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INTRODUCTION

Finite element analysis offers great promise for reducing the

empiricism now used extensively in polymer processing design, since

it is well suited for modeling the compl;.cated boundary conditions

and material properties encountered in industrial practice. Thiz

paper will present the formulation we have developed for use in such

processing analyses, and results which illustrate its use in some

typical situations. Our element formulations are constructed on the

premise that momentum convection can be neglected (polymer melt

flows typically have very low Reynolds' numbers), bttt that convec-

tive heat transfer may be significant (high Peclet numbers).

Nonisothermal effects are considered important in polymer process-

ing, due in part to the significant heating which may occur due to

viscous dissipation, and also to the very strong influence of

temperature on fluid viscosity. This paper will not discuss prob-

lems in which the temperature dependence of viscosity is considered,
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although our code doer, have the capability for such problems. Here

we will treat the flow 
as Newtonian, with the flow field being

coupled to the heat transfer equation only through the viscous heat

generation.

MODEL FORMULATION

I	 Governing Equations.

The velocity and temperature fields are governed by the conserva-

tion equations for momentum and energy as shown below ( a list of

nomenclature appears at the end of the paper):

p(DU/Dt) = -V p + pV2U

p c(DT/Dt) = 102 T + Q

In our work the velocity field is constrained to be incompressible

(Vu = 0) and the heat generation Q is given by the viscous dissi-

pation T:Vu). Boundary conditions on velocity, stress, temper-

ature and heat flux are also present on various portions of the

boundary, and the ease with which these conditions are handled by

the finite element procedure constitutes one of its most attractive

features.
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Finite Element Equations.

As is described in detail in several texts (e.g. ref. 1), the

finite element equations may be developed from the governing

equations and their boundary conditions by recasting the equations

in a Galerkin weighted residual formulation, applying Green's Theo-

rem to lower the order of second derivatives and introduce natural

boundary conditions, and finally by expressing the problem vari-

ables in terms of an interpolation among their values at various

nodes which are located at finite elements within the problem

domain.

In our formulation the nodal unknowns are taken as the velocity

components and the temperature, so that:

(u, T) = Niai

where the i subscript refers to nodal values and the N functions are

interpolation polynomials computed by standardized subroutines for

isoparametric elements. The finite element equations can be written

in the form:

Ca + Ka = f

where
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10 =f BT dQ

a 
(viscosity)

t^ N,}

Fco 0	
K% + K	 0	 ft

0 CT	 0	 KT + KF + K	 fT + f1i

The components in these global matrices are assembled from corre-

sponding element submatrices given in the 
fo llowing list,.

CP = fN N dQ	 (fluid inertia)
SI

sa 

NPCN d 
	

(thermal inertia)

kA =

11 

(mTB) TX (MT B) dSI	 (compressibility penalty)

J = (V TN) kVN d9?f
Q

(thermal conduction)
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kc =f Npc uT VN dSt	 (thermal convection)
9	 n

Q

kh = NhN dr	 (boundary convection)

rh

ft = _f Nt* dr	 ( applied tractions)

rt

f = J NQ dSt	 (heat generation)

SZ

£ _ - NhTa dr	 (ambient temperature)

rh

a

We have chosen to compute various time-step values for transient

problems using the "theta method" described in Reference 1. This

algorithm may be written as:

(( C/At) + eKlan+l + [(-C/At) - (1-6)Kj n = (1-8)fn
 + 

Of n+1
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Here the n and n+l subscripts refer to values at the current and next

time, and © is a parameter between zero and one which determines the

weight to be given the next time step. The algorithm is uncondi-

tionally stable for 6>.5, and 0=.667 corresponds to a Galerkin

treatment with a linear interpolation over the time increment.

All of this formulation is conventional, and a more detailed

discussion of its underlying theory and computer implementation can

be found elsewhere (1,2]. Some specific items might be mentioned

here, however: (1) A penalty formulation is used to enforce incom-

pressibility, rather than the usual velocity-pressure approach.

This requires the use of double-precision computer arithmetic and a

selectively reduced order of numerical integration for sufficient

accuracy, but offers some reduction in programming effort and elimi-

nates the need to compute pressure as an additional nodal variable.

(2) The formulation assumes a full coupling between the viscous and

thermal terms, with the resulting storage and manipulation of zeroes

as seen in the above matrix equations. This coupling is unnecessary

and inefficient for the partially coupled example problems

described below, - in which the flow field could be solved separately

and then used in a single heat transfer solution. However, the

coupled formulation is more general and we expect the majority of

our work will require it. (3) We have coded a capability for either

conventional Galerkin or "optimal" upwinding for the handling of the

thermal convection term. The upwinding formulation is very conven-

i
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ient, as it requires simply a one-point evaluation at a suitably

shifted Gauss point within each element (2), but this approach is

controversial and evidence can be cited as to its failure in some

instances (3).

EXAMPLE PROBLEMS

Entry Flow.

Figure 1 shows the streamlines for a 4:1 entry flow which we have

previously reported in greater detail [4]. Here a grid of 100

four-node linear elements were used to model the upper symmetric
A

half of the plane capillary , and a fully-developed Poiseuille

velocity distribution was imposed at the reservoir entry as a bound-

ary condition. The streamlines are identical with published

i experimental and numerical results, although the grid used here was

not intended to be fine enough to capture the weak recirculation

which develops in the stagnant corner of the reservoir.

The temperature contours for convectionless flow are shown in

Figure 2, which shows a hot region at the entrance of the capillary

due to the combination of higher viscous dissipation at this region

and a greater distance from cool boundaries to which heat may be

r	 conducted. These isotherms are normalized on the maximum centerline
4«

temperature T = uV2 /3k expected for Poiseuille flow in the capil-

lary.
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The importance of thermal convection in this problem is given

approximately by the Peclet number Pe = ULpc/k, where we may take U

to be the maximum (centerline) velocity in the capillary and L as the

capillary half-height. Figure 3 plots the variation of temperature

along the centerline for various values of Pe, and it can be seen

that the effect of increased thermal convection is to sweep the

cooler upstream flow particles well into the capillary, with a

resulting lowering of the temperatures overall and a shift down-

stream of the hot spot near the throat. The relatively coarse grid

used in this problem produced unstable Galerkin results for Peclet

numbers greater than approximately ten, and so the higher degrees of

thermal convection were computed using the upwin.ding formulation.

Further tests with refined grids should be completed to asse ss the

accuracy of the upwinded solutions, although the plots in Figure 3

appear reasonable,

Transient Couette Flow.

We have found that a capability for dynamic solutions is very

useful not only in explicitly transient problems, but for a variety

of processing flows. Rather ;:han discretizing the entire bubble in

a film blowing process, for instance, we follow a small annular

strip dynamically as it travels from the die to the frost line. The

dynamic algorithm is also useful for developing steady solutions to

nonlinear problems, and we are presently working at modeling the

flow of reactive fluids in this manner.

Q
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The performance of the time-stepping algorithm will be illuo-
a

traced here by means of some one-dimensional problems in which a

single row of linear elements is used. Figure 4 shows such a strip

which is used to model a Cou)+;:tu flow in which the upper plate is set

into motion impulsively, and in which the velocity gradients in the

horizontal direction are zero. It is necessary in such problems to

consider both the mesh spacing and the time step carefully, in order

that both are able to capture sharp gradients which occur near the

moving wall. It is noted that the mesh becomes much more refined

near the upper plate in order to capture the boundary layer which

develops there. We have also used a time step which begins very small

and then increases logarithmically as the flow develops. The veloc-

ity histories at three positions in the flow field are plotted in

figure 4 and compared with the theoretical solution. It is clear
i

that the computed solutions are not exact, but that the correct

steady values are obtained at long times; improvement in accuracy

could likely be obtained by considering further refinements in the

mesh and the choice ,of time steps.

Figure 5 shows the velocity and temperature profiles for a simi-

lar problem, different only in that here the upper 15% of the fluid

is a layer having a viscosity ten times that of the remaining 85%.

This simulation is aimed at modeling the flow which may occur in

coextrusion. At early times, the flow has not developed sufficient-

ly to involve the low-viscosity fluid, away from the upper plate. The

r	 thermal dissipation in the upper region is initially intense due to

9
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the very high shear rates in the boundary layer, %in,d a severe thermal

spike develops. At longer tames the flow is fully developed through

the low-vi scoo ty fluid; the high-viccooity region experiences only

little shear flow and appears almost as a rigid boundary. The

temperature profile in the low-viocosity fluid, then becomes para-

bolic as expected in simple Couette flow.

Graetz Flow.

The Graetz or forced convection problem is a commonly used trial

problem in which channel f:.^.^w suddenly encounters a heated portion

of the boundary. In the absence of flow the temperature distrib-

ution is based only on conductive heat transfer considerations, but

with significant flow the cooler upstream particles are swept down-

stream; a thermal boundary layer develops at the heated boundary

which grows gradually toward the channel center and the contours of

constant temperature are swept downstream relative to tho

conduction-only case.

Figure 6 shows the isotherms for Peclet Numbers of 1.3 and 130,

where upwinding was used to compute the high-convection case. The

boundary conditions included an imposed pressure at the entrance of

the channel, and the heated boundary was located a sufficient

distance from the entry to permit the development of a Poiseuil.le

flow. In this example the viscous generation of heat was assumed

negligible, so heat is added only at the boundary.

i
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CONCLUSIONS

This paper has described some features of a model which is being

developed in our laboratory to simulate a number of diverse polymer

malt processing operations. We hope that this inexpensive and easi-

ly implemented model can provide a means by which the decignerla

intuition might be expanded. Continuing work is aimed at increasing

the number of process situations amenable to this type of modeling;

among these are included reactive flows, free surfaces, and wall
slip.

NOMENCLATURE

8	 Matrix of interpolation function derivatives

c	 specific heat

D	 Fluid viscosity matrix

D/DL. Substantive derivative

h	 Coefficient of convective boundary heat transfer

k	 Coefficient of thermal conduction

L	 Characteristic length

m	 Identity vector (1,1,1,0,0,0)

n	 Unit normal vector

N	 Interpolation function

p	 Pressure

T	 Temperature

Ta	Ambient 'temperature

4
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u	 Velocity vector

V	 Rate of deformation tensor

Ph	Boundary on which thermal convection occurs

rc,	 Boundary on which heat flux q* is specified

rt	 Boundary on which traction t* is opecified

ru	 Boundary on which velocity u* is specified

4t	 time increment

Y
	

0	 time step Factor

X	 Penalty coefficient (usually 107

P	 Newtonian viscosity

P	 Density

T	 Deviatoric stress tensor

Problem domain (volume, area, etc.)

Laplacian operator
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Figure 2 - Normalized temperature contours for 4:1

entry flow, Fe = 0.
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