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SUMMARY

Project 2 of Contract NAS3-20072 began in September 1977. Its objective was to
demonstrate the feasibility of using MERL 76, an advanced high strength direct
hot isostatic pressed powder metallurgy superalloy, as a full scale component
in a high technology, long life, commercial gas turbine engine. To be
consistent with Pratt &Whitney Aircraft application of hot isostatically
pressed, high strength powder metal disk alloys in such near term commercial
engines, Project 2 was directed toward component testing including spin burst
rig testing and engine demonstration testing of a JT9D first stage turbine
disk. The specific goals of this project were as follows:

o Increase the JT9D disk rim temperature capability by at least
22C e (4OF e

) over disks produced from Superwaspaloy.

o Reduce the weight of JT9D high pressure turbine rotating components
by at least 35 pounds by replacement of forged Superwaspaloy
components with hot isostatic pressed MERL 76 components.

o Reduce JT9D disk manufacturing costs by at least 30 percent relative
to Superwaspaloy disks.

Through an internally funded program, Pratt &Whitney Aircraft identified MERL
76 as an alloy capable of achieving properties comparable to Gatorized™
IN-100 in the as-HIP condition. The alloy has exhibited an improvement in
cyclic life capability with improved resistance to corrosion and at a lower
cost because of its HIP processibility.

In the previously completed Pratt &Whitney Aircraft MATE Project 1 under this
same Contract, HIP processing procedures including powder manufacture and
handling, container design and fabrication, and HIP consolidation techniques
were established for another nickel base powder alloy, low carbon Astroloy
which resulted in the technology base used to qualify astroloy turbine disks
for the JT8D engine fleet. In addition to establishing tolerances for the HIP
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cycle, inspection procedures including microstructural (thermally induced
porosity tests), ultrasonic, and dimensional methods were demonstrated. The
results of Project 1 established suitable manufacturing methods, including a
process control plan, acceptance criteria and material specification, for
fabrication of direct-HIP powder nickel alloys such as Low Carbon Astroloy for
disk applications. Project 1 and the alloy development program conducted in
house at Pratt &Whitney Aircraft, which established the chemical composition
of the MERL 76 alloy, led to the logical extension of the work conducted under
NAS3-20072, Project 2, IIHIP Manufacture of MERL 76 Disk and Seal Shapes ll

•

At the inception of the MATE Project 2, turbine disks and rotor seals were to
be analyzed by evaluating a high strength powder alloy, MERL 76, direct HIP
consolidated as in the JT10D disk configuration. After the initial group of
HIP consolidations were fabricated, significant engine design changes and the
projected unavailability of a JT10D experimental engine to test the
manufactured MERL 76 components resulted in reorientation of the program.
Consequently, although manufacturing procedures using JT10D MERL 76 turbine
disks and tangential on-board injection (TOBI) rotor seals were identified and
design allowable data using JT10D and JT9D disks were established, JT9D disk
shapes were used for all component evaluation. The target component net sonic
shape for the JT9D disk is presented in Figure 1.
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Figure 1 Target Shape for JT9D Disk
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Concurrent with the program reorientation, a Pratt & Whitney Aircraft funded
program determined that a modified MERL 76 composition (0.4' Hf, 1.2~ Nb) gave
greater latitude in the HIP consol idation temperature and improved
stress-rupture properties without any adverse effect on mechanical properties.
This modified chemistry was used to manufacture disk consolidations for the
component eval uation portion of the program consi sti ng of desi gn data
establishment, spin burst test, and experimental engine test. The modified
MERL 76 composi tion is given in Tabl e I.

TABLE I

COMPOSITION OF MERL 76

Ni Cr Co Mo Al Ti Nb Hf I Zr C Mn S P Si Fe Cu Ii Pb 0 N

Min R 11.9 111.0 2.8 4.85 4.15 1.20 0.30 0.016 0.04 0.015

Max 12.9 19.0 3.6 5.15 4.50 1.60 0.50 0.024 0.011 0.03 0.02 0.01 0.01 0.10 0.30 0.07 0.5* 2.0* 100* 50*

*ppm
R = remainder

The objective of Task I was to select a heat treatment capable of achieving
the desired properties for the alloy. The heat treatment selected was
l163·C(2l2S·F)/2 hrs./OQ + 87l·C(1600·F)/0.67 hrs./AC + 982·C(1800·F)/0.7S
hrs./ AC + 689·C(1200·F)/24 hrs/AC + 760·C(1400·F)/16 hrs/AC. Based upon the
procedures utilized to manufacture ten HIP consolidated components in Task I,
the manUfacturing process was then finalized resulting in the establishment of
a process control plan and acceptance cri-teria for MERL 76 HIP consolidated
components as given in Appendix N. Using these established criteria, three
remaining disk components were manufactured, one each for spin/burst rig test,
experimental engine test, and design data generation.

3



A second requirement of Task I was to establish lower limit design properties
for tensile (Figure 2), stress-rupture (Figure 3), 0.2% creep (Figure 4), and
notched (Kt = 2.5) low cycle fatigue properties (Figure 5). In addition axial
low cycle fatigue, fatigue crack propagation and low cycle fatigue crack
threshold data were generated. During the course of measuring the mechanical
properties, it was determined that several disks exhibited marginal rupture
life and tensile ductility due to a prior particle boundary facture mode
attributed to the presence of "golden" particles, presumably covered by
hafnium oxide in the as-recieved powder. These "golden" particles were clearly
observable at 30X using an optical microscope. For this reason, a binocular
examination of the powder is included in the Process Control Plan (Appendix N).

In Task II, one disk was manufactured into a finish-machined JT9D 1st stage
turbine disk and then spin tested. At four overspeed increments, growth
measurements (Figure 6) were taken demonstrating that MERL 76 had acceptable
growth and therefore adequate burst margin f~r rotating component applications.

In Task III, one disk was manufactured into a finish-machined JT9D 1st stage
turbine disk which is scheduled for SUbsequent experimental test in a
ground-based engine (Task IV) in December 1981 through January 1982. While the
results of the disk's manufacturing process are presented in this report, the
results of this engine test, which has not been conducted at the date of this
writing, will be reported in Volume II of this contract (CR-165550) because of
F.E.D.D. restrictions on category 2-type data.

Task Vanalyzed and compared the resul ts of direct HIP MERL 76 to
conventionally forged superwaspalotID. In adddition to di sp1 ayi ng superi or
mechanical properties, direct HIP MERL 76 met the program objectives of
increased rim temperature capability (Figure 7), reduced component weight
(Figure 8), and at least 30% reduced material cost based on 1980 costs (Figure
9) when compared to Superwaspa1o~

The results of this program have led to the conclusion that direct HIP MERL 76
disks are suitable for fabrication of components to be used in a commercial
engi ne.
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INTRODUCTION

The demand to improve engine operating economics has created a need to develop
material s that can be fabricated into disk components that are abl e to
withstand h1gher turbine inlet temperatures and greater rotor speeds. Since
component durability contributes directly to maintenance costs and since this
durabil ity derives its capabil ity from the fatigue characteristics of the
material, developing new materials having greater strength and creep
properties with superior cyclic properties would lower the operating costs of
aircraft turbine engines. The material must be compatible with low cost
fabrication techniques. The pOWder metallurgical approach was selected to
develop the properties in these advanced disk designs. Direct hot isostatic
pressi ng of the powder to a near sonic shape has been shown to be a
particularly effective method of producing low cost disks.

To establ ish production di sl< fabri cation for advanced aircraft powerpl ants,
such as energy efficient engines, several factors, such as the alloy chemistry
which is capable of achieving the required strengths, and the disk processing
which will produce HIP net sonic shape must be considered. Through an
internally funded program, P&WA identified an alloy capable of achieving
properties comparable to Gatorized™ IN-100 in the as-HIP condition. Known
as MERL 76, this alloy is of modified IN-100 base, with a nominal composition
Ni-12.4 Cr-18.5 Co-3.2 Mo-0.75 Hf-l~65 Nb-5.0 Al-4.3 Ti-0.025 C-0.02 8-0.045 Zr.

The alloy has demonstrated the potential for improvement in cyclic fatigue
1ife capabil ity with improved resistance to corrosion and at a lower cost
because of its HIP processibil ity over IN-100.

Under Project 1, manufacturi ng methods to produce direct HIP + heat treated
Low Carbon Astroloy uT8D first stage turbine disks were established for the
following areas:

o Powder manufacture and storage
o Disk shape container design and fabrication
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o Powder outgassing and transport from storage to disk shape container

o HIP consolidation cycle tolerances

Based on the results of Project 1 and the alloy development program at Pratt &
Whitney Aircraft, MERL 76 with a modified chemical composition was selected to
demon~trate its feasibility as a full scale component in a high technology,
long life, commercial gas turbine engine. The specific goals of project 2 were
as follows:

o Increase the JT90 disk rim temperature capability by at least 22C e

(40F e
) over disks produced from Superwaspa10y.

o Reduce the weight of JT90 high pressure turbine rotating components
by at least 35 pounds by replacement of forged Superwaspaloy
components with hot isostatic pressed MERL 76 components.

o Reduce JT90 disk manufacturing costs by at least 30 percent relative
to Superwaspaloy disks.

The general approach that was followed to achieve these goals was to HIP MERL
76 to a JT9D first stage turbine disk configuration and demonstrate its
component integrity through an engine test in an advanced commercial engine.

Project 2 comprised the following tasks:

Task I identified the manufacturing procedures necessary to produce MERL 76
turbine disks and tangential on-board injection rotor seal s, and established
design allowable data using these components. All turbine disks and rotor
seal s were manufactured by the Udimet Powder Division of Special Metal s
Corporation. These disk.s used a JT1 00 sonic shape and a JT9D sonic shape. An
initial group of consolidations was used to establ ish and refine hot isostatic
pressing conditions and a heat treatment to achieve target properties. The
resul ts of thi s i ni tial group were used to ref; ne the manufacturi ng process
which led to the generation of a process control plan and acceptance criteria
to HIP MERL 76 components. The next three disks were used to establish design
allowable properties data.
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Task II HIP consolidated and finish machined one disk for spin burst rig
testing. The turbine disk was tested at five spin speeds to 140.5 percent
overspeed at which point the rig fiiled before the disk. Task III HIP
consolidited and finish machined one disk for a ground bised JT9D experimentil
engine test. Task IV will subject one turbine disk to full scale JT9D
experimental engine test, and Task Vwill provide the post-test analysis of
the entire program. The post-engine test analysis, including visual,
fluorescent penetrant, and dimensionil inspection of the turbine disk engine
tested in Task IV will be performed upon completion of in engine test and will
be reported with the engine test data under separate cover.

Under AFWAL Contract F33615-77-C-5187, Pratt &Whitney Aircraft demonstrated
the fabrication of gas turbine engine disks of MERL 76 by near net shape hot
isostatic pressing. This work established the feasibility of reducing the
consolidated disk weight through a refined contiiner design and computer-aided
dimensional analysis.

TECHNICAL PROGRAM

TASK I - MANUFACTURING PROCEDURES AND DESIGN ALLOWABLE DATA

Overview

Task I identified the manufacturing procedures necessary to produce MERL 76
HIP consolidated components and established design allowable data. In the
original program (Figure 10), Task I consisted of the HIP manuflcture of MERL
76 JT10D turbine disks and TOBI (tangential on-board injection) rotor seals
(Figures 11-12). Because of significant design changes and the univii1ibi1ity
of a JT10D experimentil test engine, the program was restructured as shown in
Figure 13, to fabricate only disks ifter an initial group of three JT10D disks
and three TOBI seals were consolidated. A total of seven turbine disks and
three TOBI rotor seil components were consolidated in Tlsk I which were used
to estiblish and refine HIP process conditions and to develop i heat treatment
to achieve target properties (Table II). Five of these disks had a JT10D sonic
shape (see Figure 11) while the remaining two disks had a JT9D sonic shape
(see Figure 1).

11



PHASE I
ESTAIUSHMENT OF MANUFACTURING

P~OCEDU~ES

SELECTION OF MANUFACTURING PAAAMETERS

ROCESS SPECIFICATION

Figure 10 Task I Flow Diagram - Phase I - Manufacturing Procedures, Phase

II - Design Data
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Figure 12
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T....LE II

MECHANICAL P~O~ERTY REQUIREMENTS
FOR HIP MERL 76 POWDER SEALS AND DISKS

TENSILE GOALS

0.2\ Yield

Strengtil

MPa (Ks 1)

U1 timate

Tensile Strength

I~Pa (Ksi)

Elongation Reduction in

(\) Area (\)

21"C (70"F) Tensi 1e 1034 (150)

704"C (13OO"F) Tensile 1014 (147)

148~ (215)

1172 (170)

15.0

12.0

15.0

12.0

732"C (1350"F)1

638 Wa (92.5 Ksil

704"C (13OO"F)1

552 MPa ('0 Ks i)

STRESS-~UPTURE GOALS

Life

23 hrs.

C~EEP GOALS

Time to 0.2\ Elongation

100 hrs.

5

After the first group of three JT100 turbine disks and three TOBI seals were

HIP consolidated in Task I, a P&WA funded program detennined that a modified

MERL 76 composition (Table III) would give greater latitude in the HIP

conso1 idation temperature and improve stress-rupture 1ife without any adverse

effect on mechanical properties.(l) This modified composition had been

selected for evaluation in Task I, Phase II (Design Data, see Figure 10) as

well as in all succeeding tasks. To provide design data at an early date while

JT90 shape containers were being fabricated, two JT100 disk containers were

HIP consolidated using the modified composition. The evaluation of these two

JT1 00 di sks indicated that at elevated temperatures (>650·C/1200·F) tensile

and stress-rupture properties were low due to contaminated powder.

In order to minimize the program schedule delay associ'ated with the

procurement of new powder, avail able powder was used in the fi rst group of two

JT90 consolidations so that dimensional data infonnation could be applied to

(l) Evans, O. J. and Eng, R. D. "Development of a High Strength Hot

Isostatically Pressed (HIP) Disk Alloy, MERL 76", to be published in

Modern Developments in Powder Metallurgy, Vol. 14, pp. 51-63, 1981.

14



T~LE III
COf>llOSITION OF MERL 76 VIM HEAT 7-1 Hl01

MERL 76 Tilrget Chel,Jistry

Originill Modified

Ni

Cr

Co

Mo

Al

Ti[:-------- ---~.~.

R

11.9 - 12.9

18.0 - 19.0

2.8 - 3.6

4.85 - 5.15

4.15 - 4.50

1. 50 - 1.80

0.060 - 0.90

R

11. 9-12.9

18.0 - 19.0

2.' - 3.6

4.85 - 5.15

4.15-4.50

1.20 - 1.60 I
0.30 - 0.50

Zr

1'1n

S

P

Si

Fe

Cu

8i

Pb

o
N

*ppm

R= remil i nder

0.016 - 0.024

0.04 - 0.08

0.015 - 0.03

< 0.02

<0.01

<0.01

<0.10

<0.30

~0.07

<0.5*

< 2.0*

<100.0*

<50.0*

0.016 - 0.024

0.04 - 0.08

0.015 - 0.03

< 0.02

<0.01

<0.01

<0.10

<0.30

< 0.07

<0.5*

< 2.0*

< 100.0*

< 50.0*

the next iteration of container design. In this next and last iteration (Tasks

II and III) of three JT9D disk shapes, at least two finish-machined disk

components were requi,red for component tests while the remaining disk was
designated for design data (Task 1).

Ingot and Powder Manufacture

In the entire program, nine heats of VIM material were used to manufacture 15

HIP conso1 idated components. The ingots were supp1 ied by Special Metal sand

Howmet to the powder manufacturers, Udimet Powder Division of Special Metals

and HolOOgeneous Metal s Inc., respectively. The composition for each heat of

material is given in Appendix A. Udimet atomized VIM ingots containing hafnium

while HMI preferred to add the hafnium to the mol ten metal just prior to

atomization.

After the first group of three JT10D turbine and three TOBI seals were
manufactured, the composition of MERL 76 was sl ightly modified (1.4% Nb, 0.4%

Hf) to provide much greater latitude in processing parameters. In order to

conserve as much material as possible, new VIM ingots were cast using both
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virgin e1errents and revert material (powder) of the original composition. Two
VIM heats of MERL 76 composition (7-11802 and 7-11861) consisting of 55

percent virgin e1errents/45 per cent revert MERL 76 (original composition)
powder were cast. The chemistry analysis of this roodified composition of MERL

76 is reported in Appendix A.

The VIM ingots were converted to powder by argon atomization (Udimet) and

hydrogen atomization (HMI). The resultant powder blend chemistry with the

corresponding VIM ingot melt stock is also presented in Appendix A and Table

IV. Target chemistry was met for all elements except for oxygen content in
three blends. For blends that displayed an oxygen content of ~10 ppm over the

allowable limit (100 ppm)t acceptance was contingent upon the oxygen content

of the HIP consolidation conforming to target requirements. The powder was

accepted since adsorbed oxygen could be removed during dynamic vacuum

degassing of powders. A fourth blend (BN 010680)t which was atomized by HMl t
initially exhibited inordinately high oxygen content (180 ppm). Since finer
size powder tends to exhibit higher oxygen content t the sieve analysis results
(Appendix B) which were determined concurrently with powder chemistry were

next examined. Sieve analyses indicated that BN 010680 contained approximately
20% more finer mesh powder (-400) than typically measured for other -80 mesh
MERL 76 powder analyzed. To determine the effect of this larger fraction of
finer powder, additional oxygen analysis (Table V) was performed on three

different mesh sizes; -100 mesh, +400 mesh, and -400 mesh. The analysis
showed that the finer mesh (-400 mesh) displayed a considerably higher oxygen

content (209 ppm vs. 74 ppm), thus confirming the relatively high oxygen level
observed for the bulk (-80 mesh) analysis. The initial high oxygen result (180

ppm) could have been a result of segregation of powder wherein the sample

consisted primarily of fine -400 mesh powder.

The powder was further characteri zed by scanni ng el ectron microscopy

illustrating the dendritic structure of each particle as well as a number of
irregular shaped particles (Figure 14).

16



TABLE IV

COMPOSITION OF HMI MERL 76 POWDER PLANNED FOR USE IN TASKS II/III

Element

Ni
Cr
Co
Mo
A1
Ti
Cb
Hf
B
Zr
C
N
o

Target

R
11.9-12.9
18.0-19.0
2.8-3.6

4.85-5.15
4.15-4.50
1 .20-1 .60
0.30-0.50

0.016-0.024
0.04-0.08

0.015-0.03
50* Max

100* Max

..,1 010680

R
11.9
17.9
3.2
4.9
4.3
1.32
0.42
0.018
0.07
0.024
25*
180*

*PPM
*'*TypicII1 Ana1ysi s for -80 mesh MERL 76 powder

TABLE V

OXYGEN ANAl YSIS

Samp1 e No. Mesh Size PPM Oxygen

1 -100 143
149
140
136

2 +400 68
74

-400 207
209

3 HIP 144
Consol-
i dati on

17



SCanning Electron Micrographs of MERL 76 Powder Showing

Predominantly Spherical-Shaped Particles. Note the Dendritic

Structure in the Atomized Powder
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Contai ner Fabri cation and Fill i ng

The Udimet Powder Division of Special Metals, Ann Arbor, Michigan, was

selected as a major subcontractor for this project. Udimet participated as a

subcontractor under the MATE Project 1, HIP Net Sonic Astro10y Disk program

and produced the powder used by Pratt &Whitney Aircraft in its MERL 76 alloy

selection program. Udimet was responsible for container fabrication, powder

production, except for one blend which was atomized by Homogeneous Metal s,

Inc., conso1 i dation, and post-conso1 i dation eva1 uation i nc1 udi ng dimensional

analysis and heat treatment.

The front and rear faces of each container were formed by shear spinning of a

0.203 cm (0.080 in) thick SAE 1008 sheet. The inner diameter bore segment of

the JT10D disk components consisted of a 0.63 cm (0.25 in) wall thickness

pipe. Shear spinning was accomplished in multiple steps utilizing metal

tooling. The fill tube was made of 0.125 cm (0.049 in) wall, 0.90 cm (0.75 in)

outer diameter seam1 ess SAE 1015 tube.

Immediately prior to welding construction, each container detail was degreased

and washed in acetone. Each detail was assembled in a fixture and GTA welded

at the location shown in the schematic drawings (Figures 15-16) for the seal

components and for both JT10D and JT9D components. During welding, the entire

container was purged with argon to minimize oxidation of the steel. The

assembled containers were then leak-checked by pressurizing to 137 MPa (20

psig) while submerged in a water-soap solution.

Each container was filled under vacuum with powder using a transport facility

shown schematically in Figure 16. The powder was fed into the top of the

powder transport facility via a tote bin and evacuated to <151-tm of Hg. As

the powder was metered from the storage bi n, it was vi bra ted to better expose

the powder particles for vacuum outgassing. During container filling, the

vacuum level in the powder transport facil ity was maintained at <151JID Hg.

After each container was filled with powder, the container was valved-off to

maintain a vacuum and transferred to a station for hot vacuum outgassing at
• ( .) , -5316 C 600 F • After a pressure of 10 torr was achieved and maintained for
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at least 12 hours, the conta;ner was sealed by cr;mp;ng and fus;on we1d;ng of
the f;ll tube. Each HIP conso1;dat;on ;dent;ty and correspond;ng powder we;ght
and dynam;c degass;ng parameters are given ;n Appendb C.

- -'1.---

~~--------<i~-------

lNTEGl'tAL TeST CQU,"ON LOCATIO

INTEGP'l:Al TEST'COUI'ON LOCATION

• Shaped COf/tainer - F(mm'd 304L 0.075" rO.19 ('m) Shel"
• ID Bore .f04L. 0.025 11 (JJn4 em) Thick. Pipe

• Container Material -- Formed J04L 0.075"
(0./9 em) Sheet

(aJ (bJ

JT9D

(cJ

Figure 15

20

Container Details for JTlOD and JT9D Seal Components
(aJ Target as-HIP TOBI seal shape container soowing location of

two welds
(bJ Target as-HIP disk shape container smwing location of five

welds
(cJ Target as-HIP disk shape container smwing locations of

three welds
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Powder Process Facility

HIP Consolidation and TIP (Thenna11y Induced Porosity) Testing

The initial group of five TOBI seals and three JT100 turbine disks of original

MERL 76 chemistry (0.7S Hf, 1.6 Nb) was all HIP consolidated at 1169-C

(213S-F)/103 MPa (lSKsi)/3 hours. The appearance of the as-HIP consolidated

shapes of the JT100 di sl< and TOBI seal sis shown in Fi gures 17-18. Of thi s

first group of consolidations, the containers of two TOBI seals (s/n 34 5-1

and 3S 5-3) failed prior to HIP consolidation. The failure of one seal was

obvious because the container bulged, while the failure of the second seal was

determined by a thermally induced porosity (TIP) test. A careful visual

examination of the failed as-HIP seal consolidations showed a crack in the

heat affected zone of the fill-tube/container weld. More care was taken in

we1 di ng the subsequent rep1 acement seal s to assure sound fUll-penetration

welds.
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a

Figure 17 HIP Consolidation of Disk 34~1

(a) Front view (b) Rear view (c) $.ide view
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___________~..n • _

Front and Rear View of Seals 35S-3 (left) and 35S-2 (right)Figure 18

23

*The grain size determination (Kalling's at 100X and AG2l at 1000X) was the

first test conducted on the fill-tube. The grain size for each of the first
group of five TOBI seals and three JT10D disks, which comprised original MERL

After HIP consolidation, the fill-tube was removed to determine grain size

while another portion was given a TIP (thermally induced porosity) test to
determine the quality of the HIP consolidation. A TIP test consists of
microexamination of a segment (usually the fill tube) etched with Kallings at

*lOOX and AG2l at lOOOX of the consolidation which had been exposed to a

temperature near the HIP consolidation temperature. The level of porosity is

determined by a point-count technique. The coalescence of gas during the high
temperature exposure of the TIP test enables determination of the
effectiveness of powder outgassing during container filling and the integrity
of the container during HIP consolidation. Two types of porosity can be
observed. Firstly, "hollow" particles are a result of inert gas entrapped
during gas atomization in some of the particles. Secondly, porosity is
observed at the prior particle boundaries (triple point) and is associated

with container (or weld) failure prior to consolidation of the powders. Gas
which seeps into the container can inhibit powder particle consolidation.

*AG2l mixture: 50 Lactic Acid - 30 HN03 - 2 Hf



76 chemistry (0.75Hf, 1.4Nb), ranged from ASTM 9-11. A micrograph showing a
typical grain size and microstructure for this group of consolidations is
shown in Figure 19. A second microexamination was conducted on a segment which
was thermally exposed at 1170-C (21S0-F)/4 hrs./AC. The resultant
microstructure showed 1ess than 0.3% porosity associated wi th IIholl owll

particles for all three disks and one of three TOBI seals. A typical
microstructure after thermal exposure is given in Figure 20 illustrating sound
HIP consolidation. For two seals (34 S-l, 35 S-3), the TIP tests indicated
IItriple pointll porosity which suggested container failure prior to powder
consolidation (Figure 21). Each disk that was consolidated and its resultant
grain size is given in Appendix D.

Since the MERL 76 composition had been modified to permit HIP consolidation to
a slightly coarser grain size for improved notch stress-rupture properties,
disk 350-3 was re-consolidated at 1196-C (2185-F)/103 MPa (ISKSI)/3 hrs. to
obtain coarser grain (ASTM 6-8) material. Testing of this disk was to provide
data on coarse grained material earlier than scheduled. However, the grain
size of the re-HIP consolidation was too large as shown in Figure 22. A close
examination of this coarse grain microstructure revealed irregularly shaped
eutectic gamma prime phases, indicating incipient melting had occurred (Figure
22(c). As a result of this brief studY, the HIP consolidation temperature
range was restricted to between 1169-C (213S-F) 1191-C (2175-F) to limit the
maximum grain size (ASTM 6) for all subsequent consolidations, as well as to
avoid further occurrence of incipient melting.

Accordingly, the remaining group of two modified JT10D and five JT9D turbine
disks were HIP consolidated at 1182- (2160-F)/103 MPa (lSKSI)/3 hours and
yielded the desired grain size of ASTM 8-10.

TIP tests revealed that each of these consolidations was sound and free of
IItriple pointll porosity suggesting that the container did not fail during HIP
consolidation. The grain size and TIP test results that are typical for these
consolidations are shown in Figures 23 and 24.
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Figure 19 Photomicrographs of Disk 34~1 Showing the As-HIP (1169-1177oC
(2135-2150oF)/103 MPa (15 ksi)/3 hrs) Microstructure of the
Fill Tube. The Grain Size is ASTM 9-11.
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Microstructure of the Fill Tube of Disk 35D-2 (Top) and 35D-3
(Bottom) Thermally Induced Porosity (TIP) Tested at l1700 c
(2l50oF)/4 hrs/AC. Less than 0.3% Porosity (Arrows) associated
with hollow particles was observed.
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Figure 21 Microstructure of the Fill Tube of Seal 35S-3 Thermally Induced
Porosity (TIP) Tested at l1700 C (2l50oF)/4 hrs/AC. Triple
point porosity indicated that container failed prior to HIP
consolidation.
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(A)

(el

Figure 22

(8)

As-HIP Microstructures of
MERL 76 Disk 35D-3

a. Init1.1 HIP at 11690 C
(213~")-1177oC

(21500F)/ 103 MPa (15
ksiJ/3 Hrs. Grain Size 
ASTM 10-11

b. & c. Re HIP at 11690 c
(218SoFJ-1204oC
(2200oFJ/ 103 MPa (15
ksiJ/3 Hrs. Grain Size
ASTM 4-6. Note the
irregularly shaped gamma
prime indicating incipient
melting has occurred.



Figure 23

•

Figure 24

As-HIP Microstructures of Disk 160-3 Showing a Grain Size of
ASTM 8-10 Was Achieved

•

..
•

•
..

100~.!!!.l

Microstructure of Material Removed from the Fill-Tube of Disk
160-1 and Heat Treated at l1740 C (2l450 F)/4 hrs/AC Showing
Only the Thermally Induced Porosity Related to ·Hollow· Particles
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Dimensional Analysis

An important aspect of direct HIP technology is the accuracy to which a HIP
consolidation can approach a target sonic shape and yet still yield a usable
component. Accordingly, dimensional data were determined utilizing a high
accuracy automated mechanical measuring system in conjunction with an
automated computer system for recording data on paper tape. The data collected
were then transmitted to a second computer which contained a program to
process the dimensional data.

A vertical probe with three degrees of motion was manually placed on the face
of each disk. Multiple scans were taken approximately 30· apart on the
circumference of each component. One face was measured in a single set-up and
the disk was then inverted to measure the opposite face. Only one of the first
group of three full-size JT10D consolidation and two of the three TOBI seals
were dimensionally analyzed indicating that the consolidations were
approximately 25.4 cm (0.100 in.) over target shape.

More detailed dimensional analysis was performed on the disks which were

finish-machined for subsequent engine and rig test. Although the as-HIP
consolidation did not yield a sonic shape, two of the three disks in this
group yielded a finish-machined disk as will be discussed in greater detail
later in Tasks II and III. The lack of dimensional control on this group of
disks may have been related to the use of relatively large size alumina balls
( ~1.25 cm/.5 in) rather than tooling to support the disks during HIP

consolidation Although previous consolidation utilized both metal tooling and
smaller size alumina balls (~.64 cm/.25 in), no significant differences in
shrinkage behaviour were observed.

Non-Destructive Inspection

Ultrasonic inspection was conducted to determine the quality of consolidation
by utilizing the following components:
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o Tektronix Mk 111/7603 oscilloscope

o 1.27 cm (0.5 in) X 10 MHz transducer focused at 7.6 cm (3 in)

o 1.91 cm (0.75 in) X 5 MHz transducer focused at 20.3 cm (8 in)

o 2 (2/64") diameter flat-bottom hole test blocks

Sonlc inspections were conducted on components in the fully heat treated
condition with containers intact but grit blasted to remove the oxide scale.
No rejectable sonic indications were found.

Additional non-destructive tests were conducted on the two JT9D disks which

were designated for spin/burst rig tested (Task II) and for experimental
engine testing (Task III) in a land-based engine. After ,machining to as close
to sonic shape as possible, both disks underwent chemical etch for grain size
and surface discontinuities examination and then followed by fluorescent

penetrant inspection. No rejectable indications were observed. After machining
to final dimensions per blueprint, both disks were given a light anodic etch

to examine for any residual can material and then another fluorescent

penetrant inspection. Again, no rejectable indications were found.

Heat Treatment Selection

It has been reported that strength is affected by such factors as section
size, geometry, and mass for gamma prime strengthened nickel-base super
alloys. For alloys such as Low Carbon Astro10y(2), these factors are

influenced by cooling rate response during solution and aging heat treatments.
This effect was thus the first factor investigated in developing the

recommended heat treatment for MERL 76.

(2) Eng, R.D. and Evans, D.J. "Manufacture of LC Astro10y Turbine Disk Shapes
by HIP" Mate-Project 2, NASA CR-135409, March 1978.
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o Solution Heat Treat Selection

To select a cooling rate from the solution heat treat the effect on tensile
strength of four different cooling rates was evaluated. The different quenches
used were: oil quench, 177-C (350-F) salt quench, 343-C (650-F) salt quench
and forced air cool from a 1163-C (2125-F) solution temperature. Primary
evaluation was made on quarter sections of a large disk (10.2 cm/4in. thick,
314 Kg/690 lbs), while the effect of an oil quench or a forced air cool cycle

was verified on a smaller TOB1 seal component (54Kg/120 lbs). The selection of
the ll63-F (212S-F) solution temperature was based on a prior solution heat
treatment evaluation of MERL 76 conducted at Pratt &Whitney Aircraft.
Mechanical properties were determined by removing specimens from both thick

(bore) and thin (hub) regions from each quarter section and from the
relatively thin section of the TOBI seal. Each quarter section and the TOB1
seal received the same two-step precipitation hardening cycles. The best age
cycle was evaluated after the best cooling rate was established in this
initial heat treat evaluation. The cycle was applied after each of the

solution heat tr~at cycles as shown below:

(A) 1163-C (212S-F)/2 hrs./RAC + 649-C (1200-F)/24 hrs./AC + 760-C (1400-F)/16

hrs./AC.

(B) 1163-C (2125-F)/2 hrs. furnace cool at SSC-(lOOF-) per hour to 1121-C
(205u-F)/0.5 hr./oi1 quench + 649-C (1200-F)/24 hrs./AC + 760-C
(1400-F)/16 hrs./AC.

(C) 1163-C (212S-F)/2 hrs. furnace cool at SSC·(100F-) per hour to 1121-C

92050·F)/O.5 hr./sa1t quench at 343-C (650·F)/AC + 649-C (1200·F)/24
hrs./AC + 760·C (1400-F)/16 hrs./AC.

(0) 1163-C (212S-F)/2 hrs. furnace cool at S5C-(lOOF-) per hour to 1121·C

(20S0-F)/0.5 hr./salt quench at 177-C (3S0-F)/AC + 649-C (1200-F)/2400
hrs./AC + 760-C (1400-F)/16 hrs./AC.

(E) 1163·C (212S-F)/2 hrs./OQ + 649·C (1200-F)/24 hrs./AC + 760·C (1400·F)/16
hrs/AC.
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Elevated temperature tensile results indicated a strong effect of cooling rate
on tensile strength which was prominently demonstrated for thick sections
tested at temperatures from (621·C(1150·F)- 704·C(1300·F)). Figure 25
indicates that the highest tensile strengths were achieved for material given
an oil quench followed by a 343·C(650·F) or 177·C(350·F) salt quench. Both

salt quenches gave similar strengths but were approximately 35 MPa (5 ksi)
lower. A forced air cool yielded the lowest strengths, approximately 70 MPa
(10 ksi) lower than oil quenched thick section materials. For material tensile
tested at room temperature, the cooling rate effect on strength was not as
prominent. In fact, material given either an oil quench or 177·C (350·F) salt
quench gave better properties than the 343·F (650·F) and forced air cool which
displayed a strength deficiency of 35 MPa (5 ksi) and 55 MPa (8 ksi),
respectively, as also shown in Figure 25. A few stress-rupture specimens for
each heat treatment were tested to observe any obvious trends. Testing at
732·C (1350·F)/655 MPa (95 ksi) indicated that the rupture strength did not
appear to be significantly dependent upon cooling rate (see Figure 25A). A
detailed compilation of both tensile and stress-rupture properties is given in
Appendix E.

For thin section material, an oil quench still gave the best tensile strength
but the difference between both salt quenches and forced air cool were minimal
as shown in Figure 26. Test results from the rapid air cooled TOBI seal are
included in the discussion of thin sections. The one group of specimens that
gave anomalously high tensile strengths for material given a forced air cool
can be explained by specimen location. The group of two specimens were removed
from near the surface rather than from the center of the cross section as in
the case for all other specimens. Figure 26A shows that stress rupture
strengths of thin section were not significantly affected by cooling rate.
Detailed tensile and rupture strengths are included in Appendix E.
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A comparison of tensile strength for both thin (38 cm/l.S in) and thick (10.2
cm/4 in) section material is shown in Figure 27. The oil quench gave the best

strength for both section sizes while material given a forced air cool
displayed the lowest strengths (93 MPa/135 ksi at 62l·C/llOO·F) for thick

section. Both salt quenches produced similar strengths (104 MPa/148 ksi) for
thin sections but the l77·C(350·F) gave slightly better properties for 10.2 cm

(4 in thick) material.

1172 (170) o Oil Quench
Vl

D 177C (350F) Silt

"" 6. 343C (650F) Silt
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~ 11 03 (160)
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1 5 11 ;>0 . 12
(0.20) (0.79) (1.77) (3.14) (4.91)

Section Size, cm2 (in2)

Figure 27 62loC(11500 F) Tensile strength as a Function of cooling Rate
and Section Size

To assess the microstructural response to the various cooling rates, specimens

were removed from the bore (thick) and hub (thin) section of each of the four
fully heat treated, disk quarter sections. Figures 28-30 indicate that the
matrix cooling gamma prime for the material forced air cooled (heat treat A)
was coarsest (O.S,."m) while that for 163·C (325·F) salt quench (heat treat D)
and oil quench (heat treat B) was finest (0.1 ,."m). The 343·C (650·F) salt

quench (heat treatment C) provided an intermediate size (0.2,."m) matrix
cooling gamma prime. Based upon these observations, the cooling rate for these
relatively large sections (10.2 cm/4 in. thick) can be listed in descending
order as follows:
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Micrographs of the Bore (Thick) Region of a Quarter Section of
Disk 34~1 Heat Treated at 11630C(21250F)/2 hrs/RAG +
649°c (1200oF)/24 hrs/AC + 760°C (1400oF)/16 hrs/AG
Showing the Matrix Cooling Garruna Pr.ime Size (Arrows) To Be About
0.5 p.m

Figure 28



Micrographs of the Bore (Thick) Region of a Quarter Section of
Disk 34~1 Heat Treated at l1630 C (2l2SoF)/2 hrs Furnace
Cool at SSCo(lOO~)Per Hour to l12loc (20S0oF)/O.S
hr/Salt Quench at 177°C (350oF)/AC + 649°C (1200oF)/2400
hrs/AC + 760°C (1400op)/ 16 Hrs/AC Showing a Matrix Cooling
Gamma Pd.me (Arrow) of Approximate.ly O. .I fJ-Tn

Figure 29
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Pigure 30 Micrographs of the Bore (Thick) Region of a Quarter section of
Disk 34D-1 Heat Treated at 11630C (21250F)/2 hrs Furnace
Cool at S5Co( 100.,..0) Per Hour to 11210c (20500F)/0.5
hr/Oil Quench + 649°c (12000F)/24 hrs/AC + 7600C
(14000F)/16 hrs/AC Showing a Matrix Cooling Gamma Prime Size
( Arrow) of Approximately 0.1 fJ-m



a Oil quench and 177·C (3S0·F) salt quench* (fastest)

a Forced air cool (slowest)

Similar relationships between microstructure and cooling rates were observed
for the thin hub sections (3.8 cm/1.S in. thick) as shown in Figures 31-33.
The matrix cooling gamma prime for thinner (hub) section was proportionately

finer than that for the thick (bore) section. The difference in matrix cooling

gamma prime size between the 343·C(650·F) salt quench and 163·C(32S·F) and oil
quench appeared negligible (0.15fLm vs. 0.1 fLm).

A comparison of thin with thick section microstructure showed that the matrix
cooling gamma prime was generally more uniformly precipitated in thin
sections. This is probably attributable to the much faster cooling rates for
thin sections.

The microstructure for TOBI seal 3SS-2 (thin section) given an oil quench

(heat treat B) is given in Figure 34. Electron micrographs show a high volume

of extremely fine, barely resolvable gamma prime which contributed to the
observed high tensile strength.

o Stabilization/Aging Cycle

Having selected oil quench as the best cooling rate from the solution heat
treat temperature, the next step in heat treatment selection was to determine
the post-solution heat treat cycle which achieved a good balance between
strength and ductility. In this evaluation, a two step sequence
(649·C(1200·F)+ 760·C(1400·F) with exposure times of up to 48 hours was

selected with the rationale that the initial lower temperature step would
provide nuclei for the subsequent higher temperature precipitation hardening
step. The second approach was to evaluate a stress relief cycle for any

* The cooling rates were considered comparable for approximately 10.2 cm (4
in) thick section size since the difference in matrix cooling gamma prime size
and properties were slight.
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Figure 31 Micrographs of the Hub (Thin) Region of a Quarter Section of
Disk 34~1 Heat Treated at l1630 C (2l250 F) 2 hrs/RAC +
649°C (1200oF)/24 Hrs/AC + 760°C (1400oF/16 hrs/AC
Showing a Matrix Cooling Gamma Prime (Arrow) of Approximately
0.3 fLm
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Figure 32

42

Micrographs of the Hub (Thin) Region of a Quarter Section of
Disk 34D-1 Heat Treated at 11630C (212SoF)/2 hrs Furnace
Cool at 5SCo(l00~) Per Hour to 11210c (20S0oF) /0. S
hr/Sa1t Quench at 177°C (3S0oF)/AC + 6490C (1200oF)/2400
hrs/AC + 760°C (1400oF)/ 16 hrs/AC Showing a Matrix Cooling
GalTUT/a Prime Size (ArrCM) of O.1fLm



Figure 33 Micrographs of the Hub (Thin) Region of a Quarter Section of
Disk 34~1 Heat Treated at l1630C (2l2SoF)/2 hrs Furnace
Cool at 55CoC(lOOpO) Per Hour To l12loc (20S0oF)!O.S
hr/Oil Quench + 649°c (1200oF)/24 hrs/AC + 7600C
(l400oF)/16 hrs/AC Soowing a Matrix Cooling GaJTlTla Prime Size
(Arrow) of 0.1 fJ., m
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Figure 34

44

Micrographs of TOBI Seal 35S-2 Heat Trp~rpn at l1630C
(2l250F)/2 hrs Furnace Cool at 55Co(lOO~) Fer Hour to
l12loC (20500F)/O.5 Hr/Oil Quench + 6490C (12000F)/24
hrs/AC + 7600C (14000F)/16 hrs/ AC Showing a High Volume of
Matrix Gamma Prime (Barely Resolvable) As Indicated by Arrows



residual stresses that may have been retained from oil quenching. Tensile and
stress-rupture specimen blanks were removed from the oil quenched disk 350-3
(1163·C(2l2S·F) for 2 hrs/OQ). These blanks were given one of the aging heat
treatments shown in Table VI.

TABLE VI

AGING HEAT TREATMENTS APPLIED TO DISK 35D-3

Identi fication

a

b

c

d

e

f

9

h

j

Heat Treatment

649·C (1200·F)/24 + 760·C (1400·F)/8

649·C (1200·F)/24 + 760·C (1400·F)/16

649·C (1200·F)/24 + 760·C (1400·F)/48

649·C (1200·F)/8 + 760·C (1400·F)/16

649·C (1200·F)/24 + 788·C {1450·F)/8

649·C {1200"F)/24 + 816·C {1500·F)/8

760·C {1400·F)/48

871·C (l600·F)/O.67 + 982·C {l800·F)/O.75 +
649·C (1200·F)/24 + 760·C {14oo·F)/16

871·C {1600·F)/1 + 649·C {1200·F)/24 + 760·C
{l400·F)/16

649·C {1200·F)/24 + 760·C {1400·F)/16 + 871·C
(16oo·F )/1

The specimens given the direct two-step age were the first group to be
analyzed. Figure 35 summarizes the 621·C (1150·F) tensile strengths displayed
after the various heat treat cycles. A 760·C (1400·F) age provided the highest
ultimate and yield strength compared to either the 788·C (1450·F) or 816·C
(1500·F) aging cycle. The strength was further increased by 35 MPa (5 ksi)
when the exposure time at 760·C (1400·F) was increased to 16 hours.
Incorporating an intermediate exposure of 871·C (1600·F) and 982·C (1800·F)
for a stress relief for the quenched material in the direct two-step age did
not adversely affect the properties, Figure 35(c}. The average tensile
properties for all test temperatures and for all aging cycles evaluated are
given in Fi gures 36-41. The results indicate heat treatments consisting of an
intermediate age cycle (871·C(1600·F)/lhr - 982·C(1800·F)/.75 hr followed by a
two-step precipitation age at 649·C (1200·F}/24 hrs + 760·C (1400·F)/16 hrs.
(i.e., h identified in Table VI) produced the best combination of strengths
for all test temperatures used. A detailed compilation of the tensile results
is given in Appendix F.
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Figure 36 Average 621°c (llSOOF) TensiIe Strength oF. Specimens Removed
From Bore of Disk 35D-3 Solution "eat Treated at l1630 c
(2l2SoF)/ 2 hrs/OQ + Agea at Various Cycles
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Figure 37 Average 621°C (1150oF) Tensile Elongation of Specimens
Removed from Bore of Disk 351>-3 Solution Heat Treated at
116.3°c (2l2SoF)/2 hrs/OQ + Aged at Various Cycles
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Figure 38 Average Room Temperature Tensile Strength of Bore specimens
Removed Prom Disk 35D-3 Solution Heat Treated at l1630 C
(2l250 F)/2 hrs/OQ + Aged at Various Cycles
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AGING HEAT TREATMENT

Average Room Temperatu.re Elongation of Bore Specimens Removed
from Disk 35D-3 solution Heat Treated at 11630 C (21250 p)/2
hrs/ 00 + Aged at Various Cycles
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Averaged 704°C (13000 p) Tensile strength of Specimens
Removed from Bore of Disk 35D-3 Solution Heat Treated at
l1630 C (21250 p)/2 hrs 00 + Aged at Various Cycles
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AGING HEAT TIIEATMENT

Average 704°c (1300oF) Elongation of Specimens Removed from
Bore of Disk 35D-3 Solution Heat Treated at 11630 c
(21250 F)!2 hrs!OO + Aged at Various Cycles

Stress-rupture testing was conducted for a few select heat treatments.
Material given either a direct two-step age or a stabilized + direct age
displayed comparable rupture lives as shown in Table VII.

TAilLE VII

DISK 350-3 STRESS RUPTURE PROPERTIES
732"C (l3SO"F)/655 ffli (95.0 ksi)

Identi ficition

c-A.

c-B
j-2A.

j-21l
h-41
h-42
i-45
i-46

Target Hi n

c.

h.

i.

j.

Life - Hrs. S EL Specimen Locition

25.9 NOTCH Fi i1 ure Ilore
44.8 9.1 Bore
56.3 NOTCH Fiil ure Rim
42.8 NOTCH Fiil ure Rim
47.6 9.6 Rim
43.2 NOTCH Fiil ure Rim
49.4 13.4 Rim
41.4 NOTCH Fiil ure Rim
23.0 5.0 it 732'C{1350'F)/638 MPi (92.5 ksi)

649"C{1200"F)/24 + 760"C{1400'F)/48

1l71·C{1600·F)/.67 + 91l2·C{1IlOO·F)/.75 + 649'C (1200'F)/24 +
760'C(l400'F)/16

871'C(1600"F)/1 + 649"C(1200'F)/24 + 760'C {1400'F)/16

649'C{1200'F)/24 + 760'C(1400'F)/16 + 871'C {1600'F)/1
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Based upon the results of the heat treat evaluation of the large disk, only
three post-solution heat treat cycles were applied to the smaller TOBI seal
component for confirmation of the best post solution heat treat cycle. Seal
515-5 was solution heat treated at 1163-C (2125-F)/2/RAC) and then aged at

conditions b, hand i given in Table VI. Tensile specimens were removed from
the tangential direction and tested at RT, 621-C (1150-F) and 704-C (1300-F).
Figures 42-44 indicates that heat treatments hand i (Table VI) again gave the
best properties confirming the trends observed for disk 350-3. A detailed
presentation of TOBI seal test data is given in Appendix G.

As a result of this evaluation in Phase I of Task I, a process control plan
and acceptance criteria was tentatively established. This criteria, initially
established, is essentialy those shown in Appendices Mand 0 except for the
addition of a visual inspection of the powder after powder contamination was
observed in one blend of powder used in the design data portion (Task I, Phase
II) of this program. For the components made for design data, spin burst test
and engine test, the process control plan and acceptance criteria were used.

An important feature of this process control plan was the heat treating
procedure, particularly for the solution cycle, to assure that the desired
properties are achieved. For this reason, solution heat treating of all
components was accomplished by utilizing furnaces with oil tanks adjacent to
the furnace doors. The elapsed time between removal of the disk from the

furnace and insertion nominally ranged from 15-30 seconds in the automatic
mode. However, longer quench delay times were achieved by operating the
furnace quench controls on the manual mode as for disk 350-2. Cracking was
prevented in the oil quench sequence by instituting a delay hold time of 90
seconds before the part was immersed in oil. Temperature tolerance for
solution heat treatment was t14C-(t25F-) and t8C-(t15F-) for the stabilization

and age cycles.
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TASK I, PHASE II - DEVELOPMENT OF DESIGN DATA

The purpose of Phase II was to develop the data necessary to permit the design

of a JT9D first stage turbine disk using MERL 76. The properties that were

characterized were those associated with the mechanical properties, physical

properties and chemistry of specimens machined from three HIP disks.

Mechanical Properties

Cri tical mechanical properties that control the performance of a di sk

component vary with the location in the disk. Furthenoore, since the disk

experiences a spectrum of conditions during a flight cycle, material

properties must be determined over i range of temperatures and stresses. For

design purposes, it is necessary to establish that these material properties

can meet the mi nillllm desi gn requirements.

In all disk locations, it is important to achieve adequate tensile properties

to ensure that localized yielding will not occur. Additionally, tensile

strength and ductil i ty are important factors when disk components are

subjected to overspeed condi tions. For these reasons, tensil e properties over

a wide temperature range were defined.

In the turbine blade attachment location, stress-rupture properties of the

di sk component becomes an important consi deration. Properties IllIst be

determi ned over a range of temperatures to establ ish properties under thermal

transient conditions that may occur during service.

In the hotter rim sections of a disk, time dependent deformation can occur

under operati ng stresses. Thi s creep deformation must be mi nimized to preserve

the dimensions of the disk.

The life of the disk component is usually determined by the fatigue

properties. A fatigue failure of a disk can lead to extensive damage and even

destruction of an engine. Both smooth and notch section properties are

required because of the complex geometry of a disk component. In order to

establish the basic fatigue capability of the material, axial and bolt-hole
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specimens were tested. These tests establish the fatigue crack initiation

behavior of the material in situations where a fatigue crack nucleates and

grows from a surface. By measuring fatigue crack growth rates in addition to

establishing LCF threshold stress intensity levels, initiated cracks may be

prevented from propagating to a critical size.

Test Program

Tensile, stress-rupture and creep tests were conducted according to standard

ASTM procedures. Test specimens were machined with tangential and radial

orientations from various locations (i.e., rim, web, bore) of disks 102-1,

102-2, and 160-2. The location and the corresponding identity of each test

specimen is indicated in Figures 45 and 46. Tensile specimens (Figure 47) were

removed from the bore, web, and rim of the disks. Combination smooth and

notched bar stress-rupture specimens (Fi gure 48) were removed from the bore

and rim in the tangenti.1 direction while creep-rupture specimens (Figure 49)

were removed from web-radial and rim tangential locations of the disk.

Fatigue tests, consisting of Sonntag-type axial specimens, bolt-hole,

threshold stress intensity, and crack growth were performed according to Pratt

&Whitney Aircraft procedures.

Smooth and notched Sonntag specimens (Figure 50) were tested in a 10,000 pound

capacity servo-controlled, closed-loop, hydraulic driven fatigue rig. A

function generator suppl ied a sine wave load signal set at 30 Hz frequency.

The amplified output of the load cell was monitored using the amplitude

measuring device and oscilloscope to detennine the maximum and minimum loads.

The specimens were heated using an induction unit rated at 2.5 kw output at

450 kHz nominal frequency. Test temperature was controlled by thenmocoupl~s

which were tack wel ded to the specimen above and below the gage section with

one used for controller input and one for monitoring by a precision

potentiometer. Fluorescent penetrant inspection methods were used to establ ish

life to 1/32 inch crack. In this procedure, penetrant fluid is applied to the

notch with the specimen held at a load less than the maximum test load. The

notch is then wiped clean and observed wlth an ultrav10let 1ight While the

load is released forcing the penetrant from any existing crack.
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Disks 102-1 and 102-2



Figure 46 Iderrtificiition and Location of Test Specimen

Machined From Disk 160-2
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Notched (KT = 2.5) low-cycle fatigue bolt hole specimens (Figure 51) were

subjected to testi ng conducted at 482·C (900·F), and at stress 1evel s of 621

MPa (90 ksi), 568 MPa (85 ksi), and 552 MPa (80 ksi). A cycle of ten seconds

at load and 10 seconds at no load was util ized. The cross-sectional area of

each specimen was accurately measured to allow grouping of similar specimens

fot testing as a four specimen gang at the same stress. A single resistance

furnace was used to heat all four specimens of the gang and the test

temperature was IOOnitored by attaching therroocouples to the gauge of each

specimen.
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Figure 51 Bolt-Hole (Kt = 2.5) Law Cycle Fatigue Specimen

Fatlgue crack threshold specimens (Flgure 52) were tested with a Sonntag

machi ne rated at a 2000 pound capacity and an 1800 cpm loadi ng rate with a

resistance furnace. Specimens were precracked at room temperature. The

precrack length was controlled by using a strain gage bonded to both ends of

the ED~l slot in the center crack panel to shut off the rig after the crack

initiates and grows beyond the slot. Each specimen was heated to the test

temperature. The load ( .:lK level) was increased as required to produce crack

growth and then reduced until growth stopped for a minimum of 106 cycles.

The upload/downloaa proceaure was repeated several times to gain confidence in

the initially measured AK level. Crack length measurements were made using

acetate repl icas which were then measured using a microscope.
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Figure 52 Fatigue Crack Threshold Specimen

Fatigue crack growth specimens (Figure 53) were tested at 427·C (800·F) and
538·C (lOOO·F) at a stress ratio R = 0.8 (minimum stress/maximum stress) at
ten cycles per minute. A hydraulic driven push-pull rig was used for this
test. The load-unload cycle was controlled by a timer and specimens were
heated with a two-zone resistance furnace. The temperature of the specimen was
controlled and monitored by the two thermocouples attached above and below the
notch in the specimen. During the test. the crack length was monitored with a
calibrated optical telescope system containing a micrometer slide.

The initial calculated ~K value contained a sufficient stress to initiate and
propagate a crack from the EDM slot.
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finite width correction factor

The crack length was measured~ using an optical telescope mounted on a
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Fatigue Crack Growth Specimen



6.3

Integral Test Coupon Properties

To verify mechanical property response of the HIP components, an integral test
coupon was provided within the design of the HIP container. For JT10D and JT9D
disk components, the integral test coupon ring was located at the bore inner
diameter - front face. Testing of the integral test coupon ring included
tensile, stress-rupture, interstitial oxygen and nitrogen tests, and
microstructural analysis as specified in the acceptance criteria.

Integral test ring properties were determined for the two JT10D (102-1, 102-2)
and the JT9D (160-1) design data disks. For the two JT10D consolidations
(102-1 and 102-2), room temperature and 649·C (1150·F) tensile properties
exceeded target goals while at 704·C (1300·F), tensile ductility appeared to
be very close to target (Table VIII). Corresponding stress-rupture testing
indicated that levels were lower than target. Subsequent analysis revealed a
powder contamination problem as discussed at the end of the fatigue property
section. These specification tests on the integral rings were instrumental in
determining the quality of HIP consolidation. For the next design data
consolidation (lbO-2), tensile and rupture properties all exceeded target
levels as shown in Table IX indicating that this consolidation was sound.

Test Results

Tensile Properties

The temperature dependence of tensile properties for MERl 76 was determined
for the temperature range between room temperature and 760·C (l400·F) as shown
in Figure 54. The shape of this curve was defined by testing material from a
JT9D disk, SIN 160-2. Additional tensile properties were determined for two
other disks (JTlOO). A compilation of all the tensile data is given in
Appendix H. The tensile strengths detennined for the JTl 00 consol idation
appears to be stronger than that for JT9D. However, the specimens relOOved from
the JT10D disks were located nearer to the disk surface than those for the
JT9D disk as shown in the test specimen layout given in Figures 45-46.
Specimens positioned closer to the surface experienced a more rapid cool ing
rate and hence, greater strengths.



TAI5LE VIII

INTEGRAL TEST RING PROPERTIES
OF JTl 00 DISKS

Tensil e Resu1 ts

Conso1 idition Temperiture 0.2% YS UTS E1 RA
Di sk Number ·c ('F) MPi (ksi) MPi (ksi) % %

102-1 RT 1077 (156.3) 1401 (203.4) 22.5 27.5

102-1 621 (1150) 1058 (152.8) 1382 (200.6) 23.7 26.5
102-2 621 (1150) 1066 (154.7) 1394 (202.3) 21.9 25.4

102-1 704 (1300) 1056 (153.3) 1235 (179.2) 12.0 17.1
704 (1300) 1069 (155.1) 1235 (179.2) 15.2 19.1

Tirget RT 1034 (150.0) 1481 (215.0) 15.0 15.0
621 (1150) 965 (140.0) 1337 (194.0) 12.0 12.0
704 (1300) 965 (140.0) 1171 (170.0) 12.0 12.0

Note: 102-1 ind 102-2 contiin "golden" pirtic1es

Stress-Rupture Results

Conso1idition
Di sk Number Test Conditions Li fe-Hrs. .!.Q

102-1 732 'C/448 MPi 208.2 N
(1350·F/65 ksi) 35.2 N

102-2 732 ·C/655 MPi 20.3 5.1
(1350·F/95 ksi) 15.1 N

102-2 704 ·C/655 MPi 33.8 N
(1300·F/95 ksi}

Tuget 732 ·C/655 MPi 23 5
(1350·F/95 ksi)

Heit Code

160-2

Tirget

TABLE IX

INTEGRAL TEST RING PROPERTIES OF JT9D DISK (160-2)

Tensil e Results

Temperiture 0.2~ YS UTS EL RA
°c (OF) MPi (ksi) MPi (ksi) % ~

RT 1056.3 (153.2) 1587.2 (230.2) 24.3 19.7
RT 1057.0 (153.3) 1581.7 (229.4) 24.4 25.4
621 (1150 ) 1022.5 (148.3) 1399.0 (202.9) 17.0 15.4
621 (1150) 1034.9 (150.1) 1410.0 (204.5) 21.4 21. 1

RT 965 (140) 1481 (215) 15.0 15.0
621 (1150) 965 (140) 1337 (194) 12.0 12.0

Combined (Smooth/Notch) Stress Rupture Properties

Temperiture Stress Hours to Type of EL RA
Heit Code °c (OF) MPi (ksi) Fiilure Fiil ure % ...!...
160-2 732 (1350) 655 (95) 42.0/39.9* -N/S- 6.1 * 13.4*

732 (1350) 655 (95) 49.0/44.6* -N/S- 7.1* 5.6*

*Ater notch fii1ure, specimens were remichined. ind tested is smooth biro

160-2

INTERSTITIAL GAS ANAL YSIS

Oxygen (ppm)

94

Nitrogen (ppm)

27



Figure 54

o Bore Tangential Centero Rim Tingentia1
(\, Web Ridii1

392(200) 204(400) 316(600) 427(800) 538(1000) 649(1200) 760(1400) 871(1600)
Temperature - °c (OF)

Temperature Dependence of Tensile Properties

The fracture surfaces from several of the tensile specimens were examined via
scanning electron microscopy (SEM). While transgrannular failure mode was
observed for specimens tested at RT and 482·C(900·F) (Figure 55), a mixed mode
of transgranular/intergranular was observed at 62l·C(1150·F) and then entirely
i ntergranul ar mode at 704·C(l300·F) (Fi gure. 56).

1>5



Figure 55

66

SCanning Electron Micrographs Showing Predominately
Transgranular Mode of Failure for MERL 76 Tensile Specimens
Tested as Follows: Top: Room Temperature; Bottom: 4820 C
(900oF)



Figure 56 Scanning Electron Micrographs Showing Predominant Failure Modes
for MERL 76 Tensile Specimens Tested as Follows: Top: 6210C
(1150

o
F) - Mixed Mode but Predominately Transgranulari Bottom:

704°C (1300oF) - Intergranular Mode
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Stress-Rupture

Approximately thirty-six specimens were stress-rupture tested in the

temperature range of 649·C (1200·F) - 760·C (1400·F) to determi ne lower 1imi t

design data. A Larson-Miller plot of these data is shown in Figure 57. A

detailed compilation of the test results are given in Appendix I.

Two test specimens exhibited abnormally low lives (1.5 ~nd 1.7 hours) when

compared to other specimens tested at these same conditions. Scanning electron

mi cro scopy of these fracture surfaces di d not reveal any abnormal

microstructural features. Prior data has shown that rupture strengths of high

strength alloys such as MERL 76, Ciln be sensitive to loading rate effect3•

It is probable that these two specimens were loaded at a high loading rate and

thus displayed low 1ives.

ji9 (100) 102

- g
i
~ ~~

~
to

69 (10) 101

Figure .57 Stress-Rupture Design Data at 649°C (1200oF) -7600 C(1400oF)

Fracture analysis of several of these ruptured specimens indicated an

intergranular rrode of failure. A typical fracture showing an intergranular

mode of failure for a specimen tested at 704·C (1300·F)/758 MPa (110 ks1)/213

hrs is shown in Figure 58.

(::i) Law, C. C.; II PI asti c Flow in Fracture Processes in Powder Metal 1urgy

Nickel Base Superalloyll Contract F49620-77-C-0083, June 1980 - Final

Report.



SCanning Electron Micrographs of a Stress-Rupture Specimen
Tested At 704°C (13000 F)/758 MPa (110 Ksi) for 213 Hours
Showing An Integranular Mode of Failure
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Thirty-boo specimens were tested in the temperature range of 593·C (llOO·F)
through 760·C (l400·F) to establish lower limit allowable curves. A
Larson-Miller plot of time to 0.2% creep is given in Figure 59. The data for
all specimens tested are given in Appendix J.

36.00

0.2i C~EE~ ~ = (T + 4i0) (26 + lo910t) x 10-3

Figure 59

Low Cycle Fatigue Tests

o Sonntag Low Cycl e Fati gue

Creep Data

Sonntag LCF testing was conducted in the temperature range of 427·C (BOO·F)
635·C (1175·F) for both smooth and notched (Kt =2. 3) specimens. The effect
of lowered life with increasing notch factor is shown in Figures 60-62. A
comparison of these three figures will also reveal that given the same notch
factor. the fatigue strength decreases with increasing temperature. A
detailed compilation of resul ts of these tests is given in Appendix K. The
scatter observed in these test results is typical for Sonntag-type tests. A
typical fracture surface showi ng three ori gi ns are shown in Fi gure 63. The
fracture initiation site appears to be featureless with initiation occurring
at a relatively slight machine mark.
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Figure 62
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Figure 63

72

Typical Fracture Origins for LCF Sonntag Specimens Showing
Multip.le Origins and Featureless Initiation



o Bolt Hole Low-Cycle Fatigue

Notched (Kt =2.5) LCF testing was conducted in the temperature range of 427-C
(BOO-F) - 649-C (1200-F) at a 55C-(lOOF-)interval using a bolt hole specimen.

Fatigue life as dependent upon stress level for each temperature is given in
Figures 64-68. A decrease in notch life with increasing temperature was not
observed until 64~-C (1200-F) as shown in Figure 69. A detailed presentation
of the data and fracture analysis for several of the specimens is given in
Appendix L.

The location of the crack initiation site was carefully identified so that
scanning electron microscopy could be performed on the fracture surface.
Mating surfaces were examined to obtain a complete characterization of the

crack initiation site.

827 (120) 0102-1

\GrID
o 102-2

6. 160-2

758 (110)

~6-
~

689 (100)"" 6...

\""
L
:>: 0 0--
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552 (80)

Figure 64 427°C (BOOoF) Notched (K = 2.5) Bolthole LCF Data
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Pigure 67
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For the specimens that were examined. porosity (-1 mil) was the primary

origin of failure. A typical initiation site containing a pore is shown in

Figure 70. In the same specimen. a secondary initiation site was observed.

This secondary initiation site contained a 0.7 mil hafnium-rich inclusion

presumably a hafnium oxide. One sample contained an aluminum-hafnium rich

inclusion at the bolt hole surface as shown in Figure 71.

Threshold Stress Intensity

'For the design system for disk components. it is essential to determine the

stress intensity level below which crack growth does not occur. Accordingly,

the threshold stress intensity level was establ ished for the temperature range

of 427·C (800·F) - 649·C (l200·F) and an R-ratio (a mi n/ a max) of 0.1 to 0.8.

The results indicate that an increase in R-ratio (0.1 to 0.8) lowered the

• fatigue crack threshold while. for the same R-ratio. an increase in

temperature from 427·C (800·F) - 649·C 0200·F) appears to have not

si gn1ficantly al tered the threshol d i ntensi ty 1evel (Tabl e X).
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Figure 70 Typical Crack Initiation Site
of a Bolt-Hole Specimen. While the primary
origin contained a pore, a secondary origin
displayed an aluminum-hafnium rich inclusion.
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Figure 71

78
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Scanning Electron Micrographs of a .005 cm (0.002 in) x .OI5 cm
(0.006 in) Inclusion Identified as Alum_inum-R.ich at the

Fracture Origin of SiN 102-2-13 Tested at 593°C (llOOoF)/
0-599 MPa (87 Ksi) for 16,800 Cycles



fABLE X

FATIGUE CRACK GROwTH THRESHOLD DATA FOR MERL 76

Temperature R = min K 1/
Heat Code ·C ( .F) max MN m- 3/2 (ksi in

160-3 427 (800) 0.1 6.4 (5.8)
427 (800) 0.1 6.6 (6.0)
427 (800) 0.8 3.8 (3.5)
538 (1000) 0.1 7.7 (7.0)
538 (1000) 0.1 7.1 (6.5)
649 (1200) 0.1 7.7 (7.0)
649 (1200) 0.1 7.7 (7.0)

Fatigue Crack Growth

Crack growth rate of initiated cracks is an important consideration in the

design of disk components. Consequently low-cycle fatigue crack propagation

tests were conducted in the temperature range of 427·C (800·F) - 538·C

(lOOO·F) and R-ratios (Jmin/(Jmax) of 0.1 - 0.8. At 427·C (800·F) and 538·C

(l OOO·F), the crick propagation rate became faster as the R-ratio was

increased from 0.1 to 0.8 as shown in Fi gures 72 and 73. For an R-ratio of

0.1, an increase in temperature from 420·C (800·F) to 538·C (lOOO·F) increased

the crack propagation rate while for R = 0.8, the crack propagation rate did

not appear to be significantly altered (Figures 74 and 75).

Prior Particle Boundary Failures

During the course of measuring the mechanical properties of disks 102-1 and

102-2, in the design data phase of Task I, it was determined that these HIP

consolidations exhibited marginal rupture life and ductility as shown in Table

XI. Scanning electron microscopy of these fracture surfaces revealed

considerable prior particle boundary separation (Figure 76) which probablY

contributed to the low notch rupture life and rupture ductility.
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Figure 76

82

Scanning Electron Micrographs of Fracture Surface of
Stress-Rupture Specj~en Tested At 732°c (1350oF)/655 MPa
(95 KSI) for 16.7 Hours Showing Fracture Prevalent Along
Prior Particle Boundaries (Arrows).



TABLE XI

STRESS RUPTURE RESULTS
732·(l350·F/655 MPi(95.0 Ksi)

Powder
Bl end Di sk Locition Life, Hrs. El 'X.

BN79003 102-1 Rim, Tangentii1 11.8 N
Retest (1) 30.0 3.6

19.1 N
Test Ri ng 16.7 N

9.8 N
Retest (l) 27.8 2.9

Rim, Radial 24.5 Notch Test
10.5 Notch Test

102-2 Test Ri ng 20.3 5.14
15.0 N

Rim Tangential 18.2 N
11.2 N

Rim Radiil 19.6 Notch Test
13.2 Notch Test

BN79003 Pipe #U-l UDIMET- Fi lled 14.0 Notch Test

BN79007 Pipe #435 MERL -Fi 11 ed 23.8 Notch Test

Target at 732·C (l350·F) 638 MPa (92.5 Ksi) 23.0 5~

(1) Combination bar remachined after notch failure after smooth stress-rupture

testing. Life reported is of smooth bar only.

N = Notch failure in combo biro

To further analyze this phenomena, a piece of untested material was removed

from disk 102-1 consolidation and fractured at room temperature to eliminate

the compl ication of an oxi di zed fracture surface of a specimen which had been

tested at el evated temperature. X-ray energy spectroscopy detected

hafnium-rich particles, probably hafnia, that decorated the prior particle

boundaries as shown in Figure 77. These observations suggested that the prior

particle boundary separation may have been related to the handling of powder

during container filling, since the composition of the powder had met target

goals. Individual heats as well as blends of the powder were examined using

low power, binocular microscope which revealed that some of the particles

displayed a golden color. Figure 78 is a photograph showing some of the golden

particles. These golden particles apparently contain a very thin oxide which

is not detectable by electron microprobe analysis.

83



Figure 77 X-Ray Energy Spectroscopy Determined That Discrete Particles (A)
(Right) Which Are Hafnium Rich, Probably Hafnium Oxide, Decorate
the Prior Particle boundaries (B) (Left) of material Fractured
At Room Temperature.

Figure 78

1014

Optical Micrograph of As-Received -80 Mesh Powder Containing
"Golden" Particles (Circled).
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In an attempt to determine the point of introduction of the contaminated
particles. the processing records for VIM ingot casting and powder atomization
were examined next. A review of the processing records indicated that all
target processi ng specifications were met. Vacuum 1eak-up rates and vacuum
levels achieved during VIM ingot casting and atomization were within process
specification. In addition. the vacuum level s and leak-up rates achieved
during container filling (Appendix C). were also within specification and
therefore shou1 d not have introduced any further significant contamination.

On the basis of this exhaustive analysis, prior particle boundary separation
can be attributed to the presence of II g01den ll particles. presumably covered by

hafnium oxide, in the as-received powder. The point of introduction of the
golden particles has not been unequivocab1y established. It is assumed that
oxygen was inadvertently introduced during the atomization cycle, either in
the atomization chamber or collection chamber while the powder was hot,
resulting in oxidation of some of the powder particles. Apparently, such a
leak was so slight that it was undetectable by instrumentation.

Since the II g01den" paricles were readily observabl e vi a binocul ar examination
at 30X. this inspection prior to blending was included in powder sampling
procedure prior to blending of the Process Control Plan (Appendix N).

Physical Properties

An integral part of the evaluation of alloys for disk application is the
determination of physical properties to establish the design capabilities of
the alloy. These properties included modulus of elasticity. thermal expansion,
thermal conductivity and specific heat properties which are shown in Figures
79 through 82.

Other tests were conducted to fully characteri ze the physical properties of
MERL 76. The density was determined to be 7.95 glcc (0.287 lbs/in) and
hardness ranged from RC 39-43 as measured by the Reichert microhardness
tester. The gamma prime solvus and incipient melt temperature were also
determined to be l190·C (2l75·F) and 1196·C (218S·F), respectively as shown in
Fi gure 83.
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F.igure 80 Thermal Expansion Properties of MERL 76
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(a)
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Figure 83 Photomicrographs of MERL 76
Showing Gamma Prime Solvus and Incipient
Melc Temperacures co be l190 0 C (2175 0 F)
and l1960 C (2185°), Respectively

(a) l1850 c (21650 F)/4 hrs/WQ
(b) l1900 C (2l750 F)/4 hrs/WQ
(c) l1960 c (2l850 F)/4 hrs/WQ



Chemical Analysis

To successfully demonstrate acceptable qual ity HIP consol idations, a full

chemistry analysis was performed on the integral test ring located on the bore

inner diameter in addition to a comprehensive oxygen and nitrogen survey at

six locations across a radial cross section ot' a disk.

The composition as determined for the integral test ring removea from a JT9D

di sk 160-2 is gi ven in Tabl e XII. Addi tiona1 i nterstiti a1 oxygen and ni trogen

gas analysis indicated that the gas content was independent of location for a

JT9D disk (160-2) and met target value as shown in Figure 84. These chemistry

re sul ts coupl ed wi th the i ntegrill test ri n9 properties demonstrated that

acceptable qual ity consol idations were manufactured.

TABLE XII

COMPOSITION OF MERL 76 DISK 160-2

Cr
Co
Al
Ti
Hf
Nb
Mo
II
S;
C
S
Zr

w/o

12.2
18.2
4.9
4.3
0.43
1.29
3.2
0.026
0.010
0.022

<0.002
0.06

Fe
CU
r~n

N
o
Pb
B;
P

ppm

36
<10
<10

24
95

< 1
<0.3
<20

-
lOCit 1On Oxygen (P~m) Hydrogen (PPm)--

9 ~7 25
10 <Xl 27

0)
11 ~6 26
12 "" 23
13 ~! 27
14 M 25
15 83 25

Mix;mlJfl 100 ,0

G (0 ~

G G 0

G

Figure 84 Interstitial Gas Content of Integral Test Ring Removed From Disk
160-2
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Microstructural Analysis

Since the strength of MERL 76 is dependent upon section size due to the
microstructural response to the cooling rate from the solution heat treat
temperature, the microstructure of typical components in the fully heat
treated condition was evaluated. A detailed characterization of the
microstructure of the JT9D disk at various locations is described in the
following section. Meta110graphic s~mp1es were prepared with Ka11ing ' s Etchant

*for 100X photos and AG21 etchant for 1000X photos.

A radial section of a JT9D disk (160-3) was examined at six locations
representing different cooling rate from the solution heat treat temperature
as a result of various section size. Optical microscopy did not reveal any
significant differences in microstructure from one location to another.
However, the use of replication electron microscopy enabled i closer
examination of the microstructural constituents at a higher magnification.
Figure 85 are electron micrographs showing the microstructure of MERL 76 to
include three distinct size of gamma prime as follows:

(A) Large, globular, primary gamma prime (l.5-5jLm) and elongated ganma
prime (0.2-1 jLm) coarsened during HIP consolidation and solution
temperature.

(B) Finer blocky matrix ganma prime (O.25f/m) precipitated during cooling

from solution temperature.

(e) Extremely fine ganma prime (0.05 jLm) precipitated during aging.

A comparison of a thin section area (bolt flange) with a thick section area
(bore/center) indicated that the thin section displayed more fine lI ag ing ll

gamma prime «0.05jLm) as shown in the higher magnification ( .... 22,000X)
micrographs in Figure 85.

*AG21 mixture: 50 lactic acid - 30 HN03 - 2Hf
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i"igure 85 Microstructure of MERL 76 at Various Disk
Locations
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Process Control and Acceptance Criteria

Rc

174 DPH < 15

174 DPH < 15

174 DPH <15
196 DPH <15

196 DPH 15
289 DPH l8

315 DPH 31. 5

356 DPH 36

368 DPH 37.5
380 DPH 38.5

380 DPH 38.5
303 DPH 30

380 DPH 38.5

421 DPH 42.5

Microhardness Values Across Interaction Zone of Disk 160-2

MERL 76

Figure 86

To establish process control and acceptance criteria specifications, the

manufacturing procedures which were used in this project must be carefully

examined from the standpoint of not only the process itse1 f but a1 so the

various tests that measure the i ntegri ty and properties of the hot isostatic

pressed (HI P) conso1 i dated component. Based upon an eva1 uation and review of

the manUfacturing procedures and control methods which were used in this

To fully characterize the microstructure of MERL 76, it is important to

analyze any factors that might alter the normal MERL 76 microstructure which

mi ght resu1 tin unexpected processi ng prob1 ems. For thi s rea so n, the

interaction region between the base metal MERL 76 and stainless steel

containers was analyzed since the container remains in intimate contact with

the M£RL 76 duri ng both the HIP conso1 idation and heat treat cycle. The

microstructure of this interaction region is shown in Figure 86. To identify

any regions of high hardness which could lead to processing difficulties

(e.g., quench cracking, machining problems), a microhardness traverse was

taken across the container/MERL 76 base metal interaction zone. The hardness

increased progressively from the relatively soft steel (Rc 15) to the harder

MERL 76 (Rc 42.5). There was no undesirable interaction zone that eXhibited

high hardness.

CONTAINER (SS)



project, a detailed process control and acceptance criteria reflecting results
of Task I were produced as presented in Appendices Mand N, respectively.

TASK II - TEST COMPONENT MANUFACTURE AND SPIN/BURST RIG TESTING

Utilizing the process parameters established in Task I, one JT9D disk was
manufactured for spin/burst rig test. A flow diagram of this task is shown in
Figure 87.

Figure 87 Task II Flow Diagram



Although the As-HIP consolidation (160-1) did not yield a sonic shape,
sufficient material existed to yield a finish ~chined part as shown in Figure
88. To v~ri fy meChanical property response of the HIP component, an integral
test coupon was provided within the design of the HIP container. The integral

test coupon ring was located at the bore inner diameter - front face. Testing
of the integral test coupon ring included tensile, stress rupture,
interstitial oxygen and nitrogen tests and microstructural analysis as
specified in the Acceptance Criteria. Results of the testing showed that
tensile and rupture levels all exceeded target levels indicating that the
consolidation was sound as given in Table XIII.

__ I

,....-..J
U--"'\

)
1/

94

Figure 88 Comparison of Outline of As-HIP Consolidation o~ Disk 160-1
with Machined Disk



Heit Code

160-1

Tirget

TAIlLE XIII

INTEGRAL TEST RING PROPERTIES OF JT9D DISK (160-1)

Tensile Results

Temperiture 0.2~ YS UTS EL RA
·C (·F) HPi(ksi) HPi (ksi) ...!.. ....L

RT 1023.9 (148.5) 1562.4 (226.6) 24.0 22.6
RT 1027.3 (149.0) 1556.8 (225.8) 24.5 23.4
621 (1150) 1044.6 (151.5) 1396.2 (202.5) 19.0 19.7
621 (1150) 1041.1 (151.0) 1401.7 (203.3) 17.8 22.1

RT 965 (140.0) 1481.0 (215.0) 15.0 15.0
965 (140.0) 1337 (194.0) 12.0 12.0

Combined (Smooth/Notch) Stress Rupture Properties

Temperiture Stress Hours to Type of EL RA
Heit Code ·C (·F) HPi (ksi) Fiilure Fiil ure ,; %

160-1 732 (1350) 655 (95) 35.1 -N-
732 (1350) 655 (95) 53.2 -N-

160-1

INTERSTITIAL GAS ANALYSIS

Oxygen (ppm)

119

Nitrogen (ppm)

28

Because there was insufficient material in the as-HIP consolidation to yield a
sonic shape, a proof-spin test, which was included in the manUfacturing
operation process to further confirm the consolidation's structural integrity,
was not conducted. However, results of the qualification tests inclUding
integral test ring properties as well as sonic and fluorescent penetrant
inspection tests demonstrated the acceptability of the component for test.

After sonic inspection, the disk was machined per blueprint PIN 812901, the
principal dimensions of which are shown in Figure 89. The sonic shape was
initially lathe-turned using carbide tools. Hole-drilling, slot-milling and
broaching were next performed as shown in Figures 90, 91, and 92,
respectively. Because some of the finish-machined surfaces were relatively
close to the steel container, the disk was given alight anodic etch to ensure
that there was no residual container on the surface. As a final evaluation,
the disk was again fluorescent penetrant inspected. This revealed no cracks~

Final dimensions were taken showing that the disk met blueprint requirements.
The finish-machined disk is shown in Figure 93.
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Dimensions in inches.
1 inch = 2.54 em

j
20423 DIA
10413

I
nOlO
21980

0lA

11305 DIA
11195

18044 OIA
'8(>"

30110
30 190 OtA

174J8
0lA

17434

13.410

13380

I
21602
21598 OIA

,---.... --------,- 31 187 0lA
31111

--------;-

2300001A

261OO01A

--,--------I::~--

Principal Dimensions of JT9D First Turbine Disk piN 812901

Hole Drilling Operation Being Performed on Disk 160-3

Figure 89

Figure 90

96



97

Broaching Operation Being Per
formed on Disk 160-3

Front view of Finish Machined MERL 76 JT9~70 First Stage
Turbine Disk

Milling Operation Being Per- Figure 92
formed on Disk 160-3

Figure 93

Figure 91



In order to establish the burst (overspeed) capability for MERL 76 in disk

applications, a spin test was conducted at 621°C (1l50°F). Disk 160-1 was

bl aded, thenoocoupl ed and assembl ed ina ri g shown in Fi gures 94 and 95.

Approximately twenty thermocouples were installed at such locations of the

disk as shown in Figure 94. The disk assembly was mounted to a steam-drive

turbine and inserted into a pit which contained a resistance heated furnace.

The pit was evacuated to approximately 5 mm Hg and this pressure was

dynamically maintained during the test; a vacuum was necessary to facilitate

rotation of the rig. At an idle speed of 1000 rpm, the disk assembly was

heated to a 621°C (1l50°F) average temperature. After hal di ng at 621°C

(l150°F) for at least 15 minutes, the disk assembly was accelerated to the

desired speed and hel d for five minutes. After each speed increment, the spin

pit was opened and growth measurements were taken at four locations on the

disk as shown in the inset of Figure 96.

98

Figure 94 Location of Thermocouples Installed for Hot Spin Test



Growth Measurements of Disk at Different Speed Increments

99

80re Front 1.905 c. 1.905 c. 80re Rear
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Figure 95
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The ri g failure i nvol ved separation of the drive shaft all owi ng the rotor

assembly to fall to the bottom of the pit. The damage to the disk assembly

included impact damage on the rear face which rubbed against the bottom of the

pit and sheared off the bolt flange approximately 0.64 cm (0.250 in) above the

web face (Fi gu re 97).

Based upon the engine red1 ine speed, the disk assembly was subjected to a 20%,

30% and 37.5% overspeed with growth measurements (Figure 96) taken after each

increment. At an overspeed increment of 39% an oil seal in the steam turbine

assembly failed, shutting down the rig. An additional set of growth

measurements were taken at this point. Before the disk burst, the rig failed

cata~trophicallyat 40.5% overspeed.

Damage of Disk Assembly After Rig FailureFigure 97
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Task III - COMPONENT MANUFACTURE FOR EXPERIMENTAL ENGINE TEST

Failure Origin of RigFigure 98

Manufacturi ng procedures, as establ i shed in Task I and used for machi ni ng thp •

spin disk 160-1 in Task II, were also used for disk 1?9-3 which is to be

tested in a land-based experimental engine. As in the case for disk 160-1,

disk 160-3 did not have sufficient material in the as-HIP consolidation shape

configuration to completely yield a sonic shape. Consequently, a proof-spin

test was not conducted. As in Task II, integral test coupons were provided for

A flow diagram of this task is shown in Figure 99.

A failure analysis traced the failure origin to the side plate (Figure 98)

which retained the blades on the disk. This failure caused a primary imbalance

in the disk assembly which then resul ted in the failure of the rig arbor.

Al though the disk did not burst, sufficient growth data was collected prior to

rig failure to demonstrate that MERL 76 is capable of safe operation in a JT9D

engi ne.



JT9D disk 160-3 to verify the mechanical property response of thp HIP

component. Locations of the test coupons were the same as di sk 160-1 and test

conditions were as specified in the acceptance criteria which was also

followed for disk 160-3. For these consolidations tensile and rupture

properties "ill exceeded target levels as shown in Table XIV indicating that

these conso1 i dations were sound.

TASK III
COMfIllNENT '~OCUftEI£NT

raft ENGINE TEST

Figure 99 Task III Flow Diagram

TA8LE XIV

INTEGRAL TEST RING PROPERTIES OF JT9D DISK (160-3)

Tensile Results

Temperature 0.2~ YS UTS EL RA
Heat Code ·C (·F) Wa (ksil Wa (ksi) ~ ~

160-3 RT 1056.3 1153.2) 1587.2 (230.3) 23.9 21.6
RT 1053.5 152.8) 1599.6 (232.0) 22.7 20.6
621 (1150) 1042.5 (151.2) 1423.8 (206.5) 21.9 21.6
621 (1150) 1041.1 (151.0) 1432.7 (207.8) 22.8 25.0

Target RT 964.6 (140) 1481.3 (215) 15.0 15.0
1150 964.6 (140) 1336.6 (194) 12.0 12.0

Combi ned ( Smooth/Notch) Stress Rupture Properti es

Temperature Stress Hours to Type of EL RA
Heat Code ·C (·F) MPa (ksi) Fai 1ure Failure ~ ~

160-3 732 (1350) 655 (95) 47.1/60.5* -N/S- 5.0* 7.3*
732. (1350) 655 (95) 49.8/56.9* -N/S- 6.9* 8.0*

*Ater notch failure, specimens were remachined and tested as smooth bar.
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160-3

INTERSTITIAL GAS ANALYSIS

Oxygen (ppm)

87

Ni trogen (ppm)

22



Based on the results of the acceptance tests (e.g., integral ring properties,

Table XIV, sonic inspection, fluorescent penetrant inspection), which exceeded

mi nimum requi rements and indicated a component of acceptabl equal ity, di sk

160-3 was desi gnated for engi ne demonstration testi ng. As in the case for di sk

\60-1, an anodic etch to assure that no residual container material was left.

on the disk was applied to the finish machined disk and was followed by

fl uorescent penetrant inspection, which revealed no indications.

During finish machining of disk 160-3 per PIN 812901 (see Figure 88), it was

determlned that residual container material (approximately 0.05 cm/0.020"

thick) was observed over a 20· arc segment on the rear face of the 001 t-ho1e

flange as shown in Figure 100. After the residual can material was removed by

mill ing, this area was shot peened. Both Pratt & Whitney Aircraft's Engine

Design Engineering and National Aeronautics and Space Administration's Program

Manager granted approval of thi s sl i ght des; gn modification of the di sk. A

macrograph of th1S finish machined disk showing the milled-flange 1S shown in

Figure 101. This slight taper in the flange required re-balancing of the disk.

±2° API"ROX

.05 -.06 CM
(,020 - .025 in)

~ SURFACE L

SECT "A-A"

.65±.075CM
(,260 ± .003 IN)

"A"

Figure 100 Bolt Flange-Face Modification of Disk 160-3
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TASK IV - ENGINE DEMONSTRATION TESTING

Finish Machined Disk Showing Tapered Bolt-Flange FaceFigure 101

TASK V - POST TEST ANALYSIS

The objective of this task is to demonstrate the performance capability of a
finish-machined MERL 76 disk in an experimental JT9D ground-based engine for
at least 150 hours of endurance testing. On the date of this writing. the
engine test has not been conducted but is planned for December 1981 through
January 1982. The details of this engine test are classified as category 2 
F.E.D.D. and will be reported in a separate document - Volume II (CR-165550).

Post-Engine Test Analysis

The results of a post-test evaluation of the experimental engine tested HIP
MERL 76 disk are classified as category 2 - F.E.D.D. data. Accordingly, the



analysis of this engine test including dimensional inspection results of the
disk before and after the engine test will be reported in Volume II of this
project (CR-lb5550).

Analysis of Results

This program established manufacturing procedures for the production of
acceptable quality direct HIP consolidated MERL 76 disk components. These
procedures included powder manufacture, container design, powder handling
technique, HIP consolidation cycle, and non-destructive inspection techniques.
Based upon the evaluation of the manufacturing procedures, a process control
plan and acceptance criteria were-established as presented in Appendices Mand
N, respectively.

Three disks were characterized by more comprehensive testing which led to a
proposed material specification. lower limit design curves were established
for tensile, stress-rupture, creep to 0.2%, and notched low cycle fatigue (Kt
= 2.5) fatigue properties, in addition to generating low cycle fatigue crack
propagation and low cycle fatigue crack threshold data. Design lower limits
which established the material capability are given in Appendix O.

A fourth disk was subjected to a component spin/burst rig test at 621-C
(1150-F). Although the disk did not burst because of rig failure, sufficient
growth measurements up to 40% over red-line speed demonstrated that MERL 76

meets or exceeds the speed margin required for operation in an advanced JT9D
commercial engine.

The objectives of this program were all met. These objectives were to increase
the rim temperature capability by 22C-(4OF-), reduce component weights by
77-88 kg (35-40 lbs), and reduce material cost by 30% as compared to
bill-of-material superwaspalo~. When compared to superwaspaloy~, MERL 76
exhibited at least a 22C-(4OF-) advantage at 732-C (1350-F) and as much as
56C-(100F-) at 621-C (1150-F), as shown in Figure 102. By taking advantage of
the superior strength and lower density of the MERL 76 alloy as compared to
Superwaspa1ojID, the JT9D first and second stage turbine disk can be designed
thinner and lighter by 77-88 kg (35-40 lbs)(Figure 103). Based on 1980 costs
to supply sonic JT9D disk shape forgings, the usage of direct HIP MERL 76
components cost at least 30% less than that for SuperwaspalOY~(Figure 104).
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Superwaspaloy
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FINAL RECOMMENDATIONS

Based on the results of this program and related P&WA experience, direct HIP
MERL 76 disks are suitable for incorporation in a commercial engine.

CONCLUSIONS

Based upon metallographic, ultrasonic, dimensional, chemical, and mechanical
property analyses of direct HIP consolidated MERL 76 disks, conclusions are
made as follows:

1) Suitable manufacturing methods were established for direct-HIP
consolidated MERL 76 disks. Based upon the evaluation of these
manufacturing methods, a process control plan and acceptance criteria were
established. A heat treatment (1163·C{2l2S·F)/2 hrs./OQ +
87l·C(1600·F)/0.67 hrs./AC + 982·C{1800·F)/16 hrs.AC+649·C{1200·F)/24
hrs/AC+760·C{1400·F)/16 hrs/ AC) was selected that gave the best
mechanical properties.

2) Comprehensive mechanical property testing of three full-size disk
consolidations were utilized to establish design-allowable curves for
tensile, creep to 0.2%, stress-rupture, and notched (Kt = 2.5) low cycle
fatigue properties. Additional data were generated for low cycle fatigue

crack propagation and low cycle fatigue crack threshold properties. To
further characterize MERL 76, physical properties including linear
expansion, thermal conductivity, and dynamic modulus were also measured.

3) Component spin test demonstrated adequate spin margin for MERL 76 to be
used as rotating component in gas turbine engines.

4) Direct HIP MERL 76 material increased stress-rupture capability by 22C·
(40F·), reduced component weight by 77-88 kg (35-40 lbs) and reduced
material cost by at least 30% when compared to conventionally forged
superwaspalo~
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APPENDIX A

CHEMICAL ANALYSES OF SPECIAL METALS INGOT, POWDER AND CONSOLIDATIONS

Consolidition Designations
340-1, 350-2, 350-3, 35S-2, 51s-4, 51S-5 102-1, 102-2 160-1 , -2, -3

Con. HIP*** Powder Con.
Tirget VIM Ingot Powder Bl end 1/ ** VIM Ingot Powder Bl end Con. iI V1M Ingot Blend iI **

Element Minimum f1aximum 711058 711059 711060 BN77070 BNn071 340-1 711802 711861 BN79003 BN79007 102-2 8091 8092 8261 8262 01680 160-2------
Ni R R R R R R R R R R R R R R R R R R
Cr 11.9 12.9 12.6 12.5 12.6 12.56 12.53 12.6 12.5 12.4 12.51 12.54 12.0 12.61 12.67 12.45 12.54 11.9 12.2
Co 18.0 19.0 18.7 18.8 18.8 18.81 18.61 18.0 18.6 18.3 18.50 18.22 18.4 18.51 18.27 18.30 18.48 17.9 18.2
Mo 2.8 3.6 3.30 3.20 3.20 3.32 3.33 3.3 3.15 3.2 3.29 3.30 3.3 3.17 3.25 3.26 3.21 3.2 3.2
Al 4.85 5.15 4.98 5.00 5.10 4.97 4.90 4.8 5.06 5.0 4.93 4.88 5.1 4.94 4.99 4.94 5.02 4.9 4.9
Ti 4.15 4.50 4.40 4.35 4.29 4.43 4.49 4.2 4.35 4.30 4.20 4.32 4.2 4.27 4.23 4.33 4.38 4.3 4.3
'lb 1.50 (3) 1.80 1.68 1.70 1.69 1.65 1.80 1.6 (3) 1.42 1.46 1.46 1.57 1.41 0.01 0.01 N.D. N.D. 1.32 1.29
Hf 0.60(4) 0.90 0.74 0.79 0.78 0.65 0.69 0.69(4) 0.39 0.40 0.39 0.44 0.48 0.01 0.01 N.D. N.D. 0.42 0.43
B 0.016 0.024 0.021 0.022 0.020 0.021 0.019 0.020 0.019 0.019 0.02 N.D. 0.02 0.019 0.019 0.018 0.019 0.018 0.026
Zr 0.04 0.08 0.06 0.06 0.06 0.05 0.05 0.05 0.06 0.06 0.05 0.06 0.045 0.05 0.06 0.06 0.06 0.07 0.06
C 0.015 0.030 0.02 0.03 0.025 0.026 0.026 0.024 0.022 0.021 0.026 0.024 0.023 0.024 0.03 0.026 0.027 0.024 0.022
Mn 0.02 0.02 0.02 0.02 0.007 0.007 0.0012 0.01 0.02 0.008 0.008 N.D 0.01 0.01 0.01 0.01 N.D. 10
S 0.01 0.003 0.003 0.003 0.006 0.006 0.0034 0.002 0.002 N.D. 0.01 N.D. 0.003 0.002 0.002 0.002 N.D. 0.002
P 0.01 0.01 0.01 0.01 0.004 0.004 0.002 N.D. N.D. 0.004 0.004 N.D. 0.002 0.001 0.001 0.002 N.D. 0.002
Si 0.10 0.10 0.10 0.01 0.09 0.07 0.05 0.03 0.1 0.01 0.01 N.D. 0.02 0.02 0.01 0.02 N.D. 0.10
Fe 0.30 0.14 0.11 0.11 0.06 0.07 0.048 0.11 0.11 0.05 0.05 N.D. 0.06 0.07 0.04 0.04 N.D. 0.0036
Cu 0.07 0.07 0.07 0.07 0.03 0.03 0.001 N.D. N.D. 0.03 0.03 N.D. 0.01 0.02 0.01 0.01 N.D. 0.0010
Bi ppm 0.05 0.05 0.05 0.05 0.5 0.5 0.2 N.D. N.D. 0.02 0.3 N.D. 0.1 0.1 0.1 0.1 N.D. 0.3
Pb ppm 2.0 2.0 2.0 2.0 2.0 2.0 0.0008 N.D. N.D. 1. l. N.D. 1. 1. l. 1. N.D. 1
o ppm 100.0 7.0 7.0 10.0 108. 103. 88.0 8. 9. 92. 106.0 89. 6. 6. 7. 8. 180* 95
'I ppm 50.0 11.0 11.0 9.0 22. 2l. 15.0 19. 2l. 18. 28.0 20. 14. 7. 7. 13. 25. 24.

Tirget MERL 76 Composition r~dified is Follows:
(3) 1.20 - 1.60 IJb
(4) 0.30 - 0.50 Hf

* Repeit inalysis indicited that oxygen level ringes from 105 - 118 ppm.
** Consolidition Number
*** HIP Consolidation Number



APPENDI X B

POWDER SIEVE ANALYSES

Me sh Si ze Ra n9e BN77070 BN77071 BN79003 BN79007 010680

+60 NO NO 0 NO
-60 +80 0 0 0 NO
-80 +100 1.2 1.0 1.0 0.13
-100 +120 3.6 3.6 3.3 NO
-120 +140 5.0 5.3 4.8 NO
-140 +170 6.0 6.3 5.5 NO
-170 +200 9.1 9.8 7.7 NO
-200 +230 6.9 7.1 5. 1 14.0
-230 +270 8.9 9.3 6.1 15.0
-270 +325 6.3 10.4 11.8 6.4
-325 +400 19.4 13.9 6.4 8.7
-400 +500 15.2 15.4 25.1 55.8
-500 18.4 17.9 23.1 ND

NO = No t De term; ned
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APPENDI X C

COMPONENT PROCESSING HISTORY

Weight Temp. Oyn.mic Le.k R.te
Consol i d.ti on II Confi guriti on Ingot No. Powder III end Kg (lbs.) ·C (oFl Pressure Torr Microns/3 min

34S-1 JTlOO-4 Se.l 7-11058 7-11059 7-11060 IlN 77070 55 (121) 316 (600) 10-5 3

35S-2 JTl 00-4 Se.l 7-11058 7-11059 7-11060 IlN 77070 55 (121.5) 5

35S-3 JTl 00-4 Se.l 7-11058 7-11059 7-11060 BN 77070 54.5 (120) 4

51 S-4 JT100-4 Se.l 7-11058 7-11059 7-1060 IlN 77070 56.1l (125 2

51S-5 JTlOO-4 Se.l 7-11058 7-11059 7-11060 IlN 77070 51l.6 (129) 2

340-1 JTl 00-4 Oi sk 7-11051l 7-11059 7-11060 IlN 77070 313.6 (690) 2

350-2 JTl 00-4 Oi sk 7-11051l 7-11059 7-11060 IN 77070 311l.2 (700) 2

350-3 JTl 00-4 Oi sk 7-11058 7-11059 7-11060 IlN 77070 304.5 (670) 2

102-1 JTlOO-132 7-11802, 7-111l61+ IlN 79003 253.6 (551l) 4 x 10-5 11.5
1010 difi ed Oi sk Revert IlIN 77071

102-2 JTlOO-132 7-111lO2, 7-11861+ IN 79003 250 (550) 4 x 10-5 4.5
Modifi ed Oi sk Revert IlIN 77071

Mel0l-1 JT90-70 Oi sk 7-111l02, 7-111l61+ IlN 79007
Fi rst Iter.ti on Revert IlIN 77071

MCl02-2 JT90-70 Oi sk 7-11802 7-11161+ IlN 79007
First Iter.tion Revert IlIN 77071

160-1 JT9D-70 Oi sk 11262 8091 1lO92 8261 010680 2110 (618) 1.5 x 10-5 5
Second Iter.tion
(P IN 812901)
SKT 65672

160-2 JT9D-70 Di sk 11262 8091 11092 8261 010680 273 (599.5) 2
Second Iter.tion
(P IN 812901)
SKT 65672

160-3 JT90-70 Oi sk 8262 11091 11092 8261 010680 2114 (625) 2
Second Iter.tion
(P IN 812901)
SKT 65672



APPENDIX D

COMPONENT PROCESSING HISTORY

9-11 Compaction leaked

9-11 Compaction Leaked

9-11 1163°C (2125°F)/2hours/Furnace cool at 38°C (100°F) per hour
to 1121°C (2050°F)/0.5 hour/OQ + 649°C (1200°F)/24 hours/
AC + 760°C (1400°F)/16 hours/AC

8-10 1163°C (2125°F)/2 hours/OQ + 871°C (1600°F)/40 minutes/
AC + 982°C (1800'F)/45 minutes/AC + 649°C (1200'F)/
24 hours/AC + 760°C (1400°F)/16 hours/AC

En9ine Test

Desi gn Data

Design Dati

Heat Treat Study

Heat Treat Study

Heat Treat Study

Desi gn Dati

Spin !lurst

Quench HT studies
Thi n/Thi ck

Various

1163°C (2125°F)/2 hours/OQ + 871°C (1600°F)/40 minutes/
AC + 982°C (1800'F)/45 minutes/AC + 649'C (1200'F)/
24 hours/AC + 760'C (1400°F)/16 hours/AC

1163°C (2125°F)/2 hours/OQ + 871°C (1600°F)/40 minutes/
AC + 98ZoC (1800°F)/45 minutes/AC + 649°C (1200'F)/
24 hours/AC + 760°C (1400'F)/16 hours/AC

1163°C (21Z5°F)/2 hours/OQ + 871'C (1600°F)/40 minutes/
AC + 982°C (1800°F)/45 minutes/AC + 649°C (1200°F)/
24 hours/AC + 760°C (1400°F)/16 hours/AC

1163°C (2125°F)/2 hours/OQ + various (b, k, 1)

1163°C (2125°F)/2 hours/OQ + various

1163°C (2125°F)/2 hours/Rapid Air Cool + various (b, h, i)

Heat Treatment

8-10

8-10

8-10

4-6

1163°C (2125°F)/Z hours/OQ + 871°C (1600°F)/40 minutes/
AC + 982°C (1800°F)/45 minutes/AC + 649°C (lZ00°F)/
24 hours/AC + 760°C (1400°F)/16 hours/AC

1163°C (21Z5'F)/2 hours/OQ + 871'C (1600'Fl/40 minutes/
AC + 982'C (1800'F)/45 minutes/AC + 649'C (1200'F)/
24 hours/AC + 760°C (1400'F)/16 hours/AC

8-10 1163°C (2125°Fl/2 hours/OQ + 871°C (1600°F)/40 minutes/
AC + 982'C (1800'Fl/45 minutes/AC + 649'C (1200°Fl/
24 hours/AC + 760'C (1400°F)/16 hours/AC

9-11

8-10

8-10

9-11

9-11

9-11

Grain SizeConsolidation HIP Parameters

34S-1 1169°C-1l77°C (Z135°F-Z150°F)/
103 MPa (15ksill3 hours

35S-Z l169°C-l177"C (Z135°F-Z150°F)/
103 MPa (15ksi)/3 hours

35S-3 1169°C-1l77 °C (Z135 of-Z150 0F)/
103 MPa (15ksil/3 hours

51S-4 118ZoC (Z160°F)/103 MPa (l5ksil/
3 hours

51 S-5 118ZoC (Z160°F )/1 03 MPa (15ksil/
3 hours

340-1 1169°C-llnoC (Z135°F-Z150°F)/
103 MPa (15ksi)/3 hours + re-HIP

351>-2 1169°F (Z135°F)-1177°F
(2150°F)/103 MPa (15ksi)/3 hours

350-3 1169-11noC (Z135°F-Z150°F)/
103 MPa (15ksi)/3 hours

102-1 1182°F (2160°F )/1 03 MPa
(l5ks il/3 hours

102-2 1182°F (2160°F)/103 MPa
(15ksil/3 hours

MC10l-1 1182°F (2160°F)/103 MPa
115k sil /3 hours

MC101-2 1182°F (2160°F)/103 MPa
(15ksil/3 hours

160-1 1182°C (2160°F)/103 MPa
(15ksi )/3 hours

160-2 118ZoC (2160°F)/103 MPa
(l5ksil/3 hours

160-3 1182°C (2160°F)/103 MPa
(l5ksil/3 hours



APPENDIX E

TENSILE AND SMOOTH/NOTCH STRESS RUPTURE PROPERTIES OF DISK 340-1

Tensile Stress-Rupture
Heat 732·C(1350·F)

Treatment 655 MPa (95.0 ksi)
(Quench Test 0.2% Y.S UTS

Location Medi urn) Temp. MPa (ksi) MPa( ksi) % E1 % RA Li fe-Hrs. % E1

Hub (oi 1) RT 1055(153) 1607(233) 20.7 22.6 28.4 Notch
(Thi n 1076(156 ) 1607(233) 19.2 22.6 28.7 Notch
Secti on)

(350·F sal t) 1034(150) 1579(229) 21. 7 24.4 31.9 Notch
1027(149 ) 1586(230) 22.1 23.6 23.3 Notch

(650·F sal t) 1020(148) 1579( 229) 20.0 23.5 32.7 Notch
1000(14~) 1517 (220) 16.3 16.8 32.2 Notch

(Air) (l) 1069(155 ) 1600(232) 20.0 21. 7 32.7 Notch
1089(158) 1613(234) 18.4 19.1 32.2 Notch

Bore ( Oi 1) 1034(150) 1593(231 ) 19.4 21.4 14.1 Notch
(Thick 1020(148) 1600(232) 20.4 22.1 31.7 Notch
Secti on)

(350·F salt) 1007(146 ) 1579(229) 19.6 21.5 35.8 Notch
1055(153) 1613(234) 22.2 25.5 17.8 Notch

(650·F sal t) 993(144) 1579( 229) 23.1 24.3 12.3 Notch
1OOO( 145) 1558 (226) 19.3 21.6 12.1 Notch

(Ai r) 979(142) 155l( 225) 20.5 22.6 24.0 Notch
986(143) 1572(228) 21.2 19.8 28.1 11.2 16.1

TARGET MI NIMU~1 RT 1034(150) 1482(215) 15.0 15.0 23.0 5.0@732·C
(1350·F)/638 MPa
(92.5 ksi)

(1) t1ateri a1 Removed From Near The Surface Rather Than At The Center Of
Secti on. This Location Would Give Unexpected Higher Strengths.
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APPENDIX E (ContI d)

Heat Tensile
Treatment

(Quench Test 0.2% Y.S UTS
Location ~edium) Temp. MPa(ksi) MPa(ksi) % El % RA

Hub (Oil ) 621·C 1062(154) 1482(215) 21.8 29.5
(Thin (1150·n 1041(151) 1475(214) 20.0 27.5 .
Secti on)

(350·F salt) 972(141 ) 1434(208) 21.8 29.8
1014(147) 1434(208) 25.1 31.3

(650·F sal t) 979(142) 1434(208) 24.4 34.1
1007(146) 1455(211) 21.0 27.9

(Ai r) 1007(146) 1441(209) 21.8 31. 9
1000(145) 1462(212) 18.7 31.4

Bore (Oi 1 ) 621·C 1014(147) 1141(209) 22.8 27.9
(Thi ck (1l50·n 1041( 151) 1482(215) 19.8 27.3
Secti on)

(3!;0·F salt) 1020(148) 1427(207) 22.5 31. 7
1020{l48) 1434(208) 21.9 30.9

(650·F sal t) 1020(148) 1427(207) 23.2 31.0
1000(145) 1427(207) 25.0 32.4

(Ai r) 931(135) 1379(200) 21j.7 34.7
945(137) 1379(200) 23.7 31. 9

TARGET MINIMUM 621·C (150 ) (194 ) 15.0 15.0
1150·F

Hub (Oi 1) 704·C 1048(152) 1310(191) 16.1 22.9
(Thin (1300·F)
Section)

(350·F salt) 1014(147) 1282( 186) 19.0 29.6

(650·F sal t) 1020(148) 1262( 183) 20.4 33.1

(Ai r) 1027(149) 1324(192 ) 20.0 33.5

Bore (Oi 1 ) 1007(146 ) 1262(183) 21.5 27.3
(Thi ck
Section)

(350·F salt) 993(144 ) 1255(182) 17.6 30.5

(650·F salt) 965(140) 1248(181 ) 21 • .s 34.8
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APPENDIX E (Cont'd)

Heat Tens; 1e
Treatment

(Quench Test 0.2% V. S UTS
Location Medium) Temp. MPa(ksi) MPa(ksi) % El % RA

(Ai r) 924(134) 1207(175) 25.0 39.0

TARGET MINIMUM 704·C 1014(147) 1172(170) 12.0 12.0
(1300·F)

TENSILE PROPERTIES OF SEAL 35S-2

0.2% Vi el d Ul timate Reducti on
Test Temp. Strength Tensile Strength Elongation In Area

MPa (Ksi) MPa (Ksi) % %

RT 1103(160.1) 1636(237.4) 21.2 18.7
RT 1102(160.0) 1654(240.0 ) 20.6 18.5

RT - TARGET

621 ·C(1150·n
621·C(1l50·n

704·C(1300·F)

704 ·C (1300·F) 
TARGET

1034(150.0)

1132(164.3)
1107(160.7)

1094(158.8 )

1014(147.0)

1482(2115. 0)

1522(220.9)
1501 (217.9)

1316(191 .0)

1172(170)

lli.O

22.2
23.6

18.9

12.0

15.0

22.0
26.4

23.1

12.0

COMBINED SMOOTH/NOTCH STRESS-RUPTURE PROPERTIES
OF SEAL 35S-2

Test Conditions

732·C(1350·F)/638 MPa(92.5 Ksi)- TARGET
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23.0
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(Notch)

5.0



AP PE NO! X E (Co nt I d)

TE~StLE PROPERTIES OF TOBI SEAL 51S-5

Test Temp. 0.2% YS 0.2% YS UTS UTS
Ident. ·C (·F) MPa* Ks; MPa* Ks; % EL % RA

b-31 21 1056 153.2 1557 225.8 24.6 25.3
b-32 (70) 1057 153.3 1541 223.5 23.9 26.5
h-40 1120 162.5 1566 227.2 20.2 22.8
h-41 1082 156.9 1549 224.7 22.7 24.0
; -49 1057 153.3 1555 225.5 21.6 21.9
i-50 1098 159.3 1578 228.9 20.9 22.0

Ta rget 1034 150.0 1482 215 15.0 15.0

b-34 621 1025 148.7 1419 205.8 23.5 30.7
b-35 (1150) 1011 146.7 1398 202.8 25.2 30.2
h-43 1025 148.6 1389 201.4 24.5 30.4
h-44 1020 148.0 1390 201 .6 26.1 32.7
i-51 1000 145.1 1405 203.8 22.0 32.2
i-52 994 144.1 1394 202.2 22.7 28.3

b-37 704 1004 145.6 1256 182.2 25.7 33.2
h-45 (1300) 1039 150.7 1294 187.7 15.2 21.4
h-46 1011 146.6 1257 182.3 19.3 24.1
i-53 1043 151.3 1298 188.3 24.2 35.2
i-54 1006 145.9 1268 183.9 22.5 34.1

Ta rget 1014 147.0 1172 170.0 12.0 12.0

HIP at 1182·C (2160·F)/103.5 MPa (15 ksi)/3 hrs, and heat treated at 1171·C
(2140·F)/2 hrs/RAC + Age*

*Age Heat Treatments

b. 649·C (1200·F)/24 hrs + 760·C (1400·F)/16 hrs

h. 871·C (1600·F)/0.67 hr + 982·C (1800·F)/0.75 hr + 649·C (1200·F)/24 hrs +
760·C (1400·F )/16 hrs

i. 871·C (1600·F)/1 + 649·C (1200·F)/24 + 760·C (1400·F)/16
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APPENDI X F

TENSILE PROPERTIES OF DISK 35D-3 Sa.UTION HEAT TREATED
AT 1163-C (2125-F)/2 HRS/OQ + AGED AT

VARIOUS CYCL ES

HIP Test
Temp Temp
-C Specimen -C 0.2% YS UTS

Ident. (-F) Location ( -F) MPa (Ks i) MPa (Ks i) % El % RA

a-49 1177 Bore- 21 1030.7 (149.6) 1544.7 (224.2) 20.2 23.4
(2150 ) Center (70)

a-50 1025.9 (148.9) 1504.1 (218.3) 18.5 23.4
b-13 1032.8 (149.9) 1528.2 (221.8) 18.2 22.5
b':'14 1032.8 (149.9) 1535.8 (222.9) 19.8 19.9
c-5 1069. 3 (155. 2 ) 1519.9 (220.6) 15.6 19.0
c-6 1013.5 (147.1) 1479.3 (214.7) 15.8 18.8
e-18 997.0 (144.7) 1491.0 (216.4) 19.3 20.0
e-19 992.2 (144.0) 1501. 3 (217.9) 19.0 22.5
f-23 980.4 (142.3) 1473.1 (213.8) 19.3 20.5
f-24 999.1 (l45.0) 1465.5 (212.7) 16.2 19.5
g-30 1051.4 (152.6) 1480.0 (214.8) 13.9 16.1
h-35 1070.0 (l55.3) 1530. 3 (222. 1 ) 19.0 20.2
h-36 106 9•3 (15 5•2) 1476.5 (214.3) 15.6 19.0
h-55 1056.9 (l5 3. 4 ) 1462.1 (212.2) 13.3 16.3
i -43 1112.0 (161.4) 1463.4 (212.4) 11.6 13.7
i -44 1130.6 (164. 1) 1470.3 (213.4) 11.3 12.6
i-58 1040.4 (151.0) 1447. 6 (21 O. 1 ) 12.0 15.8
j-l0 941. 9 (136.7) 1460.0 (211.9) 19.3 20.3
j-ll 982. 5 (142.6) 1477.9 (214.5) 17.8 22.3

b-61 Bore- ID 21 1109.3 (161.0) 1559.2 (226.3) 14.9 19.2
(70)

b-62 1104.5 (l60.3) 1541.3 (223.7) 15.8 18.6
b-64 1030.7 (149.6) 1517.9 (220.3) 19.4 20.9
g-33 1116.2 (162.0) 1540.6 (223.6) 13.7 16.8
h-66 1041.8 (151. 2) 1470.3 (213.4) 15.0 17.8
h-67 991 .5 (143.9) 1434.5 (208.2) 14.5 16.0
h-71 1041.8 (151.2) 1468.9 (213.2) 15.2 16.7
i-74 1087.9 (157.9) 1477.2 (214 •4 ) 11. 5 16.5
i -75 1097 •6 (159. 3 ) 1466.2 (212.8) 9.8 12.5

h-79 Ri m 21 1046.6 (151.9) 1470.3 (213.4) 15.2 17.3
(70)

11-80 1062.4 (l54. 2) 1496. 5 (21 7. 2) 14.8 17.8
i -83 1070.7 (155.4) 1486.2 (215.7) 12.4 15.0
i-84 1083.8 (157.3) 1453.1 (210.9) 11. 1 13.9

Target Minimum 21 1033.5 (150.0) 1481.4 (215.0) 15.0 15.0
(70)
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APPENDI X F (Conti d)

HIP Test
Temp Temp
·c Specimen ·c 0.2% YS UTS

Ident. (·F) Location ( .F) MPa (Ks i) MPa ( Ksi) % El % RA

a-51 1177 Bore- 621 995.6 (144.5) 1418.0 (205.8 ) 30.7 32.9
(2150 ) Center (1150)

a-52 998.4 (144.9) 1409.0 (204.5) 24.3 28.2
b-3 1011.5 (146.8) 1431 .7 (207.8) 26.4 28.7
b-4 1005.3 (145.9) 1429.7 (207.5) 27.5 30.2
b-15 1001.8 (145.4) 1426.9 (207. 1 ) 28.6 31.0
b-16 995.0 (138.6) 1433.8 (208.1) 21.1 29.0
c-7 100 5. 9 (146 •0 ) 143 2•4 (20 7•9) 29.4 33.1
c-8 981.1 (142.4) 1385.6 (201.1) 35.7 33.9
d-28 1001.8 (145.4) 1420•7 (206•2) 30.7 32.5
e-20 970.8 (140.9) 1361. 5 (1 97. 6 ) 31. 7 33.8
e-21 91 2•2 (132 •4) 1378.7 (200.1) 32.4 31.7
f-25 908.8 (131.9) 1375.2 (199.6) 29.9 31. 7
f-26 974.9 (141.5) 1377.3 (199. 9) 27.8 26.1
g-32 963.9 (139.9) 1391. 8 (202. 0 ) 32.5 34.4
h-37 1043.8 (151.5) 1486.9 (215.8) 20.9 25.9
h-38 1051. 4 (152.6) 1475.1 (214.1) 24.5 28.5
h-56 999.1 (145.0) 1373.9 (199.4) 29.5 32.0
h-57 986.6 (143.2) 1385.6 (201.1) 26.0 ~8.9

i -4 7 1028.7 (149.3) 1446.9 (210.0) 27.9 30.8
i-48 1032.8 (149. 9) 1466.9 (212.9) 22.G 27.5
i-59 98 7•3 (143. 3) 1426 •9 (207. 1 ) 28.6 33.2
i -60 1005.9 (146.0) 1437.3 (208.6) 24.9 26.3
j-12 853.7 (123.9) 1303.6 (189.2) 31.2 33.4
j-31 942.6 (136.8) 13J8.0 (194.2) 29.8 33.2

b-63 Bore- 10 621 100 2•5 (14 5. 5) 1428.3 (207.3) 27.5 30.2
(1150)

9-34 1011.5 (146.8) 1486.9 (215.8) 24.2 27.5
h-68 1024.5 (148.7) 1421 .4 (206. 3 ) 27.0 30.0
h-69 1008.7 (146.4) 1420.7 (206.2) 24.2 26.1
h-72 980.4 (142.3) 1413.1 (205.1) 22.5 28.1
h-73 1051. 4 (152.6) 1453.8 (211.0) 19.6 25.7
i -76 1033.5 (150.0) 148 5.5 (21 5.6 ) 19.8 22.3
i -7 7 1088.6 (158.0) 1523.4 (221.1) 19.0 20.7

h-81 Rim 621 1039.0 (150.8) 141 7•3 (205. 7) 20.7 23.6
(1150)

h-82 1044.5 (151. 6) 1420.0 (206.1) 26.2 28.0
; -85 1010.8 (146.7) 1430 •4 (207 •6 ) 27.1 21. 7
i-86 986.6 (143.2) 1430.4 (207. 6) 23.9 27.4
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APPENDI X F (Co nt I d)

TENSILE PROPERTIES OF DISK 350-3 SOLUTION HEAT TREATED
AT 1163·C (212 5·F )/2 HRS/OQ + AGED AT

VARIOUS CYCLES

0.2% YS UTS
MPa (Ks;) MPa (Ksi) % El % RA

101 2.8 (147.0) 1276.0 (l85.2) 31.2 34.4

989.4 (143.6) 1268.4 (1811..1) 32.7 32.7
1003.9 (145.7) 1287.1 (186.8) 29.8 37.1
988.0 (143.4) 1255.4 (182.2) 39.8 11.2.2
962.5 (139.7) 1230.6 (178.6) 41. 5 45.5

1007.3 (146.2) 1285.7 (l86.6) 35.9 37.6
1021.8 (148.3) 1274.0 (184.9) 27.4 28.4
1002.5 (145.5) 1242.3 (180.3) 25.9 29.8

101 2•8 (147. 0 ) 1278.1 (181).'5) 31. 5 37.9

1015.6 (147.4) 1245.7 (l80.8) 27.1 32.1
1035.6 (150.3) 1310.5 (190.2) 16.2 23.1
1012.8 (147.0) 1171.3 (l70.0) 12.0 12.0

Bore- 704
Center (1300)

Test
Temp

Specimen ·C
Location (·n

Bore-ID 704
(1300)

HIP
Temp
·C
(·F)

1177
(2150)

Ident.

Target 704
(1300)

a. 649·C (1200·F)/24 hrs + 760·C (1400·F)/8 hrs

b. 649·C (1200·F)/24 hrs + 760·C (1400·F)/16 hrs

c. 649·C (1200·F}/24 hrs + 760·C (1400·F}/48 hrs

d. 649·C (l200·F)/8 hrs + 760·C (l400·F)/16 hrs

e. 649·C (1200·F}/24 hrs + 788·C (1450·F)/8 hrs

f. 649·C (l200·F )/24 hrs + 816·C (lSOO·F )/8 hrs

g. 760·C (1400·F)/48 hrs

h. A71·C (1600·F)/0.67 hr + 982·C (l800·F)/0.75 hr + 649·C (l200·F)/24 hrs +

760·C (1400·F)/16 hrs

i. 871·C (l600·F)/1 hr + 549·C (l200·F)/24 hrs + 760·C (l400·F)/16 hrs

j. 649·C (1200·F)/24 hrs + 760·C (1400·F)/16 hrs + 871·C (1600·F)/lhr

a-53

a-54
b-17
c-9
e-22
f-27
h-39
h-40

b-65

h-70
i -78
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APPENDIX G

TENSILE PROPERTIES OF TOBI SEAL 51 S-5

Test Temp 0.2% YS UTS
Ident. ·C (·n MPa (Ksi) MPa (Ksi) % E1 % RA

b-31 21 1056 (15 3. 2) 1557 (225.8) 24.6 25.3
b-32 (70) 1057 (153.3) 1541 (223.5) 23.9 2ry.5
h-40 1120 (162. 5) 1566 (227.2) 20.2 22.8
h-41 1082 (156.9) 1549 (224.7) 22.7 24.0
i-49 1057 (153.3) 1555 (355.5) 21.6 21.9
i-50 1098 (159.3) 1578 (228.9) 20.9 22.0

Target 10 34 (15 O. 0 ) 1482 (215.0) 15.0 15.0

b-34 621 1025 (148.7) 1419 (205.8 ) 23.5 30.7
b-35 (1150) 1011 (146.7) 1398 (202.8) 25.2 30.2
h-43 1025 (148.6) 1389 (201.4) 24.5 30.4
h-44 1020 (148.0) 1390 (201.6) 26.1 32.7
i-51 1000 (145.1) 1405 (203.8) 22.0 32.2
i-52 994 (144.1) 1394 (202.2) 22.7 28.3

b-37 704 1004 (145. 6) 1256 (182.2) 25.7 33.2
h-45 (1300) 1039 (150.7) 1294 (187.7) 15.2 21.4
h-46 1011 (146.6) 1257 (182.3) 19.3 24.1
i-53 1043 (151.3) 1298 (188.3) 24.2 35.2
i-54 1006 (145.9) 1268 (183.9) 22.5 34.1

Ta rget 1014 (147.0) 1172 (170.0) 12.0 12.0

HIP at 1182·C (2160·F)/103.5 MPa (15 ksi)/3 hrs, and heat treated at
1171·C (2140·F)/2 hrs/RAC + Age*

*Age Heat Treatments

b. 649·C (1200·F)/24 hrs + 760·C (1400·F)/16 hrs

h. 871·C (1600·F)/0.67 hr + 982·C (1800·F)/0.75 hr + 649·C (1200·F)/24 hrs

+760·C (l400·F )/16 hrs

i. 871·C (l600·F)/1 hr + 649·C (1200·F)/24 hrs + 760·C (1400·F)/16 hrs

119



APPENDIX H

TENSILE DESIGN DATA FOR DISKS 102-1, 102-2, 160-2

Temp Spec imen 0.2% YS UTS EL RA
·C (·F) Location Disk No. MPa (Ks i) r~Pa (Ks i) % %

RT BTNS 102-1 1090.1 (158.1) 1605. 1 (2 32.8 ) 17 .6 20.0
1090.1 (158.1 ) 1597.5 (231. 7) 19.0 20.0

102-2 1106.6 (160.5) 1649.9 (239.3) 22.4 19.1
1629. 9 (23 6 •4 ) 21.1 18.2

BTC 160-2 1014.9 (147.2) 1545.1 (224.1) 24.1 27.6
1020.4 (148.0) 154 5. 1 (22 4. 1) 26.4 24.8
1028.0 (149.1) 1555.5 {2 25.6) 24.8 24.4
995.6 (144. 4 ) 1527.9 (221.6) 23.9 24.3
991. 5 (143.8) 1525.8 (221.3) 23.8 25.7

WR 160-2 1018.4 (147.7) 1536.8 (222.9) 29.0 26.0
1010.1 (146.5) 1535.5 (222.7) 29.1 27.5

RTNS 102-1 1075.6 (156.0) 1573.4 (228.2) 17.2 18.1
1065.2 (l 54. 5) 1553.4 (225.3) 15.5 13.1

102-2 1103.2 (160.0) 1614.8 (234.2) 19. 1 17.2
1093. 5 (1 58. 6 ) 1622.3 (235.3) 18.3 16.2

RTC 160-2 1019. 1 (147.8) 1536. 8 (222 •9 ) 24.3 24.4
1008.7 (146.3) 1527.2 (221.5) 25.6 30.0
1019.7 (147.9) 1538.9 (223. 2 ) 25.1 l5.3
1019.1 (147.8) 1542.4 (222.7) 25.8 25.8
1019.7 (147.9) 1534.8 (222.6) 29.5 28.5

260( 500) BTC 160-2 979.1 (142.0) 1467.9 (212.9) 17.1 16.0
979.1 (142.0) 1492.7 (216.5) 21. 9 22.6

RTC 160-2 992.9 (144.0) 1483.1 (215.1) 20.4 19.3
987 •3 (14 3•2 ) 1469.3 (213.1) 23.9 23.9

482( 900) BTC 160-2 962.5 (139.6) 1438.9 (208.7) 25.3 29.6
999. 7 (14 5•0 ) 1468.6 (213.0 ) 23.4 26.2

RTC 160-2 1014.9 (147.2) 1476.2 (214.1) 25.3 27.7
1008. 0 (14 6•2) 1451. 4 (210.5) 26.4 27.0
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APPEND! X H (Co nt' d)

Temp Specimen 0.2% YS UTS EL RA
·C (·n Location Dis k No. MPa( Ks i) MPa (Ks i) % %

621 (1150) BTNS 102-1 1088.7 (157.9) 1622.3 (235.3 ) 21.0 21.9
1057.0 (153.3) 148 9•3 (21 6. 0 ) 19.5 23.7

102-2 1063.2 (154.2) 1438.9 (208.7) 23.6 26.6
1057.0 (153. ~) 1407.2 (204.1) 22.0 23.7

BTC 160-2 969.4 (140.6) 1363.8 (197.8) 24.4 34.0
952.2 (138.1) 1337.6 (194.0) 29.3 37.4
961.1 (139.4) 1368.6 (198.5) 23.7 35.6

1010.1 (146.5) 1387.9 (201. 3 ) 28.6 28.8
982.5 (142.5) 1377.6 (199.8) 30.1 34.3

WR 160-2 98 2. 5 (14 2• 5 ) 1353.4 (196.3) 34.7 33.4
959. 6 (13 9. 2 ) 1399.2 (195.5) 30.7 29.7

RTNS 102-1 1074.2 (155.8) 1499.6 (21 7.5) 17.7 20.9
1090.1 (158. 1 ) 1467.2 (21 2 .8) 19.0 ~1.8

102-2 108 5•2 (15 7• 5) 1461.0 (211. 9) 22.3 26.6
1083.2 (157.1) 1465.8 (212.6) 22.1 24.8

RTC 160-2 98 5•0 (14 2•9 ) 1387.9 (201.3) 27.6 28.2
1001.1 (145.2) 1366.5 (198.2) 32.7 33.7
1008•0 (14 6•2 ) 138 7•9 (201. 3 ) 27.7 26.2

989. 4 (14 3. 5 ) 1366.5 (198.2) 31. 7 31.6
985.0 (142.9) 1362.4 (197.6) 27.7 26.0

704(1300) BTC 160-2 997.0 (144.6) 1217.6 (176.6) 29.3 32.9
994.2 (144.2) 1214.2 (l76.l) 27.1 27.6

RTC 160-2 998.4 (144.8) 1214.2 (176.1) 21.3 19.9
948. 7 (13 7• 6 ) 1204.5 (174.7) 22.7 26.2

760(1400) BTC 160-2 888.7 (128. 9 ) 1059.0 n53.6) l8.8 27.0
867 .4 (125. 8 ) 1065.9 (154.6) 30.2 29.7

RTC 160-~ 919.1 (133.3) 1102.5 (159.9) 14.0 17.7
927.3 (134.5) 109 7•7 (15 9•2 ) 15.5 19.5

Legend: BTNS Bore Tangential Near Surface
BTC Bore Tangential Center
WR Web Radia 1
RTNS Rim Tanyentia1 Near Surface
RTC Rim Tangential Center
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APt>E NDl X I

CO~BINATION SMOOTH-NOTCH STRESS-RUPTURE DESIGN DATA
Fa\{ DISKS 102-1,102-2,160-2

Specimen Disk Temperature Stress Hours To El RA Type of
Location No. ·C (·F) Wa (Ksi) Fa il ure (%) (% ) Fa il ure

WR 160-2 649 (1200) 965 (140) 169.3 11.3 7.8 -S-
RT 160-2 649 (1200) 965 (140) 21. 1 -N-
\4R 160-2 649 (1200) 862 (125) 1041.3 16.0 18.3 -S-
RT 160-2 649 (1200) 862 (125) 171 7. 1 11.4 10.6 -S-

RT 160-2 704 (1300) 758 (110) 213.0 -N-
RT 160-2 704 (BOO) 758 (110) 1.5 -N-
WR 160-2 704 (1300) 655 ( 95) 318.6 -N-
RT 160-2 704 (1300) 655 ( 95) 327.6 -N-
RT 160-2 704 (1300) 655 ( 95) 296.2 -N-
WR 160-2 704 (1300) 517 ( 75) 604.3 -N-
RT 160-2 704 (1300) 517 ( 75) 1095.0 -N-
RT 160-2 704 (1300) 517 ( 75) 736.1 -N-

WR 160-2 732 (1350) 655 ( 95) 89.4 14.0 10.8 -S-
WR 160-2 732 (1350) 448 ( 65) 384.0 -N-
RT 102-2 732 (1350) 655 ( 95) 18.2 -N-
RT 102-2 732 (l3~) 655 ( 95) 11.2 -N-
RT 102-2 732 (1350) 655 ( 95) 34.0 -N-
RT 102-2 732 (1350) 655 ( 95) 59.5 -~J-

RT 160-2 732 (1350) 655 ( 95) 139.4 -N-
RT 160-~ 732 (1350) 655 ( 95) 1.7 -N-
13T 160-2 732 (1350) 638 (92.5) 114.6 -N-
BT 160-2 732 (1350) 638 (92.5) 150.8* -~J-

RT 160-2 732 (1350) 638 (92.5) 158.4 -N-
RT 160-2 732 (1350) 638 (92.5) 159.3 -N-
RT 160-2 732 (1350) 448 ( 65) 369.7 -t~-

RT 160-2 732 (1350) 448 ( 65) 493.3 -N-

RT 160-2 760 (1400) 552 ( 80) 35.5 -N-
RT 160-2 760 (1400) 552 ( 80) 42.7 -N-
RT 160-2 760 (1400) 379 ( 55) 349.3 -N-
RT 160-2 760 (1400) 379 ( 55) 317.6 -N-
RT 160-2 760 (1400) 276 ( 40) 961.6 -N-
RT 160-2 760 (1400) 276 ( 40) 1390.9 -N-

*Rim tangential replaced bore tangential specimen due to mechanical prob1 em.
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APPENDI X J

CREEP DESIGN DATA FOR DISKS 102-1, 102-2, 160-2

Specimen Oi sk Temperature Stress Hours To
Location ~Io. ·C (.F) r~Pa (Ks 1) 0.1% 0.2% Comments

RTC 160-2 593 (1100) 758 (110) - Discontinued 1532 0.08%
RTC 160-2 593 (1100) 758 (110) - Discontinued 1452 0.01%
RTC 160-2 593 (1100) 689 (100) - Discontinued 1866 0.03%
RTC 160-2 593 (1100) 689 (100) 455 Discontinued 1387 0.13%

RTC 160-2 649 (1200) 862 (125) "18 90
RTC 160-2 649 (1200) 862 (125) 10 45
\~R 160-2 649 (1200) 793 (115) 59 183
WR 160-2 649 (1200) 793 (115) 46 158
RTC 160-2 649 (1200) 793 (115) 53 129
RTC 160-2 649 (1200) 793 (115) 191 399
RTC 160-2 649 (1200) 758 (110) 280 888
RTC 160-2 649 (1200) 758 (110) 265 749

WR 160-2 704 (1300) 552 (80) 325 516
R 102-1 704 (1300) 552 (80) 13 36
R 102-1 704 (1300) 552 (80) 11 32
R 160-2 704 (1300) 552 (80) 260 489
R 160-2 704 (1300) 552 (80) 195 321

wn 160-2 732 (1350) 552 (80) 8 21
WR 160-2 732 (1350) 552 (80) 6 17
RTC 160-2 732 (1350) 552 (80) 34 40
RTC 160-2 732 (1350) 552 (80) 37 68
RTC 160-2 732 (1350) 310 (45) 270 444
RTC 160-2 732 (1350) 310 (45) 159 306
RTC 160-2 732 (1350) 207 (30) 460 852
RTC 160-2 732 (1350) 207 (30) 428 779

RTC 160-2 760 (1400) 379 (55) 13 37
RTC 160-2 760 ~1400) 379 (55) 23 54
RTC 160-2 760 (1400) 276 (40) 85 161
RTC 160-2 760 (1400) 276 (40) 74 149
RTC 160-2 760 (1400) 207 (30) 160 304
RTC 160-2 760 (1400) 207 (30) 136 289

123



APPENDl X K

AXIAL LOW CYCLE FATIGUE RESULTS
smooth (Kt = 1.0)

Temperature Stress Cyel es X 103
Heat Code ·C (·F) MPa (Ks i) to Fa il ure

102-1 427 (BOO) 669 + 669 (97 + 97) 16.0
102-1 427 (BOO) 669 '+ 669 (97 '+ 97) 17.0
102-2 427 (BOO) 669 '+ 669 (97 '+ 97) 13.0
160-2 427 (BOO) 669 +' 669 (97 +' 97) 11.6
160-2 427 (BOO) 669 '+ 669 (97 +' 97) 14.6
160-2 427 (800) 669 '+ 669 (97 '+ 97) 10.7
102-1 427 (BOO) 579 +" 579 (B4 +" B4) 102.0
102-1 427 (800) 579 '+ 579 (84 '+ 84) 57.0
102-2 427 (800) 579 +' 579 (84 '+ 84) 40.0
160-2 427 (800) 579 I 579 (84 I84) 22.4

102-1 538 (1000) 655 + 655 (95 + 95) 10.0
102-1 538 (1000) 655 '+ 655 (95 '+ 95) 7.0
102-2 538 (1000) 655 +' 655 (95 '+ 95) 9.0
160-3 538 (1000) 655 '+ 655 (95 '+ 95) 9.8
102-1 538 (1000) 579 +' 579 (84 '+ 84) 33.0
102-2 538 (1000) 579 "+ 579 (84 "+ 84) 13.0
102-2 538 (1000) 579 +" 579 (84 '+ 84) 16.0
160-3 538 (1000) 579 '+ 579 (84 '+ 84) 37.7
102-1 538 (1000) 545 +' 545 (79 +' 79) 24.0
102-1 538 (1000) 545 "+ 545 (79 '+ 79) 18.0
102-2 538 (1000) 545 +" 545 (79 +" 79) 29.0
160-3 538 (1000) 545! 545 (79 ! 79) 77.4

102-1 635 (1175) 648 + 648 (94 + 94) 5.0
102-2 635 (1175) 64B '+ 648 (94 "+ 94) 6.0
102-2 635 (1175) 648 '+ 648 (94 +' 94) 6.0
160-3 635 (1175) 648 +' 648 (94 +' 94) 3.6
102-1 635 (1175) 579 +' 579 (84 +' 84) 7.0
102-2 635 (1175) 579 "+ 579 (84 '+ 84) 38.0
102-2 635 (1175) 579 +' 579 (84 +' 84) 35.0
160-2 635 (1175) 579 '+ 579 (84 '+ 84) 9.5
102-2 635 (1175) 531 '+ 531 (77 +' 77) 124.0
102-2 635 (1175) 531 +' 531 (77 +' 77) 27.0
160-2 635 (1175) .. 531 +' 531 (77 +' 77) 108.3
160-3 635 (1175) 531 ! 531 (77! 77) 97.0
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APPENDIX K (Cont'd)

Temperature , Stress Cycles X 10-3 to:
Heat Co de ·C (·F) Wa (Ksi) 1/32" Fa ilure

102-1 427 (800) 531 + 531 (77 + 77) 4.0 5.0
102-1 427 (800) 531 +' 531 (77+77) 4.0 4.5
102-2 427 (800) 531 +' 531 (77 +' 77) 4.0 4.5
160-2 427 (800) 531 + 531 (77 + 77) 7.0
102-1 427 (800) 441 +' 441 (64 +' 64) 10.0 13.0
102-1 427 (800) 441 + 441 (64 + 64) 8.0 10.0
102-2 427 (800) 441 + 441 (64+64) 12.0 12.5
160-2 427 (800) 441 +' 441 (64 +' 64) 15.9
102-1 427 (800) 427 +' 42.7 (62 +' 62) 8.0 13.0
102-1 427 (800) 427 + 427 (62 + 62) 11.0 13.0
102-2 427 (800) 427 "+ 427 (62 '+ 62) 11.0 13.0
160-2 421 (800) 427 +' 427 (62 + 62) 20.0 21.5
160-2 427 (800 ) 42 7 +' 42 7 (62 +' 6 2 ) 39.6
160-3 427 (800) 427 ! 427 (62! 62) 31.1

102-1 538 (1000) 483 + 483 (70 + 70) 6.0
102-2 538 (1000) 483 + 483 (70 + 70) 4.5 5.5
102-2 538 (1000) 483 '+ 483 (70 +' 70) 4.5 5.5
160-3 538 (1000) 483 '+ 483 (70"+ 70) 11.0
102-1 538 (1000) 42 7 +' 427 (62 +' 62) 6.0 8.0
102-1 538 (1000) 427 '+ 427 (62"+ 62) 14.0 16.0
102-2 538 (1000) 427 "+ 427 (62 "+ 62) 8.0 9.5
160-3 538 (l000) 427 "+ 427 (62"+ 62) 26.4
102-1 538 (1000) 400 "+ 400 (58 +' 58) 14.0 16.0
102-2 538 (1000) 400 '+ 400 (58"+ 58) 20.0 22.0
160-2 538 (1000) 400 +' 400 (58 "+ 58) 15.5
160-2 538 (1000) 400! 400 (58! 58) 72.0 80.2

102-1 635 (1175) 427 + 427 (62 + 62) 6.0 8.0
102-2 635 (1175) 427 '+ 427 (62 '+ 62) 4.0 6.5
160-3 635 (117 5) 427 '+ 427 (62 +' 62) 10.7
160-3 635 ~ 1175) 427 +' 427 (62 +' 62) 9. 1
102-1 635 (117 5) 379 "+ 379 (55 '+ 55) 8.0 12.5
102-2 635 (1175) 379 '+ 379 (55 '+ 55) 15.0 16.0
102-2 635 (1175) 379'+ 379 (55 +' 55) 25.0 27.0
160-3 635 (1175) * 379 ! 379 (55! 55) 12.0 14.4

*1404 NNS-1020
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APPEND! X K (Co nt I d)

Temperature Stress Cycles X 10-3 to:
Heat Co de ·C (·F) Wa (Ksi) 1/32" Fa i 1ure

102-1 427 (800) 296 + 296(43 + 4 3) 27.0 39.0
102-1 427 (800) 296 '+ 296 (43 '+ 43) 35.0 40.0
102-2 427 (800) 296 '+ 296 (43 +" 43) 20.0 29.0
102-2 427 (800) 296 '+ 296 (43 '+ 43) 34.0 42.0
102-2 427 (800) 296 +" 296 (43 '+ 43) 24.0 28.0
102-2 427 (800) 296 "+ 296 (43 +" 43) 70.0 77.0
160-3 427 (800) 296 '+ 296 (43 +" 43) 32.0 32.7
160-3 427 (800) 296 :;: 296 (43 '+ 43) G.O 17.6
160-3 427 (800) 296 '+ 296 (43 '+ 43) 8.0 15.9
160-3 427 (800) 296 ! 296 (43! 43) 18.0 25.7

102-1 538 (1000) 296 + 296 (43 + 43) 14.0 19.0
102-1 538 (l000) 296 '+ 29G (43 '+ 43) 16.0 25.0
102-1 538 (1000) 296 +" 296 (43 '+ 43) 16.0 31.0
102-2 538 !l 000) 296 '+ 296 (43'+ 43) 16.0 21.0
102-2 538 (1000) 296 '+ 296 (43 '+ 43) 70.0 74.0
102-1 538 (1000) 276 "+ 276 (40"+ 40) 26.0 35.0
102-1 538 (1000) 276 "+ 276 (40 '+ 40) 30.0 38.0
102-1 538 (1000) 276 '+ 276 (40'+ 40) 26.0 38.0
102-1 538 (1000) 276 :;: 276 (40 +' 40) 44.0 54.0- -
102-1 635 (l175) 296 + 296 (43 + 43) 10.0 14.0
102-1 635 (117 5) 296 '+ 296 (43 '+ 43) 8.0 11.5
102-2 635 (1175) 296 '+ 296 (43 +' 43) 10.0 13.0
102-2 635 (1175) 296 "+ 296 (43"+ 43) 8.0 12.0
102-1 635 (1175) 262 "+ 262 (38 '+ 38) 20.0 32.0
102-1 635 (175) 262 '+ 262 (38"+ 38) 16.0 24.0
102-2 635 (1175) 262 +" 26~ (38"+ 38) 12.0 16.0
102-2 635 (1175) 262 '+ 262 (38:;: 38) 10.0 12.0- -
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APPENDI X L

BOLT HOLE TYPE LOW CYCLE FATIGUE DESIGN DATA
FOR DISKS 102-1, 102-2, 160-~

Temperatu re Stress MPa (Ksi) Time at (Seconds) Cycles X 10-3 To:
·C (·n Mi n r~ax No Load Load Disk No. 1/32 11 Fa i1 ure Comments

427 (800) 0 779 (113) 10 10 102-1 6.0 7.1
427 (800) 0 779 (113) 10 10 102-1 5.5 6.7
427 (800) 0 779 (113) 10 10 102-1 4.0 6.5
427 (800) 0 779 (113) 10 10 102-1 4.0 5.9
427 (800) 0 683 ( 99) 10 10 160-2 8.0 11.3
427 (800) 0 683 ( 99) 10 10 160-2 12.3 16.0
427 (800) 0 683 ( 99) 10 10 160-2 7.6 9.7 1. 5xO.6 mil pore
427 (800) 0 683 ( 99) 10 10 160-2 20.6 23.5 1.0xO.5 mil pore
427 (800) 0 655 ( 95) 10 10 102-2 8.0 13.1
427 (800) 0 655 ( 95) 10 10 102-2 11.0 14.0
427 (800) 0 655 ( 95) 10 10 102-2 21.0 25.2
427 (800) a 655 ( 95) 10 10 102-2 45.0 46.2

482 (900) a 758 (110) 10 10 102-1 5.0 5.9
482 (900) a 758 (110) 10 10 102-1 4.0 5.6
482 (900) a 758 (110) 10 10 102-1 5.0 6.2
482 (900) a 758 (110) 10 10 102-1 5.0 6.6
482 (900) a 683 ( 99) 10 10 160-2 24.5 28.0
482 (900) 0 683 ( 99) 10 10 160-;: 15.0 18.1
482 (900) 0 683 ( 99) 10 10 160-2 5.0 7.6 0.7 5xO. 5 mil pore
482 (900) a 683 ( 99) 10 10 160-2 54.5 58.1 0.5xO.5 mil pore

538 (1000) 0 731 (106) 10 10 102-1 4.0 5.7
538 (1000) a 731 (106) 10 10 102-1 4.0 5.0
538 (1000) a 731 (l06) 10 10 102-1 4.0 5.1
538 (l000) a 731 (l06) 10 10 102-1 4.0 5.8
538 (1000) 0 683 ( 99) 10 10 160-2 11.0 12.7
538 (1000) 0 683 ( 99) 10 10 160-2 23.5 25.7 1.0xl.O mil pore
538 (1000) . 0 683 ( 99) 10 10 160-2 7.0 10.9 0.5 mil mil pore
538 (l000) 0 683 ( 99) 10 10 160-2 16.5 18.5

- 538 (1000) 0 614 ( 89) 10 10 102-2 21.9
IV 538 (lOOO) 0 614 ( 89) 10 10 102-2 30.9-.J

538 (l000) 0 614 ( 89) 10 10 102-2 10.0
538 (l000) a 614 ( 89) 10 10 102-2 32.6



-N
00 APPENDIX L (Conti d)

BOLT HOLE TYPE LOW CYCLE FATIGUE DESIGN DATA
FOR DISKS 102-1, 102-2, 160-2

Temperature Stres s MPa (Ks;) Time at (Seconds) Cycles X 10-3 To:
eC (eF) Min ~ax No Loati Load Oi sk No. 1/32 11 Failure Comments

593 (1100) 0 683 ( 99) 10 10 160-2 12.5 1F). 7
';93 (1100) 0 683 ( 99) 10 10 160-2 12.5 16.2
593 (1100) 0 683 ( 99) 10 10 160-2 8.5 11.4 0.6xO.6 mil pore
593 (1100) 0 683 ( 99) 10 10 160-2 19.5 20.4 0.4xO.4 mil pore
593 (1100) 0 600 ( 87) 10 10 102-2 41.4 1 mil porosi ty
593 (100) 0 600 ( 87) 10 10 102-2 13.0 16.8 2 x 6 mi 1 Al-ri ch i nc1 usi on
593 (1100) 0 600 ( 87) 10 10 102-2 81.7 1.5 porosi ty
593 (1100) 0 600 ( 87) 10 10 102-2 29.2 31.5 1. 5x1. 5 mi 1 pore

649 (1200) 0 683 ( 99) 10 10 102-2 4.0 5.4
649 (1200) 0 683 ( 99) 10 10 102-2 4.0 4.9
649 (1200) 0 683 ( 99) 10 10 160-2 3.5 4.9
649 (1200) 0 683 ( 99) 10 10 160-2 5.7 6.6 0.7xO.4 mil pore
649 (1200) 0 579 ( 84) 10 10 102-2 10.0
649 (1200) 0 579 ( 84) 10 10 102-2 10.0
649 (1200) 0 579 ( 84) 10 10 102-2 10.0
649 (1200) 0 579 ( 84) 10 10 102-2 10.0



APPENDIX M

ACCEPTANCE CRITERIA FOR MERL 76
HIP CONSOLIDATIONS

1. SCOPE:

1.1 Form: Hot isostatically pr~ssed powder metallurgy product.

1.2 Application: Primarily for rotor parts operating at temperatures 'Ip to 760°C
(1400°F) .

2. APPLICABLE DOCUMENTS: The following publications form a part of these criteria to
the extent specified herein; the latest issue shall apply.

2.1 SAE Publications: Available from Society of Automotive Engineers, Inc., 400
Commonwealth Drive, Warrendale, PA 15096.

2.1.1 Aerospace Material Specifications:

AMS 2269 Chemical Check Analysis Limits, Wrought Nickel and Nickel Base
Alloys

AMS 2350 Standards and Test Methods
AMS 2630 Ultrasonic Inspection

2.2 ASTM Publications: Available from American Society for Testing and Materials,
1916 Race Street, Philadelphia, PA 19103.

ASTM E112
ASTM E354

Estimating Average Grain Size of Metals
Chemical Analysis of High-Temperature, Electrical, Magnetic,
and Other Similar Iron, Nickel, and Cobalt-Base Alloys

2.3 Government Publications: Available from Commanding Officer, Naval Publications
and Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120.

2.3.1 Federal Standards:

Federal Test Method Standard No. 151 - Metals; Test Methods

3. Technical Requirements:

3.1 Composition: Shall conform to the following percentages by weight, determined
by wet chemical methods in accordance with ASTM E354, by spectrographic
methods in accordance with Federal Test Method Standard No. 151, Method 112,
or by other approved analytical methods.
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Columbium
Hafnium
Carbon
Manganese
Silicon
Phosphorous
Sulfur
Chromium
Cobalt
Molybdenum
Titanium
Aluminum
Boron
Zirconium
Tungsten
Iron
Copper
Lead
Bismuth
Oxygen
Nitrogen
Nickel

Min.

1.20
0.30
0.015

11.9
18.00

2.8
4.15
4.80
0.016
0.04

remainder

Max.

1.60
0.50
0.030

.020

.10

.010

.010
12.9
19.00
3.6
4.50
5.15

.024

.08
0.05
0.30
0.07
0.0001 (l ppm)
0.00005 (0.5 ppm)
0.010 (l00 ppm)
0.0050 (50 ppm)

3.1.1 Check Analysis: Composition variations shall meet the requirements of AMS 2269.

3.2 Thermally Induced Porosity: A sample of the product shall be heated to temperature
within the range of 1171 -1193°C (2140 - 2180°F), held at the selected tempera
ture ±8°C (± 15°F) for 4 hrs., and air cooled. Microstructure after thermal exposure
shall conform to the requirements agreed upon by purchaser and vendor.

3.3 Ultrasonic Inspection: The HIP consolidation shall undergo ultrasonic inspection in
accordance with ASTM 2630 using a standard agreed upon by purchaser and vendor.

3.4 Dimensional Inspection: The HIP consolidation shall undergo dimensional inspection
with the data conforming to the requirements agreed upon by purchaser and vendor.

3.5 Condition: The product shall be supplied as solution, stabilization, and precipitation
heat treated and descaled as follows.

3.6 Heat Treatment:

3.6.1 Solution Heat Treatment: Heat to 1163°C (2125°F), hold at this selected temperature
within ± goC (± 15°F) for 2 hours, and oil quench.

3.6.2 Stabilization Heat Treatment: Heat to 870°C ±8 (1600°F ±15), hold at heat for 40
±5 min., and cool to below 371°C (700°F) at a rate equivalent to air cool; heat to
982°C ±8 (1800°F ±15), hold at heat for 45 ±5 min., and cool to below 371°C
(700°F) at a rate equivalent to air cool.
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3.6.3 Precipitation Heat Treatment: Heat to 650°C ± 8 ( 1200°F ± 15), hold at heat for 24 hr.,
and air cool to below 371°C (700°F), heat to 760°C ± 8 ( 1400°F ± 15), hold at heat for
16 hrs., and air cool.

3.7 Integral Test Specimens: Shall be located so as to approximate thickest cross
sectional area and slowest cooling rate from hot isostatic pressing and heat
treatment, as agreed upon by the purchaser and the vendor. Alternate location
of integral test specimens and their properties shall be as agreed upon by the
purchaser and the vendor.

3.7.1 Tensile Proper.ties: Tensile test specimens cut from the product and tested at the
temperatures indicated shall conform to the following requirements. Specimens
to be tested at 621°C (l150°F ±10) shall be held at heat for 30 min. prior to
testing. Rate of strain for testing at 621°C (l150°F ±10) shall be maintained at
approximately 0.005 mm per min. (0.005 in. per in. per min.) to the 0.2% yield
strength.

Tensile Strength, MPa, (psi), min
Yield Strength at 0.2% Offset,

MFa (psi), min
Elongation, %in 40, min
Reduction of Area, %, min

Room Temperature

1482 (215,000)
1034 (140,000)

15
15

1338 (194,000)
1014 (140,000)

12
12

3.7.2 Stress-Rupture Properties at 732°C (1350°F): A combination smooth and notched
test specimen, maintained at 732°C ±3 (1350°F ±5) under continuously applied
axial stress of 92,500 psi shall not rupture in less than 23 hours. The test shall be
continued to rupture with fracture occurring in the smooth section. Elongation of
the smooth section after rupture, measured at room temperature, shall be not less
than 5% in 40.

3.7.2.1 As an alternate procedure, separate smooth and notched test specimens, machined
from adjacent sections of the same piece may be tested individually, under the
above conditions. The smooth specimen shall not rupture in less than 23 hr. and
elongation after rupture, measured at room temperature, shall be not less than 5%
in 40. The notched specimens shall not rupture in less time than the smooth
specimen.

3.7.3 Microstructure: Shall conform to requirements agreed upon by purchaser and the
vendor.

3.7.4 Grain Size: Average shall be 5 or finer as determined by Planimetric Procedure
in ASTM E112.

4. REJECTIONS: Material not conforming to this acceptance critet:ia or to authorized
modification will be subject to rejection.

131



Note 1.

Note 2.

Note 3.

Note 4.

Note 5.
Note 6.

Note 7.
Note 8.
Note 9.

TABLE I (51)

Center Gage
Specimen Diameier G.
Number MilIimdcr C D. min E. min F H RR

I 3.1~ 3.1~ 12.70 9.53 3.1~ 4.50 0.10

2 HI 3.18 15.~4 9.53 3.81 5.38 0.13

3 ".06 3.18 16.51 9.53 4.06 5.74 0.13.. ".52 3.18 19.05 9.53 4.5~ 6.35 0.16

5 6."0 3.18 25.40 9.53 6.40 9.07 0.~3

6 9.07 3.18 38.10 9.53 9.07 12.70 0.30

Tolerance t 0.03 ± \.59 t 0.03 t 0.08 t 0.013

TABLE I

Center Gage
Specimen Diameter
Number G. Inch C D,min E,min F H RR

I 0.125 0.125 0.500 0.375 0.125 0.177 0.004

2 0.150 0.125 0.600 0.375 0.150 0.212 0.005

3 0.160 0.125 0.650 0.375 0.160 0.226 0.005.. 0.178 0.125 0.750 0.375 0.178 0.250 0.006

S 0.252 0.125 1.000 0.375 0.252 0.357 0.009

6 0.357 0.125 1.500 0.375 0.357 0.500 0.012

Tolerance ± 0.001 ± 0.062 t 0.001 ± 0.003 t 0.0005

Radius "R" between gage and full diameter sections and between full section
and thread sections shall be 0.125 - 0.250 inch (3.18 - 6.35 mm).

Finish specimens to ~(0.4micrometers) or better on all "f" surfaces;
surface roughness of notch root radius shall be substantially the same as on
sides of notch as determined by examination at lOX magnification.
The difference between dimensions "F" and "G" shall not exceed 0.0005 in.
(0.013 mm) for specimens 1, 2, 3, and 4 and shall not exceed 0.00 1 in. (0.03 mm)
.for specimens 5 and 6.
Taper gage length "0" to center so that diameter "G" at the ends of the gage
length exceeds diameter "G" at the center of the gage length by 0.0005
0.0015 in. (0.013 - 0.038 mm).
All sections shall be concentric about specimen axis within 0.001 inch (0.03 mm).
Thread size "T" shall be such that minor diameter of the thread is greater
than "H".
Thread length "B" shall be equal to or greater than "T".
Dimension "A" is not specified.
Specimens 3 and 4 are the preferred specimens.
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APPENDIX N

PROCESS CONTROL PLAN FOR POWDER ATOMIZATION/HIP PROCESS
HIP TURBINE DISK
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APPENDIX 0
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