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I. INTRODUCTION 

During the last two decades, the use of polymers and fiber­

reinforced plastics (FRP) in industrial applications requiring strong 

but lightweight materials has become widespread. Aerospace manu­

facturers have made extensive use of composite materials. For years, 

Corvette automobile bodies have been stamped from a fiberglass­

reinforced molding compound. Other automotive companies have turned 

to polymers and composites for dashboards, front end grilles, truck 

cabs, and the like in an effort to reduce the weight and improve the 

fuel economy of their products. Sports enthusiasts have watched as 

FRP materials have become popular for golf clubs, tennis racquets, 

skis, and motorboats. Contact lenses have been fabricated from optical 

quality, oxygen-permeable polymers. Even beverage bottles constructed 

of polyethylene terephthalate have gained gradual consumer acceptance. 

Breakthroughs in the use of polymer-based materials have come 

as a result of years of research into their mechanical, thermal, optical 

and electrical properties. Constitutive theory, or the relationship 

between stress and strain, is central to the understanding of mechani­

cal properties and many aspects of material behavior, from design work 

and processing to failure analysis. Although constitutive and failure 

laws are well-developed for idealized materials (e.g., homogeneous, 

isotropic, linear elastic-plastic materials), and such relations are 

understood on a qualitative level for many non-ideal situations, it 

is at first surprising that a good constitutive law, including 

1 
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failure, is not yet available for viscoelastic materials. 

The purpose of the current investigation is to further the 

understanding of nonlinear viscoelastic constitutive theory by the 

application of specialized techniques to a particular polymer, poly­

carbonate. We are ultimately interested in the behavior of uni­

directional polymer matrix composites, such as graphite/epoxy, which 

exhibit matrix-dominated viscoelastic response to off-angle loads. 

Our approach is first to examine polycarbonate, a relatively simple, 

inexpensive, abundant, and easily machined polymer. In future investi­

gations, the results from this study can be carried over to work on 

other materials, such as neat epoxy resin and graphite/epoxy laminates. 

The current work applies the nonlinear viscoelastic theories of 

Findley and Schapery to creep and recovery data from polycarbonate at 

six temperatures and at six stress levels for each temperature. The 

behavior is characterized both for constant temperature with variable 

stress and constant stress with variable temperature. Theoretical 

implications of results are provided. In addition, we present an 

extension of the Schapery theory which accounts for the combined ef­

fects of temperature and stress. This combined theory can be modified 

to incorporate additional effects such as humidity and hydrostatic 

pressure. Finally, we discuss the potential of these methods of 

analysis for accelerated characterization, the prediction of long-term 

response from minimal short-term test data. 
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Previous Efforts 

An approach to constitutive theory for viscoelastic materials 

is the well-known Boltzmann superposition principle [lJ, which is 

discussed in detail in Chapter II. Unfortunately, the Boltzmann 

integral is applicable only to linear viscoelastic theory. In other 

words, this equation is valid only for limited values of stress and 

strain. For many viscoelastic materials, the linear range is only a 

small portion of the total stress/strain range the material is able to 

experience before yield or failure [2J. 

Yannas and Lunn [3J conducted a study of deviation from linear 

theory in the creep response of polycarbonate. At 23°C (73.4°F) they 

reported 3% deviation from the Boltzmann response prediction at 4000 to 

5000 psi true stress, depending on the length of test and environmental 

factors. Brinson [4J reported a linear elastic limit of about 4000 psi 

but suggested minimal creep and rate-dependent behavior below this 

limit. Further, linear viscoelasticity was shown to represent only 

partially the observations beyond this limit, thereby suggesting the 

need for a nonlinear viscoelastic model. Brinson [4J also reported 

yield strengths at the onset of Luder's band formation of roughly 9000 

psi depending on strain rate. Thus, it is apparent that for poly­

carbonate, linear viscoelastic theory is valid for only a portion of 

the stress regime prior to Luder's band formation. 

In 1943, Leaderman [5J brought viscoelastic constitutive theory 

a step forward through the observation of time-temperature inter­

dependence in polymers." Markovitz [6J reports that in 1945 Tobolsky 
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and Andrews were first to use Leaderman's time-temperature superposition 

principle (TTSP) to shift experimental data and to form what are now 

called master curves. More recently, developments in property inter­

dependence have included Urzhumtsev's time-stress superposition 

principle (TSSP) [7], and the application of graphical superposition 

principles to composite materials by Brinson et a1 [8], Yeow et a1 [9], 

Crossman et a1 [10], and Griffith et a1 [11], among others. 

An important breakthrough in nonlinear theory was the multiple 

integral form of stress-strain relations developed in the late 1950 ' s 

by Green and Riv1in [12] and Green, Riv1in, and Spencer [13]. 

Theoretically attractive, their representation was not restricted to 

a single material or class of materials but was later found impractical 

for strong nonlinearities [14,15]. This work led to Leaderman's 

proposal in 1963 of a modified superposition principle (MSP) [14], 

which in turn spawned other advances in the development of nonlinear 

viscoelastic constitutive theory. Some models were based on thermo­

dynamics, while others were based on classical plasticity. Many of 

these are summarized in a recent M.S. thesis of Milly [16]. 

The two relatively simple nonlinear theories which receive atten­

tion are those of Findley and Schapery. Find1ey ' s theory [17-20], 

although primarily a curve-fitting procedure, has been shown to be 

useful even for long-term creep predictions [19]. Schapery's theory, 

which was developed in the late 1960 ' s, has a firm foundation in thermo­

dynamics [21,22]. It provides for single-integral constitutive equa­

tions, applicable to any nonlinear viscoelastic material and similar 

in form to the Boltzmann integral.. The time-dependent properties used 
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for characterization are identlcal to those which exist in the linear 

range. Moreover, a recent study by Tougui [23J successfully applies 

the Schapery theory to optical data, so it appears that Schapery's work 

is quite general in its nature and far-reaching in its application. 

Both the Schapery and Findley theories are discussed in detail in 

Chapter II. 

Many other theories have been proposed. Valanis' endochronic 

theory [24,25J has gained popularity in the last few years. In addition, 

Krempl et al [26,27J have developed a plasticity-based theory. In 1980, 

Walker [28J introduced a nonlinear modification of the three-parameter 

solid. His model, however, was designed for the characterization of 

metals at high temperature. As a result, the solution of material 

constants occasionally required simplifying assumptions inappropriate to 

the modeling of polymeric or composite materials. Another plasticity­

based theory was proposed by Naghdi and Murch [29J. Their work was 

notable for the development of a time-dependent yield surface but also 

required uncoupling of viscoelastic and plastic strain components. 

Perhaps a combination of theories under consideration, some that define 

the initial stages of stress-strain behavior and others that account 

for time- and temperature-dependent yield behavior, provides an optimal 

nonlinear viscoelastic constitutive theory. 

Other proposals founded in classical plasticity include that of 

Cristescu [30J, which led in part to the modified Bingham model of 

Brinson [4J, and the proposals of Zienkiewicz and Cormeau [31J, and 

Allen and Haisler [32J. Although the theories mentioned and others not 

mentioned are being studied and modified continually, at this time no 
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one theory has been proven superior for its soundness, generality, 

accuracy, or predictive power. 

Research into the stress-strain behavior of po1ycarbonate has 

been aided by other studies. In addition to the aforementioned work 

of Brinson [4J, Tougui [23J, and Yannas and Lunn [3J, Bauwens-Crowet 

et a1 [33J collected extensive yield data on po1ycarbonate. Sauer et 

a1 [34J found hydrostatic pressure to have a significant effect on 

mechanical behavior. Mindel and Brown [35J looked at creep, recovery, 

and fatigue. Yannas et a1 supplemented [3] with two other papers [36, 

37]. As far back as 1955, Grossman and Kingston [38] examined mechanical 

conditioning. Finally, many studies of fracture behavior have been 

made, including those represented by the papers of Gerberich and 

Martin [39] and Kambour et a1 [40-44]. All such work has been relevant 

. to our efforts to characterize the mechanical behavior of po1ycarbonate. 



I I. BACKGROUND INFORMATION 

-
Material behavior which shows both elastic and viscous components 

is referred to as viscoelastic. The primary characteristics are that 

such materials possess a memory and have time-dependent mechanical 

properties. Polymer~ generally are viscoelastic, as are polymer-based 

composites when the response is controlled by the matrix rather than by 

the fibers [45J. 

In this chapter, we discuss three topics related to visco-

elasticity. First we review the concept of creep and recovery testing. 

Included is a treatment of constitutive modeling with mechanical ele­

ments. Second we look at the Boltzmann superposition principle and its 

application to the theory of linear viscoelasticity. Third we deal 

with nonlinear viscoelastic theory and discuss both the Findley and 

Schapery methods in detail. 

Creep and Recovery Testing 

One method to determine the characteristics of a viscoelastic 

material is the creep and creep recovery test. In this test, a specimen 

is subjected to a constant stress which is maintained throughout time, 

then removed. Mathematically, a general creep and recovery stress input 

may be expressed as 

(1) 

where 0kt is the stress tensor, the 0 superscript denotes a 

7 
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time-independent stress level, tl is the time at which stress is re­

moved, and H(t) is the Heaviside step function defined as 

{
a, when t < a 

H(t) = 
1, when t ~a 

(2) 

Note that the stress input of Equation 1 requires an instantaneously 

applied load, which is impossible to achieve experimentally without 

causing impact or dynamic responses. This fact creates considerable 

difficulty in the application of the Findley and Schapery theories. 

The creep response may be written as 

where Sijk£ are the creep compliances. In the special case of uniaxial 

tensile creep and recovery of an isotropic, homogeneous material, we 

may simplify Equation 3 to 

e(t) = O(t) 0
0 

(4) 

where e is strain, 0 is the representation for tensile creep compliance, 

and 0
0 

is the constant applied stress. It is equally valid to break up 

the compliance into initial and transient components--that is, 

O(t) = Do + D(t) (5) 

Mechanical models are often used to give a specific functional 

form to the stress-strain response and/or creep compliance of a visco-

elastic material. Figure 1 summarizes four simple models. Also shown 

in Figure 1 are the creep compliance functions for each model. 

Simple models are not capable of fitting real viscoelastic 

behavior including yielding. The modified Bingham model has been shown 
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Model Creep Compliance 

~1axwe 11 

~ D(t) t 1 =-+-f.! E 
E f.! 

Kelvin 
E 

~ :r D(t) = t [1 e f.! - I t] 

f.! 

Modified Bingham 

1 r ' 0'0'::' e 
e 

D( t) = 
(O'o-e)t 1 
~--+ - , 

O'of.! E 
f.! e < 0'0 < Y 

Generalized Kelvin with Maxwell Element 

D(t) 

r E. 
_ -' t 

n 1 ~ i I - 1-e 
i=l Ei 

Figure 1. Mechanical models. 
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to be well-suited to the behavior of polycarbonate [4J. 

The model which is of interest in this study is the generalized 

Kelvin with a Maxwell element in series. For this model, transient 

creep compliance may be expressed as 

D(t) 

Schapery [45J states: 

... It is well-known that [the creep power lawJ can be derived 
from [Equation 6]; specifically, we set Os = 0, approximate 
the series by an integral over a continuous distribution of 
retardation times, and use a power law for the resulting 
retardation spectru.m. 

(6) 

Williams [46], however, notes that the latter condition is a result of 

experimental observation, so that the relation between Equation 6 and 

the creep power law is actually an empirical rather than a derived rela­

tion. Furthermore, Dillard [47] shows that different types of material 

behavior are obtained for different values of the exponent n in the 

creep power law. When n < 0, the behavior is that of a viscoelastic 

solid. n = 0 gives time-independent response. For 0 < n < 1, the 

behavior is neither fluid nor solid, while for n = 1 the behavior is 

that of a viscoelastic fluid. Finally, n > 1 represents a IIsuper fluid ll 

where strain rate is infinite at very long times. One can infer that 

the mechanical model does not reflect the variety of responses repre­

sented by the mathematical power law. In fact, Dillard [47] states: 

One drawback to the power law is that it does not have a' 
simple mechanical analog, as does the generalized Kelvin 
element .... 
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Thus, there seems to be con'fusion as to the relation between the power 

law and mechanical models. Schapery [45], however, uses a creep power 

law and a negligible Ds coefficient in his theory, which, as we will 

later see, cause problems in the analysis of pol,ycarbonate. Currently, 

though, no model is considered definitive in the analysis of visco­

elastic behavior and no functional form of the creep compliance is 

accepted as theoretically accurate. Ordinarily, expressions for creep 

compliance are stated as a result of behavioral assumptions or 

empirical observations. 

Linear Viscoelasticity 

Superposition is a requirement for any linear system. Thus, in 

the linear stress-strain range, we may assemble solutions to stress in-

puts by adding responses. An arbitrary stress input can be approximated 

by a series of jump discontinuities such that 

The strain response to this multistep input is given by 

(8) 

For infinitesimal time intervals between the discontinuities of 

Equation 7. Equation 8 becomes 

(9) 

When the material is unaffected by events prior to t = 0, the lower 

limit of the integral may be c~anged to zero. For uniaxial tensile 
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creep, Equation 9 becomes 

(10) 

or 

(11 ) 

The convolution integral of Equation 9, as well as the analogous 

Equations 10 and 11, are all forms of the Duhamel or Boltzmann super­

position integral. It is the governing equation of linear visco­

elasticity and gives strain output for an arbitrary stress input. A 

similar form, using relaxation mod~lus Cijkt in place of creep 

compliance, gives stress output for an arbitrary strain input. 

Nonlinear Viscoelasticity 

Findley Procedure 

One of the methods of nonlinear viscoelastic characterization 

mentioned in Chapter I is a procedure developed by W. N. Findley and 

co-workers [17-20J. In the Findley theory, creep response is given by 

e(t) = e + mtn (12) o 

The power law of Equation 12 is a function of stress level such that 

and 

eo = e I sinh ~ o ae 

m = ml sinh ~ 
om 

(13 ) 

(14 ) 
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where e~, ml, 0e' and om are material constants at a given temperature, 

moisture content, etc. The exponent n, however, is independent of 

stress level. Nonlinearity is evident in the hyperbolic sine terms. 

Dillard [47] found the Findley procedure valuable for the 

representation of experimental results. He found the interpretation and 

determination of the curve-fitting parameter eo to be beneficial. He 

used a three-point fit for the application of Equation 12 and, follow­

ing the technique of Boller [48], chose times t l , t 2 , and t3 such that 

(15 ) 

Creep strains el , e2, and e3 corresponded to times t l , t 2, and t 3, 

respectively. The resulting values of e , n, and m were o ' 

e - e 
log 3 2 

e2 - el n 

e l - eo 
m = --.,;....---=-

t n 
1 

(16 ) 

(17) 

(18 ) 

A different method was found more helpful for the current investi-

gation. Herein, the non-instantaneous eo values were assumed correct 

and were subtracted out of all data. When Findleyls equation is 

applied to the results, 

e(t) = mtn (19 ) 

or 
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log e = log m + n log t (20) 

Equation 20 is in the form of a straight line on a log-log plot. e and 

t values can be taken directly from experimental data and we may use 

linear regression analysis to solve for the slope, n, and the intercept, 

log m. 

The linear regression method suffers from reliance on assumed 

values of eo' Actually, one of the advantages of the Findley approach 

is that eo is more accurately described as a calculated curve-fitting 

parameter rather than a correct instantaneous strain value. One could, 

however, choose to fit curves only past an arbitrary time, such as 1/2 

minute, then interpolate back to zero time for a value of eo' This 

method, however, was not pursued in the current study. 

We will see that for the data in this study linear regression pro­

vides more consistent results than the three-point fit used by Dillard. 

Present values of n are far more independent of stress level, and closer 

fits to the experimental data were obtained. 

Schapery Procedure 

A more elegant theory of nonlinear viscoelastic characterization 

was developed by R. A. Schapery in the late 1960's [21,22]. The deriva­

tion of his theory is too lengthy and detailed to discuss here, but it 

is reviewed in [21] and [22] and is summarized in simpler terms by 

Milly [16]. The theory is founded on thermodynamics and uses specially 

assumed forms of Helmholtz free energy, Gibbs free energy, and entropy 

generation, among other terms. His result is a simple, single integral 

equation for isothermal, uniaxial loading: 
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where Do = linear initial compliance 

D(~) = linear transient compliance 

9
0

,91,92 = material functions of stress 

~ and ~I are called reduced time variables and are defined by 

= ft dt ' 
1jJ a (o(t l

)) o 0 

and 

where a is another material function of stress. 
o 

(21) 

(22) 

(23) 

Equation 21 bears marked similarity to the Boltzmann inte9ral; in 

fact, linear theory (Equation 11) is regenerated when 90 = 91 = 92 = 

a = 1. Thus, nonlinearity is introduced throu9h these four material 
o 

parameters. 

Recall that for uniaxial tensile creep and recovery 

(24) 

Substitution into Equation 21 can be shown to give 

€c(t) = [go Do + 91 92 D (~ n 0 0 
0 

(25) 

and 

€R( t) = [92 
(tl t l ) - 92 D(t - t l )] 0

0 ° a + t -
0 

(26) 

for creep and recovery strain, respectively. Next, the creep compliance 

is assumed to be in the form of a power law 
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(27) 

which, according to Lou and Schapery [49], is typical of many visco­

elastic materials. Equation 27, when incorporated into Equations 25 

and 26, gives 

(28) 

and 

(29) 

Hence, we are left to evaluate seven material parameters (n, C, Do' go' 

gl' g2' and aa)' a small number relative to many other nonlinear 

theories. 

Determination of Schapery Parameters 

Schapery developed a scheme for data reduction which determines 

all seven parameters [49]. He first recognized that when the stress 

level falls in the linear range, go = gl = g2 = aa = 1. This information 

assists in the calculation of the go and Do parameters. That is, we 

know that the initial strain jump must be equal to go Do ao (error, 

however, is introduced by the assumption of instantaneous loading). 

Because go = 1 in the linear range, Do is set by the quotient of EO over 

ao for linear data. After Do is solved, go can be found easily from the 

variation of EO with stress level. 

The exponent n must be determined in a more indirect manner. One 

method is to recognize that Schapery's creep formula (Equation 28) and 

Find1ey's formula (Equation 12) have equivalent forms. Thus', the 

exponent given by the Findley analysis could be used. Similarly, other 
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curve-fitting procedures may be applied to experimental data to obtain 

acceptable n values and to test the hypothesis that n is independent of 

stress level. 

Schapery [49J developed a unique graphical procedure for finding 

n which requires experimental creep and recovery data. First, Equation 

29 for recovery is modified to the following form: 

(30) 

where 

A = (31) 

and 

~el = el - el 
t=t l t=O 

(32) 

For linear data, where gl = acr = 1, a log-log plot of eR versus A gives 

a curve which can be shifted vertically by an amount equal to log ~el. 

In theory, this shifted curve coincides with a log-log plot of 

[(1 + A)n - AnJ versus A having the desired value of n. In practice, 

this method works well, but the required vertical shift is not always 

exactly equal to log Ml . This difference may be due to the inaccuracy 

of elt=o since creep or recovery load is not applied instantaneously, or 

it may be a consequence of other sources of experimental error. 

With n determined, the log-log plot of [(1 + A)n - AnJ versus A 

is used as a master curve, and the same graphical procedure is applied 

to nonlinear recovery data. Experimental data curves are shifted 

vertically and horizontally to align with the known master curve. 
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M 
The amount of vertical shift required is equal to log ___ 1 

gl 
Thus, gl 

is solved. The horizontal shift is equal to log a . 
cr 

As suggested earlier, Equation 28 may be expressed in the Find1ey-

like form 

where 

and 

= e l + C1 t n 
a (33) 

(34) 

(35) 

Schapery [49J refers to C1 as the "creep coefficient" and notes that the 

Findley equation is merely a variation on the Schapery creep formula. 

Equation 33 is used to evaluate the two remaining parameters, C and 92' 

Creep data is taken to get experimental values of ecand t. There are 

two unknowns in Equation 33 (e~ and C1
); thus, pairs of data points can 

be used to solve the equation. Each pair of data points chosen gives 

slightly different values of e~ and C1
• We selected five pairs of 

points (e l ,t1) and (e2,t2). The values oft1 and t2 in each pair (in 

minutes) were 1/4 and 30, 1 and 25, 2 and 18, 3 and 16, and 4 and 9. 

The resulting C1 values were averaged to obtain an "official" C1 value. 

For linear data, g = g = a = 1 so that 1 2 cr ' 

C I = C cr (36) 
a 

and C was easily evaluated. Furthermore, for any set of creep data 

where stress is removed at t = t 1, we see that 
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total transient creep = Ael = C' t 1
n = 91 92 C oo[::J

n 

(37) 

92 = [:f [A:~] 1 
C ao 

(38) 

Combined Theory 

As presented in the previous sections, the Schapery theory is 

used to characterize creep at various stress levels and a constant 

temperature. This decision appears arbitrary, and it seems that by re­

labeling the material parameters one could study variable temperature 

at constant stress. In this investigation we explore Schapery 

characterization of variable stress at constant temperature and variable 

temperature at constant stress. Furthermore, we examine the possibility 

that Schapery's theory can be modified to characterize two or more 

. accelerating factors simultaneously [47,50]. The postulate is that 

Equation 21 be extended to 

where 

and 

e(t) = 9
0

(a) Do(T) a(t) 

I
t - d[g (a) a(T)] 

+ gl(a) -co D(T,l/J-l/J') 2 dT dT 

l/J = ft dt ' 
a aT o a 

(39) 

(40) 

(41) 
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It seems that these equations could be extended further to incorporate 

additional accelerating factors. This topic will be discussed in later 

chapters. 



III. EXPERIMENTAL PROGRAM' 

The experimental emphasis of this study was on obtaining data 

necessary to evaluate the theories detailed in Chapter II because the 

main thrust of this investigation was to study constitutive modeling. 

The primary tests were simple uniaxial tensile creep and creep recovery. 

In addition, supplementary tests as described in the following sections 

were performed to determine the desirability of specimen conditioning 

and to gain a sense of the material response. 

Test Specimen 

The basic chemical structure of polycarbonate is illustrated in 

Figure 2. The bulk material is an amorphous, uncrosslinked polymer. 

All test specimens used herein were fabricated from a 1/8" thick sheet 

of polycarbonate supplied by Rohm and Haas under the tradename Tuffak. 

The specimens were standard tensile dogbones as shown in Figure 3. 

All specimens were inspected under polarized light for residual 

stresses and stresses induced by machining; specimens which showed any­

thing more than a minor fringe pattern around drill holes were discarded. 

In testing, load was applied through a gripping system consisting of 

pins through the drill holes, 240-grit aluminum oxide paper over the 

specimen ends, and serrated grip plates bolted around specimen ends. 

21 
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Test Program and Apparatus 

The following supplementary tests were conducted: tensile test 

for stress-strain-strain rate data, tensile test for modulus-temperature 

data, tensile test for mechanical conditioning, thermomechanical 

analysis (Tr~A), thermal conditioning test, and moisture absorption 

measurement. For the first three tests, strain was measured by strain 

gages. The gages used were Micro-Measurements EA-06-l25AC-350, 350 ohm 

gages capable of up to 3% elongation. They were bonded with M-Bond 600 

adhesive, cured for 2 hours at 93.3°C (200°F) and postcured for 2 hours 

at l48.9°C (300°F). Surface pr.eparation and bonding were performed 

with the recommended Micro-Measurements procedures for polycarbonate and 

M-Bond 600. After these tests had been completed, it was decided that 

gages and an adhesive capable of greater elongation were necessary for 

creep strain measurement. Furthermore, the gages used for creep tests 

included preattached leadwires so that soldering directly to the 

specimen surface was avoided. In all tests involving strain gages, un­

strained specimens with dummy gages were used in a half-bridge arrange­

ment. Also, for all such tests a specimen with gages on both sides was 

run to determine bending effects. In all cases the difference between 

readings from the two gages was negligible. Subsequently, tests were 

run with singly-gaged specimens. 

Tensile tests were performed on an Instron Model 1125 machine 

with an Instron environmental chamber attached for elevated temperature 

work. Temperature was monitored by thermocouples and a Doric 4l2A 

Trendicator digital thermometer. Strain was conditioned by a Vishay 
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2120 system which was used in conjunction with a Hewlett-Packard x-y 

plotter. The thermal conditioning test used the same temperature . 

monitoring system and an Applied Test Systems (ATS) Model 2912 oven 

with an ATS series 230 temperature controller. Moisture absorption 

work was done with the same equipment plus a Lab Con Co Model 55300 

dessicator and a Mettler H33AR electronic balance. TMA work was con­

ducted on a Perkin-Elmer Thermomechanica1 Analyzer. 

Results of Preliminary Tests 

Figures 4-7 summarize the stress-strain-strain rate behavior of 

polycarbonate. Figures 4 and 5 show data obtained by Brinson [4J. 

The modulus of elasticity for his specimens is 350,000 psi, independent 

of strain rate. Transition from linear to nonlinear behavior occurs at 

5,000 psi. Luder's bands form at 5% strain and 8,000 to 10,000 psi, 

depending on strain rate. In Figure 6, we see results from the present 

study. Note that tests are not run to failure because of the 3% 

elongation limit of the gages. Modulus of elasticity values are 364,000 

psi and 360,000 psi for crosshead speeds of .05 in/min and .5 in/min, 

respectively. A limit to linear behavior is difficult to distinguish 

in these data. Figure 7 shows stress-strain results from a tensile test 

continued until yielding occurred on an ungaged specimen. Here, yield­

ing is defined as the onset of Luder's band formation. Strain readings 

are based on grip separation measurements, and because strain is 

non-uniform in the specimen, the strain data are inherently inaccurate. 

The test, however, is useful for an estimate of the yield strength and 
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ultimate strength at room temperature. 

Modulus-temperature data is shown in Figure 8. An estimate of 

the glass transition temperature (Tg) can be obtained from a rapid 

decline in modulus. This temperature range, however, is near the gage 

adhesive postcure temperature of l48.9°C (300°F). Thus, performance of 

the gage and adhesive were likely affected by creep at the highest 

temperatures tested. While the exact strain values must therefore be 

considered unreliable at temperatures above 135°C (275°F), the strain 

trends reflected in the modulus-temperature curve were assumed correct. 

Tensile tests were run to ascertain the effects of mechanical 

conditioning, if any. A gaged specimen was cycled to 350 lbs. (about 

5800 psi) ten times, and strain was recorded. Cycles 2-10 were found 

to give essentially identical data, while cycle 1 showed a slightly 

lower modulus. The results are shown in Figure 9. The specimen was 

removed from the grips and allowed to recover for 4 hours before repeat­

ing the same experiment. The results were identical to those of the 

first run, with the first cycle giving a slightly lower modulus than 

subsequent cycles gave. Similar results were obtained as far back as 

1955 [38]. We concluded that mechanical conditioning of our specimens 

was unnecessary, as conditioning effects seemed minor and temporary, 

the original state being obtained after 4 hours of recovery. Further­

more, the continued use of a specimen tested up to 5800 psi was 

decided to be permissible after 4 hours of recovery and the continued 

use of specimens brought to higher stress levels was assumed permissible 

after 24 hours of recovery. 
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Once experimental results had been analyzed, we learned that per­

haps our decision not to condition specimens mechanically had been in 

error. The difference of approximately 0.2% strain between first and 

subsequent cycles may have been related to a permanent strain reading 

which greatly complicated the Schapery analysis. The disappearance of 

this effect after 4 hours of recovery from the conditioning test is not 

understood. Perhaps a better understanding could be obtained by con-

ducting future experiments with a mechanical conditioning cycle. 

Yannas and Lunn [3] suggested thermal conditioning of poly-

carbonate specimens through an anneal cycle of four hours at 165°C 

(329°F) to remove residual stresses. When we tried this cycle, we ob-

tained inconsistent specimens; some seemed fine, while others warped 

noticeably. Likewise, a photoelastic check showed that specimens had 

inconsistent stress patterns; some even appeared to have had stresses 

annealed in. Because of the inconsistencies, we decided to forego 

thermal conditioning and opted for a photoelastic check of the induced 

stress pattern after machining of test specimens. 

TMA tests showed that penetration of a rod into the polycarbonate 

increased markedly at 160°C (320°F). This information provided an 

estimate of the Tg for polycarbonate, but the estimate must be assumed 

high because of the time lag between activation of a heating coil where 

temperature was recorded and the actual temperature rise within the 

test specimen. Reference values for the Tg of polycarbonate are 

between 140°C and 150°C (284°F and 302°F) [51,52]. 

Finally, moisture absorption readings were taken on several 

specimens to determine the need for moisture conditioning. Weights were 
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monitored for three specimens. One was allowed to sit on an office 

desk, another was kept in a dessicator, and the third was cured for 3 

hours at 93.3°C (200°F) prior to storage in the dessicator. Although 

we had expected to observe both moisture absorption and desorption, all 

specimens lost weight before stabilizing. Figure 10 documents weight 

loss through time. Stabilization occurred after approximately one week. 

The weight loss under ambient conditions was perhaps an indication of 

humidity fluctuations in the laboratory and experimental error. The 

fact that the cured specimen showed no moisture absorption could have 

indicated insufficient cure time. Still, no specimen held more than 

0.35 percent by weight moisture. Furthermore, it seemed reasonable to 

wish to characterize commercial materials in the as received condition. 

As a result, moisture conditioning was decided to be unnecessary. 

In summary, the basic material behavior of our po1ycarbonate was 

consistent with previous outside findings. Furthermore, the assumption 

was made that no specimen conditioning (mechanical, thermal, or moisture­

related) was necessary prior to the running of creep experiments. Again, 

this assumption might not have been appropriate and will be discussed 

more fully in later chapters. 

Creep Program 

In order to evaluate nonlinear viscoelastic constitutive models, 

we devised a program of creep and creep recovery experiments. We 

decided, somewhat arbitrarily, to use six temperatures and six stress 

levels at each temperature. The temperatures selected were room 
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temperature (24°C), 40°C, 60°C, 75°C, 80°C, and 95°C. At each 

temperature, a range of stress levels was used such that both linear 

and nonlinear response were observed. Yannas and Lunn's work [3], 

shown in part in Figure 11, was used as a guide to the transition 

stress from linear to nonlinear behavior. The po1ycarbonate yield 

stress data of Bauwens-Crowet et a1 [33], summarized in Figure 12, was 

used as a guide to yield behavior. The result was the creep and creep 

recovery test schedule in Table 1. On the basis of a room temperature, 

2000 psi pilot test, it was determined that both creep and recovery 

data changed very slowly after 30 minutes of testing. As a result, 

creep tests were run for 30 minutes, and recovery tests were also run 

for 30 minutes. Although the recovery time seemed a bit short, Peretz 

and Weitsman [53] used even shorter times for Schapery analysis. 

The creep machine used for all tests was an ATS Model 2330 lever 

arm tester with automatic draw head and re1eve1er. This machine was 

able to load or unload a specimen within 15 seconds. Since the load 

time was less than 1% of the total test time, the experiment was con­

sidered a good approximation of instantaneous loading. The temperature 

monitoring and strain conditioning systems were the same as described 

earlier. 

In an effort to eliminate systematic error due to specimen 

fabrication and gaging, test specimens were selected randomly for each 

test under the proviso that no specimen be re-used for at least 4 hours, 

or 24 hours if the previous stress level had exceeded 5800 psi. The 

gages chosen for creep testing were Micro-Measurements EP-08-125BB-120 

with pre-attached lead wires. These gages are capable of elongation to 
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Table 1. Schedule of creep testing. 
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20% and service up to 204.4°C (400°F). They were bonded to specimens 

with M-Bond AE-15 adhesive, capable of 10-15% elongation but long-term 

stability up to only 93.3°C (200°F), and short-term stability up to 

107.2°C (225°F). Thus, temperature selection was limited. The adhesive 

cure cycle was 2 hours at 65.6°C (150°F) and 1 hour of postcure at 

104.4°C (220°F). A voltage of 2V was used to minimize heating effects 

in the 120 ohm gages. Again, dummy gages were used in a half-bridge 

arrangement. Strain data was fed into a Hewlett-Packard 7l00B strip 

chart recorder. Because of the volume of the data being collected, it 

was decided to run only a single test at each temperature and stress 

level, then to go back and repeat tests which appeared to provide 

"faulty" data when crossplotted over temperature and stress. The 

gripping system was the same pin-sandpaper-serrated plate arrangement 

described in an earlier section. The gaging procedure was according 

to manufacturer's recommendations for AE-15 adhesive bonding and poly­

carbonate surface preparation. 



IV. RESULTS AND DISCUSSION 

Strain Data 

Experimental creep strain data at each of the six temperature 

levels are given in Figures 13-18. Likewise, experimental recovery 

strain data at each temperature are given in Figures 19-24. Figure 25 

shows a common time plot of stress versus strain at t = 9 min. This 

plot is a statement of linearity for our data; at each temperature we 

indeed observed both linear and nonlinear behavior. At room tempera­

ture, for example, .the limit to linear behavior is 3800 psi and 1.1% 

strain. The limlting stress, which decreases as temperature increases, 

is shown as a function of temperature in Figure 26. 

An important observation was that the polycarbonate specimens did 

not recover to zero strain. The amount of permanent strain depended 

on both temperature and stress level and appeared to be an independent 

nonlinearity. The phenomenon is looked at more closely later in this 

chapter. 

Findley Analysis 

The creep strain data of Figures 13-18 were subjected to the 

Findley analysis described in Chapter II. The three-point fit method 

used by Dillard was found to give inconsistent results. For example, 

consider the creep curve for T = 24°C, 0 = 4876 psi. Table 2 shows the 

values'of EO' m, and n obtained for a variety of time choices. 
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Table 2. Findley Data for T = 24°C, cr = 4876 psi. 

t1 ' t2 ,t3 (mi n) eo (~~) n m (in~in) 
mlnn 

1 , 5, 25 2.43 ~ 10-6 0.32 1.44 x 10-2 

2, 6, 18 3.77 x 10-6 0.067 1.39 x 10-2 

~, 3, 18 9.42 x 10-6 0.066 1 .49 x 10-2 

1, 4, 16 -1.49 x 10 -8 -0.022 1.44 x 10-2 

!t;, 2, 16 1 .65 x 10-5 0.085 1.59 x 10-2 
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Clearly, results were influenced heavily by the set of data points 

selected. Particularly disturbing were the variability of both nand 

eo and the appearance of negative values. Furthermore, Dillard [47] 

found large variations in n with stress level. Consequently, it was 

decided to abandon the three-point fit in favor of the linear regression 

method. 

The linear regression method, which was reviewed in Chapter II, 

gave excellent results. As stated earlier, the only drawback was the 

inability to evaluate eo either as a curve-fitting parameter or as the 

initial strain jump for the case of true instantaneous loading. Each 

creep curve generated values of m and n which, when substituted into 

Equation 12, gave a good fit to the actual data. Figures 27 and 28 

give two such examples. Correlation coefficients for the Findley 

procedure were found to vary from 0.92177 to 0.99941. In both cases 

shown, deviation of the Findley fit from actual data increased as time 

approached 30 minutes. In Figure 28, the error at 30 minutes is only 

1.1%, but if the Findley fit were used to predict long-term creep 

resP9nse, the increasing deviation would lead to progressively greater 

error. This problem requires further study. 

The linear regression results for n are shown in Figure 29 as a 

function of stress at each temperature level and in Figure 30 as a 

function of temperature at several stress levels. In Figure 29, it is 

seen that the large variations in n with stress, as reported by Dillard 

[47] for the three-point fit on composite material data, are dramatically 

reduced. The variations in n with temperature (Figure 30) are slightly 

more pronounced. 
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The Findley n values can be averaged at several stress levels 

and then plotted as a function of stress. This plot appears in Figure 

31. The average n value seems to be independent of stress, with a 

median value of 0.35. This value is equal to the n value obtained by 

Tougui [23] from birefringence data. 

Similarly, Findley n values are averaged at each temperature and 

then plotted as a function of temperature in Figure 32. The upward 

exponential trend suggests that n may in fact vary with temperature. 

In Figures 33 and 34, the Findley m values obtained by linear 

regression are shown as functions of stress and temperature, respec­

tively. The hyperbolic sine fit of Equation'14 applies well to the 

curves in Figure 33, with the curves becoming more steep as temperature 

increases. In fact, a similar hyperbolic sine fit appears applicable 

to the data of Figure 34, except that temperature must be expressed in 

degrees Kelvin so that the curves pass through the origin. As stress 

increases, the curves become more steep. 

In summary, the Findley procedure provided good representation of 

experimental creep data, but the fitted curves started to deviate 

greatly from actual data at longer times. Values of n were obtained 

which were essentially independent of stress and in good agreement with 

results from optical data. The m values obtained by the linear regres­

sion method obeyed the hyperbolic sine law. In the present study, 

experimental strain values at load time were assumed equal to eo' 

although the Boller technique or interpolation to zero time could have 

been used for interpretation of So as a calculated curve-fitting 

parameter. 
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Schapery Analysis 

Permanent Strain Correction 

The Schapery theory and its equations for the characterization of 

uniaxial creep and recovery response were presented in Chapter II. In 

addition, the Schapery procedure for the reduction of experimental data 

was explained. This procedure was applied directly to the strain data 

of Figures 13-24. Schapery's graphical technique for the determination 

of n was used. For the room temperature, 2000 psi recovery data, we 

found that the amount of vertical shift required to align the data with 

a master curve was not close to the theoretical value of log ~el. 

Furthermore, the best master curve corresponded to an n value of 0.70-­

much higher than the n values obtained in previous studies, and much 

higher than those obtained in our own Findley analysis. The main dif­

ference between our recovery data and most of the previous data on 

other materials, however, was the existence of non-negligible un­

recoverable strain. Following the procedure Tougui used for 

birefringence data [23J, we subtracted the apparent asymptotic value 

of permanent strain from recovery data before analysis. After this 

correction, the Schapery n value seemed reasonable and the required 

amount of vertical shift was much closer to log ~el. No subtraction was 

made from creep data. As discussed in the following paragraphs, 

permanent strain, if in fact a real phenomenon, is built up during 

creep. The amount of unrecoverable strain which is present at any 

given time during the creep process is uncertain. Thus, actual experi­

mental creep strain values were analyzed in order to avoid adoption of 
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a haphazard correction scheme. 

It may be possible to explain the effectiveness of permanent strain 

correction in terms of mechanical models, as suggested by Schapery's 

discussion in [45] of transient creep compliance, which was detailed 

in Chapter II. We recall that the transient creep compliance of the 

generalized Kelvin model with a Maxwell element in series may be written 

as 

fi(t) (42) 

Once Os .is assumed negligible, as stated by Schapery [45J, the expres­

sion may be related empirically to the creep power law. For poly-

carbonate, however, according to this model, the Os term apparently is 

not negligible, is a function of both stress and temperature, and mani-

fests itself as permanent strain which is built up during the creep 

process but remains constant throughout the entire creep recovery 

process. In order to apply the Schapery analysis, which assumes a 

creep power law, it is therefore necessary first to eliminate strain 

which arises as a result of the Os term. 

It is also possible, however, that the observed permanent strain 

was a result of experimental error. If, for example, the load train 

were inhibited so that load were not completely removed from each 

specimen, then permanent strain would have been recorded. Still, the 

possibility of real permanent strain must be accounted for. 

The mechanism through which unrecoverable strain could occur is 

probably related to polymer topology and morphology. When simple, 
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amorphous, uncrosslinked polymers such as polycarbonate are placed in 

tension, the polymer molecules tend to orient themselves along the 

tensile axis in a thermodynamically stable arrangement of locally 

ordered regions. When the tension is removed, the molecules do not 

recover completely because the partially-ordered environment is favored. 

In terms of creep strain, the orientation process introduces non­

linearity into the transient creep response and possibly into the 

initial creep response. The behavior is similar to that described by 

the Schapery damage model [50]. 

One of the problems encountered in the reduction of.data was that 

the exact asymptotic level of permanent strain could not be determined 

from only 30 minutes of recovery data, especially at high stress levels. 

We repeated the room temperature, 2000 psi test allowing 36 hours for 

recovery and found a permanent strain (ep) of 480 ~e, a value which 

was difficult to pick out of the original test data. In addition, we 

realized that ep could vary from specimen to specimen. Since we had 

selected test specimens randomly, the development of a logical rationale 

behind the selection of ep was complicated. Furthermore, since ep 
values were small, error in strain measurement was a concern. A strain 

gage accuracy of ± 1%, for example, meant that the actual ep for 

T = 24°C, cr = 2000 psi fell between 475 and 485 ~e. 

Temperature variations also caused significant changes in strain 

readings. Simply by opening and shutting the door to the laboratory 

or by turning the air conditioning on and off, we were able to induce 

reading changes of ± 50 ~e without much difficulty. Finally, we 

decided to keep the 480 ~e value for T = 24°C, cr = 2000 psi. The 
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corresponding n value was 0.27. ·We determined Ep as follows: make a 

best guess at the asymptotic strain level from recovery data, work 

through the Schapery analysis, and keep the Ep value if the graphical 

shifting pattern seemed logical. In other words, if we found that the 

second stress level required less upward shift than the linear data and 

a slight shift to the left, while the third level required even less 

upward shift and more shift to the left, we continued the same pattern 

as long as the Ep values were believable asymptotes for the recovery 

data. Figures 35 and 36 show the Ep values used throughout this in­

vestigation. 

After graphical data analysis had been completed, two colleagues 

in our laboratory, Clement Hei1 and Andrea Bertolotti, used the 24°C, 

2000 psi data for analysis in a computerized Schapery procedure they 

had developed. They were able to evaluate a wide variety of Ep values. 

Table 3 shows the results. The computer results for Ep = 480 ~E are 

quite close to the graphical results. It is somewhat disturbing to 

note how sensitive all parameters, especially n, are to the value of 

ep' In the computer analysis, we see that the "best" results (gl and 

g2 closest to 1) were obtained for Ep = 435 ~E. The corresponding n 

value of 0.37 is very close to the value of 0.35 used by Tougui [23J. 

The results presented in the following sections are based on 

graphical analysis. Further computer analysis of the data is recom-

mended in order to develop a better analytical understanding of the Ep 

phenomenon and to refine the graphical results for the Schapery 

parameters. 
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Table 3. Computer Results for T = 24°C, cr = 2000 psi. 

ep (lJe) n 91 92 

420 0.4039 0.932 1 .0730 

435 0.3706 0.990 1 .0097 

440 0.3290 1.011 0.9886 

460 0.3103 1 .100 0.9030 

480 0.2580 1.220 0.8170 

500 0.2022 1.370 0.7280 
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Constant Temperature Results 

The procedure outlined in Chapter II was used in conjunction with 

the permanent strain correction described in the previous section to 

analyze experimental data at constant temperatures 24°C, 40°C, 60°C, 

75°C, BO°C, and 95°C. The values obtained for ep and the seven 

Schapery parameters are summarized in Table 4. Included in Figures 37-

42 are a sample master curve, a sample Schapery curve fit, and graphs 

of the Schapery parameters versus stress at each temperature. The 24°C 

master curve and Schapery curve fits for all 24°C data are given in the 

Appendix. 

Although the results show substantial scatter, a , g , and to some cr 0 

extent g2' seem largely unaffected by. temperature. An inverted "S" 

curve is characteristic of a [23, 49]; such trends are seen in Figure cr 

42. For go' gl' and g2 (Figures 39-41), exponential variation is pre-

dominant, but data scatter prevents the adoption of definitive func­

tional forms. It is difficult if not unreasonable to develop specific 

equations for the curves in Figures 39-42. This situation is un­

fortunate, as the development of such equations permits the direct pre­

diction of creep and recovery response and leads to the prediction of 

strain response for arbitrary stress histories. Toward this end, 

further study of the permanent strain phenomenon and its effect on 

accuracy in the determination of the Schapery parameters is again 

advised. The uncertainty in ep selection is suspected to be the main 

source of scatter in these results. 

Despite the uncertainty in the ep values, shifted recovery data 

formed good master· curves (Figure 37). The substitution of parameter 



Table 4. Schapery Constant Temperature Results 

T (OC) (J (ps i) ep (lle) n C Do 90 91 92 a 
(J 

24 2000 480 0.27 -8 -6 1.000 1 .000 1.000 1.000 7.005 x 10_8 2.715 x 10_6 24 3500 550 0.27 7.005 x 10_8 2.715 x 10_6 1.013 1.001 1.063 0.600 
24 4000 570 0.27 7.005 x 10_8 2.715 x 10_6 1.022 0.673 1.859 0.750 
24 4876 900 0.27 7.005 x 10_8 2.715 x 10_6 1.041 0.783 1.869 0.528 
24 6000 1300 0.27 7.005 x 10_8 2.715 x 10_6 1.122 2.560 0.724 O~240 
24 7500 8000 0.27 7.005 x 10 2.715 x 10 1 .154 3.244 0.980 0.052 

40 2000 600 0.29 -8 -6 1.000 1.000 1.000 1.000 6.705 x 10_8 2.845 x 10_
6 40 3500 750 0.29 6.705 x .10_8 2.845 x 10_6 1.019 0.947 1 .087 0.728 

40 4000 1130 0.29 6.705 x 10_8 2.845 x 10_6 1.014 1.725 0.748 0.675 
40 4500 1150 0.29 6.705 x 10_8 2.845 x 10_6 1.051 1.265 1.470 0.630 ........ 

40 5000 1300 0.29 6.705 x 10_8 2.845 x 10_6 1.013 1.598 1.374 0.555 .f>. 

40 6500 2000 0.29 6.705 x 10 2.845 x 10 1.069 1.976 0.972 0.056 

60 2000 640 0.31 -8 -6 1.000 1.000 1.000 1.000 7.009 x 10_8 3.005 x 10_6 60 3000 750 0.31 7.009 x 10_8 3.005 x 10_6 1.002 1 .103 1 .165 0.908 
60 3500 1200 0.31 7.009 x 10_8 3.005 x 10_6 1.029 1.569 1.067 0.818 
60 4000 1250 0.31 7.009 x 10_8 3.005 x 10_6 1.061 1.352 1.302 0.750 
60 4500 1300 0.31 7.009 x 10_8 3.005 x 10_6 1.072 1.600 2.004 0.630 
60 5500 1500 0.31 7.009 x 10 3.005 x 10 1.098 1.206 2.191 0.360 

75 1500 530 0.34 -8 -6 1.000 1.000 1.000 1.000 8.486 x 10_8 3.347 x 10_6 75 2000 580 0.34 8.486 x 10_8 3.347 x 10_6 0.997 0.946 0.923 0.945 
75 3000 750 0.34 8.486 x 10_8 3.347 x 10_6 1.066 1.646 1.115 0.900 
75 3500 850 0.34 8.486 x 10_8 3.347 x 10_6 0.958 1 .195 1.164 0.705 
75 4500 1500 0.34 8.486 x 10_8 3.347 x 10_6 1 .091 1.422 2.216 0.323 
75 5000 3000 0.34 8.486 x 10 3.347 x 10 1.100 1.278 4.436 0.176 



Table 4 (continued). 

T (OC) (J (psi) Ep (lle) n C Do 90 91 92 a 
(J 

80 1200 550 0.41 -8 -6 1.000 1.000 1.000 1.000 6.355 x 10_8 3.458 x 10_6 80 2000 1100 0.41 6.355 x 10_8 3.458 x 10_6 0.990 1.284 1.293 0.765 
80 3000 950 0.41 6.355 x 10_8 3.458 x 10_6 1.059 1 .158 1.497 0.788 
80 3500 1500 0.41 6.355 x 10_8 3.458 x 10_6 1.047 1.670 1.119 0.660 
80 4000 '1500 0.41 6.355 x 10_8 3.458 x 10_6 1.001 1.634 1.827 0.465 
80 4500 2300 0.41 6.355 x 10 3.458 x 10 1.067 1.364 4.768 0.383 

95 1000 690 0.45 -8 -6 1.000 1.000 1.000 1.000 6.015 x 10_8 4.060 x 10_6 95 1200 650 0.45 6.015 x 10_8 4.060 x 10_6 1.006 1 .140 1.690 0.975 
95 1500 650 0.45 6.015 x 10_8 4.060 x 10_6 1 .021 0.621 2.585 0.900 
95 2000 1450 0.45 1.089 0.602 2.070 0.750 '-.I 6.015 x 10_8 4.060 x 10_6 <.n 

95 3000 1400 0.45 6.015 x 10_8 4.060 x 10_6 1.102 1.805 1.700 0.820 
95 3500 2000 0.45 6.015 x 10 4.060 x 10 1.082 2.962 1.432 0.435 
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values into Equations 28 and 29 provided acceptable curve fits to the 

experimental data (Figure 38), but, as in the Findley fits, some curves 

began to deviate greatly at long times. The best curve fits were ob­

tained when n values were close to 0.35. In general, lower n values 

tended to underpredict creep data while higher n values tended to 

overpredict. Predictions for creep strain, however, may be in error 

because strain corrections were not used. 

Constant Stress Results 

The schedule of creep tests in Table 1 provided for five 

con~tant stress levels (2000, 3000, 350~, 4000, and 4500 psi) at which 

four or more temper~tures were studied. At each of the 2000, 3000, and 

3500 psi stress levels, we examined at least one temperature that pro­

vided linear data, as defined by the limiting values in Figure 26. At 

4000 and 4500 psi each, the lowest temperature studied provided only 

slightly nonlinear data. It was assumed, however, that the lowest 

temperature studied at each constant stress level was in the linear 

range. The corresponding strain data was analyzed by a procedure 

analogous to that used for constant temperature data, except that the 

Schapery parameters were labelled as n, c, Do' 9
0

, 91' 92' and aT' 

The data lent themselves well to the Schapery procedure. Results 

are given in Table 5 and Figures 43-48. The variation of aT with 

temperature appears independent of stress, in the manner that acr 

appeared independent of temperature. It cannot be determined from the 

present information whether these trends hold true for experimental 

strain data taken at or above the Tg. Similarly, the exponential 



Tabl e 5. Schapery Constant Stress Results 

(J (psi) T (OC) ep (~e) 
- C 00 

- - -n 90 91 92 aT 

2000 24 480 0.27 -8 -6 1.000 1.000 1.000 1.000 7.005 x 10_8 2.715 x 10_6 2000 40 600 0.27 7.005 x 10_8 2.715 x 10_6 1.048 1.067 1.025 0.860 
2000 60 640 0.27 7.005 x 10_8 2.715 x 10_6 1.107 0.913 1.280 0.840 
2000 75 580 0.27 7.005 x 10_8 2.715 x 10_6 1.228 0.904 1.324 0.610 
2000 80 1100 0.27 7.005 x 10_8 2.715 x 10_6 1.262 1 .121 1.853 0.375 
2000 95 1450 0.27 7.005 x 10 2.715 x 10 1.628 0.510 3.314 0.345 

3000 60 750 0.30 -8 -6 1.000 1.000 1.000 1.000 6.056 x 10_8 3.010 x 10_6 3000 75 750· 0.30 6.056 x 10_8 3.010 x 10_6 1.185 1.585 1.837 0.852 
3000 80 950 0.30 6.056 x 10_8 3.010 x 10_6 1 .217 1 .046 2.237 0.480 
3000 95 1400 0.30 6.056 x 10 3.010 x 10 1.486 1.606 2.410 0.300 00 

w 

3500 24 550 0.31 -8 2.751 x 10-6 1.000 1.000 1.000 1.000 7.038 x 10_8 3500 40 750 0.31 7.038 x 10_8 2.751 x 10-6 1.054 0.940 1.034 0.900 
3500 60 1200 0.31 7.038 x 10_8 2.751 x 10-6 1.124 1.528 1.138 0.900 
3500 75 850 0.31 7.038 x 10_8 2.751 x 10-6 1 .165 1.148 1.592 0.645 
3500 80 1500 0.31 7.038 x 10_8 2.751 x 10-6 1 .316 1.543 1.374 0.400 
3500 95 2000 0.31 7.038 x 10 2.751 x 10-6 1.596 2.709 1.902 0.200 

4000 24 570 0.33 -8 -6 1.000 1.000 1.000 1.000 6.486 x 10_8 2.775 x 10_6 4000 40 750 0.33 6.486 x 10_8 2.775 x 10_6 1.040 1.099 0.609 0.132 
4000 60 1250 0.33 6.486 x 10_8 2.775 x 10_6 1.149 1.413 1.295 0.800 
4000 80 1500 0.33 6.486 x 10 2.775 x 10 1.248 1.402 2.254 0.285 

4500 40 1150 0.35 -7 2.991 x 10-6 1.000 1.000 1.000 1.000 1 .025 x 10_7 4500 60 1300 0.35 1.025 x 10_7 2.991 x 10-6 1.077 1.757 1.033 0.600 
4500 75 1500 0.35 1.025 x 10_7 2.991 x 10-6 1 .221 1.373 1 .960 0.400 
4500 80 2300 0.35 1 .025 x 10 2.991 x 10-6 1.233 1.230 3.912 0.300 
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variation of 9
0 

with temperature is weakly affected by stress, as the 

exponential variation of go with stress was weakly affected by tempera­

ture. The 92 variation is more difficult to characterize, but the 

trends in Figure 47 are predominantly exponential. The results for 
-go' g2' and aT possess less scatter than the corresponding results for 

go' g2' and acr , but, again, equations were not developed. Unfortunately, 

the 9, values show so much scatter that no pattern can be determined. 

This randomness is as yet unexplained but might be related to the 

damage build-up during creep. Despite its existence, good master 

curves (Figure 43) were obtained. The linear data in Figure 43 lies 

noticeably below the master curve because the required vertical shift 

was not equal to log ~e1. The sample Schapery curve fit (Figure 45), 

which had an n value of 0.33, was excellent. In general, however, n 

values substantially lower than 0.35 underpredicted data, while high n 

values overpredicted. Thus, the quality of Schapery curve fits seems 

to depend primarily on the n value used, but again, creep strain pre-

dictions are in question because of the lack of strain correction. 

Combined Theory Results 

Because of time restrictions, we opted to attempt fitting only 

the BOaC, 4000 psi strain data by this method. The 24°C, 2000 psi data 

was used to establish the master curve at n = 0.27. Table 6 gives the 

values obtained for the Schapery parameters. The horizontal shift 

factor, a T' was not equal to the product of acr and aT' as suggested by 

Equations 40 and 41. Because we solved for only one set of parameters 

(BOaC, 4000 psi), no attempt could be made to evaluate the combined 



91 

-
Table 6. Combined Theory Parameters for 

T = 80°C, cr = 4000 psi 

n = 0.27 
-

= 7.005 x 10-8 C 
-

= 2.715 x 10-6 
Do 

90 
= 1 .275 

91 = 1.250 

-
92 = 3.136 

acrT = 0.300 
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theory parameters as functions of both str'ess and temperature. The 

curve fit, shown in Figure 49, is good; however, at long times the fit 

would underpredict experimental-data, perhaps a result of the low n 

value (0.27) or permanent strain. Nevertheless, this method shows 

promise and requires further study. 



v. SUMMARY AND CONCLUSIONS 

The present study was initiated to examine nonlinear viscoelastic 

constitutive modeling, and in particular, to evaluate Findley and 

Schapery analysis of polycarbonate creep and recovery data. First it 

was determined that specimen conditioning was unnecessary. After data 

analysis, a possible need for mechanical conditioning was revealed. 

The Findley procedure was found to give good curve fits which 

began to deviate from experimental data at longer times. This result, 

however, must be limited to the current set of data, as the Findley 

approach has been used for ten-year creep predictions. 

Whereas the Findley approach was essentially empirical, the 

Schapery procedure laid a firm theoretical foundation. It was success­

fully applied to polycarbonate data only after a correction for un­

recoverable strain effects. The permanent strain phenomenon, however, 

required further study. In addition, it was found that the Schapery 

procedure could be applied equally well to constant temperature or 

constant stress data. The quality of the Schapery curve fits and the 

deviation from actual data at long times depended primarily on the 

specific value but because no creep strain correction scheme was 

available, the full effect of the permanent strain phenomenon on 

Schapery results could not be evaluated. Unfortunately, although trends 

were noted, no exact equations or functional forms could be identified. 

for many of the Schapery parameters. It would be critical to obtain 

such relations if the Schapery theory were studied for loading histories 
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more complex than uniaxial multistep loading. Furthermore, without 

such equations and without the compulsory long-term testing for 

verification, it was impossible to evaluate the vast predictive potential 

of the Schapery theory. 

Finally, a basic attempt was made at the development of a 

Schapery-type theory for combined effects of two or more accelerating 

factors. Although a more complete study of this theory needs to be 

conducted, it was shown that such a theory can be used to analyze the 

data from this investigation. The method showed promise, and further 

study was recommended. 
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Table A1. Uncorrected strain data, T = 24°C 

t 2000 3500 4000 4876 6000 7500 

0 .00543 .00963 .01110 .01378 .01827 .02350 
.25 .00555 .00980 .01133 .01417 .01905 .02600 
.5 .00558 .00987 .01141 .01427 .01928 .02671 

1 .00563 .00995 .01151 .01442 .01955 .02750 
2 .00567 .01 000 .01162 .01458 .01985 .02832 
3 .00569 .01006 .01168 .01467 .02000 .02883 
4 .00571 .01 009 .01172 .01475 .02013 .02927 
5 .00572 .01012 .01175 .01480 .02024 .02960 

6 .00573 .01015 .01177 .01484 .02033 .02987 

9 .00576 .01020' .01185 .01494 .02050 .03050 

16 .00579 .01028 .01193 .01507 .02081 .03153 

18 .00580 .01031 .01194 .01512 .02085 .03174 

25 .00582 .01035 .01200 .01520 .02105 .03238 

30C .00584 .01038 .01205 .01527 .02113 .03280 

30R .00076 .00132 .00185 .00254 .00287 .01120 

30.25 .00071 .00113 .00171 .00229 .00233 .01060 

30.5 .00069 .001 08 .00162 .00220 .00223 .01044 

31 .00067 .001 03 .00150 .00213 .00214 .01033 

32 .00064 .00097 .00142 .00207 .00210 .01022 

33 .00062 .00092 .00134 .00200 .00204 .01015 

34 .00061 .00091 .00126 .00193 .00195 .01012 

35 .00061 .00091 .00119 .00186 .00190 .01010 

36 .00060 .00090 .00113 .00179 .00185 .01 008 

39 .00059 .00090 .00106 .00170 .00183 .01004 

46 .00057 .00085 .00099 .00161 .00178 .01 000 

48 .00057 .00083 .00098 .00158 .00177 .01000 

55 .00056 .00078 .00095 .00147 .00175 .00996 
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Table A2. Uncorrected strain data, T = 40°C 

t 2000 3500 4000 4500 5000 6500 

0 .00569 .01015 .01154 .01346 .01441 .01976 
.25 .00579 .01027 .01186 .01391 .01495 .02108 
.5 .00583 .01031 .01191 .01406 .01516 .02148 

1 .00587 .01035 .01203 .01420 .01536 .02192 
2 .00590 .01048 .01213 .01440 .01558 .02241 
3 .00593 .01052 .01220 .01448 .01573 .02275 
4 .00595 .01056 .01225 .01457 .01583 .02298 
5 .00596 .01058 .01227 .01462 .01594 .02319 
6 .00597 .01061 .01230 .01470 .01600 .02331 

9 .00600 .01067 .01237 .01482 .01616 .02368 

16 .00604 .01075 .01244 .01502 .01642 .02423 

18 .00605 .01076 .01246 .01505 .01648 .02437 

25 .00607 .01080 .01251 .01515 .01662 .02470 

30C .00609 .01086 .01258 .01519 .01675 .02494 

30R .00097 .00160 .00200 .00265 .00300 .00536 

30.25 .00087 ,00l35 .00162 .00220 .00248 .00436 

30.5 .00087 .00135 .00162 .00220 .00248 .00436 

31 .00084 .00125 .00154 .00208 .00234 .00420 

32 .00081 .00118 .00147 .00198 .00218 .00405 

33 .00079 .00114 .00143 .00191 .00211 .00398 

34 .00077 .00112 .00141 .00187 .00208 .00391 

35 .00076 .00111 .00l40 .00182 .00203 .00389 

36 .00075 .0011 0 .00140 .00180 .00198 .00385 

39 .00073 .00106 .00138 .00172 .00192 .00378 

46 .00071 .001 01 .00l36 .00163 .00187 .00368 

48 .00071 .00099 .00135 .00162 .00185 .00366 

55 .00069 .00097 .00132 .00155 .00177 .00361 
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Table A3. Uncorrected strain data, T = 60°C 

t 2000 3000 3500 40UO 4500 5500 

0 .00601 .00903 .01082 .01275 .01450 .01815 
.25 .00614 .00930 .011 09 .01307 .01496 .01881 
.5 .00617 .00938 .01118 .01318 .01516 .01907 

.00619 .00946 .01130 .01330 .01536 .01940 
2 .00621 .00955 .01144 .01347 .01564 .01977 
3 .00623 .00958 .01155 .01356 .01592 .02003 
4 .00624 .00960 .01167 .01365 .01619 .02023 
5 .00625 .00961 .01172 .01370 .01643 .02040 
6 .00626 .00962 .01178 .01376 .01672 .02055 
9 .00631 .00964 .01183 .01387 .01701 .02091 

16 .00637 .00973 .01187 .01406 .01748 .02148 
18 .00638 .00976 .01192 .01411 .01757 .02160 

25 .00641 .00980 .01203 .01425 .01773 .02200 

30e .00644 .00984 .01209 .01432 .01789 .02221 

30R .00106 .00150 .00200 .00252 .00323 .00513 
30.25 .00097 .00136 .00186 .00225 .00299 .00426 

30.5 .00095 .00132 .00180 .00217 .00289 .00397 

31 .00093 .00124 .00176 .00207 .00278 .00375 

32 .00090 .00119 .00171 .00197 .00266 .00352 

33 .00088 .00115 .00167 .00190 .00255 .00338 

34 .00086 .00112 .00163 .00186 .00245 .00328 

35 .00084 .00109 .00160 .00183 .00237 .00321 

36 .00082 .00107 .00157 .00181 .00232 .00318 
39 .00080 .00104 .00153 .00173 .00222 .00304 

46 .00078 .00101 .00148 .00165 .00211 .00288 

48 .00077 .00100 .00146 .00163 .00209 .00286 

55 .00076 .00098 .00143 .00162 .00205 .00277 
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Table A4. Uncorrected strain data, T = 75°e 

t 1500 2000 3000 3500 4500 5000 

0 .00502 .00667 .01070 .01122 .01643 .01840 
.25 .00508 .00676 .01092 .01147 .01722 .01970 

.5 .00515 .00679 .01102 .01157 .01755 .02034 

.00519 .00686 .01117 .01163 .01792 .02113 

2 .00523 .00691 .01128 .01179 .01841 .02221 

3 .00527 .00694 .01136 .01190 .01880 .02305 

4 .00529 .00696 .01145 .01195 .01911 .02371 

5 .00529 .00698 .01151 .01201 .01935 .02432 

6 .00530 .00699 .01157 .01206 .01953 .02487 

9 .00534 .00703 .01170 .01220 .02005 .02628 

16 .00540 .00709 .01192 .01240 .02092 .02827 

18 .00542 .00711 .01198 .01246 .02112 .02930 

25 .00544 .00713 .01213 .01261 .02171 .03115 

30e .00549 .00715 .01224 .01270 .02205 .03225 

30R .00094 .00108 .00185 .00216 .00610 .01450 

30.25 .00086 .00101 .00153 .00195 .00523 .01195 

30.5 .00084 .00099 .00149 .00186 .00499 .01129 

31 .00081 .00095 .00140 .00175 .00471 .01018 

32 .00077 .00090 .00132 .00167 .00441 .00999 

33 .00075 .00087 .00127 .00161 .00422 .00964 

34 .00074 .00085 .00123 .00157 .00410 .00941 

35 .00073 .00083 .00122 .00152 .00399 .00920 

36 .00072 .00082 .00120 .00151 .00390 .00905 

39 .00070 .00080 .00118 .00142 .00372 .00872 

46 .00067 .00077 .00107 .00138 .00348 .00830 

48 .00066 .00076 .001 05 .00132 .00343 .00826 

55 .00064 .00075 .001 01 .00125 .00330 .00802 
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Table A5. Uncorrected strain data, T = 80°C 

t 1200 2000 3000 3500 4000 4500 

0 .00415 .00685 .01099 .01267 .01385 .01660 
.25 .00418 .00699 .01122 .01292 .01441 .01833 
.5 .00419 .00703 .01135 .01302 .01460 .01907 

1 .00420 .00708 .01148 .01315 .01489 .01995 
2 .00422 .00718 .01162 .01330 .01526 .02108 
3 .00424 .00722 .01174 .01342 .01550 .02175 
4 .00426 .00730 .01182 .01352 .01570 .02230 
5 .00427 .00733 .01188 .01360 .01589 .02272 
6 .00429 .00737 .01195 .01366 .01602 .02315 
9 .00430 .00747 .01208 . 01387 .01633 .02411 

16 .00437 .00760 .01227 .01423 .01691 .02570 
18 .00439 .00764 .01231 .01425 .01706 .02602 
25 .00442 .00774 .01237 .01454 .01744 .0271 0 
30C .00443 .00780 .01246 .01466 .01766 .02772 

30R .001 01 .00190 .00230 .00275 .00418 .00187 
30.25 .00097 .00176 .00213 .00261 .00400 .01098 
30.5 .00096 .00173 .00204 .00251 .00387 .00994 
31 .00095 .00170 .00197 .00247 .00370 .00937 
32 .00093 .00164 .00187 .00237 .00350 .00874 

33 .00092 .00157 .00181 .00233 .00338 .00836 
34 .00090 .00155 .00180 .00227 .00328 .00809 

35 .00088 .00154 .00172 .00223 .00322 .00790 

36 .00087 .00153 .00168 .00220 .00317 .00775 
39 .00082 .00149 .00162 .00216 .00306 .00740 
46 .00076 .00146 .00152 .00208 .00289 .00690 
48 .00075 .00144 .00151 .00206 .00285 .00680 
55 .00073 .00141 .00147 .00205 .00273 .00650 
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Table A6. Uncorrected strain data, T = 95°e 

t 1000 1200 1500 2000 3000 3500 

0 .00406 .00490 .00622 .00884 .01342 .01537 
.25 .00411 .00497 .00631 .00896 .01365 .01585 
.5 .00411 .00500 .00636 .00905 .01380 .01609 

1 .00412 .00507 .00645 .00915 .01400 .01632 
2 .00413 .00512 .00654 .00924 .01422 .01693 
3 .00414 .00518 .00661 .00932 .01443 .01755 
4 .00416 .00524 .00668 .00938 .01455 .01800 
5 .00417 .00529 .00673 .00943 .01464 .01842 
6 .00419 .00535 .00676 .00948 .01474 .01886 
9 .00421 .00543 .00681 .00952 .01505 .01989 

16 .00426 .00551 .00688 .00958 .01556 .02067 
18 .00428 .00552 .00689 .00960 .01569 .02083 
25 .00431 .00553 .00691 .00962 .01590 .02107 
30e .00432 .00555 .00692 .00963 .01622 .02137 

30R .00096 .00128 .00165 .00270 .00300 .00411 

30.25 .00093 .00121 .00158 .00257 .00280 .00387 
30.5 .00091 .00115 .00157 .00252 .00273 .00380 

31 .00090 .00108 .00153 .00248 .00266 .00372 

32 .00088 .00102 .00149 .00245 .00261 .00364 
33 .00086 .00098 .00145 .00242 .00255 .00357 

34 .00085 .00095 .00142 .00239 .00248 .00350 
35 .00084 .00093 .00139 .00236 .00241 .00345 

36 .00084 .00091 .00136 .00234 .00234 .00340 

39 .00082 .00090 .00129 .00224 .00227 .00330 
46 .00080 .00089 .00118 .00211 .00220 .00318 

48 .00080 .00088 .00112 .00205 .00213 .00310 

55 .00079 .00087 .00105 .00197 .00206 .00302 
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