure 3.1 : Lateral Ship motions
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The second and third parts of the model put together, represent the

reiipon se of the shin to the waver;. Using the hypothesis of linearity, this

response can be represented by a transfer matrix from the wave height to

the ship motions. The second part of the model represents the dynamics of

the forces generated by the incoming waves, while the third part of the

model represent the rigid body dynamics as well as the dynamics induced by

the ship motions on the water motion resulting in additional fluid forces.

These forces are :

- the inertia force caused by the acceleration of the fluid particles

displaced by the ship (added mass)

- the damping force caused by the loss of energy carried away by waves

generated by the ship motions

- the hydrostatic force (spring constant).

For a purely sinusoidal wave, the equations of motion lead to the follo-

wing differential equation ;

(M+A h ) xh + Bh^h + C h.!^h = F
	

(3.1)

where :

- M is the mass matrix of the ship, including mass terms, products of

inertia and coupling terms due to the direrence between the center of the

axes and the center of gravity

- A  is the added mass

- xjs is the vector of the ship motions (sway, roll and yaw)

- B  is the damping term

iF
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- Ch is the hydrostatic term

F_ is the vector of the forces and moments generated by the incoming
wave

The terms F, Aw and B h depend on the frequency of the incoming wave, so

that the equation of motion is strictly valid for monochromatic waves.

For an irregular sea elevation, equation (3.1) becomes an integro -diffe-

rential equation. Arc additional difficulty is due to the fact that wave

forces and moments are obtained by integrating over the ship hull the

space-varying pressure forces, so that their magnitude and phase constitut

the transfer function of an infinite dimensional system. Obtaining a finite

dimensional model of reasonable size and complexity definitely requires

several simplifying approximations that will be indicated in the subsequent

paragraphs.

The geometric and mass properties of the DD-963 were analyzed by the

M.I.T. Ocean Engineering Department Seakeeping Program (151 . The hydrody-

namic coefficiep ts (M,Ah ,Bh a+,,d C h ) and forces were first obtained, and

subsequently the overall ship model was derived.

The parameters of the model are : the speed of the vessel, the direc-

tion of the waves, the significant wave height, and the modal frequency of

the wave spectrum.

3.3 Sea Modelling

The sea waves are generated by the wind, except for very rare cases

(seismi waves). The high frequencies of the wind gusts create wavelets on

the surface of the sea, while the steady-state condition of the sea develops
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slowly t"irough a nonlinear interaction mechanism creating waves whose

phase velocity is close to the wind speed. Since the process starts with

high frequencies, a young storm will contain a peak at hig1: frequency. As

soon as the wind stops blowing, the water viscosity dissipates the high

frequency waves so that the so-called "swell" forms, which consists of

long waves (low frequency) which travel away from the storm that origi-

nates Chem. For this reason, swell can be found together with another

local sttorm, in which case the ,wave height spectrum contains two peaks.

The .intensity of the storm can be described in various ways, of

which the best is probably the significant, wave height H, defined as the

statistical average of the 1/3 highest waveheights. At any point, the wave

elevation is a stochastic process described by its power, spectrum. This

power spectrum (if it is single-peaked) is a function primarily of two

parameters, H and Wm . The Bretschneider spectrum is defined as

W4
S(W) = 

!-*25 H2	 5	 exp (-1.25 (W /6))4)	 (3.2)
W

It was found to fit reasonably well in any sea location, and is strictly

valid for unidirectional seas, with unlimited fetch, infinite depth, and

no swell.

As the ship moves toward the waves, the apparent Frequency of the

wave is modified, and the frequency of encounter We is :

We = W + k U coso	 (3.3)
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where :

U is the ship speed

0 is the angle between the x axis of the ship and the direction
of the wave propagation

k is the wave number.

In deep water, the dispersion relation for the waves is

W 2
 = kg
	

(:3. 4)

so that :

W
e 	 9

= W + - 	 U COOW

The spectrum seen from ship coordinates is then

S (W 
e ) = 

I	 W=f(W 
e)	

(3.0)

where :

/I + 4 W 
U COSO

2 
9
1L co sQ

To obtain a state-space representation, the wave height is represented as

the output of a filter with rational transfer function, driven by whito

noise.
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The transfer function is selected to be :

(W
.^.) 2

	

II (s) '- Wrl—Ts'	
0	

(3.8)
a	 0	

l+ 2 J 0-) + A
W	 W
0	 0

where the values of So , w0 ,  and J are dependent on the sea state and are

given in Appendix A.

The coefficient 71 was introduced to match the differences in defini-

t'i on for the power spectrum. Here, we use z

,

"°	
- 
iWT

00 

R (0 e	 dT (3.9)

A one-sided (positive frequency) power spectrum is used in wave theory

(and for the j3retschneider spectrum):

S(w) = 1f00 00 R(T) e- 
iWT 

dT	 W>O7T	 ,
- 00

(3.1-0)

Thc Brotschne-ider spectrum and the approximation are illustrated in

I" i.q. 3. 2.

3.4 Ship Transfer matrices

The ship transfer matrix from the wave height to the sway, roll and

yaw motions can be separated in:

- a transfer matrix from the wave height to the force and moments
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A

generated by the incoming wave

- a transfer matrix from the force and moments to the actual motions.

These transfer matrices are obtained from the values of the forces, added

ma0s, damping, mass, and hydrostatic forces, using equation (.'.A). For

monochromatic waves, these were obtained by the M.I.T. Ocean Engineering

Seakeep;ing program from the geometry of the DD-963 hull. Rational approx-

imations were made in order to obtain a standard state-space representation.

An important fact is that whatever approximations are made, they do

not influence the stability margins of the aircraft control system. The

ship model only comes in the ship Kalman filter design and in the compu-

tation of the feedforward gain matrix. The only effect of the approxima-

Lions on the control system is on the performance attained in the ship

motion tracking, not on the system robustness.

3.4.1 Force D namics

The transfer functions between a unit amplitude regular wave (lft)

and the sway force (tons) and the roll and yaw moments (tons-feet) as

functions of the frequency of encounter are shown in logarithmic scale

in Figs 3.3,3.4,3.5 For the case 13=0,^=90 degrees and in Figs 3.6,3.7,3.8

for the case U=15.5ft/s and ^=45 degrees.

The forces were approximated by simple second-order systems, for

P.:

example:

F. s2i
-f.	 1 + ?. J i/Wi + ( s/Wi)2

i=s,r,y	 (3.11)
for sway,roll and yaw
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in the case when U-15.5ft/s, ^=45degrces, the higher frequency behavior

shows the infinite dimensional characteristic of the force dynamics. Por

simplicity, this effect is not represented in the model, because it is

beyond the area of significant wave power.

The values of the coefficients in the transfer function, and their

dependence upon ship speed and wave heading angle, are summarized in

Appendix A.

3.4.2 Shy Dynamics

The other: ship dynamics are related to the matrices A11, B hF and C. 
Ik*

As indicated earlier, the matrices A 11 and B 
h 

are dependent on the frequency

of the incoming wave, so that the order of the differential equation:

(M+A h )h + B,rXh + Coll = F
	

(3.12)

is higher than 2 times the three motions.

However, the roll motion turns out to be highly concentrated around

the roll peak frequency. The sway and yaw power spectra are more widely

dispersed, but, due to the concentration of the sea spectrum in frequency,

the motions are all concentrated within a narrow frequency band.

Consequently, the added mass and damping matrices variations with frequency

are neglected, and the values of these matrices at the roll peak frequency

are used here.

Another important variation of the A h and B h matrices is due to the

ship speed and heading angle. These produce coupling terms between the



xh
-

-P -Q x^
+

R
F

Xh
0 xh 0

The state-space representation includes 6 states (3 motions and their

(3.14)

motions that, again, are frequency dependent. 'These couplings are accounted

for but, consistently with the previous discusssion, their influence is

assumed to be constant with frequency, and their value is taken equal to

their actual value at the roll peak frequency. With these approximations,

the values of the added mass, damping, and hydrostatic terms, as well as

their variations with speed and heading angle, are contained in Appendix A.

Figures 3 . 9, 3.10, and 3.11 show the overall result of the approxi-

orations on the ship dynamics. The highly -tuned second-order behavior of the

roll transfer function is obvious, and the approximations appear to be

very good. The higher frequency dynamics are neglected, but the approxi-

mations are in a sense conservative.

The derivation of a state-space model from the rational transfer

functions obtained for the sea and the forces is straightforward. For

the ship dynamics, some care has to be taken.

Taking the matrices A  and B  constant, the differential equation:

(M+Ah ) b + 
BhXh 

+ Ch4 = F
	

(3.13 )

is of order 6. By selec t ing R = (M+A h ) -1 , P = (M+Ah ) T1;5h , and

Q	 (M+Ah)-1C h, 
the following state-space representation can be obtainQd:

PPr ;,
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When combining this model with the model for the forces, two pole-zero

canco.Haliuna occur. The slip dynamics include two holes at the oric3in,

which are due to the zero spring constant for sway and yaw, while the force

dynamics have each two zeros at the origin, as previously mentionned. These

pule-zero cancellations lead to a non-minimal order system, and to instabi-

lities in numerical simulations. By simple algebraic manipulations, detailed

in Appendix A, this problem can be resolved, and a 4th order model of the

shim dynamics is obtained, including the sway, roll,yaw motions, and only

Lhe roll, derivative.

3. 5 Overall S^jE Model

The overall ship modal is written in state-spare form

x6 = AS4 + ^S

The state vector contains 16 states :

xl	 wave elevation (ft)

x 1 	wave elevation derivative (ft/s)

x 3 to x6 : states ;related to the sea dynamics

x 7	 f sway force (tons.$)

x 
	 sway force (tons)

xg : f roll moment (tons.ft.$)

x10 : roll moment (tons.ft)

x 1 : f yaw moment (tons.ft.$)

(3..15)
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x12 : yaw moment (tons.ft)

't	 x13 : sway displacement (ft)

x14 : roll rate (rad/; ^)
i

x15 : roll. angle (rad)

f\	 x16 : yaw angle (rad)

The structure of the matrix A^	 ,efined on Table 3.1, and the

numerical values for the condition	 H=10ft, W - 0.72rad/s, U-i5.5ft/s,

and ^=45degrees are given in Table 3.2 and Table 3.3 (for any condition,

see Appendix A).

The vector LS is a white noise vector whose only non-zero element

is the 6th row element. Its spectral intensity is 7TS0.

3.6 Additional Comments

Weather conditions of zero visibility and sea state 5 are considered

in this study. Sea state 5 corresponds to a significant wave height of 1Oft

and a modal frequency of 0.72rad/s, for fully developed seas. The ship

speed will,be assumed to be 15.5ft/s (about lOkts) and the wave heading

angle 45 degrees. A second sea condition will be sometimes used. It

corresponds to the condition numbered condition 4 in (111, with significant

wave height 12ft and modal frequenc y 0, 307rad/s (this is the less common

case of decaying seas).

The ship model poles and the rms motions values (at the reference

point) are given in Table 3.4. The model poles are also shown on Fig.3.12,

for the case H=10ft, Wm=0.72rad/s. Six poles correspond to the sea spectrum.
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Figure 3.12 : Ship Model Poles (1i=10ft,wm=0.72rad/s)
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Si.x other poles correspond to the force dynamics (2 for each motion). The

four remaining poles correspond to the ship dynamics : there are in fact

six poles (two for each motion), but two pure integrators in sway and yaw

were eliminated with zeros at the origin. There is 4 `very lightly damped

mode with frequency close to 0.5 rad/s, correspondinc,i to t}ie roll oscilla-

tion mode. Another lightly damped mode of ;low frequency appears, but its

contribution is small, due: to the presence of zeros at the origin.

For the VTOL .Landing problem, the motions of interest are the motions

at the landin(; pad. The sway motion at the landing area is composed of the

sway at the center of the axes, plus contributions from the roll and the

yaw angular motions. In the ship coordinates, the landing pad is 1oeated

at .

xSLP = -127 ft
	 (3.16)

ZSLP y	
34 ft	 (3.17)

The sign conventions for the aircraft are also different than those for the

ship, so that the output matrix providing the sway, roll and yaw motions of

the landing pad in aircraft coordinates is :

r
-

0 0 0 0 0 0 0 0 0 0 0 0 -1 0 34 127

CSLP	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
	

(3.18)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1
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3.7 summary

In this chapter, a ship model was derived from hydrodynamic data

obtained from the geometry of the DD963 ship hull. The ship motion ritiodel

is divided in a sea model, and a ship model. The sea spectrum appears to

be concentrated in a narrow frequency band centered around 1 rad/s, so

that all motions have relatively limited power spectra. Roll motion

especially appears to be highly concentrated in frequency, as it behaves

like a lightly damped second-order system.

Some approximations had to be made in order to obtain a finite

dimensional model of reasonable order. It was demonstrated that -these

approximations were very good in the frequency range of interest.

'rhe resulting model, expressed in state-space form, and its salient

characteristics were discussed.
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CHAPTER 4

SHIP MO'T'ION ESTIMATION AND PREDICTION

4.1, Sh 7 Kalman Filter

The,-, Ka.l,man .filter rule in an LQG design was indicated in chapter 2.

Here the Kalman filter tasks are the following

- reconstruct the ,states that are riot directly measurable, as for

example the sea states (this is essential to the prediction of the ship

motions)

provide optimal estimates of the states, ;including those that are

treasurable, but are affected by noise. In this sense, the estimator is

really a f'ilte'r that filters the noise affecting the measurements.

The measurements of ship motions are affected by noise that is not

simply the instrument noise, but is also caused by the structural vibra-

tions. These vibrations can be quite significant, and we want these high

frequency motions to be filtered by the Kalman filter, and to keep the

filter poles within the range of frequencies which is significant of

ship motions.

The meal ,, r ^en'. equation i.s

Y6 _ CSXS +
	

(4.1)

It is assumed that the only measurements available are the sway displacement,

the roll angle and the yaw angle, so that :
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0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

CS	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0	 (4.2)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

'Cho fil,tor is designed assuming the measurement nol.se spectral intensity

matrix to be :

0.1	 0	 0

0S 	 0	 0.0002	 0	 (4.3)

0	 0	 0.0002

and the falter poles are within a radius of 1.1 rad/s.. The filter poles

and the predicted nns estimation errors are indicated in Table. 4.1.

The rms estimation errors are the square roots of the diagonal

elements of the covariance matrix of the error :

Pec = F (^^• ,)	 (4.4)

Having

	

c = Alx + E	 (4.5)
5-S	 --S

	

OsXs + OS	 (4.6)

xs = ASXS t Hu k -6 - CS xS )	 (4.7)

The error is defined by :

(4.8)   

-63-

^s = Xs - XS



SEA	 11-10ft, m =U.?2r^d/oT11

Yzlman filter V01oo

pl,2	
^ -1.067 ^	

'
~ ].U86-

p	 =
3,4

 -0.457 1.312

=
p5,6 -l.279 ^	 j 0.477 

P7, 8 -0.2IO ^	
'

^ O 934^

P9,10	
= - 0 ^ 3^^ ^	 j O 623,

y lI	 I2 =, 
-0.087 ^	 j 0.446

1)	 =
l3^^4 -O l^9` ^	

'
^ 0 165^

p	 = -0.(,,)zu3 j 0.0595	 |
15,16 |

mmn ,rHnwt|no ^crore

e	 = 0,241 ft
uway

e	 = o~^60"
roll

^	 = 8^07760
yaw

Table 4. 1. Ship Kalman Filter Poles and Rms Estimation Errors



The error is governed by the differential equation :

(AS -HSCS)V-S - r - H
SO	 (4.9)

so that Pee is the solution of the 16th order Lyapunov equation :

(AS _
H

S CS ) Pee + P
ee ( A

S 
-11SCS ) T + WS + HS 

OS 
HS = 0	 (4.10)

rigures 4.1, 4.2, and 4.3 illustrate time simulations of the ship

motions and of the estimated motions by the Kalman .filter.

4.2 Sensitivity of the Estimation Error to Parameter Uncertainty

A study of the sensitivity of the estimation error to parameter

uncertainty indicates those model parameters that are important in the

estimation process.

no error equation o't the Kalman filter with incorrect model is given

in [16'1. Assuming the correct model to be :

AS KS + -
,F. 6	 (4.11)

Ys m Cos + L	
(4.12)

and the filter designed with AS and C*, so that

Sts	
ASKS + H

S (yS -CSxS )	 (4.1,3 )

The error equation is :

es	 (A*-HST'*)2S + (AS-AB- HS (CS-C S))^ -	 - HS O	 (4.14)

3
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Figure 4.2: Roll Actual and Estimated Motion
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Donotin(a :

P fwe	 E (26 . `J)

Pxx S(xS.xs)

xe a H(x6. eS )
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xe xx

	

A*--HSCS	 (AS -AS )-H113  (C*,-CS )
A'
S	

0	 AS

r^ y+;0HS

	

S S S 	 ^S
`S

-
77	 W

 `S

The matrix P' is the solution of the 44th order Lyapunov equation

	

ASP' + P'A'T +	 0

(4.15)

(4.;16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

This provides the error covariance matrix and the actual rms estimation

errors. Table 4.2 shows the result of the sensitivity study. The most

important parameter is the sea modal frequency and this indicates the

importance of an accurate estimation of this parameter aboard the ship,

in a real-time application.

The influence of systematic measurement errors is studied by using
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S EA	 11- 10ft	 Ulm=0. 72rad/ s

SWAY(ft) ROLL (°) ^	 YAW(°)

Kills	 snot-ions 0.01,2 4.56 0„227

Nom^i real	 ga r ror, s 0.241 0.56 0.0'776

1'Rr(1111C:te): 	 c1l'in(7c-d

U ••20ft/s 0.245 0.568 0.0063

0.0858W =0.52rdd/s 0.314 0.60m

^ : -60 0 0.296 0.624 0.112

C s (sway)--0.9 0.255 0.586 0.081

0.247 0.708 0.0808C	 (,roll.) --0.9

C $ (yaw)	 x: 0.9 0.242 0.56 0.0777

C S (:way)-0. 0.518 1.21 0.1408

(C s (roll)=0. 0.376 4.08 0.i58

C s (yaw)	 =0. 0.242 0.563 0.0785

Table 4.2: Sensitivity of the Estimation Errors to Parameter Uncertainty
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a calibration factor in the C S matrix. In the case of a 10% error, the

most significant influence is obtained for a roll measurement error.

Clearly, the Kalman filter uses mostly the roll measurement in the

estimation and improves its estimation of the other motions through the

known couplings between the motions. In this regard, the yaw measurement,

which for this application is very noisy, has little influence on the

filter performance. In the case of a calibration factor 0 (indicating

a disconnected measurement), significant errors result, especially for

roll.

4.3 Ship Motion Prediction

4.3.1 introduction

Real-time prediction of ship motions is currently a subject of great

interest, with applications not only to aircraft landings (or helicopter,

or VTOL landings), but also to many other operations such as ship motion

compensation and cargo transfer. Recently, a method has been proposed,

that uses time series analysis [17]. Such method does not require any

precise ship modelling : it considers the ship as a black box.

In this research, we chose to take advantage of the available know-

ledge on ship motions, and to derive a better model of the ship a priori,

that can be used for estimation and prediction of the ship motions.

Note that although the prediction of ship motions is of primary importance,

to any piloted landing application, it is useless to an automatic landing

using the LQ/LQG methodology, because the knowledge of the predictable part
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of future ship motions is in fact completely included in the ship states

and is fedforward by the LQ/LQG controller.

4.3.2 Prediction with Correct Model

Given the system :

AS - AS SS + ^6	
(4.22)

The optimal predictor is simply given by

R
S = A S- X;^	 (4.23)
-- 

The error equation is

t a - AS e5	 -'S	
(4.25)

The c;caariance matrix of the error is time-varying, and is the solution

of the linear differential matrix equation

Pee = ASPee + PeeAS + ;S	 (4.26)

In a first approach, we assume that the state at t=0 is perfectly known,

i.e. .

(0)	 x5 (0')	 (4.27)

F(,,r t-K'O , since AS is stable, the estimate 	 goes to 0. This reflects the

:fact that the ship motion is stochastic; and that the knowledge of the state
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at any time does not imply any knowledge about the state at a distant

time in the future. Consequontly, the error eventually reaches the rms

value of the moL:ion.

The evolution of the ruts error, normalized by the ruts motion is

shown in Fig. 4.4. Roll appears to be the easiest motion to predict.

under perfect conditions, good prediction could be obtained for up to

LO seconds. This reflects the highly-tuned shape of the roll power

spectritm, which is mostly a second-order very lightly damped oscillator.

1.11 he above is a significant result for landing pur.-Dses, because roll

motion is really one of the most important motions to predict. From the

lateral motions, the yaw motion is very small, while the sway motion

consists mostly, at the landing pad, of a roll induced motion.

Sway and yaw are much harder to predict, as shown in Fig.4.4, which

reflects the much broader power spectrum of these motions.

The oscillations in the prediction covariance can be explained by a

simple derivation for a second-order system.

Assuming a second-order system :

X = Ax + C
	

(4.28)

where :

A [

0 (4.29)
b a

0	 0
(4.30)

0	 1
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The covariance matrix propagation equation

P = A P + P A i +

I,

r	 with
I

	

1' 
»a P11 P12	

(4.32)

P1'2 P22

I	 The equation (4.31) can be rewritten
I
I

Ì P 	 2	 0	 P

P12	
„x	 -b	 .-a	 1	 P12	 +	 0	 (4.3:3)

i
F22	 0	 -'2b	 -2a	 P22	 1.

4

I

`	 This is a linear differential matrix equation. The eigenvalues of the

above 3x3 matrix are
I

a	 -a	 (4.34)

A - -a	 4b	 (4. 35)

The eigenvalues of the original system are :

A = ( -a j Y"a-2 - 4b)/2	 (4.36)

:Ln other words, the 1,1-near system modelling the covariance matrix

propagation has eigenvalues which are equal to twice the original system

eigenvalues. This explains the osc.Ulations of the prediction errors which

are at a .frequency double_ that of the ship motion peak frequency.
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Time simulations of the ship motions and of the prediction estimates

are reproduced in FA, gs.4.5, 4.6, and 4.7. The prediction starts at t=40sec.

The previous remarks on the predictability of the motions are easily soon

in these plots.

In an actual realization, the ship states are not directly available

and must be estimated. Fig. 4.8 shows the structure of the estimator/pre-

dictor. Prediction can be seen as an extension of filtering, with the

measurement branch broken. In an actual application, the Kalman filter

would be runn'.ng in real-time # continuously, while the predictor would

compute the predicted motions for a specific time At ahead, in parallel.

This is indicated schematically in Fig, 4.9.

Some simulations are shown in Pigs 4.10, 4.11, 4.12 and 4.13. The

Kalman filter provides estimates at t=40s that are used to predict the

ship motion. Good prediction is still o;,:4. _ied for roll, while yaw becomes

almost unpredictable.

4.3.3 Implementation Issuesr- — —, — -- — --

The actual implementation of the estimator/predictor described above

will require the use of a digital computer and, hence, the discretization

of the differential equation. Although the Kalman filter requires a large

number of computations at relatively small time steps (with measurement

update), the particular structure of the predictor makes the additional

computational load very small. Given the optimal estimate of the Kalman

filter at time to 
2S
^ (t) , the optimal estimate of the predictor at
S
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t i.mo t.+At is simPl y :

A,,4
X^ ( t+At-) - t,	 (t. >	 (^l .:l7 >

A At
[laving c:omputod e	 , and cons idori nq that we are only inter.esi_ed in

predict.iny tho motions (and not the other states), this operation results

in multiplying a mai.rix (3x.16) by a vector (16xl.). These are the only

'	 computations required if we are only interested in predicting the motions
I

At. ;;oc-onds aiv^ad (and not their evolution in between) . In this case, there

I	 i,s, no need to integrate the differential equation, as for the Kalman

U.1 tor.

in the case when the complete time evolution is desired, and that the

I	 differential e q uation has to beequation integrated numerically, the same e qI	 q	 9	 Y	 q

(4.37) provides the discreti^ed equation corresponding to that differential

ec{cation

	

= AS Is
	

(4.38)

It is very tempting to approximate this equation by the simple difference

equation :

Xs (t+At) = xs (t) + At (ASxs (t) )

which ir, thk.. same as approximating

A ,fit
e S	 I + A

S 
At

(4.39)

(4.40)

for a small At.
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However, due to the presence of the very lightly damped roll mode, large

errors can occur even for small At, compared to the time constants of the

system. In fact, if At is not very small, the mode becomes even less damped,

i, AS At
as indicated in Appendix B. More precise approximations to a 	 are

advisable for the implementation of thep, predictor (see for example [18) ).

Such problems do not appear for the Kalman filter which does not have this

very lightly damped mode.

4.3.4 Prediction with Wrong Model

In a previous subsection, the important influence of the sea modal

frequency on the performance of the Kalman filter was assessed. This para-

graph addresses the same question for the predictor. The calculation of

the errors is a little more complex in this case.

Given the system :

(4.41)k _ AS SS +

and the predictor with wrong model

AS XS

The error is given by

eB = (AS-AS) xS + ASS S

(4.42)

(4.43)

-86-

X



The global system is

e6 	 A3	 AS-AS	 e6	 &6
+

xS 	0	 AS	 x6S

Denoting s

P	 PT
P, = ee xe

P	 P
xe xx

AS AS-AS'

A' ffi

S	
0	

AS

^S	 S

^S	 S

P' is the solution of the linear differential equation

P" = A P' + P' A' T +
S	 S	 S

which can be separated in

T
Pxx AS xx + PxxAS + ..S

P = A P + P (A* -A ) T + P A*T
xe	 S xe	 xx S S	 xe S	 s

Pee _ ASPee + (AS-AS xe	 ee	 S S) P + P A**T + P i,A-A ) T + ..S

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

The original system (the ship) is assumed to be in steady-state, so that

P
xx	 xx

= 0, and P is the solution of the Lyapunov equation
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ASPS + PxxAT + "S = 0
	

(4.52)

Replacing Pxx by its steady-state value (given by (4.52)) in equations

(4.50) and (4.51), we obtain a 32nd order linear differential matrix

equation in PXe and Pee , with initial conditions P xe (0) = Pee (0) = 0

(the initial state is assumed to be perfectly known).

Figures 4.14, 4.15 and 4.16 show the results of the integration of

this equation, in the case of an error in the sea modal frequency. The

filter was designed with wm=0.72 rad/s, while the actual value was

assumed to be 0.52 rad/s. The degradation in performance is again signi-

ficant and the roll prediction time is about divided by two. This

indicates (again) the importance of the estimation of the sea modal

frequency in real-time applications.

4.4 Summary

In this chapter, we addressed the important questions of ship motion

estimation and prediction. First, a Kalman filter was designed, whose task

is to filter the noise in the measurements (mostly due to the ship structur-

al noise), and to provide estimates of the states that are not available for

measurement. These estimates can then be used for optimal prediction of the

ship motion, and in the feedforward path of the LQG controller for the VT01

landing.

A sensitivity analysis showed the relative importance of the model

parameters, and the sea modal frequency appeared to be a significant
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parameter.

The prediction of ship motions, assuming perfect knowledge of the

initial state, was studied, so that lower bounds on the prediction errors

were obtained. Due to its ,concentrated power spectrum, the roll motion

turned out to be the easiest to predict (optimally a to 10 sec. prediction

time). The sea modal frequency was shown to be an important parameter for

all motions, which indicated the need for an accurate est$.nation of this

parameter in a real-time application.
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CHAPTER 5

AIRCRAFT MODEL

5.1 Introduction

Since the beginning of VTOL aircraft technology development, a large

number of configurations were conceived, and sometimes built and tested.

The most studied and extensively tested VTOL is probably the AV-8A Harrier.

Another VTOL aircraft which has been extensively studied is the Lift/Cruise

Fan V/STOL Research Technology Aircraft (RTA). For this aircraft, complete

simulator programming data is available in 119). In the former study of

the longitudinal controls required for VTOL landings on destroyers 11),

a linearized model, written in state-space form, was derived from the data.

It includes both longitudinal and lateral motions. In addition to the rigid

body equations of motion and the contributions of the fan forces and

moments, this model also accounts for ram drag forces and moments, and

internal momentum effects (gyroscopic terms) due to the rotating engines

and fans. Neglected are the aerodynamic effects, the ship airwake t+irbulence,

and the ground effects. The actuators are modelled by first order dynamics,

whose time constants are to be selected by the control system designer.

5.2 Lateral Motions Model

",o a first approximation, the longitudinal and lateral motions of the

aircraft can be decoupled. This corresponds to neglecting the cross-coupling

terms between roll, yaw, and pitch due to gyroscopic effects from the



engines and fans. The effect of this approximation on the overall s;

performance and stability margins is an interesting issue which is n<

aelres.sed in this thesis, but is probably worth a subsequent study.

The general ship-aircraft configuration is shown in Fig. 5.1.

lateral motions, and the sign conventions used, are indicated: they

:way	 (lateral translation), roll ana yaw (angular motions). The

definition of the =trots requires some care. Strictly speaking, tl

are 9 variables on which the controller can act: the 3 values of the

thrusts at the Fans, the 3 values of tae longitudinal deflections of

these thrusts., and the 3 values of the lateral. deflections. However,

these controls are not independent: for example, deflecting the thrusts

T1 and T2 late'.;'a:"Iy and in opposite directions would result in counter-

acting forces, and, consequently, in an inefficient use of the controls

available. Considering reasonable use of the controls, we find three

independent controls for the lateral motions (corresponding to the three

degrees of freedom):

1) an equal lateral deflection of the aft louvers, denoted by 60L
1,2

2) an exchange of thrust from T 2 to TV denoted by 6T1,2 
(this

can easily be done, as the engines 1 and 2 are mechanically coupled)

3) a lateral deflection of the front louver, denoted by &L3.

These control variables are grouped in a vector denoted by c.

In the original work by McMuldroch (1], the vec':or in -rut was chosen

in a slightly different manner. It is denoted by u in this thesis.
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Its compr;ncnts are:

1) 6yc : an equal lateral deflection of all the louvers, to produce

(m —,tly) a sway acceleration

2) 60c : an exchange of thrust from T 2 to Tl , to produce a roll

L^, -celeration

3) 6^ c : an opposite lateral deflection of the front and aft louvers,

to produce a yaw acceleration.

In this thes1s, we keep the McMuldroch formulation, but the control

weights in the quadratic cost and the robustness criterions will be

expressed in terms of the vector c , which is the actual physical control

input. The transformation from c to u and u to c is straightforward.

Figure 5.2 indicates the structure of the aircraft model.

BA

Figure 5.2: Aircraft Model Structure



The numerical values of the matrices are given in Table 5.1. The units of

the model are:

- ft for y 

- ft/s for yA

- rad for ^A , VGA' Sa l, 2' 
6at 3 , 6yc' 6^c

- rad/s for $A' ^A

fraction of the nominal thrust for &T l 2 (,the nominal thrust of T1,2'
is 9057.5 lb) and for 60c

Tile only difference between the morel indicated here and the model

given in 111, in the absence of actuators dynamics which, in[ll, were

selected as integrator dynamics. For the lateral case, the actuators

dynamics are well beyond the significant ship motion frequencies (0.5 to

1.5 rad/s): the thrust deflection can be done almost instantenuously,

while the exchange of thrust - which does not require any overall increase

of power - has a time constant of.alx>ut 0.1 s (a shaft-coupled configuration

is considered here). For these reasons, and for simplicity, the actuators

dynamics are neglected here.

The resulting model is very simple: it contains only 6 states,

specifically the aircraft motions and velocities. As indicated earlier,

a simple model is desirable on the control system point of view, although

it necessarily implies some crude approximations and, therefore, increases

the need for i;tood robustness properties. On the other hand, the interpre -

tation of th ;4 elements of the model is easier from a simple model, as wjl1

be seen in the next section.



b ye

0 wC

0

0

0

AA
O

0

0

O	 1 0	 0

0	 0 1	 O

O	 0 0	 1

0	 -,085922 -.01180113	 -.391"

0	 -.00!171 -11025	 -,04208

0	 -.005087 -.0117	 -.1471

0 0 0

0 0 0

0 0 0

SA s
88.8 O O

4,8411 48853 OA3"

-,17088 .1939 80461

0

0

0

32.9

0

0

-9a-

omaim PA®L IS
OF POOR QUALITY

YA

fA

yA

ba,^

o • bT1p

63

O 0 0

0 0 0

0 0 0
8bw

-8L811 •10.988

9.9" 4.5853 1.865

9.864 L09 -2.685

-1	 0	 1

TC 	0	 1	 0

-1	 0	 -119302

'Fable 5.1: Aircraft Model Values



.w . a00 84%

5.3 Model Interpretation

The important couplings inherent to a VTOL aircraft are represented

in the model, and it is worth taking some time analyzing them.

A first important coupling is a dynamic coupling between roll and

sway. Ao the aircraft is banked, a lateral component of the thrust appears,

which results in an important side force. This is represented by the

AA (4,2) element (cf table 5.1). It is equal to g (32.2 ft/s 2 ) because,

under the small angle approximation, the side force is equal, to the weight

times the roll angle.

The other elements coupling the velocities in the AA matrix are due

to the ram drag forces and moments, and are responsible for most of the

aircraft dynamics in this model (especially its instability).

An important coupling appearing in the 
BA 

matrix is the BA (5,1) term.

It indicates that a lateral deflection of +he thrusts produces an important

roll moment. Note that if this effect is not compensated for, the roll

moment will produce a roll angle which, by the effect described above, will

in turn produce a ,away force opposite to the sway force originally produced

by the louvers deflections. The origin of the roll moment is in the

difference between the center of gravity and the center of thrust of the

fans (the center of gravity is 3.12 ft higher).

Finally, an interesting, although Apparently not very significant term,

is the "A (6,,2) term. It tells us that an exchange of thrust in the aft fans

produces a yaw acceleration. Although no yaw moment is produced by this

control, a small Vaw acceleration results from the roll moment, due to the
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angular difference between the principal axes and the body axes (in o•her

words, due to the prosence of a cross-term T xz 
in the inertia tensor).

The above summarizes the important couplings present 
in the VTOL

aircraft. These couplings are dynamic (reflected in the AA 
matrix), as

well as control couplings (reflected 
in the BA matrix), and are captured

in the simplified, linearized model given here.

in fact, not only is the system strongly coupled, but it is also

open-loop unstable. The open-loop poles are shown in Fig. 5.3. Two of the

six poles are at the origin and correspond to the pure integrators in

sway and yaw motions.

5.a Summary

In this chapter, we described the aircraft model for the lateral

motions. We showed that three independent controls can be used to track

the lateral deck motions, but that some important couplings are present

amongst the controls and motions (especially between sway and roll).

The aircraft model is written in state-space form, and the state

vector contains 6 states, namely the aircraft motions and velocities.

The important couplings of the VTOL are represented in the model, and

it was shown to be open-loop unstable.
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CHAPTER 6

LINEAR LUADRATIC REGULATOR DESIGN

6.1 Introduction

The LQ/LQG design methodology was introduced in chapter 2. As a first

step, it is assumed that all states of the system are available (output

matrix C w 1), so that full state feedback can be used. Note that while

this assumption is generally a rather unrealistic assumption, it is not

the c.^:se for ' he simplified aircraft model that was obtained in chapter 5.

Angular motions as well as angular rates are available through gyros and

rate gyros. Similarly, estimates of position as well as velocity can be

obtained from accelerometer measurements combined with MLS/DME measurements,

with a high quality. In a sense, a Kalman filter is riot strictly necessary

for the aircraft. For these roasons, significant, aftention has been given to

this part of the design.

6.2 Choice of the Quadratic Weights

Under the assumption of full state feedback, the only parameters left

to the designer are the Q and 9 weighting matrices in the quadratic cost.

A very natural way to select these .matrices is the diagonal inverse-square

weighting [20]. Some other methods have been proposed, as for example the

method proposed in [21] and [22] to achieve desirable asymptotic regulator

properties. In any case, it is interesting to note that the robustness

properties of LQ regulators can be seriously deteriorated if a :ion-diagonal
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0	 0	 0

0	 0	 0

0	 0	 0

T
( 

z ) 2	 0	 0
ymax	

T
0(^ Z ) 

2	
0

max	 T

0	 0(^ Z ) 2
max

(6.4)

matrix R is chosen 123](24). For this reason, it is wise to select a

diagonal R matrix, or equivalently, to pick 9 ® pI, after some scaling

of the inputs.

In this thesis, we decided to start with a simple diagonal inverse

square weighting, leaving some parameters to acheive a desirable eigen-

structure, with a careful study of their influence on the optimal root-

locus. The quadratic cost that we want to minimize is given by ( 2.25).

As a first step, we wani to weight all the state variables (motions and

velocities), so that:

V

(6.1)WA ;̂A xA

W 
A	

I

Q^Qw

The Q matrix is chosen diagonal:

(- 1 ' 2 0 0
ymax

0 (^12 0

0
max

0 (^	 ) 2
Q mr_x

0 0 0

0 0 0

0 0 0

(6.2)

(6.3)
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where 
ymax' O

max' *max are arbitrarily chosen maximal deviations of the

states:

ymax
	 ft
	

(6.5)

max	 max 
= 1 . 0 degrees = 0.1745 rac?

	
(6.6)

A parameter T  is left in the Q matrix. For T Z = 0, only the motions are

weighted. For T  # 0, the motions and the velo ,uitiee are weighted. They

are weighted equally if Tz = 1. In the VTOL 14nding problem, the velocity

tracking errors can be as important as the position tracking errors

(they determine the shock at the landing), which justifies tie: weighting

of both in the quadratic cost. Also, it is known that, sometimes, the

weighting of outputs only may lead to underdamped second-order type

systems, and that this can be improved by weighting derivatives as well

as outputs. At this stage, the variaLle T  4q then left as a design para-

meter.

The control. weighting R matrix is chosen diagonal at the point of

the actual controls:

	

(^^ 1
	

2	 0	 0
1,2 max

Rc	 P	 0	 (
 ST 

	)^	 0	 (6.7)

Sol

1,2 max

	

0	 0	 ( 
S

1	 ^2

3max



and:

R - T 
R Tc c C (6.A)

with 6(11,2	, 6T 1,2	 , and 603	 are arbitrarily chosen maximal values
max	 maxmax

of the control authority.

641,2	
r 643	- 10 degrees - 0.1745 rad	 (6.0)

max	 max

6T1,2	
- 0.3 (30% of the nominal thrust value) 	 (6.10)

max

Another parameter of the design, p, is left here,and indicates the

relative importance of the control versus state deviations.

6.3 Optimal hoot-Locus

An optimal root-locus is defined as the locus of the closed-loop

poles of the system with optimal LQ feedback, when the parameter p in the

R matrix is varied from - to 0.

It is interesting to note that this problem in itself does not require

the solution of the associated Riccatti equation. The closed-loop poles are

the left half ,plane eigenvalues of the Hamiltonian system (91 and[25):

z a z z	 (6.11)

with:
A	 - p B R-1 BT

Z m	 (6.12)

-Q	 -AT
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This repl^ ,,ces the problem of solving a n th order Riccatti equation (n being

the order of the system) and a n th order eigenvalue - rr, ,1Ae% by a 2n 
th order

eigen ,talue problem.

The points of departure of the optimal root - locus are the stable

open-loop poles, combined with the mirror images of the unstable open-loop

poles (symmetric positior, ibout the imaginary axis). in our case, two poles

are at the origin, two are on the negative real axis, and two are oscilla-

tory unstable, and are then reflected in the left-half plane.

The points of arrival define the asymptotic behavior of the system as

p-*O, and are somewhat harder to obtain. Some poles qo to infinity along

specific asymptotic patterns (Butterworth patterns) depending or) the rank

of QSP . The other poles go to the zeroes of transmission of the system

Q (SI -A)_
1 B (with the same remarks for right -half plane zeroes as for

unstable poles when p-Iro). The zeroes of transmission z i 
are the solution

of the generalized eigenvalue problem:

(A-z 1)	 B	 x	 x i

0	 U,	 u
I

The system has as many inputs as outputs, so that the zeroes of transmission

are the z, I s that make the matrix A' (defined by (6.13)) rank degenerate

(the full rank is m+n, where m is the number of inputs, and n the number of

states).

The matrix Q is diagonal, so that we can take:
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IF 3'

b dia ( 
1	 1	 1	 Tz	 Tz	 Tz4	 g	

y	
, 

m	 0 ^^	
, m
	 ,^	

)	 (6.14)

max	 max	 max	 max	 max	 max

and A' is given in Table 6.1.

The matrix is three times rank degenerate at z  • -1/Tz . Then the row 1

is a linear combination of the rows 7 and 10 (similarly for 2, 8, 11 and

3, 9, 12). In other words, the inclusion of the velocities in the

quadratic cost results in the introduction of three, transmission zeroes

in the optimal root-locuz- It turns out that the three remaining zeroes

of transmission ake at the infinity. The case when Tzwn can be seen as a

limiting case when the weights on the derivatives go to zero. All the

transmission zeroes are thrt.t at infinity,,

Figures 6.1, 6.2, and 6.3 show the optimal root-loci for TZWO, TzMl'

and T -0.5 and are :Labelled for difforent values of P. The structure of the
z

root-locus for high values of P is the same for different values of T 

and is not repeated in the last two plots.

The previous comments concerning the points of departure and of arrival

are easily checked. For non-zero T z , the poles eventually reach the negative

real axis, and three go to infinity, while the others reach the zeroes at

-1/Tz . As T  goes to zero, the zeroes mo ve to infinity, and the case of zero

velocity weights appears clearly as a limiting case from the three figures.

Then, the asymptotic structure consists of three second-order Butterworth

patto rns.

expected, the root-loci reach faster higher damping regions when
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derivative -weights are included. However, the asymptotic behavior with

no velocity weights in a desirable one. At this point, no decision is

made about which case is better ( TZMO or Tzwl). This depends on which value

of p corresponds to a realistic design (acceptable tracking errors and

control authority) . If high values of p are reasonable, choosing T 
z 
-1

will probably improve the design. If small values of p are reasonable,

choosing TZ=O may be better, as it leads to desirable closed-loop poles

locations.

It turns out that the ranql.i of p between p - 0.3 and p - 30 is a

realistic one, as will be elaborated 
in the sequel. The corresponding pole

locations are satisfactory for T z = 0, and this case will be considered as

the nominal one from now on.

rinally, an interesting characteristic of the root-loci presented

here is their rather peculiar behavior, around the 1 rad/s region. This

appears in all three cases. For T z = 0, the behavior is quite surprising,

as one polo (one complex pair) seems to come back before going to infinity

along the 45 degrees line. At some point, this point "slows" down as if

it was reaching a zero. This point is found to be approximately at

0.91. ± j 0.87 and p v, 3. No attempt is made to justify this behavior

mathematically, but some physical connection can be found, and will be

explained below.

It can be expected that the important couplings between sway and roll

previously mentionned have some importance in this strange behavior.

Actually, while a small relative change of p produces only a very small
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movement of the pole near pug 3,'a comparatively small change of the weight

on 6T1,2 (6T1,2	
) produces a much larger movement of this pole. It is

max
clear then that the roll control variable is crucial in the optimal lateral

control system design, as it is probably in any VTOL lateral control system

design.

6.4 Step Responses

As a first step in the evaluation of the control system design,

responses to deviations from equilibrium are computed and plotted. The

aircraft is assumed to be left with a zero velocity and some position error

at t=0. Figures 6.4, 6.5, 6.6, 6.7, show the response to a 4 ft sway

initial error, and Figures 6.8, 6.9, 6.10, and 6.11 the responses to a 10

degrees roll initial error. The responses to a yaw initial error are not

significant (they require comparatively vary small control authority), and

are not reproduced here. Similarly, the deflections 6U1,2 and 6a 3
 are

about the same, and only 
6a1,2 

is shown.

The sway error response is particularly interesting: for high values

of p (high control cost), the roll response is important, while the fan

deflection (which mainly produces a sway force) is small. In fact, the

controller flies the VTOL as a helicopter: as the weight on the state is

tl, and the weight on the controls is high, the controller slowly banks

aircraft and uses the lateral component of the thrust to obtain a sway

^leration; then, after some time, it banks the aircraft in opposite

action to reduce the sway speed to zero,together with the sway deviation.
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For small p (high state deviation cost), the situation is very

different, and a dramatic increase it fan deflection response can be

observed on Fig. 6.6, while the roll response on Fig. 6.5 is much

smaller. This shows that the turning point observed in the root-locus

of Fig. 6.1 corresponds also to a change in strategy of the controller.

A similar conclusion can be obtained from the responses to a roll,

initial error. For a high value of p (p=30), the sway induced by the

initial roll angle is important, and it is then compensated by an impor-

tant opposite roll (about half of the initial roll angle).

We conclude from this discussion that the quadratic optimization

problem leads to solutions which, when understood, are very logical,

and simply express specific characteristics of the system, which, at

first, may be obscured by its multiple-input multiple-output structure.

One advantage of the LQ methodology is that it leads to coupled

controller designs that exploit the dynamic coupling phenomena.

5.5 A Special Example

To illustrate the above remarks, a limiting case is presented; it

corresponds top = 10, Tz = 0, but with the penalty on the sway error

multiplied by 10 6.  The resultant c1G A -loop matrix:

AA,CL A
A - BAGA	(6.15)

and the gain matrix GA are given in Table _%.2.

The most interesting terms are the A A,CL (4,2) aryd the GA (2,1) terms.

r



A3 
T1

t

0.

0.

0.
A CL, A	 -32.96

4.4.77

17.93

0. 0. 1.

0. 0. 0.

0. 0. 0.

-0.1.1 0.0155 -25.55

12.04 -0.4046 2.634

-0.2405 -1.175 1.279

0. 0.

1. 0.

0. 1.

-0.3263 0.0021

-5.656 -0.48:32

-0.3219 -1.539

	

10.2360	 1.0034	 -0.00005	 0.7914	 0.0009	 ••0.0012

GA	-	 -0.0637	 3.5568	 0.0071	 0.1737	 1.21.53	 0.0065

	

-1.9995	 -0.0093	 0.1443	 -0.1462	 0.0009	 0.1711

Table 6.2: Closed -Loop Matrix and Feedback Gains for a High

Sway Error Penalty

Figure 6.12: Exact Compensation of the Lateral Force Due to

a Roll Angle: with a Thrust Deflection
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Compared to the original A A (4,2) - 32.2, the term AA CL (4,2)--O.11

reduced almost to zero; we recall, that this term expressed the lat

force due to a roll angle of the aircraft. The weight on a sway error

being very ldr9e, the controller compensates this effect very logically

with a deflection of the thrusts in opposite direction than the roll

angle. This is accomplished by the GA (1,2) term, which, in the limit,

would be equal to I (see Fig. 6.12).

6.6 Ship Motion TrackiLll.

Up to now, the V'IX)L controller was designed as a stabilizer, or

zero state tracking controller. As indicated earlier, the feedback

structuve of the controller is independent of the specific reference

signal to follow, i.e. the ship motion at the landing pad. The ship

mDdol is roquired in the definition of the forward gain matrix value (GS).

The importance of the ship model is mostly in the computation of the

rins tracking errors and controls, which define the performance of the

ooiitroller.

Xn chapter 2, we denoted by w
A
 Lind w, the vectors of the aircraft

and ship variables that we want to track. They are the aircraft and ship

motions (at the landing p&CA) , so that-:

YA 	 WA 2SA
	 (6.16)

wS .-- WS SS
	 (6.17)
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with:

M

1 0 0 0 0 0

WA = 0 1 0 0 0 0

0 0 1 0 0 0

WS 
W 
CSLP

The tracking errors are denoted 4 _S , so that:

L'A-S WA W6 
a 

WA-S x

where:

WA-S	 ( _W
S , WA )

x =
xS

The overall system equations are:

k=Ax+Bu+F^

c = T u

where:

(6.18)

(6.19)

(6.20)

(6.21)

(6. 22)

(6.23)

(6.24)

r

S0A =
	 AA
	 (6.25)
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0
B
	

(6.26)

BA

(6.27)

The spectral intensity of 'E' is.

U
S

0 11 
A

The LQ controller is designed, using a Q matrix:

T T
_WT

W
S

Q w W
S S Q W WA

WA-S ^'w WA-S T T
Qw WS WA Qw 'S

(6.28)

(6.29)

where Q) 
w 

is the same matrix as the one used 
in 6.2 and defined by (6.4).

Similarly, the matrix R is chosen as defined by equations (6.7) and (6.8).

The control law is :

A ^ -Gx - - G 
SxS - 'A4
	

(6.30)

In this state-space framework, the rms values of the tracking errors 4-S

and of the controls c are very rosily obtained. The covariance of the states

deviations is obtained by solving the Lyapunov equation:

(A-BG) T P + P(A-BG) + _W = 0
	

(6.31)
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where:

P = E(x x T )
	

(6.32)

The rms tracking errors and rms controls are the square roots of the

diagonal elements of the covariance matrices:

T	 _	 T
E(4-S 4-S) _ WA-S P WA-S

E (cc	 cT ) = T G P G  T 

(6.33)

(6.34)

Tables 6.3 and 6.4 contain the results obtained for the two sea conditions

discussed in chapter 3. Table 6.5 contains the closed-loop poles locations

corresponding to the differan'L values of P.

5L'A	 H=12ft	 W = 0.4807 rad/s
m

Sway Roll Yaw Controls
(ft) (deg) (d u,

Ship motion 7.155 12.64 0.373 6(%1,2 6T1+2 8a3
at landing pad

(deg) (^) (deg.)

Tracking p=30 1.124 14.98 0.414 0.26 2.04 0.28
errors

P=3 0.971 13.35 0.203 1.93 3.06 1.96

p=0.3 0.465 6.36 0.099 9.15 15.35 9.16

p=0.3 1	 0.80 1 6.41 0.329 9.72 16.74 9.37A/C driving
noise incl.

Table 6.3; I,Q Controller Performance (decaying sea)

L
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S H A	 H-10ft	 W -0.72 rad/s

Sway Roll Yaw Cont rols
(ft) (deg) (de(i)

Ship mot ion
at landing pad 2,!61 4.556 0.227 6a1

,
6T 

12, 3 

(deg) (deg)

Tracking P=30 0.517 5.405 0.172 0.10 0.12 0.10

cl^rors
P=3 0.444 4.830 0.082 0.70 1.10

1

0.71

P=0.3 0.227 2.322 0.044 3.3 4 5.61 3.34

A/C driving P=0.3 0.691 2.480 0.317 ^4. 7 2

noise incl.

Table 6.4: LQ Controller Performance (fully developed sea)

cjos t^d-jc)Qj) poles locations

p=30
	 - 0.598 t j 0.585	 - 1. .038 ± j 0.611	 -0.642 ± j 1.054

p=3
	 - 0.4)06	 j 0.87	 -1.054 ± j 1..039

	 -1.528 ± j 1.552

p=0.3 - 1.064	 j 1.036
	 -1.8C1 9 ± j 1.863	 -2.792 ± j 2.803

Table 6.5: LQ Controller Closed-Loop Poles Locations

-1.28-
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For p - 0.3, good tracking is obtained, with reasonable control

authority (for H =12 ft, wm = 0.4807 rad/s, some higher value of p may

however be appropriate). The value of p = 0.3 was chosen as a nominal

value for the control system. The closed-loop poles are also at desirable

locations for a VTOL control system.

For this nominal design, the effect of wind turbulence is also

indicated. The results are obtained by introducing an aircraft driving

noise matrix wA, and are also indicated in Tables 6.3 'and 6.4.

Values for wind disturbances are found in the form of Dryden spectra

in (19]. The derivation of the `A 
matrix from this data is included in

Appendix C.

As for the aircraft controller step responses, the values of the rms

tracking errors anO controls give us some interesting indications about the

physical aspects of the problem. The yaw tracking errors are very small,

compared to the maximal values given in the quadratic cost. Similarly,

the rms deflections &11,2 and Sa3 are very close. This indicates that

yaw tracking is not at all a problem for the aircraft. The control

authority is clearly more than sufficient to track the ship motion

(which is very small anyway), or to reject wind disturbances.

On the other hand, roll tracking errors are much higher than the

sway and yaw errors (compared proportionnally to the maximal values given

in the quadratic cost). For p 30, the rms error is even larger than

the rms ship motion. This probably indicates that roll is the "least

easily controllable" state of the VTOL aircraft, but it also reflects two

Lill.



basic contradictions faced by the controller in the trackinq of the sway

and roll motions. The first comes from the ship motion at the landing pad.

From the sway at the landing pad, a large part is coming From the roll

motion, due to the difference in altitude between the landing pad and the

center of rotation of the ship. It has been seen earlier that an easy way

for the aircraft to track a sway reference is to roll the aircraft as

a helicopter would do. However, the roll angle required to follow the

ship sway motion by this mean is precisely opposite to the ship roll angle

that has produced the sway motion of the landing pad. This is illustrated

schematically on Fig. 6.13.

The second adverse effect has been mentioned previously and is

:illustrated on Fig. 65.14. It is shown that a roll moment is induced by

a lateral deflection of the thrusto (term 13A(5,.1)). It is opposite to the

ship roll motion.

It is possible to improve the roll tracking by increasing its penalty

in the Q matrix. Considering the physical problems mentioned here above,

this will probably result in a large increase in control authority.

moreover, precise roll tracking is not necessary, and not even desirable.

For the same reasons as the ones mentioned here above, precise roll

tracking would result in large lateral accelerations at the pilot location

and this would probably be unacceptable.

Finally, it can be noted that only the influence of wind gusts was

considered here, while the mean wind was neglected (together with the

aerodynamic effects, as in j1)). The influence of the mean wind will be

e
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to produce a steady-state tracking error whose amplitude depends on the

amplitude of the mean wind and on the feedback gains. This can easily be

compensated for, if necessary, by introducing some integral compensation

(for example, by augmenting the system and recomputing the feedback gains).

6.7 Time Domain Simulations

Some time domain simulations are illustrated in Figures 6.1.5 to 6,27.

Figs 6.15 to 6.19 correspond to the case p = 0.3, wit'Tiout aircraft driving

noise (wind gusts). As expected roll, tracking is the worst of all, and the

aircraft roll motion is systematically smaller than the ship motion.

Figures 6.20 to 6.22 illustrate the tracking in the presence of wind

disturbances. As expected, the yaw tracking is the most severely affected,

but the aircraft motion remains small,.

Figures 6.23 to 6.27 show the case p = 30, without wind disturbances.

While sway tracking remains good, the roll tracking is simply out of phase

most of the tire. This demon::trates again the "helicopter" behavior, of the

controlled aircraft for high values of P.

6.8 Summary

In this chapter, we described the design of a linear quadratic (LQ)

regulator. This design assumes perfect knowledge of the states at any

moment. For the aircraft part, the assumption is not unrealistic (espe-

cially if a good navigation system is used aboard the aircraft), as all

the stF' gsure available for measurement, and the only role of an optimal

estimator is to filter the noise, and provide optimal estimates on the
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basis of the known dynamics of the aircraft.

For the ship however, a Kalman filter is necessary to reconstruct

the states that are not available, and the results indicating the rms

tracking errors for a given control authority must be interpreted as

lower bounds.

Due to the decoupling of the ship and of the aircraft in the LQG

design, the optimal closed-loop poles locus could be plotted independently

from the ship motion. It was shown that the root-locus can be shaped by

the introduction of velocity error penalties in the quadratic cost, and

that some peculiar behavior of the root-locus could be explained on the

basis of physical arguments.

The responses of the controlled aircraft to deviations from equili-

brium were plotted, and the important couplings between the sway and roll

were shown to have a significant influence on the behavior of the

controlled aircraft. For high values of the control penalty, the controller

appeared to fly, the VTOL like a helicopter, while, for smaller values, it

used much more the thrust deflection capability to provide lateral

,accelerations.

The difference in strategy for high and small values of the control

penalty appeared to have a significant influence on the errors achieved in

the tracking of the ship landing pad motion. It was shown that the

controller faced two important contradictory phenomena in the tracking of

the roll motion, especially due to the sway motion induced at the landing

pad by the roll motion. Although precise roll tracking is not necessary,
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the high values that the roll motion can reach in high sea states make

imperutive the limitation of the tracking errors (to avoid a contact of

the wing tip at the landing for example),and the constraints present in

the simultaneous tracking of the sway and roll motion are basic

limitations in the tracking of the lateral motions.

-148-

y.



CHAPTER 7

LINEAR 2UADRATIC GAUSSIAN REGULATOR DESIGN

7.1 Introduction

Having designed the linear quadratic regulator, the next step to the

final control system is the optimal estimation of the system states. As

all the states are not available for feedback, and as those which are 	 t

measurable are affected by measurement noise, a state estimator is necessary

and, in the general assumptions of the LQG methodology, this state estimator

is a Kalman filter. The overall control system is then composed of a Kalman

filter whose state estimates are multiplied by constant gains, determined

as in the LQ problem.

It has been previously indicated that the estimation problem can be

reasonably decoupled. The ship motion estimation problem has been addressed

in chapter 4, so that this chapter will concentrate on the aircraft motion

estimation problem, and on the overall system performance.

7.2 Navigation_Systems

The accuracy of the navigation systems used aboard the ship and aboard

the aircraft will be a determining factor in the performance obtained in the

tracking of the ship motions.

Some previous studies [261, [271,have addressed the navigation problem

of VIML landings on destroyers. An inertial measurement unit aboard the

ship providers measurements of the ship motions that are data-linked to the

r..



to LQ control +.00p. The robustness of the

aircraft (in our configuration, the full ship state, estimated by the

ship Kalman filter described in chapter 4, is data-linked to the aircraft).

Aboard the ai,,.craft, the combined use of an inertial measurement unit,

microwave (scanning beam) landing system, and distance measuring equipment

(MLS/DME), leads to estimates of the aircraft position and attitude. The

aircraft navigation system considered in [261, C27 is a low to medium

quality navigation system, so that even if the whole aircraft state is

available for measurement, some improvement can be gained by an aircraft

Kalman filter that estimates the aircraft total state using the model for

the aircraft dynamics and control effectiveness. This is the subject of

section 7.3.

However, it should be noted that with the use of a good quality

aircraft inertial measurement unit, much better estimation accuracy can

be achieved. The appropriate Kalman filter formulation in this case uses

an error state formulation, where the state variables are the very low

frequency errors in the indicated position , velocity, and attitude of the

inertial system. The radio measurements (MLS/DME) are used to estimate

these low frequency errors. The precise structure of such a navigation

system is not studied in this thesis, which concentrates on the control

aspects of the VTOL landing problem. If the accuracy and response time of

the navigation system is such that the aircraft navigation errors and the

time lags are negligible, an aircraft Kalman filter, using the known

dvnamics of the aircraft, is not necessarv, and the control loop around
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control system is then the same as the rob',):%tness of the LQ syst,:m (cf

chapter 8), and xhe degradation in performance, as compared to the LQ

controller performance indicated in chapter 6, is due to the ship Kalman

filter, and the estimation of the ship states that are not available for

measurement. The reduction in performance is small, however, as will be

indicated in section 7.4,

7.3 Aircraft Kalman Fiiter

First, we assume that the aircraft controller has available noisy

absolute position and attitude measurements that are used as input of

the aircraft Kalman filter. The measurement (output) matrix is then:.

1 0 0 0 0 0

CA	0 1 0 0 U 0
	

(7.1)

0 0 1 0 0 0

From data available in (26) and (27], the intensity matrix of the measure-

ments noise is selected to be:

0.286	 0	 0

OA	0	 0.001	 Q	

i	

(7.2)

0	 0	 0,	 1
With this choice of measurement noise, and with the driving noise

resulting from the wind turbulence model, the Kalman filter poles are

located at: -0.5743 t j 0.5593, -1.317 ± j 1.104 and -1.107 t j 1.318.
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If measurements of the angular.	 ".ities, as wcl]. as

angles and displacements, are availab, 	 navigation system, a

Kalman filter can be designed, assuming the measurement of all the 6

' 	 states. The measurement matrix is then the identity matrix:

CA = I
	

(7.3)

The measurement noise intensity matrix is selected, using the same

references as before, and is equal to:

0.286 0 0 0 0 0

0 0.001 0 0 0 0

0 0 0.001 0 0 0
pA

0 0 0 0.286 0 0

0 0 0 0 0.00024 0

0 0 0 0 0 0.00024

(7.4)

In this case, the closed-loop poles turn out to be at: -0.4981,

-0.5662 ± j 0.5804, -0.91, -3.92, -4.819.

The first design is referred in the next sections as the 3 measurements

case, and the second as the 6 measurements case.	 a

Note that in the situation when the 6 measurements are available,

we are very close to the full state feedback. The role of the Kalman

filter is not to reconstruct the unavailable states, as it was the case for

the ship Kalman filter for example. In this case, its role is to provide

optimal estimates of the states from noisy measurements, using the known
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dynamics of the aircraft: it is actually nothing else than a filter.

In the closed-loop system, its role is to filter the noise and so, it

decreases the bandwidth of the system. The consequence is, theoretically

(i.e. in the assumption of white measurement noise), an increased perfor-

mance compared to the full (noisy) state feedback, at the expenses however

of robustness, as will .,e seen in the next chapter.

7.4 LQG Controller Performance

The evaluation of the controller performance can be done as for the

LQ controller in chapter 6, by computing the rms values of the tracking

errors and of the controls.

To determine the rms values of the states (ship, aircraft, and

Kalman filter states), we write the overall system equations:

x	 x
A'. 1—+ 	 ( 7.5)

X	 X	 He

where:

A	 -BG J
A' _	 (7.6)

HC A-BC-HC

The overall state covariance matrix is obtained by solving the Lyapunov

equation:

A s T  + PA' + E' = 0
	

(7.7)
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with:

0

~ 0 HOHT

arid:

E (xXTI	 E (XxT)

E (kxT )	 E (xxr)

The rms values of the tracking errors and controls are the sc

of the diagonal elements of:

E;
 -S^-S ) V WA-S E 

(xx ) WA-S

and:

E(ccT) = Tc G S(xxT ) GT Tc

respectively.

Tables 7.1 and 7.2 show the results obtained for the rm;

errors and controls. In the case when the aircraft navigation system is

of quality such that the navigation errors are negligible, the aircraft

total state Kalman filter is not necessary. The ship Kalman filter is

still required as a state reconstructor. The degradation in the tracking

errors (compared with the unrealizable full ship and aircraft state

feedback case) is then very small, while the rms controls required are
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SEA	 H=12ft	 Wm-0.4807rad/s

Pins Tracking Errors

and Controls

Sway

(ft)

Roll

(deg)

Yaw

(deg)

6a
1,2

(deg)

6T
1,2
(%)

61
3

(deg)

L.Q	 (1) 0.801 6.410 0.329 9.72 16.70 9.37

LQG	 (2) 0.913 6.432 0.341 9.71 16.73 9.36

LQG	 (3) 2.312 7.249 2.547 11.39 23.61 10.42

LQG	 (4) 1.401 Ii	 6.567 1 1.499 10.10 18.13 9.61

(1), (2), (3), and (4) see below

Table 7.1: LQG Controller Performance (decaying sea)

SEA	 H=10ft	 wm=0.72rad/s

Rms Tracking Errors

and Controls

Sway

(ft)

Roll

(deg)

Yaw

(deg )

6x1,2

(deg )

6T1,2

(%)

6a3

(deg)

LQ	 (1) 0.691. 2.480 0.317 4.72 8.78 3.92

LQG	 (2) 0.812 2.529 0.328 4.70 8.76 3.89

LQG	 (3) 2.274 4.193 2.545 7.60 18.82 6.01

LQG	 (4) 1.338 2.856 1.496 5.45 11.19 r4.47

(1) LQ Controller, with wind disturbances
(2) LQG Controller, with only the ship Kalman filter
(3) LQG Controller, 3 measurements case
(4) LQG Controller, 6 measurements case

Table 7.2': LQG Controller Performance (fully developed sea)
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sometimes smaller, due to the decrease in bandwidth caused by the ship

Kalman filter.

When the aircraft navigation system is of lower quality, and an

aircraft total state Kalman filter is used, along with the ship Kalman

fil.tur, the degradation in performance is more serious, but still

reasonable in the b measurements case.

7.5 Summary

In this chapter, we considered the optimal estimation of the aircraft

states from noisy measurements. Two cases were considered: the first

corresponded to measurements of position and attitude only, the second to

measurements of position, attitude, and their derivatives (full state

measurement). The second case is considered the nominal one.

The degradation in performance due to the estimation of the ship

states and of the aircraft states from noisy measurements was indicated.

It was shown to he very small if only the ship states had to be estimated,

and reasonable in the case of the noisy measurement of the full aircraft

state vector.
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CHAPTER 8

ROBUSTNESS ANALYSIS

8.1 Introduction

The robustness of a feedback system to modelling errors (parameter

uncertainty, unmodeiled dynamics, neglected couplings ...) is certainly

as important as the stability of the nominal closed-loop system. It is

fundamental for aerospace applications in which, very often, the nominal

open-loop system is unstable. While the open-loop system is an optimally

robust system when it is stable, the existence of an optimally robust

closed-loop system can be conceived in the case when the open-loop

system is unstable.

Although the issues of robustness are well understood, and easily

expressed for single-input single-output systems, they are much more

e^omplex for multiple-input multiple-output systems. Much research has

been done recently in this area, showing mainly the usefulness of

singular values to quantify robustness properties of multiple-input

multiple-output feedback } ►stems. In this thesis, we will mainly refer

to the results found in [ 23] , [24] , [281

8.2 Robustness Measures

8.2.1 Single-Input Single-Output_(SISO) Case

The stability of SISO feedback systems can be determined by the use
f;	

of the Nyquist diagram. The Nyquist contour DR is defined as two segments



of the positive and negative imaginary axis, connected by a half circ

whose radius R is, to the limit, taken to be infinite, so that the wl

right half plane is then included in the contour. The Nyquist cr;i^toul

transformed by the complex function g(s) (the open-loop transfer fug

is then plotted in the complex plane. The closed-loop systerit is guari

to be stable if the number of counterclockwise encirclements of the (-1,0)

point is equal to the number of open-loop unstable poles.

Robustness is easily measured by the distance from the transformed

contour to th (-1, 0) point. It is usually expressed in gain and phase

margins. They indicate what minimal multiplicative perturbation (constant

gain or phase shift) would make the Nyquist diagram pass through the

(-1,0) point. This would be at the limit to change the number of encircle-

ments, and, consequently, the stability of the closed-loop system.

8.2.2 Mult^p.le -Input Multiple-Ou^put_(MIMO) Case

The stability of MIMO feedback systems can be determined in a very

similar manner by a Nyquist diagram. The transfer function to be plotted

on the Nyquist diagram is now (-1 + det(I+G(s))) where G(s) is the open-

loop transfer matrix. The same criterion can then be used.

We note immediately however that det(I + kG(s)) is different from

1 + kdet(G(s)). This indicates already that no stability margins can be

found from the MIMO Nyquist diagram, as in the SISO case.

Very often, separate loop-by-loop stability margins, similar to the

ones used in SISO systems, are considered indicative of the overall system



robustness. They are however clearly insufficient. Perturbations are not

Likely to occur separately, and simultaneous perturbations in different

channels may be much more dangerous for the stability than separate

perturbations, The importance of possible cross-channel disturbances has

also to be evaluated, and is not reflected by a single loop-by-loop

robustness analysis. Consequently, going back to the SISO case, with

a single loop-by-loop analysis is not a satisfactory way to study the

robustness of MIMd feedback systems.

Unfortunately, the distance from the (-1,0) point to the Nyquist

contour transformed by (-1+det(I+G(.$))) - which is the same as the

distance from det(I+G(s)) to 0 - is not a reliable measure of robustness.

I.n fact, numerical analysts have long recognized that the specific value

of the determinant of a matrix is a poor measure of the nearness of this

matrix to singularity (or rank deficiency). In other words, det(I+G(s))

can be large, although a small additive perturbation E can make

det(I+G(s)+E) equal to zero.

8.2.3 Singular Values

These shortcomings can be avoided by the use of singular values. The

singular v%lti.,^s of a complex matrix A are defined as the square roots of

the eigenvalues of the matrix A  A (AH is the complex conjugate transpose

of A), i.e.:

a (A) = a (AHA )
	

(8.1)
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The maximum singular valu7 of a matrix A is indicative of i

(i x 1^ =Ex^
i

(8.3)

as it is equal to the spectral norm of the W-trix A:

Amax (A)	 ^i A 11 2 
--max 11 

Ax 11,

	

--- - --
	

(8.2)

^!#0	 II E112

where:

The minimum singular value of a matrix A is indicative of its nearness

to singularity. If Omin=01, 
there exists a perturbation E such that a max (E)_ot

and det (A+E)=0. Moreover, no matrix E such that amax(E)<a will mare A+E

singular. The minimum singular value is then an indication of the minimal

"size" of the additive perturbation required to bring the matrix A to

singularity.

An advantage of the use of singular values is that it also allows to

compute the minimal perturbation E through the singular values , decompositiom

If U and V are matrices containing the unit eigenvectors of AA  and A 
H 
A

(known as left and right singular vectors of the matrix A), and if E is a

diagonal matrix containing the singular values of A, then A can be

decomposed as:

A = U E V 	 (8.4)
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E - -O u v H
n--n-n

(8.6)

C m G (1+E) - G.L	 (8.8)

And the matrix E can be decomposed as:

E M U	
p8	

0	
VH	 (8.5)

D -on]

where 88 is any n-1 x n-1 matrix such that 11 PS 11 2 < an and where it is

assumed that the singular values have been ordered so that a
n
 . 

a min (A).

Without loss of generality, one can select PSMO, so that:

r

8.2.4 Robustness of MIMD Systems

The robustness of MIND systems is defined by the size of the minimal

perturbation E that brings the closed-loop system at the limit of instabi-

lity. Then, the return difference matrix I+G(s) (where G(s) is the

perturbed open-loop transfer matrix) is singular for some s on the

Nyquist contour.

Different structures of perturbation can be imagined, for example, an

additive perturbation:

d - G+E	 (8.7)

or a multiplicative perturbation:
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In the first case, the closed-loop system stability is guaranteed if

a min (I +G (a)) > 
Amax (E)
	 (8.9)

In the second case, if:

U 
min 

(I+G- (S) ) > a max (E)	
(8.10)

other structure of errors have been analyzed in 1231 and showed the use

of a min
	

) for some type of perturbations.

As in th( SISO case, the transfer matrices go to zero as s-0- , SO

that the only important of the Nyquist contour is the imaginary axis,

and s can be replaced by jw in the previous formulas.

8. 2. 5 Guaranteed Gain and Phase Margins

Guaranteed gain and phase margins can also be obtained from the

minimum singular values. Although only diagonal perturbations are

considered here, they are not limited to the case when only one channel

is perturbed at a time. At the contrary, simultaneous gain or phase

changes in all channels together are considered. The results presented

here can be found in (231. The gain and phase margins obtained are

guaranteed (or conservative) margins. In other words, the gains (or phases)

in all channels can be changed simultaneously within the limits indicated

by the gain (phase) margins without causing instability, but it is not

necessarily possible to find some perturbation of this amplitude that

will cause instability (at the contrary of the previous case where a

general type of perturbation was considered).
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x - Ax + Su	 (8.17)

u - -Gx	 (8.18)

For the different type of errors considered in (231, the guaranteed

gain and phase margins &rot

Gmin ( I+G) > 01 -► GM a 
( 1 1 , 1+a)	 (8.11)

PM :) (-2sinl 2 , 2sin l Z)	 (8.12)

amin (I+G-1 ) > a + GM o (1-0 , l+a)	 (8.13)

PM :D(-2sinl 
2	

2sinl 2)	 (8.14)

amin ( ( I+G) (I-G ) -1 ) > a + GM ' ( l+a	 l a)	 (8.15)

PM ^ (-2tanl(I , 2tan la)	 (8.16)

8.3 VTOL Control System Robustness

8.3.1 Introduction

The robustness results swrimarized above are applied to the LQ and LQG

control system designs of chapter 6 and chapter i'. Note that the computa-

tion of singular values of transfer matrices can be done quite rapidly,

by the use of efficient algorithms [291, 1 30] , ( 31L

For the LQ design, we have:
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The open-loop transfer matrix is:

G(jW) - G (jWI -A) -1 8	 (8.19)

We can also consider the transfer matrix:

G' (jW) " R G (jW) 
R-S	

(8.20)

which is equivalent to consider a normalized transfer matrix (normalized

by the weights attributed to each control in the R matrix).

The Kalman inequality is:

(z+G' (jW)H (I+G R (jW)) > I	 (8.21)

This guarantees that:

Amin ( I+G' (jW)) > 1	 (8.22)

and then:

Grp a (1/2, -)	 (8.23)

PM D (-60deg,60deg)	 (8.24)

As:

0 min (I+G') +1 > 0 min (I+G' -1 )	 (8.25)

This also implies that:

am.in (I+G' -1 ( jW )) > 1/2	 (8.26)
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For the LQG design, we have:

x - Ax + Bu	 (8.27)

U - -Gik 	 (8.28)

x - (A-BG)x + H(X-Cx)	 (8.29)

Y - Cx	 (8.30)

so that:

G(jW) - (0 G),	 A	 0	 -1	 B	 (8.31)
jWI -

[HCA-BG-HC	 0

Again, to have some normalization of the transfer matrix, the matrix:

G' (jW) = R^ G(jW) R
-^	

(8.32)

can be used. In the LQG case, there is no inequality as (8.22), (8.26),,,

and, consequently, no guarantee on the robustness of the closed-loop

system.

in the next subsections, the minimum singular values of the loop

transfer matrices for the LQ and LQG designs are indicated. To provide

some normalization, the loop transfer matrices considered are those given

by (8.20),(8.32) (note that the parameter p has no influence in this

normalization).
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S. 3.2 L9 Minimum Singular Values
The minimum singular values of the LQ desi gn are shown in Figures

8.1, 8.2, and 8.3. It is easily checked that amin(I+G 1 )> 1/2 and

a min (I+G) > 1.

It is interesting to note that the minimum over w of the minimum

singular value (for any perturbation criterion) is smaller for p= 30

than for p= 0.3. In other words, the closed-'loop system with higher

loop gains is more robust than the others. This is probably due to the

instability of the open-loop system.

8.3.3 LQG Minimum Singular Values

The minimum singular values of the LQG design with 3 measurements

(aircraft position and attitude) are illustrated in Figures 8.4, 8.5,

and 8.6. For the 6 measurements case (motions and derivatives), the

values are shown in Figures 8.7, 8.6, and 8.9.

The first conclusion is that the robustness is seriously degraded

when only position measurements are available. The estimation of positions

and velocities from noisy measurements of positions only does not only

result in degraded performance, as indicated previously (tables 7.1 and

7.2), but also in reduced stability margins.

The robustness is improved when the 6 measurements are used in the

Kalman filter. However, the minimum singular values drop significantly

for very low frequency in the nominal case p=0.3.
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The singular value decomposition can be used to obtain the minimal

destabilizing perturbation, and get some insight about what physical

effects are implied by this perturbation. The minimal destabilizing

perturbation, computed for p=0.3 and W-O, depends on the error criterion

selected, but it turns out that the different results are very similar.

Tho minimal multiplicative perturbation, indicated by %ir,(I+C-l), is:

	

0.889	 0.063 -0.065

L	 0.0785	 0.955	 0.046	 (9.33)

	

0.133	 -0.076	 1.079

This can be .interpreted in many different ways. For example, we can

assume that this perturbation is due to modelling errors in the B matrix

(force generation part, or control effectiveness). This would mean a

change from B  to tc=BcL. The nominal B  was given in Table 5.1;

0	 0	 0

0	 0	 0

0	 0	 0
B
c	 -21.231	 0	 -10.989

	

2.976	 4.595	 1.265

	

2.864	 0.194	 -2.685

(8.34)
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The matrix B is then:
c

0 0 0

0 0 0

0 0 0$s
c -20.334 -0.290 -10.468

3.438 4.443 1.536

2.217 0.410 --3.071

r.

(8.35;

which, for the list three rows, is a change of:

	

-4%	 oo

{ ^ 0i
B 

- $clij )	 16%	 -3%	 21%
C, i7

	

723%	 111%	 14%

(8.36)

We see that the "destabilization" requresimportant changes in terms that

were quite small originally,and could be called parasitic. For example, the

second term of the last row is increased by about 100%. We remember that

this term expresses the yaw acceleration produced by a roll command,and

that this is due, originally, to the angular difference between the body

axes and the principal axes.

At this point, the designer will decide, on the basis of the knowledge

of the accuracy of the model, whether such perturbation (or error in the

model) is physically possible or not. This is a delicate task that requires

a good knowledge of the system and of the precision to which the model is

known. In our case, no data could be found in (1), and in the original.
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modal [191 about the precision of the model, so that this question could

not be answered with certitude. However, small singular values over some

frequency range are indicative of decreased stability margins of the closed-

loop system, and the best solution is, if possible, to change this charac-

teristic: it is the subject of the next section.

8,4 ,Robustness Recover

The robustnoss recovery for LQG designs refers to he recovery of the

LQ transfer matrix - and consequently stability margins - from the LQG

design. The robustness recovery technique was proposed in [28), following

a procedure very similar to the one proposed in[32].

The idea, is simply to modify the Kalman filter in order to approach

the LQ design. The filter is redesigned with a new value of the driving

noise spectral intensity matrix:

` U 
+ q BHT
	

(8.37)

This corresponds to ;assume that some white noise is present at the input,

and, consequently, tells to the mathematical expression of the problem

that there are uncertainties at this point. It can be shown[28] that, as

q-*w, the LQ loop transfer matrix is asymptotically approached by the LQG

loop transfer matrix.

The robustificat.ion procedure is applied to the LQG design described

in chapter 8 (6 measurements case), and is illustrated in Fiyures 8.10,

8.11, and 8.12. For q^-0.01, the robustness properties are seriously
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improved, and for q®1 the LQ singular values are almost recovered,

The minimal values of the minimum singular values over the whole range

of frequencies, and the gain and phase margins obtained from equations (8.11)

to (8.16) are shown in Table 8,1. As these margins are guaranteed, or

conservative, the overall guaranteed margins are the union of the margins

corresponding to the different criterions, and are underligned in Table 3.1.

For ga0.01, the guaranteed gain margin is about from 0.4 to 3, and the

guaranteed phase margin about ±40deg. These appear sufficient for our

application.

The robustness recovery is however made at the expense of the perform-

ance. In fact, the bandwidth of the Kalman filter increases quickly as q

increases. Table 8.2 indicates the location of the Kalman filter poles for

different values of q.

q Aircraft Kalman filter poles

0 -4.82, -3.92, -0.91, -0.57 ± j	 0.58, -0.5

0.01 -10.81, -5.37, -2.23, -1.12, -0.60, -0.49

1 -97.	 , -43.	 , -7.49, -1.	 , -0.5	 , -0.49

100 -989.	 , -429.	 , -69.	 , -l.	 , -0.49, -0.49

Table 8 .2: Aircraft Kalman Filter Poles (with robustification)
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The size of the loop transfer matrix G is represented by its maximal

singular value, so that the bandwidth of the co.ntro:, system can be defined

by the crossover frequency of the transfer function a max (G(JW))• The

evolution of this transfer function with the parameter q is shown in

Figure 8.13. The increase in bandwidth resulting from the robustification

procedure can be directly observed from this figure.

The increase in bandwidth may result in improved or degraded tracking

performance, but almost certainly in increased control authority, as more

noise is passed through the filter. Tabla 8.3 illustrates the changes in

the rms tracking errors and control authority for different values of q.

SEA	 H=10ft	 Wm=0.72 rad/s

Pins Errors and

Controls

Sway

(ft)

Roll

(deg)

Yaw

(deg)

6a 
1,2

(deg)

6T1,2

(a)

6a3

(deg)

LQ w.A/C noise 0.691 2.480 0.317 4..719 8.78 3.917

LQG	 q=0 1.338 2.856 1.491 5.448 11.19 4.467

q=0.01 1.350 2.869 1.482 5.456 11.83 4.653

q=1 1.239 2.851 1.445 6.394 18.70 5.825

Table 8.3: LQG Controller Performance (6 meas., with robustification)
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For q-0.01, the decrease in performance is very small, while for q=1.

it becomes significant. The design corresponding to q=0.01 appears to bo-

a very satisfactory one, both for tb, performance and the robustness.

Note however that in this performance evaluation, white measurement noise

has been assumed. In reality, the noise will be bandl.imited, and the

degradation will probably be less than indicated. In fact,as all the

states are available (but noisy), an LQ controller, without Kalman filter

(usinfj the known dynamics of the aircraft), is riot an unrealistic possi-

bility: its p(x formance would be less than the performance of an LQG

design, but the robustness would be increased, and the computational

;load would be dramatically reduced (this would be the case if a good

navigation system is available aboard the aircraft, cf. chapter 7).

8.5 Nyquist Diagrams

Some Nyquist diagrams will illustrate the facts indicated at the

beginning of this chapter. Figure 8.14 shows the function -l+d et(I+G(jW)),

w>0. To plot it, it is convenient to compress the distances radially by

a logarithmic transformation which is chosen to be:

r
	

log( + x+7)	 (8.38)
x +y

x' = x.r	 (8.39)

y' = y. r	 (8.40)
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For MIMO systems, such compression of the distances is almost

unavoidable, as the transfer function det(I+G(s)) is of an order equal

to the order of the system (equal to 6 here).

Figure 6.15 shows the complete contour, and the number of encircle-

ments for the LQ design. There are 3 counterclockwise encirclements, and

1 clockwise encirclement. Remembering that there are two unstable open -

loop poles, this confirms the closed-loop stability of the LQ controller.

As in the SISO case, some attention has to be given to the two poles at the

origin, and to the encirclement at the infinity.

Figure 8.16 shows (in normal cartesian coordinates) the Nyquist

diagrams for the LQ and LQG design (6 meas.,ga 0) near the critical point.

It is checked that the Nyquist diagram for the LQ design never enters the

unit circle centered at -1. This is a consequence of the Kalman inequality

(8.21)	 (33] .

The minimum singular values shown in the ,previous subsection indicate

the size of the minimal perturbation that destabilizes the closed-loop

system. It is also possible to compute the vali.)e of the multiplicative

(or additive) perturbation L, such that the perturbed transfer matrix G.L

is at the limit of instability. In terms of Nyquist diagrams, the minimaal

perturbation L is the perturbation that, at the specific frequency W where

it is computed, brings the point of the Nyquist diagram - 1+det(I4G(jW))

to the -1 point (then det(I+G(jW)) =0 ). At anj frequency, the minimum

singular value indicates the size of the minimal perturbation that will

make the Nyquist diagram pass through the -1 point, and 'brine; the system
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at the limit of instability. Over the whole range of frequencies, the

minimal value of the minimum singular value gives, from all the minimal

perturbations found at each frequency, the constant perturbation chat has

the minimal size. The meaning of the previous discussion, is that the

frequency at which this overall minimum occurs may correspond to a point

located very far from the -1 point on the Nyquist diagram. This is

,illustrated in Figures 8.17 and 8,18.

Pig. 8.11' show the Nyquist diagram of the loop transfer matrix G

corresponding to the robustified (q=0.01) LQG (curve LQG) together with

the diagram of the loop transfer matrix G.L (curve perturbed LQG). The

perturbation L is the minimal multiplicative perturbation that corresponds

to Fig.C.'.- It is computed at the frequency where the minimum singular

value ii minimal, i.e. 1.15rad/s. The distortion of the Nyquist diagram

is quire peculiar. The point that is brought to the -1 point is not at

all the closest point of the Nyquist diagram, although it is the closest

point on the basis of minimal multiplicative perturbation. This is a

practical proof of the fact that the distance to the -1 point in the

Nyquist diagram is not representative of the closeness to instability,

with respect to general type of perturbations.

The situation is even more surprising for the non-robustified LJG

design (q=0). In this case, the minimum singular value goes to its ininimi,im

at w-0 (cf. Fig-8-7). At this frequency, due to the presence of the two

poles at the origin, the determinant of I +G(jW) is infinite. This means

that the closest point (closest in the sense of minimal norm additive or

V,
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mult+plicative perturbation of G(jw)) from the Nyquiot diagram to the -1

point is the point at infinity! This im illustrated in Fig.8.18. As this

;,ase is numerically perfectly ill-conditioned, the minimal multiplicative

perturbation is computed at W-0.1 rad/s, where the minimum singular value

is very close to the minimum value reached at W-Orad/s.

8.6 Summary

In this chapter, we addressed the important issues of the control

system robustness to modelling errors and parameter uncertainty. Due to the

decoupling between the ship and the aircraft, this problem only involved

the aircraft model and the feedback from the aircraft states.

The importance of the singular values analysis in the definition of

multivariable robustness measures waF first introduced, and r.^me recent

results concerning the stability margins of multivariable systems were

summarized.

The singular values analysis was used for the different transfer

matrices of interest, and for different designs considered previously.

For the nominal design, it was shown that reduced stability margins were

obtaine,i at very low frequency, and some physical interpretations were

indicated for the minimal multiplicative destabilizing error given by the

singular value decomposition. A robustification procedure was used, and

appeared successful in retrieving the favc;Cable robustness properties

of the LQ design, with a limited degradation in performance.



LOG

Figure 8.18: LQG and Perturbed LQG Nyyuist Diagrams
(diagram radially compressed)
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Finally, some Nyquist diagrams illustrated the theoretical results

mentioned previously, especially the impossibility of defining stability

margins from the Nyquist diagram in the MIMO case, in contradistinction

R '	 to the SISO case.

1
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CHAPTER 9

CONCLUSIONS

9.1 General Conclusions

Two major aspects of the problem of landing VTOL aircrafts on small

ships were addressed in this thesis. The first is the estimation and

prediction of ship motions, mostly for applications in piloted landings,

and the second is the design and evaluation of an automatic controller,

for use in fu"ly or partially automatic landing schemes.

An accurate ship model was first der' • ►ed, using hydrodynamic data

for the DD963 destroyer. It was shown that the ship motions have power

spectra that are concentrated in a narrow frequency band, especially the

roll motion. Consequently, good prediction time could be obtained, and

the roll motion could be predicted for as far as 5 to 10 seconds ahead.

This was a significant result, as the roll motioi turns out to be the

most important lateral motion in the VTOL landing problem. In particular,

the lateral translation of the landing pad is due to a large extent to

the roll motion, as the location of the landing pad is significantly

higher than the ship center of rotation.

The sea modal frequency is a significant parameter of the ship model,

and its large influence on the estimation and prediction errors justifies

a precise estimation of 'this parameter in a real-time application.

The aircraft model was briefly described, and the important couplings

amongst the motions were mentioned. Two of them appeared significant, and
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contradictory: the first is the lateral acceleration due to a roll angle

of the aircr,ift, and the second is she roll moment due to a lateral

deflection of the thrusts.

The design of an automatic controller, defined as a tracker of the

ship motions, made clear some other of the constraints related to the

tracking of the ship motions. The relations between the lateral transla-

tion of the ship landing pad induced by the .roll motion at the center of

rotation, and the roll motion itself, appeared to be contradictory with

the two important couplings of these motions in the aircraft itself.

These constraints are specific to the landing problem, and are independent

of the control system design methodology. Although the roll motion may

often be neglected, its possibly large amplitude in high sea states makes

imperative to take these limitations into account in an engineering design.

The design of the automatic controller also illustrated some results

and recant advances in the design of an optimal controller, using the LQG

Methodology. The relations between the choice of the state and control

weighting matrices lit the quadratic cost, and the resulting root-loci were

explained, and justified the careful selection of these matrices.

The usefulness of the singular values analysis in the definition of

realistic stability margins was indicated, and some Nyquist diagrams

illustrated related theoretical results, and the important differences

between the MIMO and the SISO case.

The robustification procedure appeared to be very successful in the

design of robust LQG control systems, and led to increased stability
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margins, with moderate degradation in the performance.

9.2 Suggestions for Future Research

Among the possible topics for future research, we note:

- the evaluation of the pouformance and of Uie stability margins of

an automatic controller including the longitudinal. and the lateral motions,

and the study of the influence of the cross-coupling terms (gyroscopic

terms)

- the inclusion of the aerodynamic effects in the aircraft model,

and of the ship airwake turbulence and ground effects, the aerodynamic

effects being nonlinear, some nonlinear theories may then be useful

- alLhough this research concentrated on the landing problem, some

interesting results may be obtained from the design of a control system

for the transition flight, and from the use of modern control theories

for this time-varying problem.



J	 = 0.72
s,o

Jr,O = Q. 7

J	 = 0.35
Y,o

A.1.2 Force Dynamics

U-0, 0=90 degrees:

F	 - 310
s,o

F	 - 2'120
r,o

F	 = 11300
Y,o

Any U, 0:

w	 = 0.6
3,0

wr,o = 0.76

W	 0.96
Y.o

APPENDIX A

SHIP MODEL COMPLEMENTS

A.1 Ship Model Values

A. 1.1 Sea

J - 0.707

nt=9 Wmcos^

13(01) . 1.9339
1+2a

2
S° - 0.3.).25 ^% 13(01)

m

wm (1+(A)

Wo	 0.8409

F	 = F	 sing, J	 = J	 sino, W	 = ( W	 + W2 U coso ) sine
s	 s,o s	 s,o	 s s,os,o 9

F	 = FsinO, J	 = J	 sino, w	 = ( W	 + W2 I co.so ) sino
r	 r,a r	 r,o	 r r,o	 r,o 9

F	 = F	 sinO, J	 = J	 sino, w	 = ( W	 + W2 U cosT )	 sin.
Y	 Y^o Y	 Y•°	 Y Y'°	 Y,° 9
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A. 3..1 S^Yip_pynamics.

U-0, Ow90 detjrees:

215

M 988

-230

223

A -759

L 14600

10.6

Bh,
-55. 4

L 423

C

Ch 0

u

908	 -230

,104000	 0

0	 3.76 106

-759	 14600

22900	 182.000

182000 4.18 106

-55.4 423

8t17xRDP 6270

6270 .144000

0 0

28800 0

0 0

RDF=3 (the roll damping factor takes the nonlinear damping into
account)

Any U, t:

0	 0	 B 
11,0

A h	 P4	 +	 0	 0	 B
h, o	 h, 0 

1,2

L - 

B 

11,0 1, 1 

-B 
11,0 

1,2 

U.A 
h, o 

III 
j
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0	
0	 ..p1^' o

l, l
G

gh	 Bh,o + U
	 0	 0	

Ah,o1.2

L	 . p	 i
Ah,ol ^ l Ah^o1^2	

Sh,o;],1

where:

c^	 0. 42 5 + 
U cos
178.27

A.2 Ship Dynamics: State-Space Model

We have the equation of motion:

(M+A h
)4 + BA + CA F

where:

x 
	 rsway

x	 x 2 = I ro 11

x a	 yaw

F1	 sway force

F	 F2 = rol.1 moment

F3	 yaw moment

We call:

R - (M+Ah ) -1 = {rij?

P,

-201-



P - (M+A 11 )- I B h 
N 

(pil)

(M+A 11 ) -I ch 0 R.0 11

Roll is the only mot ion havinq a spring constant so that:

0	 0	 0

Ch
	 rr

L 
0	 0	 0

and!

0	 r 12 c rr	 0

0	 r 22 c rr	 0

0	 r 
32 c r.L	 0

Using Laplace transforms, we write:

2S I x	 P S - QsX + RF

or:

S(x I ) = ( Sx 
1)

s(x2) ( Sx 2)

s(x3) ( Sx 3 )

S(Sx)	 -
P 11 (sx 1	 P 12 (Sx 2 ) -r 12 c rr (x 2 ) - P13 (Sx 3 + r 

11 F 
1

+r 12 F 2 +v 
13 

F 3 (A.1)
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s(Rx2)	
- 

1'21
 (ax l ) - p22 (Ox2) - ir22Crr ( x2) - 1)23(sx3)

+ r21F1 + r 22F2 + r23F3	 (A.2)

s (sx3)	
p31 (sx

l ) - p32 (sx2) r32^rr (x2 ) 	 x'33 (4x3)

+ r
31 F 1

+ r
32 F 2 + r33 F3(A.3)

`1.

which is equivalent to a state -space representation having 6 states.

There is an implicit pole-zero cancellation at td:J origin, between the

the poles of the sway and the yaw motions and the zeroes of the corres-

ponding force and moment.

To avoid this, we rewrite eq.(A.2):

x2 	 _ 1	 p21	 _ i'22	 P23
Crr s	 r22 sx2	 r22 x l 	 r x2 - r

	

22	 22 x3

+ 
r21 F1 + t/ 2 + 

r23 tF33
r22 s	 s	

rL2 $
	 (A.4)

and use (A.4) with (A.l) to obtain:

S (xl)	 t11 (xl ) + t12 (sat ) + t13 ( x2 ) + t14 (x3 )

+ u11 ( s1 ) + u15 ( s3 )	 (A. 5)

where:

t11 Y r12
22 

p21 - p11

r12

t12 
s 

r22

t13 	 r1^ p22 - p.12
22
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r

r12
t14	 r22 p23 - k13

_ r12

u11	 rll	 r22 } .;1

_ r12
u15	 r 13	 r22 r23

Similarly, (AA)and ( A.3) give:

s(x3 )	 t4 1 (x1 ) + t42(sx^) t43 (x2)+ t44 (X3 )

u41 (^) •^ u
	

(A.6 )
45 (
	 ) 

where:

r3 ,
X41 	 r22 1'21 - 1'31

r32
t42 a r22

t43 1'22	 p32r22

t44

r32

X23 - X33r22

u41 a r31
r32- 
r22 r21

u45 
c

r33

r32
- 

r22 r23

M d, of course:

s(x2) -; (sx 2 )	 (A.7)
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Finally, (A.4), (A.5), (11.6), and (A.2) lend to:

Ps(sx2)	 t21 (x 1 ) + t22 (sx 2 ) + t 2.3 ( x 2 ) + t24 (x3 ) + u21 ( )

IF
+ u22 (E1 ) + u24 (E 2 ) + u25 (7) + u66 (F 3 )	 (A.8)

where:

t21 "' - P41t11 -1

t22	 P21t12 - P23 t42 P22

t 23	 P21t13 - P23 t 43	 r22rrr

t24 - - P21 tV. - P23t44

U
21	

- 
P21 u11	 P23u41

u22	 r 2.1	
I

u24	 r22
^	 a

u25	 P21u15 - P23u45

u26	 r23

Equations (A.4), (A.5), (A.6), (A.7), and (A.8) constitute the new state-

(
space representation, with only 4 states:
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xl

sx2
s

x2

x3

	

xl	 F1/s

	

s x 
2
	 p1

T	 + U	 F2

	

x2	 ,/sJ

3j	 L F3

and:

T a {t ia }

U	 {uiI t

are given above.

The pole-zero cancellations are eliminated by the introdut;tion of

the integrals of the sway force and yaw moment, which, instead of being

computed (implicitely) in the ship dynamics model,, can directly be obtained

"drift-free" from the transfer functions between the sea height and the

generated forces.
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APPENDIX H

DISCRETIZATTON PROBLEMS

A simple derivation is Presented here that explains tiomo difficulties

that can be encountered in discretizing systems containinq lightly damped

second-order modes.

Assuming the system:

k - A x

havincj a second-order mode A(A) - - 0 ± jW. The exact discretization of the

system is:

x(t+At) - A t, A (t)

where:

AA 
Ad w 

0

'it would lead to the equivalent mode in the z-plane:

X (A ) I 
e (_0,jw)At

if we use an approxitimte represeiitatiuil:

x(t+At) - (I+AAt)l(t)



the modes will, instead, be at:

A ( I+AAt ) = 0 oAt) 1 jWAt

Let us consider consider a system A', having modes at -a± jb in the

continuous time domain which, discretized, would have the same modes as

I+AAt.

The .following equations can then be obtained:

.aAt	 jbAt2'"'	 ^1 jtan -1 ( 
WAt )

e	 e	 -	 (1 -UAt) +(WAt) e	 l -cTAt

and:

a - -^1 In ^QAt) 2 + (WAt )2

1	 -1 WAt
b	 At 

tan 
( 1 -(YAt)

It is easily checked that for At vanishingly small, a approaches a, and

b approaches W so that the discretization is valid.

The question is to determine how small At actually has to be.

For b to approach W, we need:

WAt << 1	 and QAt << 1

or:

At << 1/W	 and At << 1/0

which is the expected condition that At must be small compared to the time
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constants of, the system.

The condition for a is a little different. We need:

i-2aAt+(a©t) 2 +(WAt) 2 =	 1-20	 v 1-aAt

so that the conditions are:

2oAt << 1 , ( (yAt) ? << 2aAt , and (wAt) 2 << 2aAt

or:

At << 1/2a

At << 2/W. ( a/W)

The first condition is similar to the previous one, while the second is

similar only if a/W is close to one. If o/W is much less than one (lightly

damped mode), the required time step is much smaller than the one indicated

by the time constants of the system. .If this is not taken into account, the

term WA0 2 will influence the 2aAt term, which is equivalent to reducing

the value of a. This implies a reduced value of the real part, while the

imaginary part remains constant. In conclusion, the discretization of very

lightly damped second-order modes with approximate discretization may lead

to even less damped equivalent discrete modes, even if small time steps -

compared to the time constants of the system - are used.



APPENDIX C

TURBULENCE MODEL

A wand di.st urbanQv n ►odel Is available in 1191  and is summarized here.

The mean wind component has been neglected (only the turbulence is

considered), and this air turbulence considered does not include the /hip

airwake and the ground (!t Cect.s.

The turbulence is modelled cis the output: of I)ryden filters driven

by white noi: cis of intensity 1. Tho outputs are additional turbulent

volocit.les of Lhe aircraft 
vBN 

(sway) , pBN (ro1.1.) , and 
rBN 

(yaw) . The

ev1'resbjuns (.Avon in [ 19ja re:

L^
/IJY
	1 + V J

2	
v

v	 r,	 -_	 r	
vBN

( 1. + -v s )
a.

'irl,w l/
	 1

t^4 y 
t)w	

r^ v	 ( 41) ^)	 4b	 l)BN
w	 l	

'Iry ^

v	 *^ - A-
	 s	 4	 r.

BN	 V	 1 * lb s
	

BN
'Iry

where p 2 and p4 axe white noises of intensity 1.

1P
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In the condition considored in this thesis:

h-40ft (altitude or the stationkeeping point)

V=15.5ft/s ('^'10kts)

v WIND=30ft/s ("-'20kts)

And the parameters of the filters given in X19) are:

L -600ft
v

0 v =Oft/s

b=44.4; ft

Cy =3. 058f t/S

L =69.1ft
w

To bring this wind turbulence model to a standard state-space formulation,

the outputs of the Dryden filters are first multiplied by s, and entered

in the acceleration equation of the aircraft model, instea 'd of the velocity

equation. Next, the time consta its of the shaping filters beinq lorqo

u0fllpat,ed to the time constants 
of 

interest, they are neglected, ,;o that

tho Dryden filters 1xioome simple gains:

P .)	 v/3 ^v	 L	 BN
v

8	 1/6 ry
W	 11 v	 4b	 4b	 BN

w

'IT

BN	 3b 	 BN

A
J
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And the driving noise spectral intensity for the aircraft model is then:

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0	 Q

A 0 0 0 2.79 0 -.0657

0 0 0 0 -.00561 0

0 0 0 -.0657 0 .00155
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APPENDIX D

GAIN MATRICES AND AIRCRAFT POLES

D-1 Ship Gain Matrices

The matrices are given for the nominal case: H-10ft, 
in- 0.72rad/s,

U=15.5ft,l s, 0 ®45deg, p-0,3, T Z=0, q-0.01 (6 mess. case)

Kalman Filter Gain Matrix HS

COL	 1 2 3
ROW

1 -4,6134D-0i 1.4458D+01 2,77020+00

2 -2.8914D+00 -5,57740+01 -8,36410+00

3 i3O408D+00 3,97390+01 6,44460+00

4 -3.83380+00 -6,59960+01 -9.19900+00

5 3,7748D+00 6,59390+01 8.43110+00

6 -3,3059D+00 -5.0290D+01 -6,2364D+00

7 B,1i17D+01 3.21810+03 5,31510+02

8 -1,3968D+02 -1.7453D+03 -2,39810+02

9 3,6723D+02 2,6746D+04 4,85040+03

10 -1,78170+03 -2,86820+04 -4.3007D+03

11 -1.55940+03 1.7822D+05 4,08710+04

12 -2.i862D+04 -4.1617D+05 -7.1668D+04

13 5,8324D-01 6,4656D+00 7.91960-01

14 -1,04930-03 1.57160-01 3,11490-02

15 1,2931D-02 4.77970-01 4.737OD-02

16 1.58390-03 4.73700-02 9.1689D-03
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FeedfOrward Gain Mrtrix GS

F,

COL	 1	 2
ROW

1	 5.10870-04 •7,30470---04

2	 1,7439D-03 -1.9028D-03

3	 3,45780-05 -1.29550-05

7	 8

1,1108D-04	 4,77910.05

3,0083D-04 1,66790-04

1,0475D-07 1,69OGD-06

3	 4	 5	 6

1,65270 . 04 -2,7353D-04 5,11660-05 -9,9003D-05

6.0739;3-04 -7,2401D-04 12,07200 . 04 -2,77170-04

1,37760-05 -1.16100-05 4,91620 . 06 -6,1738D-06

9	 10	 11	 12

1,13480 . 06 -4.7337D-06-7, 578 1 0 - 07 -2,4962D-07

4,38430-06 -1,4924D-05- 1 ,8 8.190 - 06 -8,00590-01

6.9925D-08 -1,6319D-07 4,80160-08 5,34880.0°

13	 14	 15	 16

4.54870-02 =1,04920*00 °6,39630-01 -5,4086D+00

9,2624D-02 -3.7542Di00 -4,17850+00 -9,95670+00

-1,09120-03 -2,62430-02 -1,41860-03 9,8906D-01

D.2 Aircraft Gain Matrices

ha.lman_ Fi.] ter Crain Matrix HA

COL	 1 2 3 4 5 6
ROW

1 9,1151D-0i 1,80970+00 -6,8603D-01 6.7683D-01 -4,57740 . 01 -7,8292D+00

2 6,3276D-03 3,336OD-01 5,6023D-02 1,66450-02 8,93970-01 3,66190-01

3 -2,3987D-03 5.60230-02 4,57550-01 -2,64430-03 -1,1862D-02 6,84870-01

4 6,76830-01 4,7604D+00 -7,5627D-01 2,67790+00 2,48630+00 -5,7722D+01

5 -3,84120-04 2,14550-01 -2,84690-03 2,0864D-03 4,7115D+00 7,42670-03

6 -6,57000-03 8,78860-02 1.64370 . 01 -4,8438D-02 7,42670-03 1,8715D#00
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Fuu back Gain Matrix GA

COL	 1 2 3	 4 5 6

ROW

1	 4,3613D-02	 - 1,04170-01	 -3,35510-01	 3,77920 . 02 -8,10500-02 -1,3893D-01

2	 8,7849D-02 4.04690+00 -9,76770-02	 1.04270 . 01 1,289OD+00 -4,6082D-02

3	 -9,11540.04 6,9076D-02	 8.79310-Oi	 1,3588D -04	 3,2002D-03 4,50890-01

D.3	 Aircraft Poles

2Po1-.-100E POles: X(AA)

REAL PART IMAG PART NAT	 FREO(HZ) ZETA FREO(HZ)

i	 -5,324D-01 010 8,473D-02 11000000 0,0

2	 1,425D-01 3,788D-01 6,4410-02 -0.352163 6,0290-02
3	 i.425D-01 -3,7880-01 6,4410--02 -0.352163 6,029D-02

4	 -6.82OD-02 010 1,0850-02 1,000000 0,0

5	 010 0,0 0.0 0.0 010

6	 0.0 010 0,0 010 010

.-r losed-loo,p poles: X (AA -BAGA)

REAL PART IMAG PART NAT	 FREO(HZ) ZETA FREO(HZ)

1	 -2,792D+00 2,803D+00 6,2960-01 0,705716 4,46OD-01

2	 -2,792D+00 -2.8030+00 6,296D-01 0,705716 4,4600-01

3	 -1,8690+00 1,8630+00 4,20OD-01 0,708310 2,9650-01

4	 -1,8690+00 -1,863D+00 4,2000-01 0,708310 2,9650-01

5	 -1.0640+00 i3O36D+00 2,3630-01 0,716447 1,649D-01

6	 -1,064D+00 -1.0360+00 2,363D-01 0,716447 1,6490-01
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Kalman Filturu#Lus ^(A` ~H^^ )

msuL p wnT IMoo p^wr

I - i.PEiD^Oi 010

u -s.oeao+oc 010

o ~2.231o+00 0.0

a 'I.iImp+oo 0.0

e ^e.o,00'oi 0.0

o '4.9200'01 010

NAT rRpo(HZ)
	

ZETA
	 rpc(J(xz)

*.7ooD+oo
	

i.00000n
	

0.0

m.s»4o-o1
	

11000000
	

010

o.55oo'pi
	

i.000non
	

0,0

^.7npo^o:
	

i.on:V00
	

0.0

e.seao~oo
	

i.000000
	

0.0

7.ox0o'02
	

0,0

Ccmpensator ^olea^(^^-B Q -H C )--'----^---	 a 8A]4&

ncxL PART	 IwAm p ^nr	 NAT Futn(*z)
	

ocru
	

ruco(Hr)

,	 ~1.6790+01 $.0 2.e72D400 11000000 0.0

u	 -8.875o+00 0.0 1.413o+00 11000000 010

o	 '3'74*o+00 010 5.9590'01 11000000 010

4	 -1.1e50+00 010 1.8e4p~01 `.000000 0.0

o	 '6.0610'01 0.0 9.64e0'02 11000000 010

s	 'e.707o'oi 0.0 n.ouoo-oo 1.000000 010

the compensator is stable.
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