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ABSTRACT

The problem of designing robust con -0l systems for the safe landiny
of VIOL aircrafts on small ships is addressed for the lateral motions.
A precise ship model is derived, using hydrodynamic data for the DD963
destroyer. The issues of estimation and prediction of ship motions are
discussed, using optimal linear estimation techniques. The roll motion
is the most important of the lateral motions, and it is found that it
can be predicted for up to 10 seconds in perfect conditions.

The automatic landing of the VIOL aircraft is considered, and a
lateral controller, defined as a ship motion tracker, is designed, using
optimal control techniques. The tradeoffs betwee), the tracking errors and
the control authority are obtained. The important couplings between the
lateral motions and controls are demonstrated, and it is shown that the
adverse couplings between the sway and the roll motion at the landing pad
are significant constraints in the tracking of the lateral ship motions.

The robustness of tiie control system, including the optimal estimator,
is studied, using the singular values analysis., Through a robustification
procedure, a robust control system is obtained, and the usefulness of the
singular values to define stability margins that take into account general
types of unstructured modelling errors is demonstrated. The minimal desta-
bilizing perturbations indicated by the singular values analysis are
interpreted and related to the multivariable Nyquist diagrams.

Thesis Supervigor: Michael Athans

Title: Professor of Systems Science
and Engineering
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CHAPTER 1

INTRODUCTION

1.1 Introduction and Motivation

The landing of small VIOL aircraft on destroyers is an extiemely
challenging problem if it is to be realized under high ses state conditions
and zero visibility. Without special aids, this task is almost impossible
for a human pilot.

There ar¢ basically two possible strategies in the solution of this
problem. The first is to leave to the pilot the complete control of the
aircraft, but help him with advanced displays. These give him information
about the aircraft position and attitude, as well as those of the ship
(and possibly some prediction of the ship motions). They may also indicate
some desirable flight path (flight director). Advanced controls may be
provided to partly relieve the pilot from the high load of controlling the
VIOL aircraft.

The second strategy is to leave the task of landing the aircraft
completely to an automatic controller. The role of the pilot is then to
supervise the correct landing of the aircraft. This would allow him to
take care of other tasks he might not have been able to carry out other-
wise.

Note that lLoth strategies could be mixed. For example, the tracking
of the lateral ship motions may be left to an automatic controller/tracker,

while the task of vertical tracking and landing would be left to the pilot,
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possibly with the help of some display indicating him the present and
future ship vertical position.

In this thesis, the emphasis is focused on the design of an automatic
controller, A previous study [l] has addressed the praoblem of the longitu-
dinal motions, i.e. the motions in the vertical plane. The most significant
ship motion in this plane is the vertical motion, called heave. The pitch
motion is not very significant, except for the heave motion it induces at
the landing pad (which is significantly behind the ship center of rotation).
The present study addresses the ship motion tracking problem for the lateral
case. Then, the most significant motion is the ship roll motion, which can
be very large. The lateral translation motion, called sway, is also impor-
tant, especially due to the large sway component induced by the roll at the
landing pad (located above the ship center of rotation).

The challenge of the tracking of the ship motions by the VIOL lies in
the strong limitations of the control authority available, in the high
level of the perturbations (wind disturbances, ground effects, ship airwake),
in the strong couplings present in the system, and in the need foxr a highly
robust control system.

Usually, studies of this problem use loop-by-loop control system
designs, using classical control theories 2], [3], (4], [5], [6]). In this
case, the controller ignores the internal couplings of the system. Similarly,
the issue of robustness is often addressed on a loop-by-loop basis, but
almost never in a real multivariable sense (although individual loop sta-

bility margins may not represent at all the overall system stability
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margins). The design process used in this thesis does not suffer from
such limitations.

The limitations on the available control authority justify the use
of some optimization criterion, and of related modern control theories
(LQ/LRG) . These metihwds have the advantage of naturally handling multi-
variable systems, and of recognizing the coupling present in such systems.
Some recent results in the analysis of the robustness of multivariable
gsystems (and its improvement for LQG based designs) are also important
tools in the cesign of control systems operating under critical condi-
tions.

The purpose of this thesis is not to produce an engineering design.
Nor does it provide new theoretical results. It illustrates how modern
control theories and related recent results can be used to design a
control system for such an advanced application, and evaluate the
controller performance and robustness. This work also analyzes the physi-
cal constraints of the tracking process of the lateral ship motions.
These constraints are independent. of the control system design methodo-
logy adopted. The requirements and physical limitations related to the
VIOL landing problem are studied.

Although this thesis mainly details the design of an automatic
controller, the acturacy achievable in the prediction of ship motions is

also assessed, as it is a key element in any piloted VIOL landing.
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1.2 cContributions of the Research

The main contributions of the research are:

~ the derivation of an accurate ship model that retains the stochastic
nature of the ship motions, and the couplings amongst them

- the analysis of an optimal predictor of the ship motions for
applications in piloted landings, and the assessment of lower bounds on
the prediction errors

~ the design of an optimal controller/tracker for applications in
automatic landings, the indication of the tradeoffs between tracking errors
and control authority, and the analysis of the important couplings and
physical constraints related to the tracking of the lateral ship motions

- the demonstration of the use of the singular values analysis, and

the robustification procedure, to obtain a robust control system.

1.3 Thesis Overview

Chapter 2 indicates the general problems of the landing of VTOL
alreraft, and introduces the methodology used to design the control system,
as well as some aspects specific to this particular application.

Chapter 3 details the derivation of the ship model from hydrodynamic
data, and indicates the important characteristics of the model.

Chapter 4 is an analysis of the issues of estimation and prediction of
the ship motion, using the model derived in chapter 3.

Chapter 5 summarizes the aircraft model obtained from (1], and gives

a brief description of this model, and of the important couplings present
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between the motions and controls.

Chapter 6 details the design of an optimal control system based on
LQ theory to track the ship motions. Important characteristics such asg
root-locus, step responses, and tracking errors versus control authority
are analyzed, with their relation to the couplings amongst the motions
and contiols.

Chapter 7 shows the design of an optimal estimator for the aircraft
motions, and indicates the degradation of performance due to the presence
of noise in the sensor measurecments,

Chapter 8 addresses the important issues of robustness of the control
system to modelling errors, and demonstrate the usefulness of the sinqular
values analysis and of the robustification procedure.

Chapter 9 concludes with some general comments and suggestions for

further research.
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CHAPTER 2

OVERVIEW : OBJECTIVES AND METHODOLOGY

2.1 Introduction

The landing of VTOL ailrcrafts on small platforms is a delicate
operation that interests civilians (oil platforms) as well as military
(destroyers). In this research, we consider a moving platform, specifi-
cally the landing pad of a destroyer, type DD-963, in sea state 5. Such
sea state corresponds to waves of heights around 10ft, and winds arcund
20 kts. Until now, this is still a goal, and it justifies studies as
this to assess the navigation systems, the aircraft performance, and
the control system required to perform such an operation.

A previous study by McMuldroch [l] has addressed the VIOL landing
problem for longitudinal motions., These are called heave (vertical
motion), surge (fore and aft motion), and pitch. The aircraft considered
in this work (as in the present work) is the Lift/Fan Cruise Research
Technology Aircraft (RTA). More details about this aircraft, can be found
in |1} and in chapter 4. The specific aircraft studied is not really of
gyreat importance, as most VIOL's have the same kind of limitations and
possibilities. The main characteristic of an RTA-type of VIOL aircraft
- which makes it different from a heliccpter for example - is the possi~-
bility of deflecting the engine thrusts to produce translation motions
without rotating the aircraft. In other words, this kind of VIOL has as

many controls as it has degrees of freedom, so that, to the limit,
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perfect tracking of the landing pad motion can he acheived.

In the present work, we use the model derived in (1] for the RTA
alrcraft. Our goal is to complete McMuldroch's work with a study of the
controls needed for the lateral motions. The lateral motions are called
sway (lateral translation), roll and yaw. The longitudinal and lateral
motions can be decoupled to a good approximation for the ship motions.
This does not mean that they are independent: in fact, they are strongly
correlated because they are generated by the same wave. However, except
for this commcn excitation force the dynamic equations for longitudinal
and lateral motions can be decoupled to first order and can be analyzed
separately. The decoupling of longitudinal and lateral motions for the
aircraft is a little less obvious, due mainly to gyroscopic cross-cou-
pling terms [7] . These terms can be quite important, due to the large
size of the engines of a VIOL aircraft. To a first approximation, however,
they can be neglzcted, so that longitudinal and lateral motions can be
studied separately.

In fact, the issues for the longitudinal and for the lateral case
are quite different. For the longitudinal case, the important motion is
heave. Pitch is quite small and surge is negligible. Moreover, they can
be controlled easily. Heave is more critical, as it requires an increase
in the overall engine power (or thrust to weight ratio). This is a control
which is strongly limited in amplitude, and also in its speed of response.
The limitations are so strong that one may look for an end-point

controller, instead of a tracking controller.
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In the lateral case, two of the three motions are about as important:
they are the sway and the roll motion. The yaw motion is almost insignifi-
cant, and can be controlled very easily. In many situations, the aircraft
roll may be left uncontrolled, or, more precisely, stabilized to zero
(so that it does not track the ship® roll). In this case, the landing gear
will simply damp the shock at the landing. However, ship roll can be as
large as 30 degrees peak to peak (even more in the case of decaying seas),
so that this strategy is not always satisfactory. Then, both ship roll and
svay motions have to be tracked.

The limitations in control authority are less severe than in the
longitudinal case. In particular, a lateral side force can be produced by a
deflection of the thrusts, and a roll moment by an exchange of power
between the engines. These controls can be denerated very quickly, so
that there is no significant problem with bandwidth in the lateral case.
The problem is probably more in the adverse couplings present in the
lateral motions and in the robustness of the closed-loop system. These
tw sipects will be examined in more detail later. The consequence of
thes - remarks is that the problems are slightly different for the longitu-
dinal and lateral cases. The lateral controller can be a tracking
controller, while the landing itself occurs at a moment decided by the
longitudinal controller. The responsibility of the lateral controller is
then to minimize the tracking errors at impact.

As the research on the longitudinal motions had shown that precise

ship modelling was essential to obtain meaningful results, a large part

-21-



of this thesis is devoted to accurate ship motion modelling, estimation

and prediction. The prediction part of the study is irrelevant to the
automatic controller design part, but has applications in piloted landings,
when some indication has to be given to the pilot about where the ship

deck is now and will be in the near future.

2.2 Control System Design Methodology

2.2.1 1Introduction_

Different methodologies have been proposed recently for the design
of multivariable control systems. Whether applied in the time domain or
in the frequency domain, each method has its own advantages and limita-
tions.

For aerospace applications; the linear-quadratic-gaussian (LQ-LQG)
methodology has shown successful, especially because:

~ the limited control authority available makes the optimization
imperative

~ the number of states is small (with a good approximation)

- the equations of motion (and of the system in general) are quite

well known, and the state-space description is natural

- the systems are often unstable,and strongly coupled.

- . — —— —

We summarize in this section the LQ methodology to specify the

notation used subsequently. More detailed descriptions can be found in (8]
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and 191,

Given the system:
X = AX + Bu + k (2.1)

(2.2)

where :
X is the state vector (nxl)
X is the initial state vector (nxl)

u is the control vector (mxl)

{ is a white Gaussian noise vector (nxl) (driving noise)
of spectral intensity matrix (nxn) E

A is a matrix (nxn)

B is a matrix (mxm)
One wants to minimize the quadratic optimization criterion:

J = lim E{;—IT(_{TQ_>(~+E_TR_\.1)dt} (2.3)

T 0

where:

Q is the positive semi~-definite matrix (nxn) of the state weights

R is the positive definite matrix (mxm) of the control weights
The pair (A,B) is assumed to be stabilizeablekand the pair (A,QH)
detectible (two conditions easily satisfied).

The solution is a time-varying control law u(t) which, for large t

(far from the origin of time), becomes a linear, time-invariant,
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state feedback:

u= -G x (2.4)

—

where G is an (mxn) matrix given by:

i

G = R 1Bk (2.5)

and K is the (nxn) positive matrix solution of the matrix algebraic

Riccatti equation:

T 1

KA + ATK - KBRB'K + Q = 0 (2.6)
2.2.3 LQG Methodology

The LQG methodology is the extension of the LQ methodology when the
state x is not available for measurement but, instead, we have a measure-

ment vector y, which is a noisy linear combination of the state x:
y=¢cx+9 (2.7

where:
y is a measurement vector (pxl)
C is a matrix (pxn)

8 is a white Gaussian noise vector (pxl) (measurement noise)
of spectral intensity matrix (pxp) 0

The optimization problem is the same and, from the separation principle,
it is known that the solution is the cascade of an optimal estimator

(Kalman filter) providing an estimate & of the state vector x, and of
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the same control law as before, acting on 3'instaad of x:

u= -G8 (2.8)

e

The Kalman filter structure is:

R = AR + Bu + H(y-CR) (2.9)

where H is an (nxp) matrix given by:

H=rpcto? (2.10)

and P is an (nxn) matrix, positive solution of the matrix algebraic

Riccattl equation:

paT + AP + E - pcTodep = o (2.11)

The solution of Riccatti equations is now done routinely by the use of

a modern control system design package [10].

- G w— — 7_— o ——

In the VIOL landing problem, we are interested in the tracking,
by the aircraft, of certain ship states (ship motions and velocities).
We have a situation in which we wi . to track an uncontrollable system
(the ship deck) by a controllable system (the VIOL).

For the ship, we have the following state-space description:

Xy = ASES + gS (2.12)
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where w, are the ship states that we want to track.

For the aircraft:

where w_are the aircraft states corresponding to

_.A

The general system equations are:

X = Ax + Bu+ g
where:

-

Xg
3‘(-:

X

hfﬂ

-

A 0
A = 5

-0 AA

"o
B =

BA

e wd

" -

£
E=|®

51\

(2.13)

(2.14)

(2,15)

{2.16)

(2.17)

(2.18)

(2.19)

(2.20)



‘

We want to minimize the tracking errors and the control authority, i.

g = E(Tw~w,)TQ (w.-w,) + u Ru) at) (2.21)
o 5 TA Twis A - = e
@ T .
= E(f (x Qx + u Ru) dt) (2.22)
(o]
where:
by T
W50 Mg QA
° WO W Wio W
“WalNMg A%
The optimal LQG controller is:
u==-6X =- (6. 6 =T GgEg TGy Ky

;?0 J’X>

Since the ship is uncontrollable, the ship states and the gain
matrix Gq appear as a feedforward path, while the feedback path is

coming from the aircraft states only, through the gain matrix GA'
As 1indicated in the next paragraph, the estimation problems are also

decoupled, so that the controller structure is that of Fig. 2.1.

a

2 . R
% -8 + = I XA
gS —— Ship of Belmani g Aircraft Kalman
filter 8 filter
G

Figure'2.l: VTOL Controller Structure
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ba important remark is that the gain matrix GA is the same than the

matrix obtained by solving the optimization problem:
1+ ]
= n(£ (WaQ W, + u'Ru) dt) (2.25)

The gain matrix Ga is then independent of the ship model.
To see this, we assume that the solution of the Riccatti equation

corresponding to (2.21) is :

K = Kfz K22 (2.26)
Then:
G = R 18Tk (2.27)
= (R_lB:Klz , R'lsil(zz) (2.28)
and:
G, = 1@('113;1;&22 (2.29)

depends only on K22.

The Riccatti equation is (2.6), and can be partitioned in terms of the

ship and the aircraft parts:

T -1 T T T

KllAS + ASKll - K12BAR BAK12 + wSwaS = 0 (2.30)
T ~-1_T T

K12AA + ASKlZ - KlZBAR BAK22 - WSQWWA = 0 (2.31)
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T -1.T
K,,A, + A K - K BAR BAK22

T
228t ApKon T Ky "W W,y = 0 (2.32)

The equation giving K is independent of the others and is actually

22
the same as the one corresponding to the guadratic criterion (2.25). The

same is true for the gain matrix G_. This means that the feedback gain

A

matrix GA is independent of the dynamics of the signal that is tracked,
namely the ship in this case. The ship only influences the feedforward gain
matrix. In other words, the closed-loop dynamic behavior of the system is
only dependent on the Q and R matrices, and is the same whether we want to
track the ship or simply to stabilize the aircraft (track a zero reference
signal). PFor this reason, the closed-loop behavior fo the system can be
studied independently from the ship model (in this, we include the optimal
root-locus, the step responses, and the robustness characteristics of the
system). Note however that the ship model influences the system performance

(tracking errors) which, in turn, may influence the specific choice of the

® and R matrices.

2.3 State Estimation and Implementation Issues

The accuracy of the measurements of the ship and aircraft motions will
be a determining factor of the performance attainable in the landing of VTOL
aircraft in high sea states and poor visibility conditions. It is expected
that, in a practical realization, the measurement process will involve:

- accelerometers and gyroscopes aboard the aircraft

- a combined microwave landing system / distance measuring equipment

(MLS/DME) giving measurements of the relative position of the ship and the
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the aircraft.

Theoretical \y, the estimation of the aircraft and of the ship motions
are coupled, in the sense that the relative position measurement would
influence the estimation of the ship motions if a Kalman filter is used
for the overall system. In practice, the estimation of the ship motion,
and the estimation of the aircraft motion can be reasonably decoupled.

A justification for this is that the instruments aboard the ship will be
of somewhat greater precision than those aboard the aircraft, and the
estimation errors obtained will be smaller than the errors on the aircraft
motion. The estimation part of the LQG algoritlm can then be separated in
an estimation of the ship states by a Kalman filter, and a similar but
independent estimation process for the aircraft.

Practically, the estimation of the ship states is done aboard the
ship, and the results are data-linked to the aircraft. With the combined
use of the accelerometers, gyroscopes, and MLS/DME measurements, a
computer aboard the aircraft estimates the aircraft-ship relative positions
and velocities, and through the use of a Kalman filter, obtains optimal
estimates of the aircraft states, The control law is then easily obtained
aboard the aircraft.

As the computing capabilities aboard the ship can be more powerful, a
high order model can be used. In our case, it is a 16 states model (see
chapter 3). On the aircraft, the computing capabilities are more limited,
so that a low order model is desirable. The aircraft model used here is a

6 states model (see chapter 5). The importance of robustness becomes
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critical, however. While the approximations on the ship model have conse-
quences only on the performance of the controller, those on the aircraft
model come in the feedback structure, and influence the robustness as well

as the performance of the controller.

2.4 summary

In this chapter, we discussed the general aspects of the VIML landing
probiem. The decoupling between the longitudinal and lateral motions was
explained, and it was indicated that the controller for the lateral motions
can be conceived as a ship motion tracker.

The LQ/LQG control system design methodology was introduced, and its
use for this application was justified in view of the limited control
authority available. It was demonstrated that the application of this
methodology to the VTOL landing problem leads to a decoupling of the ship
and of the aircraft effects, so that the ship motion and the ship dynamics
only influence the feedforward structure of the control system, whilé those
of the VIOL impact the feedback structure.

Finally, the issues of estimating the ship and aircraft states were
briefly addressed, and it was shown that the problems of estimation of

ship and aircraft motions could be reasonably decoupled.
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CHAPTER 3

SHIP MODEL DERIVATION

3.1 Introduction

The importance of accurate ship modelling in VTOL landing has been
indicated by McMuldroch in [1l]. Ship motions have relatively narrow band
power spectra (between 0.2 and 2 rad/s) that require high order models
to be represented accurately. A good ship model, that is often used in
studies of VICL landings, is available in [11]. The motions are modelled
as sums of 6 to 32 sinusolds, with random phases. For simulations (espe-
cially for flight simulators), such a representation is adequate.
However, it fails to represent the random nature of ship motions for
longer periods of time, and it is not appropriate for estimation of ship
motions from noisy measurements, and for ship motion prediction.

In this chapter, we derive a ship model that retains the stochastic
nature of the ship motions and the important couplings among the various
motions. The model is derived in state-space form, so that the powerful
techniques of linear estimation in the time domain can be applied. The
equations are obtained from hydrodynamic considerations, that lead to
linear differential equations with frequency dependent coefficients, and
infinite dimensional transfer functions. Finite dimensional approximations
are considered, and the model finally includes 16 states for the lateral
motions. The following sections indicate the structure of the model and

the approximations made. More details can be found in [12], [13] and [14].
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3.2 Ship Model Structure

The lateral ship motions, and the sign conventions used here, are
shown on Fig. 3.1. The origin of the reference system is located in the
plane of symmetry of the ship, at the level of the waterline, and at the
middle of the ship. This point is close to the center of gravity and has
the advantage of being independent of the ship load conditions.

The ship motions are assumed to be small, in order to derive linear
cequations of motion. This assumption is justified by the fact that waves
have limited wave to length ratio (at most 1/7, and usually much smaller),
since waves having higher heights break and loose their energy. As a
result, the major part of the force is linear and can be obtained by a
first order perturbation expansion of the non-linear fluid equation.

The wave spectrum is typically contained in the 0.2-2 rad/s range. Given
the large mass of the vessel, the resulting motions, within this f{requency
range, are of the order of a few feet and a few degrees, so that the
linearity assumption can be justified. Roll motion requires more attention
however. Due to the slender form of the ship, the roll motion may become
large and then, the non-linear damping is predominant.

The ship model is basically divided into three parts. The first part
represents the incoming waves (sea model) which are described by the wave
elevation at a reference point located amidships. The wave elevation is
known to be a stochastic process, defined by a relatively narrow band

power spectrum to which various approximations have been proposed.,
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Q;~:>yaw

sway

roll

Figure 3.1 : Lateral Ship Motions
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The second and third parts of the model put together, represent the
response of the ship to the waves. Using the hypothesis of linearity, this
response can be represented by a transfer matrix from the wave height to
the ship motions. Tiie second part of the model represents the dynamics of
the forces generated by the incoming waves, while the third part of the
model represent the rigid body dynamics as well as the dynamics induced by
the ship motions on the water motion resulting in additional fluid forces.
These forces are :

- the inertia force caused by the acceleration of the fluid particles
displaced by the ship (added mass)

- the damping force caused by the loss of energy carried away by waves
generated by the ship motions

- the hydrostatic force (spring constant).

For a purely sinusoldal wave, the equations of motion lead to the follo-

wing differential equation :

n + Chéh = F (3.1)

(M43, ) _>5h + B
where

- M is the mass maLrix of the ship, including mass terms, products of
inertia and coupling terms due to the difference between the center of the
axes and the center of gravity

- Ah is the added mass

- X is the vector of the ship motions (sway, roll and yaw)

- Bh is the damping term

-35



- Ch is the hydrostatic term

- F is the vector of the forces and moments generated by the incoming
wave

The terms F, Ah,and Bh depend on the frequency of the incoming wave, so
that the equation of motion is strictly valid for monochromatic waves.
For an irreqgular sea elevation, equation (3.1) becomes an integro-diffe-
rential equation. An additional difficulty is due to the fact that wave
forces and moments are obtained by integrating over ths ship hull the
space-varying pressure forces, so that their magnitude and phase constitut
the transfer function of an infinite dimensional system. Obtaining a finite
dimensional model of reasonable size and complexity definitely requires
several simplifying approximations that will be indicated in the subsequent
paragraphs.

The geometric and mass properties of the DD-963 were analyzed by the
M.I.T. Ocean Engineering Department Seakeeping Program [ 151 . The hydrody-

namic coefficients (M,A ,B. and Ch) and forces were first obtained, and

h'"h
subsequently the overall ship model was derived.
The parameters of the model are : the speed of the vessel, the direc-

tion of the waves, the significant wave height, and the modal frequency of

the wave spectrum,

3.3 Sea Modelling

The sea waves are generated by the wind, except for very rare cases
(seismi waves). The high frequencies of the wind gusts create wavelets on

the surface of the sea, while the steady-state condition of the sea develops
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glowly through a nonlinear interaction mechanism creating waves whose
phase velocity is close to the wind speed. Since the process starts with
high trequencies, a young storm will contain a peak at high frequency. As
s00n as the wind stops blowing, the water viscosity dissipuates the high
freguency waves so that the so-called "swell" forms, which consists of
long waves (low frequency) which travel away from the storm that origi-
nates them. For this reason, swell can be found together with another
local storm, in which case the wave height spectrum contains two peaks.
Phe intensity of the storm can be described in various ways, of
which the best is probably the significant wave height H, defined as the
statistical average of the 1/3 highest waveheights. At any point, the wave
clevation is a stochastic process described by its power spectrum. This
power spectrum (if it is single-peaked) is a function primarily of two

parameters, H and wm. The Bretschneider spectrum is defined as :

exp (-1.25 (W /w)") (3.2)

It was found to fit reasonably well in any sea location, and is strictly

valid for unidirectional seas, with unlimited fetch, infinite depth, and
As the ship moves toward the waves, the apparent frequency of the

wave is modified, and the frequency of encounter we is :

w, = w+ k U cos¢ (3.3)

-3



where :
- U is the ship speed

- ¢ is the angle between the x axis of the ship and the direction
of the wave propagation

~ k is the wave number.

In deep water, the dispersion relation for the waves isg :

w® = kg (3.4)
so that :
w?
W =W+ — U cosd (3.5)
e g9

The spectrum seen from ship coordinates is then :

S(w,) = li‘i*’l-a] (3.0)
dme/dm w=f(we)

where :

-1+/1+4we U cosp

= = 9 . P
w = f(we) (3.7)

U
2 — cos
g )

To obtain a state-space representation, the wave height is represented as
the output of a filter with rational transfer function, driven by white

noise.
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The transfer function is selected to be :

?

)
M, (s) = /5 . s° - (3.8)
(1 + 2 J(a) + <U) )
[e) (6]

where the values of So' wo’ and J are dependent on the sea state and are
given in Appendix A.

The coefficient 7 was introduced to match the differences in defini-
tion for the power spectrum. Here, we use :
iwt

[ rer) 7 ar (3.9)

-0

u
€

~
1

A one-sided (positive frequency) power spectrum is used in wave theory
(and for the Bretschneider spectrum):

iwT

S(w) = [ r(ry M ar w>0 (3.10)

i

The Bretschneider spectrum and the approximation are illustrated in

ig.3.2.

3.4 Ship Transfer Matrices

4

The ship transfer tnatrix from the wave height to the sway, roll and
yaw motions can be separated in:

- a transfer matrix from the wave height to the force and moments
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Figure 3.2: Bretschneider Spectrum and Approximation
(H=10f¢t, wm=0.72rad/s)
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generated by the incoming wave

- a transfer matrix from the force and moments to the actual motions,
These transfer matrices are obtained from the values of the forces, added
mass, damping, mass, and hydrostatic forces, using equation (2.1). For
monochromatic waves, these were obtained by the M.I.T. Ocean Engineering
Seakeeping program from the geometry of the DD-963 hull. Rational approx-
imations were made in order to obtain a standard state-space representation.

An important fact is that whatever approximations are made, they do
not. influence the stability margins of the aircraft control system. The
ship model only comes in the ship Kalman filter design and in the compu-
tation of the feedforward gain matrix. The only effect of the approxima-
tions on the control system is on the performance attained in the ship

motion tracking, not on the system robustness.

3.4.1 Force Dynamics

The transfer functions between a unit amplitude regular wave (1lft)
and the sway force (tons) and the roll and yaw moments (tons-feet) as
functions of the frequency of encounter are shown in logarithmic scale
in Figs 3.3,3.4,3.5 for the case U=0,¢=90 degrees and in Figs 3.6,3.7,3.8
for the case U=15.5ft/s and ¢=45 degrees.

The forces were approximated by simple second-order systems, for

example:

F, s .
i

.lil = i=g,r,y (3.11)
‘ 1 +2 Ji/wi + (s/wi)2 for sway,roll and yaw '
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In the case when U=15.5ft/s, ¢=45degrces, the higher frequency behavior
shows the infinite dimensional characteristic of the force dynamics. For
simplicity, this effect is not represented in the model, because it is
beyond the area of significant wave power.

The values of the coefficients in the transfer function, and their
dependence upon ship speed and wave heading angle, are summarized in

Appendix A.

3.4.2 Ship Dynamics

The other ship dynamics are related to the matrices A and e

h' By

As indicated earlier, the matrices A] and B, are dependent on the frequency

) h

of the incoming wave, so that the order of the differential equation:

(M+A + Bx +CXx =F (3.12)

WXt BpX, PO, T E

1s higher than 2 times the three motions.

However, the roll motion turns out, to be highly concentrated around
the roll peak frequency. The sway and yaw power spectra are more widely
dispersed, but, due to the concentration of the sea spectrum in frequency,
the motions are all concentrated within a narrow frequency band.
Consequently, the added mass and damping matrices variations with frequency
are neglected, and the values of these matrices at the roll peak freguency
are used here.

Another important variation of the A, and B, matrices is due to the

h h

ship speed and heading angle. These produce coupling terms between the
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motions that, again, are frequency dependent. These couplings are accounted
for but, consistently with the previous discusssion, their influence is
assumed to be constant with frequency, and their value is taken equal to
their actual value at the roll peak frequency. With these approximations,
the values of the added mass, damping, and hydrostatic terms, as well as
their variations with speed and heading angle, are contained in Appendix A,

Figures 3.9, 3.10, and 3.1l show the overall result of the approxi-
mations on the ship dynamics. The highly-tuned second-order behavior of the
roll transfer function is obvious, and the approximations appear to be
very good. The higher frequency dynamics are neglected, but the approxi-
mations are in a sense conservative.

The derivation of a state-space model from the rational transfer
functions obtained for the sea and the forces is straightforward. For
the ship dynamics, some care has to be taken.

Taking the matrices Ah and By constant, the differential equation:

(M+Ah)_§h + Bhfh + Chéh =F (3.13)
; . s -1 . 1
is of order 6. By selecting R = (M+Ah) , P = (M+Ah) Bh’ and

Q = (M+Ah)-lc the following state-space representation can be obtained:

h'
x -p 0| [x R
hl . oy F (3.14)
éh I 0] ﬁh 0

The state-space representation includes 6 states (3 motions and their
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doerivatives).

When combining this model with the model for the forces, two pole-zero
cancallations oceur. The ship dynamics include two poles at the orlgin,
which are due to the zero spring constant for sway and yaw, while the forces
dynamics have each two zeros at the origin, as previously mentionned. These
pole-zero cancellations lead to a non-minimal order system, and to instabi-
lities in numerical simulations. By simple algebraic manipulations, detailed
in Appendix A, this problem can be resolved, and a 4th order model of the
ship dynamics is obtained, including the sway, roll, yaw motions, and only

the roll derivative.

3.5 Overall Ship Model

The overall ship model is written in state-gpace form :

- .
X5 = AgXo + §S (3.15)

The state vector contains 16 states :

x : wave elevation (ft)

L

X, : wave elevation dex .vative (ft/s)

x, to Xg * states related to the sea dynamics

Xy o / sway force (tons.s)

Xg o+ sway force (tons)

Xg J roll moment (tons,ft.s)
X0 ¢ roll moment (tons,ft)

x : J yaw moment (tons.ft.s)
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X5 ¢ yaw moment (tons.ft)
Xy5 @ sway displacement (ft)
X14 ° roll rate (rad/::)

X1g * roll angle (rad)

X6 ° Yaw angle (rad)

The structure of the matrix A i ,efined on Table 3.1, and the
numerical values for the condition : H=l0ft, wh=0.72rad/s, U=15.5ft/s,
and ¢=45deygrees are given in Table 3.2 and Table 3.3 (for any condition,
see Appendix A).

The vector és is a white noise vector whose only non-zero element

is the 6th row element. Its spectral intensity is ﬂso.

3.6 Additional Comments

Weather conditions of zero visibility and sea state 5 are considered
in this study. Sea state 5 corresponds to a significant wave height of 10ft
and a modal frequency of 0.72rad/s, for fully developed seas. The ship
speed will be assumed to be 15.5ft/s (about 10kts) and the wave heading
angle 45 deqgrees. A second sea condition will be sometimes used. It
corresponds to the condition numbered condition 4 in {11, with significant
wave height 12ft and modal frequency 0. 307rad/s (this is the less common
case of decaying seas).

The ship model poles and the rms motions values (at the reference
point) are given in Table 3.4. The model poles are also shown on Fig.2.12,

for the case H=10ft, wm=0.72rad/s. Six poles correspond to the sea spectrum.

-54-



rrN
r '3E IS
“LITY
< < <
&) (& ) &) &) ) o () @) ) () Q “H pN o uv
™ ) ™M
@] 6} © € o ) ) (9] ) &) © (&) uﬂ Noo uv'
4
™~ o~ o~
Q) @) (@) < o &) o o © © (@) o d% JN 1 ;w
3
4t ~{ ~
[ e [ (@] o @) @) (@) @] O o) o UH _FJ Q F
4+ +
- mr— ———— S—————— S ey ——— -t o —————— T seme—— — :x‘ —— e— p— b d —n—
3 ]
s [Xe)
(&) o © o ) o @) (@) o (o) ,4 ) (o) DN &) o)
~
l )
N>y \n ¥y N
o ) o < < o lo [ (e} Q @] ? 5% 5\ O 5@
2]
SH o
=) ) ) ) o &) fw) o A - @] o o N O ©
(?l 3
ON__ N
@) %] (o) o o o Ic =) © ?'3 o o ,0 & @] @)
0
3m ~
$) o (@) o (] () l ~ ) () (@) (@) (o] ,c) N o
? o3
I N 4 4 —
[4a) o o o (o) (@) o 3 (@) () o @) 4 ~No <
[ 3 o} 3
~_O ?Ol '
o3 o) o) z — 9 o @) o ) o o o © e) @
™
o l
™~N_ 0
[50) (@] o o (] ';'4 [ (] (@] (@) (@] (@) () ] @] (@]
N_O 30 I I
{
I v ) (] ) (@) @) ) (@) o ) © o o o0
~
| | |
™~N_O
) o o) ? © =) o o o [ o ) lo [et) o (@)
. |
3 o0 NN AN Dy
~ &) @) © (o) o @ 3 (@) 3 o 3 [} o (@) o
o~ 9] ] >y
| y [£¥] fg
~N_0O
(@) ? O (& o o Io [} (@) @] o « ‘o (@} (@] o
1]
wn
g

Table 3.1:

-55~

Ship Model AS Matrix



ORIGINAL PAGE 1S
OF POOR QUALITY

w
{(s/pexZL 0= m ‘33I0T=H)

§ 03 T SWMTOD ‘SNTRA XTIIPH ¥ Tepow ATUS Z°F STAEL

‘@ 82-3258°p- ‘2 ‘2 ‘8 2 ‘e ‘2
‘2 ‘e ‘e ‘a ‘8 2 ‘8 ‘2

9@-36¢€°1 82-3812°€ ‘a ‘a ‘2 "8 2 ‘2
‘¥ €2-3E20°2 ‘2 ‘8 ‘2 ‘2 ‘8 ‘2
2 ‘2 2 ‘a ‘2 ‘e E@+318°9 ‘a2
‘a ‘2 ‘2 2 ‘2 ‘2 ‘8 ‘8
2 ‘2 ‘a ‘2 ‘8 ‘8 28+3658°9 ‘8
‘2 ‘2 ] ‘@ 2 2 ‘2 ‘e

18-3222°5- 18-3919°2- - ‘e 2 ‘@ 1@+322¢°S ‘2
1 ‘2 ‘2 ‘e ‘2 ‘8 ‘e ‘3
‘2 . *@ Be+3¢BS°1- @2+3SEl1- ‘8 ‘8 ‘e 2
‘2 2 1 ‘e ‘2 ‘2 ‘8 ‘2
‘2 ‘@ 28+3S€1°1 ‘@ P8+3.85°1- @2+39€1°1- ‘3 ‘8
‘2 ‘2 ‘e ‘g 1 ‘3 ‘2 ‘a
‘2 ‘2 2 ‘2 98+38s1°3 ‘@ 9B+3.85°1- @B+39E€I°1-
‘a ‘2 ‘a ‘a ‘@ ‘2 1 ‘2



‘2
22-3882"1
23+31%2°8

‘e

‘2

‘e

"2

‘e

@

ORIGINAL PAGE 18
OF POOR QUALITY

‘8

9T ©3 6 suumyod

.y
I

22-32v2°€~ »8-3268°% 20-361€°2- ¥a-3119"p-
)

16-3%v€°2- 28-3186°1- G@-3EHE"»

18-3¢482°1
)
‘a
‘2
‘8
‘e
‘g
*2
‘e
‘2
‘8
‘e
‘2

12-38v¢°2 €a-3ebe-B-

‘e
‘2
‘8
‘e

2
%]
‘a
e

S Y

‘8
‘8
‘a
l.m

O8N e e 8

Q8

w
(s/peI2.°0="m “3307T=H)

‘enTeA XTageR

‘2 ¢2-3662°1

‘g
£8-3v08°1- BB-3666°1- 98-3241
‘8 98-3694 " p-

19-38SH° ¥~ 19-3111°Q-

"1

S

DO N8®

‘2

‘2

¥ T9pow dtus

T€°€ arqey
‘g ‘2
‘@ ‘2
e ‘2
‘2 ‘2
‘8 ‘8
‘@ ‘8
18-3568°9- 18-3626°p~
1 ‘8
‘2 ‘2
‘2 ‘2
‘@ ‘2
‘8 ‘2
) 2
‘2 ‘2
‘g ‘@
‘e ‘2

-57-



o ey = M) ¥ el B i 6 M e, Sy L Rt e

U-15.5t/s

Yhip speed o
)

o ey

Woavoe hoadinag anale

s e - i e, s L A b e

G4nhe

—

BEA ¢ H=10f£t (um‘ﬁu.']'.’.'r.vnd/’s SEN ¢ Hlaft wm*L).dkl()'?r:h],’s
Ship madel poles
By ~0.754 2 0.7h4 Py 0,470 ¢ 0,470
’-ln g
w7 L4 0.7 -0, 4 ¢ 0,470
PB,‘) 0.754 ‘j) 0. 704 })3'4 0.470 3 474
- Al + 3 P EN R aq° » ‘S
}‘)5,(3 0. '7h4 25 00754 p_‘i,() 04700 ¢ 3 00470
3 - =0.223 £ ) 0.873
} 7,8 J
-0, 33! j 0.!
pﬁ),l() 0. 335 + 7 0,588
> SO ¢ I ¢ j 0.440 SAME
P1e, 12 0.260 j 0.4 AMI
h o=, 000 ¢ 9 0.484
},)]3,14 0.00483 3 0.4¢
o=0,020 L SOy
Pl.'),l(\ 0.0204 30,0597
v v i ¢ et e emmsimenoed
Ship madel rms mocions valoes ;
o 20,6121t o 1. 3010
sway Bway
o 4,169 ‘ 2.0
roll 0 Ox.‘o 11 ! ’
‘ n.227e 0.373°
dyuw / Uynw 37

s reos b o

Ship Model Poles and Rms Motions (at the reference point)

-58-



ORIGINAL PAGE IS
OF POOR QUALITY

Forces ak
Sea
X
X
X Ship
%35 dynamics
X Roll
. X
-1 -5
X
X
“ L
X
+-1

Figure 3.12 : Ship Model Poles (H=l0ft,w =0.72rad/s)
=072

-59.



Six other poles correspond to the force dynamics (2 for each motion), The
four remaining poles correspond to the ship dynamics : there are in fact
six poles (two for each motion), but two pure integrators in sway and yaw
were eliminated with zeros at the origin. There is a very lightly damped
mode with frequency close to 0.5 rad/s, corresponding to the roll oscilla-
tion mode. Another lightly damped mode of low frequency appears, but its
contribution is small, due to the presence of zeros at the origin.

For the VTOL landing problem, the motions of interest are the motions
at the landin: pad. The sway motion at the landing area is composed of the
sway at the center of the axes, plus contributions from the roll and the
yaw angular motions. In the ship coordinates, the landing pad is located

at :

xSLP

ki

~-127 ft (3.16)

i

Zglp 34 ft (3.17)

The sign conventions for the aircraft are also different than those for the
ship, so that the output matrix providing the sway, roll and yaw motions of

the landing pad in aircrart coordinates is :

0 0 00 00 0 0 0 0 0 0-1 0234127

- 3.18
Corp 0O 0 0 0O OO OO 0 0 0 0 0 01 0 (3.18)

0 0 0 0 0 06 0 06 0 0 0 0 0 0 0=

-
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3.7 Summary

In this chapter, a ship model was derived from hydrodynamic data
obtained from the geometry of the DD963 ship hull. The ship motion model
is divided in a sea model, and a ship model. The sea spectrum appears to
be concentrated in a narrow frequency band centered around 1 rad/s, so
that all motions have relatively limited power spectra. Roll motion
especially appears to be highly concentrated in frequency, as it behaves
like a lightly damped second-order system.

Some approximations had to be made in order to obtain a finite
dimensional model of reasonable order. It was demonstrated that these
approximations were very good in the frequency range of interest,

The resulting model, expressed in state-space form, and its salient

characteristics were discussed.
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CHAPTER 4

SHIP MOTION ESTIMATION AND PREDICTION

4.1 §hip Kalman Filter

The Kalman filter role in an LQG design was indicated in chapter 2.
Here the Kalman filter tasks are the following : ‘

- reconstruct the states that are not directly measurable, as for
example the sea states (this is essentjial to the prediction of the ship
motions)

= provide optimal estimates of the states, including those that are
measurable, but are affected by noise. In this sense, the estimator is
really a filter that filters the noise affecting the measurements.

The measurements of ship motions are affected by noise that is not
simply the instrument noise, but is also caused by the structural vibra-
tions. These vibrations can be quite significant, and we want these high
frequency motions to be filtered by the Kalman filter, and to keep the
filter poles within the range of frequencies which is significant of

ship motions.

The meas’.;+ment equation is :
Yg = Cg¥g * O (4.1)

It is assumed that the only measurements available are the sway displacement,

the roll angle and the yaw angle, so that :
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0 000 0 0 0 0 0 0 001 000
¢C.,= 10 O O O 0 0 0 0 0 0 0 0 Q& 0 1 0 (4.2)

0 0000 0O 06 0 0 0 0 0 ¢ 0 01

The filter is designed assuming the measurement nolse spectral intensaity

matrix to be :

0.1 0 0
QS e 0  0.0002 0 (4.3)
0 0 ¢. 0002

and the filter poles are within a radius of 1.1 rad/s. The filter poles
and the predicted rms estimation errors are indicated in Table 4.1,
The rms estimation errors are the square roots of the diagonal

¢lements of the covariance matrix of the error :

T
Pec = E(SS'*S) (4.4)
Having :
X = AsxS + gs (4.5)
Y5 = Cg¥g + O (4.6)
A A~ ~
= { -
Rg = AgXg + Hglyg - CgXg) (4.7)
The error is defined by :
=¥ - .8
o = &5 - % (4.8)

-B3 -



- . —
SEA  H«10ft wm:0,7ﬁxad/s

Pe— e g e

¥alman filter poles

Py, = l.067 ¢ j 1.086
Py g4 = -0.457 ¢ § 1.312
Py g * 1279 ¢ 3 0.477
P, g 7 70.210 & § 0.934
Pg 19 = ~0-365 : j 0.523
Piy,yp = "0-087 ¢ 3 0.446
P1a,14 = "0-159 + 3 0.165
P15, 16 © ~0-0203¢ 3 0.0595

o —

e e S ettt e i o

Rms oxtimation orrors

e

Lway

(3
roll

[2]
yaw

i

i

I

0.241 ft
0, hH60°

0.0776°

.
H

Table 4.1: Ship Kalman Filter Poles and Rms Estimation Errors
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The error is governed by the differential equation :

&, = (gigColeg = Ly - gl (4.9)

80 that Pee is the solution of the 1l6th order Lyapunov equation :

T T
(Ag-HC P + P (A -lCo)™ + E; + HOH, 0 (4.10)

Figures 4.1, 4.2, and 4.3 illustrate time simulations of the ship

motions and of the estimated motions by the Kalman filter.

4.2 Sensitivity of the Estimation Error to Parameter Uncertainty

A study of the sensitivity of the estimation error to parameter
uncertainty indicates those model parameters that are important in the
estimation process.

The error equation of the Kalman filter with incorrect model is given

in [16) . Assuming the correct model to be :

kg = AgXs + Eg (4.11)

kg = Cgig + & (4.12)
and the filter designed with Ag and Cé, so that :

g P * -k B

gs Asgs + Hs(xs ngs) (4.13)
The error equation is :

& = Rep (R Kol - . - -

&g = (AgHgRleg + (AG-Ag-H (CE=Co))Xg - by — Mgl (4.14)
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Denoting

nl '1‘
Poe = Bleg.ag) (4.15)
P = E(x .xT) (4.16)
XX S~ *
P = B(x..el) (4.17)
xe ~5°=5 .
and
Pee Pie
13! = (4..1.8)
P P ‘
Xe XX
rA* H_C¥ (AX¥~A_)~H_ (C*¥~C_)
S "s”s s g’ Mg tvsTs
Ag = (4.19)
L 0 Ay
[ .. T -
41 0 H -
ar | 8 ss’s S
BS . ) (4.20)
-s “s
L

The matrix P' is the solution of the 44th order Lyapunov equation

ALP' P'AéT ¥EL =0 (4.21)

This provides the error covariance matrix and the actual rms estimation
errors. Table 4.2 shows the result of the sensitivity study. The most
important parameter is the sea modal frequency and this indicates the
importance of an accurxate estimation of this parameter aboard the ship,
in a real-time application.

The influence of systematic measurement errors is studied by using
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b

{ SEA H=10ft wm=0.72rad/s

<t

SWAY (ft) ROLL(°) YAW(®)
[ ns motions 0.c12 a6 | o0.221
Nominal errors 0.241 0.56 0.07;6
»;mrumetux ahanaed @
wU-'=2Oft/s 0.245 0.568 0.0963
| wmz0.52rad/s 0.314 0.60 0.0858
¢J6O° 0.296 0.624 0.112
Cé(sway)40.9 >O.255 0.586 0.081
Cs(roll)gat9 0.247 0.708 0.0808
Cs(yaw) =0.9 0.242 0.56 0.0777
C$(§way)=0. 0.518 1.21 0.1408
Cs(rollfgo. 0.376 4.08 0.1i58
Cs(yaw) =0. 0.242 0.563 0.0785

Table 4.2: Sensitivity of the Estimation Errors to Parameter Uncertainty
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a calibration factor in the CS matrix. In the case of a 10% error, the
most significant influence is obtained for a roll measurement error.
Clearly, the Kalman filter uses mostly the roll measurement in the
estimation and improves its estimation of the other motions through the
known couplings between the motions. In this regard, the yaw measurement,
which for this application is very noisy, has little influence on the
filter performance. In the case of a calibration factor 0 (indicating

a disconnected measurement), significant errors result, especially for

roll.

4.3 Ship Motion Prediction

4.3.1 Introduction

Real-time prediction of ship motions is currently a subject of great
interest, with applications not only to aircraft landings (or helicopter,
or VIPOL landings), but also to many other operations such as ship motion
compensation and cargo transfer. Recently, a method has been proposed,
that uses time series analysis [17] . Such method does not require any
precise ship modelling : it considers the ship as a black box.

In this research, we chose to take advantage of the available know-
ledge on ship motions, and to derive a better model of the ship a priori,
that can be used for estimation and prediction of the ship motions.

Note that although the prediction of ship motions is of primary importance,

to any piloted landing application, it is useless to an automatic landing

using the LQ/LQG me“hodology, because the knowledge of the predictable part
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of future ship motions is in fact completely included in the ship states

and is fedforward by the LQ/LQG controller.

4.3.2 Prediction with Correct Model

——— — — ——r | o— — — — o o oo ool g vome

Given the system :

55 = Asfs + ES (4.22)

The optimal predictor is simply given by

Q .
L X (4.23)

ey = X - Xg (4.24)
& = - F 5
&g Asg_s _E% (4.25)

The ¢ variance matrix of the error is time-varying, and is the solution

of the linear differential matrix equation :
T - e
4 = A_P + P A + = (4.20)

In a first approach, we assume that the state at t=0 is perfectly known,

i.e.

55(0) = (0) (4.27)

X

For t»®, since A is stable, the estimate ¥

" X5 goes to 0, This reflects the

fact that the ship motion is stochastic and that the knowledge of the state
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at any time does not imply any knowledge about the state at a distant
time in the future. Consequently, the error eventually reaches the rms
value of the mo:ion.

The evolution of the rms error, normalized by the rms motion is
shown in Fig. 4.4. Roll appears to be the easiest motion to predict.
Under perfect conditions, good prediction could be obtained for up to
10 seconds. This reflects the highly-tuned shape of the roll power
spectrum, which is mostly a second-order very lightly damped oscillator.

The above is a significant result for landing puryoses, because roll
motion is really one of the most important motions to predict. From the
lateral motions, the yaw motion is very small, while the sway motion
consists mostly, at the landing pad, of a roll induced motion.

Sway and yaw are much harder to predict, as shown in Fig.4.4, which
reflects the much broader power spectrum of these motions,

The oscillations in the prediction covariance can be explained by a
simple derivation for a second-order system.

Assuming a second-order system :

x = Ax + § (4.28)
where
[ 0 1.]
A = (4.29)
-b -a
- -l
o o]
B (4.30)
0
i b
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The covariance matrix propagation eguation is

M it
1>u=2\9+PA1 + B (4.31)
with :
p p
. 11 12
p (4.32)
Pio Pay

The equation (4.31) can be rewritten :

o - - - r
pll ( 0 2 0 Pll 0
Pl.";’ A= -b ~a 11. plZ + 0 (4.33)
B 0 -2b -2a P 1
) oy
L_ 62 ke i L . L 22- L

This is a linear differential matrix equation. The eigenvalues of the

above 3x3 matrix are

A= -at Ya® = db (4.35)

The eigenvalues of the original system are :

A= (-a i va’< 4b)/2 (4.36)

In other words, the li!near system modelling the covariance matrix
propagation has eigenvalues which are equal to twice the original system
elgenvalues. This explains the osclllations of the prediction errors which

are at a frequency double that of the ship motion peak frequency.
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Time simulations of the ship motions and of the prediction estimates
are reproduced in Figs. 4.5, 4.6, and 4.7. The prediction starts at t=40sec.
The previous remarks on the predictability of the motions are easily swen
in these plots.

In an actual realization, the ship states are not directly available
and must be estimated, Fig. 4.8 shows the structure of the estimator/pre-
dictor. Prediction can be seen as an extension of filtering, with the
measurement branch broken. In an actual application, the Kalman filter
would be running in real-time, continuously, while the predictor would
compute the predicted motions for a specific time At ahead, in parallel.
This is indicated schematically in Fig. 4.9.

Some simulations are shown in Figs 4.10, 4.11, 4.12 and 4.13. The
Kalman filter provides estimates at t=40s that are used to predict the
ship motion. Good prediction is still o:i...ned for roll, while yaw becomes

almost unpredictable.

4.3.3 Implementation Issues_

The actual implementation of the estimator/predictor described above
will require the use of a digital computer and, hence, the discretization
of the differential equation. Although the Kalman filter requires a large
number of computations at relatively small time steps (with measurement
update), the particular structure of the predictor makes the additional

computational load very small. Given the optimal estimate of the Kalman

filter at time t, gs(t} , the optimal estimate of the predictor at
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time t+AE is simply

AN
R (tadt) =0 " (t) (4.37)

(};0

A At
Having computed e °  ,and considering that we are only interested in

predicting the motions (and not the other states), this operation results
in multiplying a matrix (3x16) by a vector (16xl). These are the only
computations required if we are only interested in predicting the motions
At seconds ahead (and not their evolution in between). In this case, there
is no need te integrate the differential equation, as for the Kalman
filter.

In the case when the complete time evolution is desired, and that the
differential eguation has t» be integrated numerically, the same equation
(4.37) provides the discretized equation corresponding to the differential

equation :

(4.38)

Dmay
Lbﬁ

S

(LX) .

It is very tempting to approximate this equation by the simple difference

equation

o

(t+At) = gs(t) + At (A (t)) (4.39)

%
-s 5-5
which is th. same as approximating

ASAt
e R ASAt (4.40)

for a small At.
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However, due to the presence of the very lightly damped roll mode, large
errors can occur even for small At, compared to the time constants of the

system. In fact, if At is not very small, the mode becomes even less damped,

A_At
as indicated in Appendix B. More precise approximations to e s are

advisable for the implementation of the predictor (see for example [18] ).
Such problems do not appear for the Kalman filter which does not have this

very lightly damped mode.

4.3.4 Prediction_with Wrong Model

In a previous subsection, the important influenceof the sea modal
frequency on the performance of the Kalman filter was assessed. This pava-
graph addresses the same gquestion for the predicter. The calculation of

the errors is a little more complex in this case.

Given the system :
. - 4.41
X = BAgXg v &g (4.41)

and the predictor with wrong model :

= * R 4,
g = a8 % .42
The error is given by :
& = * o *a - .
&g = (Ag-AgIxg + Aleg - Ly (4.43)
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The global system is :

» LI -
%| % PsAs| | ts
¢ +
Xg 0 Ag g &s

Denoting :

P pr
pr = | e xe
Pxe Pxx
i * ® o ‘
= Ag RgAg
S |o A
s

P' is the solution of the linear differential equation :

T
Pll = ' ' + ' ' + El
AS P P AS S

which can be separated in :

T

+ + =

XX = Aspxx PxxAS S
. T T

o + * * -
xe Apre Pxx(AS AS) * PxeAS ~s
: T T T

= A*® * o + * AN - + =
ee ASpee + (AS AS)Pxe PeeAs + Px&AS AS) =S

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

The original system (the ship) is assumed to be in steady-state, so that

Pxx = 0, and Pxx is the solution of the Lyapunov equation :
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AP, + P AL+ E =0 (4.52)
Replacing Pxx by its steady-state value (given by (4.52)) in equations
(4.50) and (4.51), we obtain a 32nd order linear differential matrix
equation in Pxe and P’ with initial conditions Pxe(O) = Pee(O) =0

(the initial state is assumed to be perfectly known).

Figures 4.14, 4.15 and 4.16 show the results of the integration of
this equation, in the case of an error in the sea modal frequency. The
filter was designed with wm=0.72 rad/s, while the actual value was
assumed to be 0.52 rad/s. The degradation in performance is again signi-
ficant and the roll prediction time is about divided by two. This

indicates (again) the importance of the estimation of the sea modal

frequency in real-time applications.

4.4 Summary

In this chapter, we addressed the important questions of ship motion
estimation and prediction. First, a Kalman filter was designed, whose task
is to filter the noise in the measuroments (mostly due to the ship structur-
al noise), and to provide estimates of the states that are not available for
measurement. These estimates can then be used for optimal prediction of the
ship motion, and in the feedforward path of the LQG controller for tﬁe VTOl1
landing.

A sensitivity analysis showed the relative importance of the model

parameters, and the sea modal frequency appeared to be a significant
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parameter.

The prediction of ship motions, assuming perfect knowledge of the
initial state, was studied, so that lower bounds on the prediction errors
were obtained. Due to its concentraf.ed power spectrum, the roll motion
turned out to be the easiest to predict (optimally 5 to 10 sec. prediction
time). The sea modal frequency was shown to be an important parameter for
all motions, which indicated the need for an accurate estiqation of this

parameter in a real-time application.
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CHAPTER 5

AIRCRAFT MODEL

5.1 Introduction

Since the beginning of VIOL aircraft technology development, a large
number of configurations were conceived, and sometimes built and tested.
The most studied and extensively tested VIOL is probably the AV-8A Harrier,
Another VITOL aircraft which has been extensively studied is the Lift/Cruise
Fan V/STOL Research Technology Aircraft (RTA). For this aircraft, complete
simulator programming data is available in (19]. In the former study of
the longitudinal controls required for VTOL landings on destroyers [1],

a linearized model, written in state-space form, was derived from the data.
It includes both longitudinal and lateral motions. In addition to the rigid
body equations of motion and the contributions of the fan forces and
moments, this model also accounts for ram drag forces and moments, and
internal momentum effects (gyroscopic terms) due to the rotating engines

and fans. Neglected are the aerodynamic effects, the ship airwake tnrbulence
and the ground effects. The actuators are modelled by first order dynamics,

whose time constants are to be selected by the control system designer.

5.2 Lateral Motions Model

7o a first approximation, the longitudinal and lateral motions of the
aircraft can be decoupled. This corresponds to neglecting the cross-coupling

terms between roll, yaw, and pitch due to gyroscopic effects from the
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engines and fans. The effect of this approximation on the overall system
performance and stability margins is an interesting issue which is not
adiressed in this thesis, but is probably worth a subsequant study.

The general ship-aircraft configuration is shown in Fig, 5.1. The
lateral motions, and the sign conventions used, are¢ indicated: they are
sway (lateral translation), roll anu yaw (angular moticns). The
definition of the sontrols requires some care. Strictly speaking, there
are 9 variables on which the controller can act: the 3 values of the
thrusts at the fans, the 3 values of tlhe longitudinal deflections of
these thrusts, and the 3 values of the lateral deflections. However,
these controls are not independent: for example, deflecting the thrusts
Ty and T2 latessily and in opposite directions would result in counter-
acting forces, and, consequently, in an inefficient use of the controls
available. Considering reasonable use of the controls, we find three
independent controls for the la teral motions (corresponding to the three
degrees of freedom):

1) an equal lateral deflection of the aft louvers, denoted by 6&1'2

2) an exchange of thrust from T, to Ty, denoted by 6T1'2 (this
can easily be done, as the engines 1 and 2 are mechanically coupled)

3) a lateral deflection of the front louver, denoted by 6d3.

These control variables are grouped in a vector denoted by c.

In the original work by McMuldroch [1], the vecf:or input was chosen

in a slightly different manner. It is denoted by u in this thesis.
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Its compracnts are:
1) Gycs an equal lateral deflection of a)l the louvers, to produce
(m:<%ly) a sway acceleration

2) 6¢c= an exchange of thrust from T, to T,, to preduce a roll

2
auceleration

3) Gwc: an opposite lateral deflection of the front and aft louvers,
to produce a yaw acceleration.

In this thesis, we keep the McMuldroch formulation, but the control
weights in the quadratic cost and the robustness criterions will be
expressed in terms of the vector ¢ , which is the actual physical contro)

input. The transformation from ¢ to u and u to ¢ is straightforward.

Figure 5.2 indicates the structure of the aircraft model.

ie

Figure 5.2: Aircraft Model Structure
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The numerical values of the matrices are given in Table 5.1. The units of
the model are:

- ft for Ya

- ft/s for {(A

- rad for ¢A' WA, 601'2, 603, 6yc, Gwc

- rad/s for @A, @A

»  fraction of the nominal thrust for GTI 2 (the nominal thrust of Tl
’
is 9057.5 1lb) and for 6¢c

' 2

The only difference between the model indicated here and the model
given in (1], is the absence of actuators dynamics which, in[l], were
selected as integrator dynamics. For the lateral case, the actuators
dynamics are well beyond the significant ship motion frequencies (0.5 to
1.5 rad/s): the thrust deflection can be done almost instantenuously,
while the exchange of thrust -« which does not require any overall increase
of power - has a time constant of about 0.1 s (a shaft-coupled configuration
is considered here). Foxr these reasons, and for simplicity, the actuators
dynamics are neglected here.

The resulting model is very simple: it contains only 6 states,
specifically the aircraft motions and velocities. As indicated earlier,

a simple model is desirable on the control system point of view, although
it necessarily implies some crude approximations and, therefore, increases
the need for good robustness properties. On the other hand, the interpre-
tation of th~ elements of the model is easier from a simple model, as will

be seen in the next section.
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5.3 Model Interpretation

The important couplings inherent to a VIOL aircraft are represented
in the model, and it is worth taking some time analyzing them.

A first important coupling is a dynamic coupling between roll and
sway. As the aircraft is banked, a lateral component of the thrust appears,
which results in an important side force. This is represented by the
AA(4,2) element (cf table 5.1). It is equal to g (32.2 ft/s?) because,
under the small angle approximation, the side force is equal to the weight
times the roll angle.

The other elements coupling the velocities in the AA matrix are due
to the ram drag forces and moments, and are responsible for most of the
aircraft dynamics in this model (especially its instability).

An important coupling appearing in the EA matrix is the BA(S,I) term.
It indicates that a lateral deflection of :he thrusts produces an important
roll moment. Note that if this effect is not compensated for, the roll
moment will produce a roll angle which, by the effect described above, will
in turn produce a sway force opposite to the sway force originally produced
by the louvers deflections. The origin of the roll moment is in the
difference between the center of gravity and the center of thrust of the
fans (the center of gravity is 3.12 ft higher).

Finally, an interesting, aithough apparently not very significant term
is the BA(6,2) term. It tells us that an exchange of thrust in the aft fans

produces a yawacceleration. Although no yaw moment is produced by this

control, a small yaw acceleration results from the roll moment, due to the
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angular difference between the principai ;xes and the body axes (in other

words, due to the presence of a cross-term ‘xz in the inertia tensor).
The above summarizes the important couplings present in the VIOL

aircraft. These couplings are dynamic (reflected in the A  matrix), as

A

well as control couplings (reflected in the BA matrix), and are captured
in the simplified, linearized model given here.

in fact, not only is the system strongly coupled, but it is also
open-loop unstable. The open-loop poles are shown in Fig. 5.3. Two of the

six poles are at the origin and correspond to the pure integrators in

sway and yaw motions.

5.4 Sunmary

In this chapter, we described the alrcraft model for the lateral
motions. We showed that three independent controls can be used to track
the lateral deck motions, but that some important couplings are present
amongst the controls and motions (especislly between sway and roll),

The aircraft model is written in state-space form, and the state
vector contains 6 states, namely the aircraft motions and velocities.
The important couplings of the VIOL are represented in the model, and

it was shown to be open-loop unstable.
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CHAPTER 6

LINEAR QUADRATIC REGULATOR DESIGN

6.1 Introduction

The LQ/1QG design methodology was introduced in chapter 2. As a first
step, it is assumed that all states of the system are available (output
matrix C = I), so that full state feedhack can be used. Note that while
this assumption is generally a rather unrealistic assumption, it is not
the case for ' he simplified aircraft model that was obtained in chapter 5.
Angular motions as well as angular rates are available through gyros and
rate gyros, Similarly, estimates of position as well as velocity can be
obtained from accelerometer measurements combined with MLS/DME measurements,
with a high quality. In a sense, a Kalman filter is not strictly necessary
for the aircraft. For these reasons, significant attention has been given to

this part of the design.

6.2 Choice of the Quadratic Weights

Under the assumption of full state feedback, the only parameters left
to the designer are the Q and R weighting matrices in the quadratic cost.
A very natural way to select these matrices is the diagonal inverse-square
weighting { 20]. Some other methods have been proposed, as for example the
method proposed in {21) and [22] to achieve desirable asymptotic regulator
properties. In any case, it is interesting to note that the robustn69§

properties of LQ regulators can be seriously deteriorated if a non-diagonal
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matrix R is chosen

{231 [24]. For this reason, it is wise to select a

diagonal R matrix, or equivalently, to pick R = pI, after some scaling

of the inputs.

In this thesis, we decided to start with a simple diagonal inverse

square weighting, leaving some parameters to acheive a desirable eigen-

structure, with a careful study of their influence on the optimal root-

locus. The quadratic cost that we want to minimize is given by (2.25).

As a first step, we want to weight all the state variables (motions and

velocities), so that:

Wa = WXy = X

(——? 0 0
‘Yma X
1 2 .
0 (==—s) 0
amax
0 0 (wl )2
Q= » me.x
0 0 0
0 0 0
0 0 0
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where Yoax’ ¢ ., wmax are arbitrarily chosen maximal deviationsof the

max
gtates:
Yoax = ' Tt (6.5)
= 4 o 3
Srax = Vmax = 10 degrees = 0.1745 rad (6.6)

A parameter Tz is left in the Q matrix. For Tz = Q, only the moticns are
weighted. For Tz # 0, the motions ard the velocities are weighted. They
are weighted equally if Tz = 1, In the VIOL landing problem, the wvelocity
tracking errors can be as important as the position tracking errois
(they determine the shock at the landing), which justifies the weighting
of both in the guadratic cost. Also, it is known that, sometimes, the
weighting of outputs only may lead to underdamped second-order type
systems, and that this can be improved by weighting derivatives as well
as outputs. At this stage, the variable Tz ie then left as a design para-
reter.

The control weighting R matrix is chosen diagonal at the point of

the actual controls:

() 2 0 0
Gal'z
max 1 2
R, =¥ 0 — 0 (6.7)
1,2 X 2
0 0 oy )
max
n -
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P

and:
T
R = 'rc nc T, (6.8)

with Gal ’ 6T1 2 , and 6a3 are arbitrarily chosen maximal values
,

max max max
of the control authority.

,2

Sa = &a = 10 degrees = 0,1745 rad (6.9)
max max

St = 0,3 (30% of the nominal thrust value) (6.10)
max

Another parameter of the design, p, is left here,and indicates the

relative importance of the control versus state deviations,

6.3 Optimal Root-Locus

An optimal root-locus is defined as the locus of the closed-loop
poles of the system with optimal LQ feedback, when the parameter p in the
R matrix is varied from ® to 0,

It is interesting to note that this problem in itself does not require
the solution of the associated Riccatti equation. The closed-loop poles are

the left half plane eigenvalues of the Hamiltonian systam [9] and[25]:

zZw 32z (6.11)

Z = (6.12)
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th

This replices the problem of solving a n" order Riccatti equation (n being

the order of the system) and a nth order eigenvalue rohlew by a 2nth order

eigenralue problem,

The points of departure of the optimal root-locus are the stable
open-loop poles, combined with the mirror images of the unstable open-loop
poles (symmetric position about the imaginary axis). In our case, two poles
are at the origin, two are on the negative real axis, and two are ogcilla-
tovy unstable, and are then reflected in the left-half plane.

The points of arrival define the asymptotic behavior of the system as
p+0, and are somewhat harder to obtain. Some poles go to infinity along
specific asymptotic patterns (Butterworth patterns) depending on the rank
of QHP. The other poles go to the zeroes of transmission of the system
QH(sI—A)_la (with the same remarks for right-half plane zeroes as for
unstable poles when p+w), The zeroes of transmission zi are the solution

of the generalized eigenvalue problem:

(A—zil) B X

‘s .
-Q 0 ui

= A'. = Q (6.13)

The system has as many inputs as outputs, so that the zeroes of transmission
are the zi's that make the matrix A' (defined by (6.13)) rank degenerate
(the full rank is m+n, where m is the number of inputs, and n the number of

states).

The matrix Q is diagonal, so that we can take:
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0" = diag ( —* - D SR £ £ ) (6.14)

and A' is given in Table 6.1.

The matrix is three times rank degenerate at z, = -1/Tz. Then the row 1

i
is a linear combination of the rows 7 and 10 (similarly for 2, 8, 11 and

3, 9, 12). In other words, the inclusion of the velocities in the

quadratic cost results in the introduction of three transmission zeroes

in the optimal root=-logus. It turns out that the three remaining zeroes

of transmission are at the infinity. The case when TZ-O can be seen as a
limiting case when the weights on the derivatives go to zero. All the
transmission zeroes are thei: at infinity.

Figures 6.1, 6.2, and 6.3 show the optimal root-loci for Tiuo, szl,
and Tzao.s and are labelled for difforent values of p. The structure of the
root~locus for high values of P is the same for different values of Tz
and is not repeated in the last two plots,

The previous comments concerning the points of departure and of arrival
are easily checked. For non-zero Tz' the poles eventually reach the negative
real axis, and three go to infinity, while the others reach the zeroes at
-l/Tz. As Tz goes to zero, the zeroes move to infinity, and the case of zero
velicity weights appears clearly asa limiting case from the three figures,
Then, the asymptotic structure consists of three second-order Butterworth
pattérns.

iy expircted, the root-loci reach faster higher damping regions when
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derivative weights are included. However, the asymptotic behavior with

no velocity weights is a desirable one. At this point, no decision is

made about which case is better (Tz&o or Tznl). This depends on which value
of p corresponds to a realistic design (acceptable tracking errors and
control authority). If high values of p are reasonable, choosing szl

will probably improve the design. If small values of p are reasonable,
choosing szo may be better, as it leads to desirable closed-loop poles
locations.

It turns out that the rang: of p between p = 0.3 and p = 30 is a
realistic one, as will be elaborated in the sequel. The corresponding pole
locations are satisfactory for Tz = 0, and this case will be considered as
the nominal one from now on.

Finally, an interesting characteristic of the root-loci presented
here is their rather peculiar behavior around the 1 rad/s region. This
appears in all three cases. For Tz = 0, the behavior is quite surprising,
as one pole (one complex pair) seems to come back before going to infinity
along the 45 degrees line. At some point, this point "slows" down as if
it was reaching a zero. This point is found to be approximately at:

0.91 + 3 0.87 and p = 3. No attempt is made to justify this behavioxr
mathematically, but some physical connection can be found, and will be
explained below.

It can be expected that the important couplings between sway and roll
previously mentionned have some importance in thils strange behavior.

Actually, while a small relative change of p produces only a very small
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movement of the pole near p= 3, a comparatively small change of the weight

on §T (6'1‘l 2 ) produces a much larger movement of this pole. It is
' “max

clear then that the roll control variable is crucial in the optimal lateral

1,2

control system design, as it is probably in any VIOL lateral control system

design.

6.4 Step Responses

As a first step in the evaluation of the control system design,
responses to deviations from equilibrium are computed and plotted. The
aircraft is assumed to be left with a zero velocity and some position error
at t=0. Figures 6.4, 6.5, 6.6, 6.7, show the response to a 4 ft sway
initial error, and Figures 6.8, 6.9, 6,10, and 6.11 the responses to a 10
degrees roll initial error. The responses to a yaw initial error are not
significant (they require comparatively very small control authority), and

are not reproduced here. Similarly, the deflections 6“1 and 503 are

2
’
about the same, and only 6o is shown.

1,2
The sway error response is particularly interesting: for high values
of p (high control cost), the roll response is important, while the fan
deflection (which mainly produces a sway force) is small. In fact, the
controller flies the VIOL as a helicopter: as the weight on the state is
small, and the weight on the controls is high, the controller slowly banks
th&laircraft and uses the lateral component of the thrust to obtain a sway

acceleration; then, after some time, it banks the aircraft in opposite

direction to reduce the sway speed to zero, together with the sway deviation.
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For semall p (high state deviation cost), the situation is very
different, and a dramatic increase in fan deflection reaponse can be
observed on Fig. 6.6, while the roll response on Fig. 6.5 is much
smaller. This shows that the turning point okserved in the root-locus
of Fig. 6.1 corresponds also to a change in strategy of the controller.

A similar conclusion can be obtained from the responses to a roll
initial error. For a high value of p (p=30), the sway induced by the
initial roll angle 1s important, and it is then compensated by an impor-
tant opposite roll (about half of the initial roll angle).

We conclude from this discussion that the quadratic optimization
problem leads to solutions which, when understood, are very logical,
and simply express specific characteristics of the system, which, at
first, may be obscured by its multiple-input multiple-output structure.
One advantage of the LQ methodology is that it leads to coupled

controller designs that exploit the dynamic coupling phennmena.

6.5 A Special Example

To illustrate the above remarks, a limiting case is presented; it
corresponds top = 10, Tz = 0, but with the penalty on the sway error

multiplied by 10%. The resultant clc .d-loop matrix:

= - 6.15
AA,CL AA BAGA (6.15)

and the gain matrix GA are given in Table %.2.

The most interesting terms are the A (4,2) and the GA(2,1) terms.
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CL,A

[ 0. 0. 0. 1. 0. 0. 1
0. 0. 0. 0. 1. C0.
0. 0. 0. 0. 0. 1.
~32.96 -0.11 0.0155 ~-25.55 -0.3263 0.0021
44,77 -12.04 ~0.4046 2.634 -5.656 ~0.4832
17.93 -0.2405 -1.175 1.279 ~0.3219  ~1.539

10.2360 1.0034 -0.00005 0.7914 0.0009 ~<0.0012
-0,0637 3.5568 0.0071 0.1737 1.2153 0.0065 |
-1.9995 -0.0093 0.1443 ~0.,1462 0.0009 0.1711

Table 6.2: Closed-Loop Matrix and Feedback Gains for a High
Sway Exrror Penalty

T
3 1&

Figure 6.12: Exact Compensation of the Lateral Force Due to
a Roll Angle with a Thrust Deflection
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Compared to the original AA(4,2) = 32,2, the term A (4,2)=-0.11 is

A,CL
reduced almost to zero; we recall that this term expressed the lateral
force due to a roll angle of the aircraft. The weight on a sgway error
being very large, the controller compensates this effect very logically
with a deflection of the thrusts in opposite direction than the roll

angle. This is accomplished by the GA(l,Q) term, which,in the limit,

would be equal to 1 (see FPig. 6.12).

6.6 Ship Motion Tracking

Up to now, the VIOL controller was designed as a stabilizer, or
zero state tracking controller. As indicated carlier, the feedback
structure of the controller is independent of the specific reference
signal to follow, i.e. the ship motion at the landing pad. The ship
model is reguired in the definition of the forward gain matrix value (GS).
The importance of the ship model is mostly in the computation of the
rms tracking erxrors and controls, which define the performance of the
controller.

In chapter 2, we denoted by EA and W the vectors of the aircraft
and ship variables that we want to track. They are the aircraft and ship

motions (at the landing pad), so that:

- 6.16
Ya WA Xn ( )

= W

W s Xg (6.17)
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with:

The tracking errors are denoted w

¥ T T W
Xg
Xa

-

The overall system equations are:

x

C

where:

it

Ax + Bu + §

T u
c =
hs 0
0 A

"y 80 that:
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0

B = (6.26)
Ba
[~

g = = (6.27)
h-%—

The spectral intensity of § is:

How (6.28)

The LQ vontroller is designed, using a Q matrix:

T

y T
Q_;w'r o W - W Q Wy Wy Q) W, (6.29)
A-Swn—s'_'row Wo o w ! |
A *w 8 A *w SJ

where Qw is the same matrix as the one used in 6,2 and defined by (6.4).
Similarly, the matrix R is chosen as defined by equations (6.7) and (6.8).

The control law is

-G

X a%a (6.30)

u = =Gx = -G
- S

In this state-space framework, the rms values of the tracking errors !A-S

and of the controls ¢ are veryeasily cbtained. The covariance of the states

deviations is obtained by solving the Lyapunov equation:

(A-BG) P + P(A-BG) + & = 0 (6.31)
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where:

P = E(E.E?) (6.32)

The rms tracking errors and rms controls are the square roots of the

diagonal elements of the covariance matrices:

T
Ya-s ¥a-s) = Was F Mas (6.33)

T

E(ce) =T, ,GP ¢t (6.34)

Tables 6.3 and 6.4 contain the results obtained for the two sea conditions
discussed in chapter 3. Table 6.5 contains the closed-loop poles locations

corresponding to the differant values of p.

e —————

SEA H=12ft wm=0.4807 rad/s

Sway Roll Yaw Controls
(ft) (deg) | (deg)

Ship motion 7.155(112.64 | 0.373 édl 2 6T1 5 6a3
, ] ' ’
at landing pad (deg)| (%) (deg)
Tracking p=30 | 1.124|14.98 | 0.414 | 0.26| 2.04 | 0.28
errors
p=3 0.971{13.35 | 0.203 | 1.93| 3.06 | 1.96

p=0.3 0.465 6.36 ] 0.099 9.15 | 15.35 9.16

A/C driving p=0.3 0.80). 6.4110.329 9,721 16.74 9,37
noise incl.

Table 6.3: LQ Controller Performance (decaying sea)
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ORIGINAL PAGE 18
OF POOR QUALITY

SEA H=10ft mmw0.72 rad/s
Sway Roll Yaw Controls
(ft) (deq) | (dea)
Ship motion
14 [ [t e "
at landing pad 2.551 ) 4.5%6 ] 0,227 6&1'2 611'2 5q3
(deq) (%) (deq)
Tracking P=30 0.517 | 5.405 { 0.172 0.10 0.12 0.10
eryrors —
p=3 0.444 |} 4.830 ] 0.082 0.70 1l.10 0.71
P=0.3 0.227 12.322 10,044 3.34 5.61 3.34
A/C driving P=0.13 0.69112.480 | 0.317 4.72 8.78 3.92
noise incl.

C

S

Table 6.4: LQ Controller Performance (fully developed sea)

“losed-loop poles locations

i+

0=30 | -0.598 + § 0.585 ~-1.038 * j 0.611
p=3 ~0.906 % 3 0.87 ~1.054 + § 1.039

0=0.3] -1.064 ¢+ 3 1.036 -1.869 * j 1.863

I+

-0.0642

i+

§ 1.054

~1.528 + § 1.552
-2.792 + § 2.803

Table 6.5: LQ Controller Closed~lLoop Poles Locations

-128-




For p = 0.3, good tracking is obtained, with reasonable control
authority (for H =12 f¢t, w, = 0.4807 rad/s, some higher value of p may
however be appropriate). The value of p= 0.3 was chosen as a nominal
value for the control system. The closed-loop poles are also at desirable
locations for a VIOL control system.

For this nominal design, the effect of wind turbulence is also
indicated. The results are obtained by introducing an aircraft driving
noise matrix EA’ and are also indicated in Tables 6.3 and 6.4.
values for wind disturbances are found in the form of Dryden spectra
in {19} . The derivation of the EA matrix from this data is included in
Appendix C.

As for the aircraft controller step responses, the values of the rms
tracking errors and controls give us some interesting indications about the
physical aspects of the problem. The yaw tracking errors are very small,
compared to the maximal values given in the quadratic cost. Similarly,
the rms deflections 6&1'2 and 633 are very close. This indicates that
yaw tracking is not at all a problem for the aircraft. The control
authority is clearly more than sufficient to track the ship motion
(which is very small anyway), or to reject wind disturbances.

On the other hand, roll tracking errors are much higher than the
sway and yaw errors (compared proportionnally to the maximal values given
in the quadratic cost). Forp= 30, the rms error is even larger than

the rms ship motion. This probably indicates that roll is the "least

easily controllable" state of the VIOL aircraft, but it also reflects two
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basic contradictions faced by the controller in the tracking of the sway
and roll motions. The first comes from the ship motion at the landing pad.
From the sway at the landing pad, a large part is coming from the roll
motion, due to the difference in altitude between the landing pad and the
center of vrotation of the ship. It has been seen earlier that an easy way
for the aircraft to track a sway reference is to roll the aircraft as

a helicopter would do. However, the roll angle required to follow the

ship sway motion by this mean is precisely opposite to the ship roll angle
that has produced the sway motion of the landing pad. This is illustrated
schematically on Fig. €.13.

The second adverse effect has been mentioned previously and is
illustrated on Fig. &.14. It is shown that a roll moment is induced by
a lateral deflection of the thrustp (term BA(S,l))~ It is opposite to the
ship roll motion.

It is possible to improve the roll tracking by increasing its penalts
in the Q matrix. Considering the physical problems mentioned here above,
this will probably result in a large increase in control authority.
Moreover, precise roll tracking is not necessary, and not even desirable.
For the same reasons as the ones mentioned here above, precise roll
tracking would result in large lateral accelerations at the pilot location
and this would probably be unacceptable.

Finally, it can be noted that only the influence of wind gusts was
considered here, while the mean wind was neglected (together with the

aerodynamic effects, as in [1] ). The influence of the mean wind will be
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Figure 6.13: Adverse Sway/Roll Coupling in the Ship Motion
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Figure 6.14:

Adverse Sway/Roll Coupling in the Aircraft Motion
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to produce a steady-state tracking error whose amplitude depends on the
amplitude of the mean wind and on the feedback gains. This can easily be
compensated for, if necessary, by introducing some integral compensation

(for example, by augmenting the system and recomputing the feedback gains).

6.7 Time Domain Simulations

Some time domain simulations are illustrated in Figures 6.15 to 6.27.
Figs 6.15 to 6.19 correspond to the case p = 0.3, without aircraft driving
noise (wind gusts). As expected roll tracking is the worst of all, and the
aircraft roll motion is systematically smaller than the ship motion.

Figures 6.20 to 6.22 illustrate the tracking in the presence of wind
disturbances. As expected, the yaw tracking is the most severely affected,
but the aircraft motion remains small.

Figures 6.23 to 6.27 show the case p = 30, without wind disturbances.
While sway tracking remains good, the roll tracking is simply out of phase
most of the tiine. This demonstrates again the "helicopter" behavior of the

controlled aircraft for high values of p.

6.8 Summary

In this chapter, we described the design of a linear quadratic (LQ)
regulator. This design assumes perfect knowledge of the states at any
moment. For the aircraft part, the assumption is not unrealistic (espe-
cialiy if a good navigation system is used aboard the aircraft), as ail
the st&' =28 are available for measurement, and the only role of an optimal

estimator is to filter the noise, and provide optimal estimates on the
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basis of the known dynamics of the aircraft.

For the ship however, a Kalman filter is necessary to reconstruct
the states that are not available, and the results indicating the rms
tracking errors for a given control authority must be interpreted as
lower bounds.

Due to the decoupling of the ship and of the aircraft in the LQG
design, the optimal closed-loop poles locus could be plotted independently
from the ship motion. It was shown that the root-locus can be shaped by
the introduction of velocity error penalties in the quadratic cost, and
that some peculiar behavior of the root-locus could be explained on the
basis of physical arguments.

The responses of the controlled aircraft to deviations from equili-
briumwere plotted, and the important couplings between the sway and roll
were shown to have a significant influence on the behavior of the
controlled aircraft. For high values of the control penalty, the controller
appeared to fly the VIOL like a helicopter, while, for smaller values, it
used much more the thrust deflection capability to provide lateral
accelerations.

The difference in strategy for high and small values of the gontrol
penalty appeared to have a significant influence on the errors achieved in
the tracking of the ship landing pad motion. It was shown that the
controller faced two important contradictory phenemena in the tracking of
the roll motion, especially due to the sway motion induced at the landing

pad by the roll motion. Although precise roll tracking is not necessary,
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the high values that the roll motion can reach in high sea states make
imperutive the limitation of the tracking errors (to avoid a contact of
the wing tip at the landing for example),and the constraints present in
the simultaneous tracking of the sway and roll motion are basic

limitations in the tracking of the lateral motions.
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CHAPTER 7

LINEAR QUADRATIC GAUSSIAN REGULATOR DESIGN

7.1 1Introduction

Having designed the linear quadratic regulator, the next step to the
final control system is the optimal estimation of the system states. As
all the states are not available for feedback, and as those which are
measurable are affected by measurement noise, a state estimator is necessary
and, in the general assumptions of the LQG methodology, this state estimator
is a Kalman filter. The overall control system is then composed of a Kalman
filter whose state estimates are multiplied by constant gains, determined
as in the LQ problem.

It has been previously indicated that the estimation problem can be
reasonably decoupled. The ship motion estimation problem has been addressed
in chapter 4, so that this chapter will concentrate on the aircraft motion

estimation problem, and on the overall system performance.

7.2 Navigation Systems

The accuracy of the navigation systems used aboard the ship and aboard
the aircraft will be a determining factor in the performance obtained in the
tracking of the ship motions.

Some previous studies [26], [27], have addressed the navigation problem
of VIOL landings on destroyers. An inertial measurement unit aboard the

ship provides measurements of the ship motions that are data-linked to the
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aircraft (in our configuration, the full ship state, estimated by the
ship Kalman filter described in chapter 4, is data-linked to the aircraft).
Aboard the aircraft, the combined use of an inertial measurement unit,
microwave (scanning beam) landing system, and distance measuring equipment
(MLS/DME), leads to estimates of the aircraft position and attitude. The
aircraft navigation system considered in (26), [27] is a low to medium
quality navigation system, so that even if the whole aircraft state is
available for measurement, some improvement can be gained by an aircraft
Kalman filter that estimates the aircraft total state using the model for
the aircraft dynamics and control effectiveness. This is the subject of
section 7.3,

However, it should be noted that with the use of a good quality
aircraft inertial measurement unit, much better estimation accuracy can
be achieved. The appropriate Kalman filter formulation in this case uses
an error state formulation, where the state variables are the very low
frequency errors in the indicated position , velocity, and attitude of the
inrertial system. The radio neasurements (MLS/DME) are used to estimate
these low frequency errors. The precise structure of such a navigation
gystem is not studied in this thesis, which concentrates on the control
aspects of the VIOL landing problem. If the accuracy and response time of
the navigation system is such that the aircraft navigation errors and the
time lags are negqligible, an aircraft Kalman filter, using the known
dynamics of the aircraft, is not necessary, and the control loop around

the aircraft is equivalent to the LQ control joop. The robustness of the

-150~



control system is then the same as the robusitness of the LQ systim (cf
chapter 8), and 1 he degradation in performance, as compared to the LQ
controller performance indicated in chapter 6, is due to the ship Kalman
filter, and the estimation of the ship states that are not available for
measurement. The reduction in performance is small, however, as will be

indicated in section 7.4,

7.3 Aircraft Kalman FPilter

‘ First, we assume that the aircraft controller has available noisy

absolute position and attitude measurements that are used as input of

the aircraft Kalman filter. The measurement (output) matrix is then:

i1 0 o 0 0 o
C, = 01 o 0 0 o {(7.1)

0 01 0 0 O

From data available in [26] and [27) , the intensity matrix of the measure-

ments noise is selected to be:

0. 286 0 0 1
o = 0 (7.2)

0 0.001
0 0 O~'1-J

With this choice of measurement noise, and with the driving noise
resulting from the wind turbulence model, the Kalman filter poles are

located at: =-0.5743 * j 0.5593, -1.317 * j 1.104 and -1.107 £ j 1.318.
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If measurements of the angulax zities, as well as
angles and displacements, are availal. .. navigation system, a
Kalman filter can be designed, assuming the measurement of all the 6

states. The measurement matrix is then the identity matrix:
CA = I (7.3)

The measurement noise intensity matrix is selected, using the same

references as before, and is equal to:

B A

0.286 0 0 0 0 0
0 0.001 0 0 0 0
0] 0 0,001 0 0 0

®A = (7.4)

0 0 0 0.286 0 0
0 0 0 ] 0. 00024 0
0 0 0 0 0 0.00024

In this case, the closed-loop poles turn out to be at: ~0.4981,
-0.5662 * j 0.5804, -0.91, -3.92, -4.819,
The first design is referred in the next sections as the 3 measurements
case, and the second as the 6 measurements case. g
Note that in the situation when the 6 measuremehts are available,
we are very close to the full state feedback. The role of the Kalman
filter is not to reconstruct the unavailable states, as it was the case for
the ship Kalman filter for example. In this case, its role is to provide

optimal estimates of the states from noisy measurements, using the known
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dynamics of the aircraft: it is actually nothing else than a filter.
In the closed-loop system, its role is to filter the noise and so, it
decreases the bandwidth of the system. The consequence is, theoretically

{(i.e. in the assumption of white measurement noise), an increased perfor-

mance compared to the full (noisy) state feedback, at the expenses however

of robustness, as will ue seen in the next chapter.

7.4 LQG Controller Performance

The evaluation of the controller performance ¢an be done as for the
LQ controller in chapter 6, by computing the rms values of the tracking
errors and of the controls.

To determine the rms values of the states (ship, aircraft, and

Kalman filter states), we write the overall system equations:

X X &
= A', + (7.5)
% % HO
where:
A -BG
A' = (7'6)

HC A-BG-HC

The uverall state covariance matrix is obtained by solving the Lyapunov

egquation:

A'Te + PA' + E' = 0 (7.7)
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with:

= 0
Bt o= (7.8)
0 H@HT
and:
Bxx')  E(R)
P = (7.9)

ERx)  E@RR)

The rms values of the tracking errors and controls are the square roots

of the diagonal elements of:

E(Eﬂ—s!:—s) = Vs B ixx’) W:-s (7.10)
and:

E(Eg?) =T G E<3g?) ¢’ Tg (7.11)
respectively.

Tables 7.1 and 7.2 show the results obtained for the rms tracking
errors and controls. In the case when the aircraft navigation system is
of quality such that the navigation errors are negligible, the aircraft
total state Kalman filter is not necessary. The ship Kalman filter is
still required as a state reconstructor. The degradation in the tracking
errors {(compared with the unrealizable full ship and aircraft state

feedback case) is then very small, while the ¥rms controls required are
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SEA H=12ft wm=0.4807rad/s

Rms Tracking Errors Sway Roll | Yaw 50112 6Tl,2 6
and Controls (ft) (deg) | (deg) (deg) () (deg)
W 1) 0.801f 6.410 | 0.329| 9.72!16.70| 9.37
ﬁQG (2) 0.913] ©.432 | 0.341 | 9.71]116.73 | 9.36
LOG (3) 2.3121 7.249 | 2.547 | 11.39 | 23.61 |10.42
LOG (4) 1.401} 6.567 | 1.499 110.10 18,13 | 9.6l

(1),(2),(3), and (4) see below

Table 7.1: LG Controller Performance (decaying sea)

SEA H=10ft mm=0.72rad/s
Rms Tracking Errors Sway | Roll Yaw 601,2 6T1,2 GaB
and Controls (ft) (deg) | (deg) | (degq) (%) (deg)
Lo (1). 0.691| 2.480 | 0.317 | 4.72| 8.78| 3.92
LQG (2) 0.812] 2.529 1 0.328 4.70 8.76 3.89
LG (3) 2.2741 4.193 | 2.545 7.601 18.82 6.01
_;bG (4) 1,338 2.856 | 1.496 5.45] 11.19 4.47

(1) : LQ Controllexr, with wind disturbances

{2) : LQG Controller, with only the ship Kalman filter
(3) : LRG Controller, 3 measurements case

(4) : LQG Controller, 6 measurements case

Table 7.Z: LQUG Controller Performance (fully developed sea)
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sometimes smaller, due to the decrease in bandwidth caused by the ship
Kalman filter.

When the aircraft navigation system is of lower quality, and an
aircraft total state Kalman filter is used, along with the ship Kalman
filter, the degradation in performance is more serious, but still

reasonable in the 6 measurements case.

7.5 Summary

In this chapter, we considered the optimal estimation of the aircraft
states from noisy measurements. Two cases were considered: the first
corresponded to measurements of position and attitude only, the second to
measurements of position, attitude, and their derivatives (full state
measurement). The second case is considered the nominal one.

The degradation in performance due to the estimation of the ship
states and of the aircraft states from noisy measurements was indicated.
It was shown to ke very small if only the ship states had to be estimated,
and reasonable ih the case of the noisy measurement of the full aircraft

state vector.
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CHAPTER 8

ROBUSTNESS ANALYSIS

8.1 Introduction

The robustness of a feedback system to modelling errors (parameter
uncertainty, unmodeliled dynamics, neglected couplings ...) is certainly
as important as the stability of the nominal closed-loop system. It is
fundamental for aerospace applications in which, very often, the nominal
open-loop system is unstable. While the open-loop system is an optimally
robust system when it is stable, the existence of an optimally robust
closed-loop system can be conceived in the case when the open-loop
system is unstable.

Although the issues of robustness are well understood, and easily
expressed for single-input single-output systems, they are much more
complex for multiple-input multiple-output systems. Much research has
been done recently in this area, showing mainly the usefulness of
singular values to quantify robustness properties of multiple-input
multiple-output feedback :ystems. In this thesis, we will mainly refer

to the results found in [23], [24]), [28].

8.2 Robustness Measures

8.2.1 Single-Input Single-Output (SISO) Case

The stability of SISO feedback systems can be determined by the use

of the Nyquist diagram. The Nyquist contour D_ is defined as two segments

R
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of the positive and negative imaginary axis, connected by a half circle
whose radius R is, to the limit, taken to be infinite, so that the whole
right half plane is then included in the contour. The Nyquist ccutour
transformed by the complex function g(s) (the open-laop transfer function)
is then plotted in the complex plane. The closed-loop system is guaranteed
to be stable if the number of counterclockwise encirclements of the (-1,0)
point is equal to the number of open-loop unstable poles.

Robustness is easily measured by the distance from the transformed
contour to th: (-1,0) point. It isusually expressed in gain and phase
margins. They indicate what minimal multiplicative perturbation (constant
gain or phase shift) would make the Nyquist diagram pass through the
(~1,0) point. This would be at the limit to change the number of encircle~

ments, and, consequently, the stability of the closed-loop system.

G oo e v — S —

The stability of MIMO feedback systems can be determined in a very
similar manner by a Nyguist diagram. The transfer function to be plotted
on the Nyquist diagram is now (-1 + det (I+G(s))) where G(s) is the open-
loop transfer matrix. The same criterion can then be used.

We note immediately however that det(I + kG(s)) is different from
1+kdet(G(s)). This indicates already that no stability margins can be
found from the MIMO Nyquist diagram, as in the SISO case.

Very often, separate loop-by-loop stability margins, similar to the

ones used in SISO systems, are considered indicative of the overall system
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robustness. They are however clearly insufficient. Perturbations are not
likely to occur separately, and simultaneous perturbations in different
channels may be much more dangerous for the stability than separate
perturbations. The importance of possible cross-channel disturbances has
also to be evaluated, and is not reflected by a single loop-by-loop
robustness analysis. Consequently, going back to the SISO case, with

a single loop-by-loop analysis is not a satisfactory way to study the
robustness of MIMO feedback systems.

Unfortunately, the distance from the (-1,0) point to the Nyquist
contour transformed by (-l+det(I+G(s))) - which is the same as the
distance from det (I+G(s)) to 0 - is not a reliable measure of robustness.
In fact, numerical analysts have long recognized that the specific value
of the determinant of a matrix is a poor measure of the nearness of this
matrix to singularity (or rank deficiency). In other words, det(I+G(s))
can be large, although a small additive perturbation E can make

det {I+G(s)+E) equal to zero.

These shortcomings can be avoided by the use of singular values. The
singular vali2s of a complex matrix A are defined as the square roots of
the eigenvalues of the matrix AH A (AH is the complex conjugate transpose

of A), i.e.:

N H
o, () = Ai (A"A) (8.1)

-159~




The maximum singular valuns of a matrix A is indicative of its "size",

as it is equal to the spectral norm of the m txix A:

llax Il,
Opax™ = 2 ll, = max ——= (8.2)
xo | x|,

wher=a:

x|l =7 Xx (8.3)

The miniaum singular value of a matrix A is indicative of ite nearness
to singularity. If omin=a, there exists a perturbation E such that omax(E)-u
and det (A+E)=0, Moreover, no matrix E such that omax(E)<a will make A+E
singular. The minimum singular value is fhen an indication of the minimal
"size" of the additive perturbation required to bring the matrix A to
singularity.

An advantage of the use of singular values is that it also allows to

compute the minimal perturbation E through the singular values rlecomposition

If U and V are matrices containing the unit eigenvectors of AAH and AHA

(known as left and right singular vectors of the matrix A), and if I is a
diagonal matrix containing the singular values of A, then A can be

decomposed as:

A=1UZ v“ (8.4)
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And the matrix E can be decomposed as:
Es= U. . V (8.5)

where P is any n-1 x n-1 matrix such that I Pg ||2 < 0, and where it is

assumsed that the singular values have been ordered so that o, = omin(k).

Without loss of generality, one can select PS-O, so that:
E= =g u vH (8.6
n-n-n +6)

The robustness of MIMO systems is defined by the size of the minimal
perturbation E that brings the closed-loop system at the limit of instabi-
lity. Then, the return difference matrix I+G(8) (where G(s) is the
perturbed open-loop transfer matrix) is singular for some s on the
Nyguist contour.

Different structures of perturbation cdn be imagined, for example, an

additive perturbation:
=G+ E (8.7)
or a multiplicative perturbation:

8 =G (1+E) = G.L (8.8)
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In the first case, the closed-loop system stability is guaranteed if:

omin(I+G(s)) > omax(E) (8.9)

In the second case, if:

-1
"min(“G (s)) > Gmx(m) (8.10)

Other structure of errors have been analyzed in (23] and showed the use

of ((I+G)(I-G)-l) for some type of perturbations,

g,
min
As in the SISO case, the transfer matrices go to zero as s+® , 80

that the only important of the Nyquist contour is the imaginary axis,

and s can be replaced by jw in the previous formulas.

—— e e e e v e e s e i —

Guaranteed gain and phase margins can also be obtained from the
minimum singular values. Although only diagonal perturbations are
considered here, they are not limited to the case when only one channel
is perturbed at a time, At the contrary, simultaneous gain or phase
changes in all channels together are considered. The results presented
here can be found in [23). The gain and phase margins obtained are
guaranteed (or conservative) margins., In other words, the gains (or phases)
in all channels can be changed simultaneously within the limits indicated
by the gain (phase) margins without causing instability, but it is not
necessarily possible to find some perturbation of this amplitude that
will cause instability (at the contrary of the previous case where a

general type of perturbation was considered).
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For the different type of errors considered in [23], the guaranteed

gain and phase margins are:

1

1 .
omin(uc) >0 + GM D(T:-a- ' m) (8,11)
PM o (-28int %— , 28int %‘-) (8.12)

-1
omn(xm )>a + GM D (1-0 , 1+a) (8.13)
PM 5 (-28int ‘-;— , 28in> %‘-) (8.14)
-1 10 1l4a ,
Opin ((I¥G)(I-G) 7) > a+6M 2 (1= v 15) (8.15)
-1 -1

PM o (=2tan"a , 2tan"d) (8.16)

8.3 VTOL Control System Robustness

8.3.1 Introduction

The robustness results summarized above are applied to the LQ and LQG
control system designs of chapter 6 and chapter 7. Note that the computa-
tion of singular values of transfer matrices can be done quite rapidly,

by the use of efficient algorithms [29], [30], [31l

For the LQ design, we have:

X = AX + Bu (8.17)

u = ~Gx (8.18)
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The open-loop transfer matrix is:
G(jw) = G (Jui-a)"! B (8.19)

We can also consider the transfer matrix:

b b

G'(jw) = R’ G(jw) R (8.20)

which is equivalent to consider a normalized transfer matrix (normalized
by the weights attributed to each control in the R matrix).

The Kalman inequality is:
(146* () (1467 (w)) > 1 (8.21)

This guarantees that:

Umin(I+G'(jw)) > 1 (8.22)
and then:

GH » (1/2, =) (8.23)

PM > (~60deg,60deq) (8.24)
As:

O . (I+G') 41 > @, (I+a' 7)) (8.25)

min — "min

This also implies that:

e
Omin(I'Q'G (jw)) _>_ 1/2 (8.26)
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For the LQOG design, we have:

X = Ax + Bu (8.27)
u = -Gk (8.28)
X = (A-BG)%k + H(y-Cx) (8.29)
y = Cx (8.30)
s0 that:
G(jw) = (0 G), A 0 -1 B (8.31)
jwr -~ .
HC A=-BG-HC 0

Again, to have some normalization of the transfer makrix, the matrix:

b b

G'(jw) = R? G(jwW) R~ (8.32)

can be used. In the LQG case, there is no inequality as (8.22), (8.26),

and, consequently, no guarantee on the robustness of the closed-loop

system.

In the next subsections, the minimum singular values of the loop
transfer matrices for the IQ and LQG designs are indicated. To provide
some normalization, the loop transfer matrices considered are those given
by (8.20),(8.32) (note that the parameter P has no influence in this

normalization).
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The minimum singular values of the LQ desi:m are shown in Figures
8.1, 8.2, and 8.3. It is easily checked that O, (I+G 1) >1/2 and
o ., (I+G) > 1.

min -

It is interesting to note that the minimum over W of the minimum
singular value (for any perturbation criterion) is smaller for p= 30
than for p= 0.3, In other words, the closed-loop system with higher
loop gains is more robust than the others. This is probably due to the

instability of the open-loop system,

8.3.3 LQG Minimum Singular Values

The minimum siagular values of the LQG design with 3 measurements
(aircraft position and attitude) are illustrated in Figures 8.4, 8.5,
and 8.6. Por the 6 measurements case {(motions and derivatives), the
values are shown in Figures 8.7, 8.8, and 8.9.

The first conclusion is that the robustness is seriously degraded
when only position measurements are available. The estimation of positions
and velocities from noisy measurements of positions only does not only
result in degraded performance, as indicated previously (tables 7.1 and
7.2), but also in reduced stability margins.

The robustness is improved when the 6 measurements are used in the

Kalman filter. However, the minimum singular values drop significantly

for very low frequency in the nominal case p=0.3.
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The singular value decomposition can be used to obtain the minimal
destabilizing perturbation, and get some insight about  what physical
effects are implied by this perturbation. The minimal destabilizing
perturbation, computed for p=0.3 and w=0, depends on the error criterion
selaected, but it turns out that the different results are very similar.

The minimal multiplicative perturbation, indicated by omin(I+G-l), is:

0.889 0.063 =-0.065
L o= 0.0785 0. 955 0. 046 {8.33)

0.133 -0.076 1.079

This can be interpreted in many different ways. For example, we can
assume that this perturbation is due to modelling errors in the B matrix
(force generation part, or control effectiveness). This would mean a

change from Bc to EC=BCL. The nominal Bc was given in Table 5.1:

0 0 o ]
0 0 0
0 0 0
B = (8.34)
¢ -21.211 0  -10.989
2.976 4.595  1.265
2.864 0.194 -2.685
L .
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The matrix Ec is then:

r an
0 0 0
0 0 0
. 0 0 0
B, = (8.35;
-20.334 -0.290 ~10.468
3.438 4.443 1.536
2.217 0.410 -3.071
{,r -
which, for the la#st three rows, is a change of:
-4% ® -5%
c,i3 " Be, iy
( - 5 L ) = 16% -3%  21% (8.36)
c,ij
-23% 111%  14%

We see that the "destabilization" requiregimportant changes in terms that
were quitesmall originally, and could be called parasitic. For example, the
second term of the last row is increased by about 100%. We remember that
this term expresses the yaw acceleration produced by a roll command, and
that this is due, originally, to the angular difference between the body
axes and the principal axes.

At this point, the designer will decide, on the basis of the knowledge
of the accuracy of the model, whether such perturbation (or error in the
model) is physically possible or nct. This is a delicate task that requires
a good knowledge of the system and of the precision to which the model is

known. In our case, no data could be found in [1l], and in the original
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model (19] about the precision of the model, so that this question could
not be answered with certitude. However, small singular values over some
frequency range are indicative of decreased stability margins of the closed-
loop system, and the best solution is, if possible, to change this charac-

teristic: it is the subject of the next section.

8.4 Robustnegs Recovery

The robustness recovery for LQG designs refers to ‘he recovery of the
1Y transfer matrix - and consequently stability margins - from the LQG
design. The robustness recovery technique was proposed in (28], following
a procedure very similar to the one proposed in([32].

The idea is simply to modify the Kalman filter in order to approach
the LQ design. The filter ig redesigned with a new value of the driving

noise spectral intensity matrix:
E =5 +qBB (8.37)

This corresponds to assume that some white noise is present at the input,
and, copsequently, tells to the mathematical expression of the problem
that there are uncertainties at this point. It can be shown[ 28] that, as
g+, the LQ loop transfer matrix is asymptotically approached by the LQG
loop transfer matrix,

The robustification procedure is applied to the LQG design described
in chapter 8 (6 measurements case), und is illustrated in Figures 8.10,

8.11, and 8.12, For g~0.0l, the robustness properties are seriously
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improved, and for q=1 the LQ singular values are almost recovered.,

The minimal values of the minimum singular values over the whole range
of frequencies, and the gain and phase margins obtained trom equations (8.11)
to (8.16) are shown in Table 8,1. As these marging are guaranteed, or
conservative, the overall guaranteed margins are the union of the margins
corresponding to the different criterions, and are underligned in Table B.1.
For gq=0.01, the guaranteed gain margin is about from 0.4 to 3, and the
guaranteed phase margin about t40deg. These appear sufficient for our
application.

The robustness recovery is however made at the expense of the perform-
ance. In fact, the bandwidth of the Kalman filter increases quickly as q
increases. Table 8.2 indicates the location of the Kalman filter poles for

different values of (.

q Aircraft Kalman filter poles

0 -4.82, -3.92, -0.91, =0.57 ¢ 3 0.58, - =0.5
0.01 -10.81, -5.37, =2.23, -1l.12, -0.60, -0.49
1 -97. , -43. , =7.49, -1l. , -0.5 , -0.49
1090 -989, , -429. , -69. , =-l. , -0.49, -0.49

Table 8.2: Aircraft Kalman Filter Poles (with robustification)
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The size of the loop transfer matrix G is represented by its maximal
singular value, so that the bandwidth of the contra., system can be defined
by the crossover frequency of the transfer function Gmax(G(jw)). The
evolution of this transfer function with the parameter g is shown in
Figure 8.13., The increase in bandwidth resulting from the robustification
procedure can be directly observed from this figure.

The increase in bandwidth may result in improved or degraded tracking
performance, but almost certainly in increased control authority, as more
noise is passcd through the filter, Table 8.3 illustrates the changes in

the rms tracking errors and control authority for different values of qg.

SEA H=10ft wm=0.72 rad/s
Rms Errors and Sway | Roll Yaw 5&1'2 .6T1'2 6a3
Controls (ft) (deg) | (deg) | (deq) (%) (deg)
LQ w.A/C noise 0.691 | 2.480} 0.317) 4.71¢9 8.781 3.917
LOG  q=0 1.338 }2.856] 1.491| 5.448 | 11.19] 4.467
q=0.01 1.350 | 2.869| 1.482| 5.456 11.83} 4.653
g=1 1.239 |2.851 1;445 6.394 18.70| 5.825

Table 8.3: LQG Controller Performance (6 meas., with robustification)
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For q=0.01, the decrease in performance is very small, while for g=l

it becomes significant. The design corresponding to g=0,0l1 appears to be
a very satisfactory one, both for th: performance and the robustness.
Note however that in this performance evaluation, white measurement noise
has been assumed. In reality, the noise will be bandlimited, and the
degradation will probably be less than indicated. In fact,as all the
states are available (but noisy), an LQ controller, without Kalman filter
(usiny the known dynamics of the aircraft), is not an unrealistic possi-
bility: its performance would be less than the performance of an LQG
design, but the robustness would be increased, and the computational

load would be dramatically reduced (this would be the case if a good

navigation system is available aboard the aircraft, cf. chapter 7).

8.5 Nyquist Diagrams

Some Nyquist diagrams will illustrate the facts indicated at the
beginning of this chapter. Figure 8.14 shows the function -l+det (I+G(jWw)),
wW>0. To plot it, it is convenient to compress the distances radially by

a logarithmic transformation which is chosen to be:

lqg(l+¢vx!fy )

(8.38)

v xz+y2
X' = x.r (8.39)
y' =y.r (8.40)
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For MIMO systems, such compression of the distances is almost
unavoidable, as the transfer function det(I+G(s)) is of an order equal
to the order of the system (equal to 6 here).

Figure 8.15 shows the complete contour, and the number of encircle-
ments for the LQ design. There are 3 counterclockwise encirclements, and
1 clockwise encirclement. Remembering that there are two unstable open-
loop poles, this confirms the closed-loop stability of the LQ controller.
As in the SISO case, some attention has to be given to the two poles at the
origin, and to the encirclement at the infinity.

Figure 8.16 shows (in normal cartesian coordinates) the Nyguist
diagrams for the LQ and LQG design (6 meas.,g=0) near the critical point.
It is checked that the Nyquist diagram for the LD design never enters the
unit circle centered at -1. This is a consequence of the Kalman inequality
(8.21) [33].

The minimum singular values shown in the previous subsection indicate
the size of the minimal perturbation that destabilizes the closed-loop
system. It is also possible to compute the value of the multiplicative
(or additive) perturbation L, such that ihe perturbed transfer matrix G.L
is at the limit of instability. In terms of Nyquist diagrams, the minimal
perturbation L is the perturbation that,at the specific frequency W where
it is computed, brings the point of the Nyquist diaqram -l+det (I4G(jw))
to the -1 point (then det (I+G(jw))=0 ). At any frequency, the minimum
singular value indicates the size of the minimal perturbation that will

make the Nyquist diagram pass through the -1 point, and bring the system
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at the limit of instability. Over the whole range of frequencies, the
minimal value of the minimum singular value gives, from all the minimal
perturbations found at each freguency, the constant perturbation chat has
the minimal size, The meaning of the previous digcussion, is that the
frequency at which this overall minimum occurs may correspond to a point
located very far from the -1 point on the Nyquist diagram., This is
illustrated in Figures 8.17 and 8,18.

Fig., 8.17 show the Nyquist diagram of the loop transfer matrix G
corresponding to the robustified (g=0.0l1) LQG (curve LQG) together with
the diagram of the loop transfer matrix G.L (curve perturbed LQG). The
perturbation L is the minimal multiplicative perturbation that corresponds
to Fig.8..7. It is computed at the frequency where the minimum singular
value in minimal, i.e, 1l.15rad/s. The distortion of the Nyquist diagram
is quite peculiar. The point that is brought to the -1 point is not at
all the closest point of the Nyquist diagram, although it is the closest
point on the basis of minimal multiplicative perturbation. This is a
practical proof of the fact that the distance to the -1 point in the
Nyquist diagram is not representative of the closeness to instability,
with respect to general type of perturbations.

The situation is even more surprising for the non-robustified LQG
design (g=0). In this case, the minimum singular value goes to its ninimum
at w=0 (cf. Fig.8.7). At this frequency, due to the presence of the two
poles at the origin, the determinant of I+G(jw) is infinite. This means

that the closest point (closest in the sense of minimal norm additive or
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multiplicative perturbation of G(jw)) from the Nyquist diagram to the -1

point is the point at infinity! This is illustrated in Fig.8,18. As this
vase i3 numerically perfectly ill-conditioned, the minimal multiplicative
perturbation is computed at w=0.1 rad/s, where the minimum singular value

is very close to the minimum value reached at w=0Orad/s.

8.6 Summary

In this chapter, we addraessed the important issues of the control
system robustness to modelling errors and parameter uncertainty. Due to the
decoupling between the ship and the aircraft, this problem only involved
the aircraft model and the feedback from the aircraft states.

The importance of the singular values analysis in the definition of
multivariable robustness measures was first introduced, and ¢nme recent
results concerning the stability margins of multivariable systems were
sumnarized.

The singular values analysis was used for the different transfer
matrices of ihterest, and for different designs considered previously.
For the nominal design, it was shown that reduced stability margins were
obtained at very low frequency, and some physical interpretations were
indicaced for the minimal multiplicative destabilizing exror given by the
singular value decomposition. A robustification procedure was used, and
appeared successful in retrieving the favcyable robustness properties

of the LQ design, with a limited degradation in performance.

£
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Finally, some Nyquist diagrams illustrated the theoretical results
mentioned previously, especially the impossibility of defining stability
margins from the Nyquist diagram in the MIMO case, in contradistinction

to the SISO case.,
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CHAPTER 9

CONCLUSIONS

9.1 General Conclusions

Two major aspects of the problem of landing VIOL aircrafts on small
ships were addressed in this thesis. The first is the estimation and
prediction of ship motions, mostly for applications in piloted landings,
and the second is the design and evaluation of an automatic controller,
for use in fully or partially automatic landing schemes.

An accurate ship model was first der red, using hydrodynamic data
for the DD963 destroyer. It was shown that the ship motions have power
spectra that are concentrated in a narrow frequency band, especially the
roll motion. Consequently, good prediction time could be obtained, and
the roll motion could be predicted for as far as 5 to 10 seconds ahead.
This was a significant result, as the roll motion turns out to be the
most important lateral motion in the VIOL landing problem. In particular,
the lateral translation of the landing pad is due to a large extent to
the roll motion, as the location of the landing pad is significantly
higher than the ship center of rotation.

The sea modal frequency is a significant parameter of the ship medel,
and its large influence on the estimation and prediction errors justifies
a precise estimation of this parameter in a real-time application.

The aircraft model was briefly described, and the important couplings

amongst the motions were mentioned. Two of them appeared significant, and
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contradictory: the first is the lateral acceleration due to a roll angle
of the aircraft, and the second is %he roll moment due to a lateral
deflection of the thrusts.

The design of an automatic controller, defined as a tracker of the
ship motions, made clear some other of the constraints related to the
tracking of the ship motions. The relations between the lateral transla-
tion of the ship landing pad induced by the roll motion at the center of
rotation, and the roll motion itself, appeared to be contradictory with
the two important couplings of these motions in the aircraft itself.

These constraints are specific to the landing problem, and are independent
of the control system design methodology. Although the roll motion may
often be neglected, its possibly large amplitude in high sea states makes
imperative to take these limitations into account in an engineering design.

The design c¢f the automatic controller also illustrated some results
and recent advances in the design of an optimal controller, using the LQG
methodology. The relations between the choice of the state and contrul
welghting matrices in the quadratic cost, and the resulting root-loci were
explained, and justified the careful selection of these matrices.

The usefulness of the singular values analysis in the definition of
realistic stability margins was indicated, and some Nyquist diagrams
illustrated related theoretical results, and the important differences
between the MIMO and the SISO case.

The robustification procedure appeared to be very successful in the

design of robust LQG control systems, and led to increased stability
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margins, with moderate degradation in the performance.

9.2 Suggestions for Future Research

Among the possible topics for future research, we note:

- the evaluation of the performance and of the stability margins of
an automatic controller including the longitudinal and the lateral motions,
and the study of the influence of the cross-coupling terms (gyroscopic
tems)

~ the inclusion of the aerodynamic effects in the aircraft model,
and of the ship airwake turbulence and ground effects; the aerodynamic
effects being nonlinear, some nonlinear theories may then be useful

- although this research concentrated on the landing problem, some
interesting results may be obtained from the design of a control system
for the transition flight, and from the use of modern control theories

for this time-varying problem.
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APPENDIX A

SHIP MODEL COMPLEMENTS

A.l 8Ship Model Values

A.l.1 Sea

J = 0,707
U
a = p Wy cosd

1.9339

B(a) = 3754

H?
S = 0.3125 — B(d)
e} wm

S
(o) 0.8409

A.l.2 Force Dynamics

U=0, ¢=90 degrees:

Fs,o = 310 Js,o = 0,72 ms,o = 0.6

F = 2120 J = 0,7 w = 0,76

xr,o r,0 '

F = 11300 J = 0.35 W = (0,96

Y0 Y,0 Y.0

Any U, ¢:

an i = i ( = 2 g— i

Fs Fs,o sing, Js J , sing, W ( ws,o + ws,o g cos$ ) sin¢
P = = 12 -

Fo=F g sing, J_ Iro sing, w_ = ( W o ¥ O o cos¢ ) sing

U
F i J =7 i W = W + w? =~ cosd sin
v - Fy,o sind, y y,0 sing, y ( v,0 V.0 3 os$ ) ¢
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A.3.1 Ship Dynamics

U=0, $=90 degrecs:

~ -
215 988 -230
M s 988 104000 0
-230 0 3.76 10°
T 223 -759 14600 |
L ~759 22900 182000
’
| 14600 182000 4.18 10°
[ 10.6 -55.4 423
By o = -55,.4  BBTXRDF 6270
’
423 6270 144000
I 0 0
¢, = 0 28800 0
| v 0 0

RDP=3 (the roll damping factor takes the nonlinear damping into

account:)
Any U, ¢:
™ B
0 © Bh o
U M1,1
h h,0 w? h,o ,
-B -B U.A
i h,ol'1 h'°1,2 h,ol,1
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r 0 0
Bh = h,o + U. 0 0
A A
hooy y hoy
L
where:
- U co.Q
mp 0.425 + 17827

A.2 Ship Dynamics: State-Space Model

We have the equation of motion:

(M+hh)§h +

where:

We call:

R = (M+Ah)-1 = {r, .}

C e -
B]x ChX ¥

rsway

roll |

yaw

sway force

roll moment.

yaw moment
L.

1]
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-1
P o= (MHA, ) B = {pij}
. -1
Q = (M+Ah) ¢, = R.C

h h

Roll i3 the only motion having a spring constant so that:

0 0 0
Ch = 0 Crr 0
0 0 0
and:
-
0 rl2cxx 0
L=10 r22Crr 0

0 r. .C 0
B 32 rs J
o

Using Laplace transforms, we write:

s’y = -Psx - Ox + RE

(9] A

s{x,) = (sx))

s(x2) = (sxz)

s(x3) = (sx3)

slsx)) = -py)(s%)) = p),(sx)) -1 ,CrplXy) = Pyalsxy) + 1y Fy
+r, F, 41, F, (A1)
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B(8K,)) = - Doy (8X)) = pyy(sxy) =r,C o (x)) - p,,(8x,)

+

rlel + r22F2 + 123F3 (A.2)

B(8Xy) = = Pyy (8X)) = Py, (sx,) =1y C L (X,) v Pyglexy)

.
2

+ rJIFl + r32F2 + r33F3 (A.3)

which is equivalent to a state-space representation having 6 states.
There is an implicit pole-zero cancellation at tiix origin, between the
the poles of the sway and the yaw motions and the zeroes of the corres-
ponding force and moment.

To avoid this, we rewrite eq. (A.2):

2 1 Poy Poy Pas
Ir E?'“ T r x2 “r . xl Ty 2 ¥ Xq
22 22 22 22
¥, F. i r,., ¥
*TL?.}' +.£~+;—‘3§~‘—5— (A.4)
22 22

and use (A.4) with (A.l) to obtain:

s(xl) =t (%)) #+ clz(-xz)+ tl3( x,) + t14(x3)

F Fy
+ ull(;;ﬁ + uls(:;ﬂ (Ar.5)

where:

12
22

12
12 r22
12

= P - P
13 Ty 22 12

11 - Py = Pny

K KN
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Similarly,

s(x3)

where:

41

t o

42

t =

43

22
I ¥ I
11 t22 il
r
12
r - e—
13 r22 23

{(A.4)and (A.3) give:

p ) )
=ty (X)) * b exy) Ehglxy) ¥ g (xg)

F

1 r
Uy (5 ug

t,, ===

44

u =

41

u =

45

Y

f31 ~ 2‘3"2" o
22 <
X,

Tiz ~ _;3_9_ ¥23
22

Arnd, of course:

S(xz) " <sx2)
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Finally, (A.4), (A.5), (A.6), and (A.2) lead to:

F

s(sxz) = t21‘“1) + t22 (sxz) + tza(xz) + t24(x3) + “21(7})
F3
Uy, (F)) 4, (B)) 4 uy () + g (Fy) (A.8)
where:
taa ® " Pat T Pty
L22 T Pty T Paatyr T P2
t23 ™ " Py %13 7 Paatys T Foolyx
24 = " Patia T Paaty
Y1 T T PaY T Pa3ta
Y20 % a1
Yag T Y22
. =

25 = T Pyyy5 T PoaVyg

Y T T

Equations (A.4), (A.5), (A.6), (A.7), and (A.B) constitute the new state-

space representation, with only 4 states:
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Xy X, Fl/s
sx2 sx2 F1
s = T . + U . F2
*) X2 F./s
F
*3 "3 L2
and:
T o= &ij}
U= Lt
{“;.3

are given above,

The pole-zero cancellations are eliminated by the introduction of
the integrals of the sway force and yaw moment, which, instead of being
computed (implicitely) in the ship dynamics model, can directly be obtained
*drift-free" from the transfer functions between the sea height and the

generated forces.
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APPENDIX B

DISCRETIZATION PROBLEMS

A simple derivation is presented here that explains some difficulties

that can be encountered in discretizing systems containing lightly damped

second-ordar modes.

Assuming the system:
k=hx

having a second-order mode AA) = -0 ¢ jw. The exact discretization

system is:
x(t+At) = Ad x(t)

whero:

It would lead to the equivalent mode in the z-plane:
-~ AW) At
A(Ad) B e( Ju)

If we use an approxinmate representation:

x(t+At) = (I+Adt)x(t)
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the modes will, instead, be at:

MIH+AAL) = (1-0At) * jwAt

Let us consider consider a system A', having modes at -at jb in the
continuous time domain which, discretized, would have the same modes as
I+AAL.

The following equations can then be obtained:

=1, wAt

ey yw)

1-gAt

e-aAt erAt ejtan

=V (1-oAt) 2+ (wht) ?

and:

a=-2 1n v (1-0At)? +(wAt)?

At
1 -1, WAt
b= g tan "5

It is easily checked that for At vanishingly small, a approaches o, and
b approaches W so that the discretization is valid.
The question is to determine how small At actually has to be.

For b to approach w, we need:

wAt << 1 and oAt << 1

ox:

At << 1/w and At << 1/0

which is the expected condition that At must be small compared to the time
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constants ol the system,

The condition for a is a little different. We need:

v 1-200t+(0At) 2+ (wAt) % = / 1-20At' = 1-0At
so that the conditions are:

200t << 1 , (oAt)? << 20At , and (wAt)? << 20At

or:
At << 1/20
At << 2/w. (0/W)

The first condition is similar to the previcous one, while the second is
similar only if o/w is close to one. If 0/Ww is much less than one (lightly
damped mode), the required time step is much smaller than the one indicated
by the time constants of the system, If this is not taken into account, the
term (wAt)? will influence the 20At term, which is equivalent to reducing
the value of 0. This implies a reduced value of the real part, while the
imaginary part remains constant. In conclusion, the discretization of very
lightly damped second-order modes with approximate discretization may lead
to even less damped equivalent discrete modes, even if small time steps -

compared to the time constants of the system - are used.
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APPENDIX C

TURBULENCE MODEL

A wind disturbance model is available in {19) and is summarized here.
The mean wind component has been neqglected (only the turbulence is
considered), and the air turbulence considered does not include the ship
dirwake and the ground et focts.

The turbulence is modelled as the outputs of Dryden filters driven
by white noiscs of intensity 1. The outputs are additional turbulent

velocitdes of the alrcraft v (sway) ,

BN (roll), and r

(yaw) . The

Ppn BN

expressions given in [19)are:

L
ldv‘ 1 + t/? "i’/“!"' S
o, + o v - v

2 Y \" L BN

(|.+‘G\LS )2

4 Lv 4 L4 4b Pry
m
1 S
B o e - >
VBN v b YBN
I 4+ — s
m

where p2 and p, are white noises of intensity 1.
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In the condition considered in this thesis:
h=40ft (altitude of the stationkeeping point)
v=15.5€ft/s (~10kts)
VWINDW3Oft/s (=20kts)
And the parameters of the filters given in tlﬂ are:
L =600ft
v
Qv=Gft/s
b=44,43ft
o =3.058ft/s
w
L =69,1ft
w
To bring this wind turbulence model to a standard state-space formulation,
the outputs of the Dryden filters are first multiplied by s, and entered
in the acceleration equation of the aircraft model, instead of the velocity
equation. Next, the time constants of the shaping filters being large
compared to the time constants of interest, they are neglected, so that

the Dryden filters becowme simple gains:

mL .
3 RN .8 P ( l_wﬂ ) 1/6 ‘!LY-.. .3 ¢
Ry " % Y [Ty b ab PN
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And the driving noise spectral intensity for the aircraft model is then:

- -
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
OA==
0 0 0 2.79 0 -.0657
0 0 0 0 -. 00561 0
0 0 0 -. 0657 0 . 00155
b L
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APPENDIX D

e

IS, T Ve

GAIN MATRICES AND AIRCRAFT POLES

D.l1 Ship Gain Matrices

The matrices are given for the nominal case: H=10ft, W =0.72rad/s,
m

ot ] [+ / = "
U=15.5ft/s, ¢=45deg, p=0.3, T,=0, q=0.01 (6 meas. case)

§?£W§P~Fi}£e£ Gain Matrix Hs

cot 1 ] 3
ROW
1 ~4,6134D-01 1.4458D401 2,77020+400
2 +2,8914D0+00 -5,57740404 -8,36410+00
3 1,04080400 3,97390¢01 €,4446D+00
4 «3,B83380+00 -6,5996D+01 -9.19900+00
5 3.7748D400 6,59390+01 8.43110+00
6 -3.30590400 -5,02900+0¢t -6,23640+00
7 8, 11170401 3.2181D+403 5.31510+02
8 -1,3968D0+02 -1.74530+03 -2,39810+402
9 3.6723D4¢02 2.6746D+04 4,85040+03
10 -1,7817D+03 -2,8682D0+04 -4,30070403
11 -1.55940403 1.78220+405 4,08710+04
12 ~2,18620+404 -4,16170+05 -7.1668D+04
13 5,8324D0-01 6,4656D0+4¢00 7.91960-01
14 -1,04930-03 1.5716D-01 3,1149D0-02
19 1,2931D0-02 4.77970-01 4.73700-02
16 1,58390-03 4.73700-02 9.16890-03
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5,11660-06
2,07200-04

4.91620-06

1

-4,73370-06~7.57810-07

-1,49240-05 - 1,088490-06

-1,63190-07 4.8015D-08

~~~~~~~~~~~~~ S
coL 1 2 3 4
ROW
1 5.10870-04 -7.30470-04 1.65270-04 -2,7353D-04
2 1.7439D-03 -1,90280-03 6.0739)-04 -7,24010D-04
3 3,4578D0-0% -1.29%50-0% 1,3776D-0% -1.1610D-05
7 a 9 10
1,1108D0-04 4,77910-05 1, 1348D-06
3.00830-04 1,6679D-04 4,38430-06
1,04780-07 1.6906D-06 6.9925D-08
13 14 15 16
4.54870-02 -1,0492D+00 -6,39630-01 -5,4086D+00
9,2824D-02 -3.75420400 -4, 17850400 -9,9567D+00
-4,00120-03 -2,6243D-02 -1,4186D-03 9,B908D-01
D.2 Aircraft Gain Matrices
Kalman Filter Gain Matrix Hy
cot 1 2 3 4
ROW
1 9,115%1D0-01 1,8097D+4+00 -6,8603D-01 6.7683D-01
2 6,32760-03 3,33600-01 5,6023D-02 1,664%0-02
3 -2,39870-03 §,6023D-02 4,5755D0-01 -2,64430-03
4 6,7683D-01 4,7604D+00 -7,56270-01 2,67790+00
5 -3,84120-04 2,1455D-01 -2,B4690-03 2,08640D-03
6 -6,5700D-03 8,7886D-02 1.6437D-01 -4,84380-02
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-9,90030-0%
=2.77170-04

~6,17380-06

12

-2,49620-07
-8,00%90-07

5,34880-0¢

5 6
-4,57740-01 -7.82920+00
8.,93970-01 3.66190-0!
-1,1862D-02 6.84870-01
2.48630+400 -5,77220401
4,7116D400 7,42670-03
7,42670-03 {,8715D+00



Peedback _Gairn Masyiﬂ_ph

CoL 1 2 3 4 5 6
ROW ,
! 4,36130-02 -1,0417D-01f -3,3%510-01 3,77920-02 -8,18500-02 -1,38930D-01
2 8,78490-02 4.04690+400 -9,76770-02 {.04270-04 1,28900+400 -4,60820-02
3 -9,1154D-04 6.90760-02 ‘0.79310"0\ 1.3588D0-04 3,20020-03 4,50890-01

D.3 Aircraft Poles

Open-loop poles: A(A,)

REAL PART IMAG PART NAT FREQ(HZ) ZETA FREQ(HZ)
1 -5,3240-01 0.0 8.473D-02 1.000000 0.0
2 1,425D-01 3,788D-01 6.4410-02 -0.352163 6.,0290-02
3 1.4250-01 -3,788D-01 6.4410-02 -0.382163 6.0290-02
4 -6.8200-02 0.0 1,0850-02 {.000000 0.0
5 0,0 0.0 0.0 0.0 0.0
© 0.0 0.0 0.0 0.0 0.0
"losed=-loo oles: A~
(Losed-loop poles: A(A,-B,G.)
REAL PART IMAG PART NAT FREQ(HZ) ZETA FREQ(HZ)
{ -2,7920400 2,803D+00 6.296D-01 0.705716 4,4600-01
2 -2,792D+400 -2,8030400 6.2960-01 0,708716 4,4600-01
3 -1,8690+00 1,8630+00 4,2000-01 0,708310 2,965D-01
P -1,869D+00 -1,863D+00 4,2000-01 0,708310 2.9680-01
5 -1,0640+00 1,0360+00 2,363D-01 0,716447 1,649D0-01
6 - 1,064D+00 -1.036D+00 2.363D-01 0.716447 1,649D-01
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Kalman Filter poles A (A, -
Kalman Filtexr poles A(R -H.C.)
REAL PART IMAG PART NAT FREQ(MZ) 2E1A FREG(HZ)

1 - 1.,081D+01 0.0 1.7200400 1,000000 0.0

2 -5,368D+0( 0.0 8,544D-01 1, 000000 0.0

3 -2.231D400 0.0 3,580D-01 1, 000000 0.0

4 -1,118D400 0.0 1.780D-014 1, 000000 0.0

8 ~6.,0100-01 0.0 9.5660~02 1.000000 0.0

6 -4,920D-01 0.0 7.%300-02 1, 000000 0.0

Cempensator poles AA_ ~B_ G, ~H C
Cempensatox poles  A(Ay=BpGp-HyCp)
REAL PART IMAG PART NAT FREQ(HZ) 2ETA FREOQ(H?)
1 ~1,679D4+01 0.0 2.6720400 1, 000000 0.0
2 -8,875D400 0.0 1,4130+00 1, 000000 0.0
3 -3, 7440400 0.0 5,9590-01 1, 000000 0.0
4 -1, 1650400 0.0 1,854D-01 1, 000000 0.0
5 -6,061D-01 0.0 9.6460-02 1,000000 0.0
6 -5,7070-01 0,0 9,0830-02 1, 000000 0.0

the compensator is stable.
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