General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CE=-169042)
FAULTS IN DIGITAL SYSTIEMS (Jchns Hofpkins

INTEEMITTENT/TRANSIENT NEBZ2=-2€6570

Univ.) 9 p HC AOZ/MF AO1 CSCL 09¢C
Unclas

G3/33 28045

.- 5 o
-, . .
. v o a
v . A
» 1
= PR N L b R E W AN s
7 z 3
- 3 ! Ten . -
. -
2 L]
L L4
- L] L
-
% '{’ .
L]
3 5 « »
. X :)
¥ 4 P
N
h . 3
»
5 -

R - A R AT TR T L RS e

R R

1

ORIGINAL FPARi: O

OF POCR QUALIY

The Containment Set Approach to Crash-Proof
Microprocessor Controller Design®

Robert E. Glaser and Gerald M. Masson

Department of Electrical E
el b

Baltimore,

Adstract

Fat endiysis of digial ymens has been shown to be pomible
through the iewdopment of @& coliecticn of fuscional level opereting
saes called ¢ comainment 3x. The comareness s approach lmds te
& new swhxi for the implevrmation of fzll ioleresce o
imamitemkraxsem (IT) fuis by rowoving of oronecus cements
from the congirmess set. The ackieverners of yuem fiaskl tolevance &
then a uivaless 10 proposing @ comainment 38 candidate and proving
thae the condidkae is 8 comanmend 3. The ressting cortairness a8
s then be shown to be subadie for practical application by supplying
& methad (o procce each of ks clemenss. and 0 provide 8 manns 1o
remove all err_.es cemerss from that ss. Ths paper applies these
tachnaques Lo secroprocessor concroliers 3o as 10 trangform a typical con-
trol gysem ino & sightly mod!fisd verson which i3 prowen 10 be crash-
proqt: gher the deporose of an T fukt, the inkurers desgn of the pu-
ion 8 sxk thx evermus! retuwrn to the proper comtrol algorihn &
axored, azsoning no permanenl fadts occwr.

A usAd comaimmest sx candidate is found for the 8085 CRU
with an accomgaming proof that X is & comainmens set. This s is the
basis ¢f owsh-progf desgn for the 8085 microprocessar; the sowe
apgrooch can be apyiied 10 ather microprocessory.

Introduction

Cooninmens st theary was first developed {1] 1o beuer
undersmrd the effects on digital sysiems whick permurtatina by I/T
faults n produce. The approach concentrates anention o the
upeet level, where syswen functon is of pnme concern. When the
aperation of the sysiem aan be compietely descyibed in erms of 3
finite set of munuaily exclusive functiomal siaws, covering all possi-
bie transfer funciions, this set of functions! siates is referred 1o as
the comaimment st. All possibie sysem sres mus cause func-
toml opention of one of the elements of the conainment sl
This set must incdude all possibie valid functional siawes of the
fauli-free systen, bul Uns set must aliso include invalid funcrioml
smates, not explicitly designed im0 the sysiem bt imo which the
system ain tevertheless be driven by & ransient. ht was shown in
{1] how probmbilistic modeling and amlysis of & conral syswem's
swady stie response (0 tmomer faulns cen be made given a mon-
nimnent set, that a suinbie farm for coominmerns set elemnents in
microprocessor comtrollers is the program loop, and how erroneous
joops (erroneous conuinment et elemens) an resull. The
modeling and analysis ideas are genenlized in [2].

The program loop exampies of (1] serve as simpie exampies
ixficating bow s coomimpent =t can be famed. The usk of
finding all pomibie loop srucures which & WICOPIOCESIOr CON-
troller can support is handied in tns paper.

* This resarch was supported by NASA Gran NSG 1442.

reemg and Computer Science

land 21218ty

Upset Thoery Applied to Micreprecesser Cantrullers

The digital symems of inerest sre microprocessor controliers.
These controllers typically consist of cne printed circu board, and
vomain the CPU, sevena] thoumnd bywes of ROM for program
storage, several hurdred bywes of RAM for dan siorage, and 1/0
devices. Previously developed theary i applied 1o these sysaems in
premasation for the evaaton of cash-proofl controlier design rules.

The purpose of this seczion is v produce a finiwe set as 2 aan-
didste for a mucroprocessor conmoller coominment set, and
prove thai it is indeed & conminment set. To achieve this goal, the
ideas of: loop ser; ermonecus loopx, ROM restrict mechanism; spe-
cial siate deweaiar; SAFE ROM, pogram strucuress path diverters;
loop sructure types;, improper suboutines; and STACK WALL are
introduced.

Centainment Sei Characterization

The definition of 2 useful conminment st is the key 10 the
practical use of the developed theary. The comainment set ele-
menots must define comtraller funcios. Tr: functions of micropro-
ceasar based designs sre determined by the application program.
The conral program is as much a part of the conzrolier design as
are the hardware deuils, and any useful approach o fault analyxis
of such systemns should be expocied 1o take inw scrourn the partic-
ular gpplication program. For these reasons, the conlinment et
spprosch 10 the undersanding of /T fault relstionships in
micoprocessoe cotmilers oot only includes, o intimeeely
iovolves, the application program. Trerefore, the hardware “sys-
e’ cannot be amlyred independently from the sofware; for the
hardware is not the systern — the hardware in conpunction with the
sofrware is the real “system.”

Programs

For mixyoprocessar coniroiiers, progims an bte cassibed as
one of two Typex those which exit afier execution, and those which
conunuously loop An exting pogas perfarms same auculanon,
or perfarms some fuaction, and then ermimues. A loop grogrom,
of simply loop. is a program which hes the ambility of looping
indefinitely amd the joop wt (L} is the set of all possibie loops
defined by a given rsiern. Under some conditions, the program
may termnate, but uniess it erminates urder all possibie coodi-
tons, it is classified as s progam bop. A kop progam usually
mOomiofs inpurs or processes input dais and ansfers results to the
outpur. Often, & loop momiors same inpwt condition, waiting for
*: arrival of some specified sale befare exit In the following,
ocaly iocp programs will be considered. This is not particularty res-
miaive far micoprocessar controllers, since process contral
software {3] is such that mos: ofien comrolier programs are indeed
loops. Also, s numnber of exiting programs executed in sequence
can result in & single loop program.

Within this framework of a micoprocessar controller, the
loop programs are parura! chaeces for funcnonal level progam
siaies. A program loop defines 1/0 relanonships. The processng
berween the reading of inpu! sensors and the wriling 0 sysem
acnmtors sety the sysimn transfer function If a loop cootains oo
outputs, the /O relationship reduces 10 the trivial. The operationt
stmtus of the controler can be grven as & specification of the partx-
ular loop program currently v xder owecution Moreover, o addi-
tog 10 valid loop programs ihat are explicitly wrinen for the sppli-
cation, there can be erroneous embedded loops 1o which the sysiem
can be driven by 2 mansien: fauit The loop set is then the callec-
don of all valid and erroneous ioop programs. Before rerurming 1~
these erronsous loops, the inieraction terween manuent faults ani
the loop set will be discussed.

Given that the contrulier is execuling some loop progam,
L €{L}, upsets can be characterized 1n three ways:

Cass] Upsa: Dma Change. A tarnsient fault is sad 1o pro-
duce a daia change upset when that fault changes dam vaiuves being
ransferred and/or stored, but loop progmm [, continues o be exe-
cuted.

QGass 2 Upset: Program Surg. A mnsen fault is sid 10 pro-
duce 2 program burnp upset when that fault causes & emporary
divergence fram loop progam L, bt the contro''. vventually
returms 1o that program.

Gass 3 Umeat: Progrom Transiion A mansient @ull is ssid 1o
produce & progra ranslion upse! when that fauht causes the coo-
roller v Amp flom the execution of L, 10 the execution of
Ly€{L), 1v8y

The dama change upsets and program bump upsets are the
jeas significant of (e three upset ciasses becavse therr effects an
the cootrolier’s operation are wroporary, and the conmolier itself
either continues, or retans within a fimte tme 10 the execution of
the proper loop orograrn. In many coatrol applications, such as
tnese in which a2 mecnaniaal device 1s being operated, wemporary
dais changes or prograum bumps usually occur ar a raie exceeding
the device'’s aamaty 1o respord On the other hand, a program
Tansiton upser resulting from 1 ransens fav!t is 2 steady s
operational deviation which can have most sefious consequenoes.
Indeed, the result of a mansition into an erroncous embedded loop
is usually referred 10 as a system crash. These comments, of
course, are a reieration of the justification for the importance of
operationt] keve! conminment sets put in wems of microprocessar
contrallers.

INTENT

NORMAL EXECUTION N mr-C0DE
ERRONEQUS EXECUTION N1 DATA
NCPMAL EXECLTION N oP-202E
ERNONEOUS EXECUTION Nl DATA C
CRRONEQUS EXECUTION Ne2 DATA]
ERRONEQUS EXECUTION N DATA TABLE
ERRONEUS EXECUTION N+l DATA TABLE

FISURE 1. EORONEDUS LOCP INSTRUCTION EXECUTION

ORIGINAL B

i T BTN
N7 -

P)

OF POOR GUALITY

The loop set is proposed as a candidate for a corsainment seL
Since the conminnent set is defined in terms of loop programs, &
compiee ipvestiganion into the ways in which these joops aan be
forrned is necessary. It will be shown thar there are & vanery of
program structures which can support program loops. These struc-
res may be either valid or esroneous loops.

Erroosout Loops

In addition 10 valid loop prograros, the existence of erToneous
embedded loop programs has been menmtionsd A mansien: fault
an aus progmm execution 1o begin at any memory location
This can cause incorrect execunion of a vali] ionp program, if more
than ane vaixd loop program exists, ar it can ause the execution of
an erronecus loop program which s embedded in the application
program (program crasu). Tt therefore is appropriate that & simple
example of the exisience of such phenomem be given. Erronsous
program loops exist becanse of multiple byte instructions and dan
siorage, as shosn in Fig. 1. If execution erroneously begios a1 a
daa locarion, the dam wili be interpreted as an op-code, aind execu-
tion of £n erroneous ioop program can begin.

Swyyly Adds (2373 A Cade L} Cade L2 Cose Q.bar
» onae » L
] ey » =or
o »ech e T a.eCHm
L1 secs 33 - wm
P secT 2 ouY » |
u e » i "o
1 socT n [EI N < c$] i
w socr <3 »y ocre
- 004 cr asT
1o 801 L od
s 402 12 T ACRCIN
18 280 (1] E N -
¥ sane a P asTY
Le 803 Lo =
i) 004 c P SCAR
[se0? o \ iz
7] se0e - woe
1 e e wor
18 sert “ Rl
7] cr ST 8

Pigques 1. Aa Lrirenswue Lecp Zasmpic for the $00%

An exampie program for the Intel 808S 8-bit CPU (4] is given
in g 2 The loop set {L} comsisis of oo inentiomal loop, LQ, and
wo erroncous jooms, L1 end L2 The enrre contents of the 256-
byre ROM are shown, irom address 0000 10 0OFF. Execurion of LO
normally begins at address 00CA, where the 3E is the opcode for
the MV1 instruction. L0 consists of seven instructions, and if exe-
cution begins a1 the first byte of any of these insTuctions, evecu-
tion will rernain in LO. These addrecses are: O0CA, 00CC, 00CE,
00D1, 00D2, 00DS, and 00D6. If execution begins st 00CRH, the
data value C3 will be interpreted as 2 JMP inaruction. The resuly,
thes:fare, is the execution of the erroneous loop, L1. Execution at
0003 aiso results in the execution of lcop L1. Execution at 00CF
produces a2 one instruction Joop, 12, If execution begine ar
addresses 0000 through 00CY, each 00 will be interpretad as 2 NOP
instruction, leading 10 loop LO. Similarly, addresses 00CD, and
00D8 through OOFE result in NOP’s. Address 00DO0 iz inerpreisd
as RST 1, which sends contro! 1o the NOP block at the head of the
program. At address 00D4 1s found the data CB. This is not an
laiel defined B08S instruction 11 has been found, however, that
upon executian of this op-code. an instruction aulied RSTV, resan
on overflow, results {S] Exeanion either contimues or comral
passes o the top block of NOP's in either case the result is loop
LO. At address 00D)7, the CA is interpreted as JZ, so control either
goes o address (000, or 0 the trailing NOP's. The last memory
locauon conuains C7, interpreted as RST Q. which sends conrol 1o
address 0000. The RESULT coiumn of Fig. 2 shows which loop is
reached if executon begins st each memary lomuon In this examn-
pie, there are caly three memary locations from which exeaution
will resuit in an erroneous loop program.

e ~

o e .
OF PULR LAl

These erroneous amp ioops are but ooe type of lop pro-
Fam. As will be seen isier 1n this socnon, other program sinc-
tures permut other farms of both vald and ermancous loops.

Hardware Requirernense

The set of loop programs bas been jroposed as a conmainment
set for mxyoprocessar controllers. Up to this poing, it is oot clear
that this loop set smasfies the comunment st requirements
narpely, WAl they form s complete, finile, mutually exclusive set of
all possible operstional suies The set of all possbie vaixd and
eToneous Woop prograns is cerainly munally exclusive However,
it must be further shown that this set s finite and that it is possibie
10 determine each »lement of the seL I is also necessary 1o show
that the loop ser describes all possibie operatioml sures of the con-
trolles. These requirements will nox in general be met by an
unmadified microprocessar contreller. Howewver, it will be sen
that it s possible © misfy these requirements through the
modificanian of typical microprocessar controliers.

The realimnon of & controller in wiich upsets can be chamc-
wrized as oop program ransions requires that same speciiic, but
not eXcespIve of umreascoabie, 2imtiles be Getighed INO he Y%
wem. First of all, if programs are pamitd 10 execuze fram RAM,
and since the coments of RAM an be changed at any timme bott
dunng program operanion and by & ransen: fauly, there would be a
oearly infinie st of possibie loop programs which could be exe-
cuted from RAM. This is because in this cuse the RAM conients
are the instructions themselves; it is possibie far any sequence of
instructions 10 ba placed into RAM and executed, and the set of
loop programs consists of a2l possibie loop programs which can be
wninen wmthin the CPU instruction set Therefare, it is pecessary
that the spplicarion program be stored in the controler’s ROM, and
the programm execunon be forcbly resmicied by hardware 10 that
ROM. This ROM resnct mechansym is not 4 program fesuicton,
since this already is the cxee for microprocessor conroller designs.
Since all of the valid loop programs are defined by the application
program, the ROM resticuon guaranteas that the set of vaid locs
programs — a subaet of the coninment st — remains fixed dunng
Systerm operation, 4s long as no permanent faults occur.

The set of erroneous loops must be fimte, fixed, and deter-
mimabie. Dwe to tte ROM restncion, only program execution
from the ROM ored be comodered Howewer, since small
migoprocesxy sysiems ofien use incompiete address decoding, in
such cases the ROM an te acuvaied from many sddresses other
than the ones which are iniended, creaung many images of the
ROM. In normal opersnon, this does not matier, since the cootrol
program never sends control ot of the primary ROM address
space. With the addition of faults, it is possible for these images of
the ROM to be accessed, and the ROM restncuon will not prevent
ths occurrence. This can be permuued, bt the canpiewr set of
addresses winch can socess the ROM must be knosm. In addivon,
the compieie ROM conients must be known — there is usually
unused storage space which is oot defined, and oot necessary for
fauli-free program operanon. With a complee ROM specificanon,
the st of eraneous loop programs s fimte, fixed, and dewsmin-
abie. Therefare, since the conunment set is the umon of the velid
and efronsous loop seta, and each 1is firste, fixed, and determnumble,
the entre loop set is fimte, food, and determimable. All that
rema:ns 10 be shown 10 conciude that the [oOp set is & conminment
set 13 that it covers all posnbie operanons] sates

The loop set descnbes all possibie opeatoml states while the
Processy 18 cxecuung insmucuons. However, there are starss the
CPU aan enter wiuch can halt the exacuzon of instructions. These
staes wil vary from processor 16 processor, but for exampie, will
unually indude the haited star:. Hence, any speaa furcuon thet is
uxcluded 1n & processar's operauons) apetbves, and which can
prevent parmal progam cxecunon, must be removed. I ths i
done, Lhen the loop set becomes campaete (the (PU cannot remain

in any sawe not in the loop set), and qualifies as 8 comainment set

The «ditione! hardware, then, must incdude the ROM exacu-
toa restriction and 2 specal sate desector. The special state detector
Tags enrry imo other prohibieed smres 1f & bad sate s enwcred,
samething must be done 1 escape it A nonmasiabie trap input
c3n be used w farce exit from these special staics, of 8 smple -
1= ~ reset may likewise be vsad Regardiess of the implemeniation
de.uls, it should be apprecated that logether, the two additooal
r .Uv e sections have a camplxity oa the ordex of two w three
P egraed arants

' sinul® be notwed that with the additon of hardware w0 the
conuote: the sysiem is inherently changed It is possible for the
new hadware 10 create ew sam; which aan prevent program
operauon The hardware addiuons must be amatyzed and modified
if pecessary 1o verify that this i not the case.

With these reswrictions, the processor s gusrameed to be exe-
cunng inswructians, those instrucbons are ginranieed to be cour-
uined in ROM; the ROM address space is compieiely defined; and
therefare, in the swpady stte, the processor must be execuing one
of the programs in the loop set, so 1he loop set is a comainment
seL

An aliermative to determining all possible erroneous loops is
0 prevent theif execution Mtk hardware. This can be done with
the addition of what will be autled & SAFF ROM. The SAFE ROM
is 8 1-hit wde memary, with ihe same munber of locations as the
main ROM (where the control program is sic ed). The singie addi-
topa! bit is used to distnguwsh berween valid and erroncous
instruction fewches. The first bywe of muiltipie tyte instructions is
marked as vl all other loations — dam, addresses, and lookup
tabies — are marisd g8 erroneous. The ROM restnict hardwere
must then verify tnrough the SAFE ROM that & valid instruction is
being feiched. If not, & twp interrupt or a reset must be issued.
SAFE ROM hardware suppiies the option of trading off hardware
for the additont] campiex program analyss needed 1o d- ermine
the erroneous loop se. The SAFE ROM performs the function of
limiung the cagpaddiies of the operatng softwure, used here at &
lower lxve! than as first defined in (6]

Program Structuces

The problem rernains of finding all possitie vaiid and erroce-
ous loops, given camprete ROM conenis and ROM address
specifiation. This probiem will be atuacked by finding all pogam
Sructures which can possibly result in & loop. Microprocessaors exe-
cule instructions in sequence, uatl an even inlervenes 1o divert
the path of the program. The search for all ioop program structures
will center on the concept of a path diverier. A amh diverter is
defined as any event or condition which can divert program flow
from the normal incrementing sddress sequence. Path diveriers
may cither be hardware or software tased

Hardware Path Diverters

Far accuracy and compieleness, the fol rwing will be res-
triced o the BU8S CPU. Smmilar, if oot dem cal, anatyxis aap be
done for other microprocessars.

For the 3085, the following hardware feanures can divert pro-
sram flow: dock stop, hall, ready, hold, and interrupts. The dock
osc! \ior must be such that it uncooditionally cscillates This is an
ofien overiooked but very impartant 1mue in amy mMicroprocessor
deugn, b it is partcularty sgmficans for faull tolerance. For-
tumieiy, this source of path diversion can be avosded smoply by
smingently adhenng 10 the manufacturer’s specificanons. Peniphenal
arculiry which utlizes the hald of ready inputs must be corfigured
such thal & rese! pulse assures normal operanoa reswnes should
same unplanned lockoul take effect. (Such as s poor bus artatra-

 tion scherne which would gant the bus w neither device if ™o
deves conend for the bus at the same tmme.) This is normmally
sutomatic. If it is 2ssumed that the hardware additions from ne
previous section are incarparated (special state and bad fetch detec-
wrs, .nd passibly 8 SAFE ROM), then progmm feiches are
gurznired 10 ocour within a specified period of time, or a reset
ocont Therefore, hait, hoid, and ready festures cannot stop the
progrus execunion ia the sieady state.

This kses imerrupts to be considered. Narmally, when an
imeerrupt OCCUTS, 20 LNISITUIK SErVice rouline is executed, and pro-
gam flow returns 1o the imerruped progam. When this happens,
the program path has been diverwed, but only in one sense, for the
program flow evenmually returns 10 the place at which the intemmupt
occurred, continuing the origmal path. A npomal imerrupt
sequence need oot be comidered a path diverter for the purposes of
loop spalysis because any program loop which comains a normal
inresrupt sequence will still be & program loop withowt the imerrupt
sequence. Therefore, the imerrupt sequence must be “normal” in
the sense thal the inmrrupt serviee rowutine must renwn. The ser-
wice routine is & subroutine, which 2iso can be aalied from within
" the program, so with the understanding that it will be considered a
subroutine, and that subroutines wili be handled in the section on
software path diveners, this hardware path diverier an be bypessed
— with ooe exception. A further requirement of an interrupt sev-
_veee subroutine i thatl i exeoules in jess ome than the tme
terweea successive interrupts. In a properly operzting program,
this will always be the case. However, in some special cases, addi-
tiooa! (xovisions must be made 10 enforce this. If the device which
is the rource of the interrupts s a programmable periphenal device
which nas modes of operation which can atlow the inerrupt interval
o decease uxier progrum congol (and therefore possibly as a
resuit of a tanseent fault) sweps must be uken 10 ensre that the
inerTupt interval is resiored after each interrupt. An exampie of
this would be s progmmmabdie divider driving zn interrupt inpuL
Should the programmable divide ratio be chenged such that the
period between interrupts becoroes less than the service routine
execution ume, then as soon as the inerrupl rouline exits, another
imerrupt will immediately occur. This causes 2 program loop. In
such & ase, if wyitun the inerrupt service routine the divide rato
of the programmable divider is reimualied 10 the proper value,
then thns inlerrupt loop aan never ocaur in the sicady s,

For the case of extermal sowrces of interTupis, the hardware
should be exarmined 0 verify thal no modes of operaticn exist
which can awse the period berween interrup's 10 decrease below
that of the imerTupt service rouline execunon LLne.

Software Path Diveners

Paamimtion of the instruction set of the micoprocessor of
imerea gives the instuctuons which aan divert pormrtel program
flow. A probiem exists with urdefined op-codes. Two optians may
te employed with these op-codes. A SAFE ROM may be uilized,
ssnuing that only vald instrucuon fetches are made, which would
pever include undefined opcodes. Altermauvely, the undefined
op-cades can be defined by the user. For the 8025, all op-aodes not
dcfined by the manufuturer have moce been defined by others
Invesugation has shown thw! these “undefined” op-codes roay reli-
ably be empioyed [S). Therefare, the SAFE ROM approach need
pot b used with that CPU.

In the 8085, the software path d-verter instructions are in the
rolowmng ategones jump, all. and renan The junp osiegory
includes the uncorxditiors]l JMP. snd the wn cordivoms! amps
(incduding the “undefined” ammps). The specal insvucon PCHL
(urnp 0 the sodress specfied by the HL regsier) is atso in the
jrop argxy. The all argory indudes the uncondiucml CALL,
and the eight conditona] calls. The mne RST (reswrt usually used
for interrupts, bul somenmes used in pace of CALL) instructons
(inctuding “undefined™ RSTV — resarnt on overflow) are singie bywe

calls, and are aiso in that category. The return caiegory consists of
the unconditional RET (rerurn from subroutine), and the eight
condional retums. A program sutructural anuiysis cenisring o0
these path diveners follows.

Program Suuaural Amlyas

The assumption that the processor continously exewules
instructions is satisfied through hardware requircments. Therefore,
in the steady sute, 8 program loop must exist. More precisely, this
irnplies that there exisis ar least one address containing an instruc-
tion tuch that progam flow evennully returns 1o this address after
execution of this instruction. It is desired 10 determine all possibie
progrem sructures which can permit such a loop 1o exist. These
will be found by considering the four /oop sructure types conmining
the vanous path diverers.

Type 1 — Loops Conmining Returns

This loop type conming & path diverter of the retirn aategory.
As shown in Fig. 3, there is a body of code leading 10 & recurn
imstruction, which then sends prograre flow beck 1o the beginning
of the preceding bady of code. The return instructions divert pro-
pam flow by changing the program counter 10 an address found at
the top of the stack; therefore, the flack pointer plays an imporant
role in the path selecion Type ! loops will be divided imo (A)
those which iesve the stack pointer unchangsd berween loop itera-
tons, ard (B) those which cause the stack pointer 1o be changed
between loop iterations.

Considering first the loop type 1A, it should be noted thar the
execution of return instructions increases (he siack pointer by twa
In order for there 10 be no net ¢ 1ge in the siack pointer in ooe
loop iteration, 1t 1 therefare necessary for either the sack poinmter
1 be decreased by two in the body of code preoexding the renrn
instruction, or far the ack pointer 1o be intialized at jeast once per
inop. Those loops which loed the stack pointer are classified as type
IAL. There are caly two instuclions which can load the sack
pointer: LXT SP, and SPHL. It is evident that for Joop type 1Al 1o
exist, swucture type [Al, shown beneath loop type 1Al in Fig 3,
must exisy

Consxdering next looo types IA which reduce the stack potnter
by two prior W the return instruction, there are three ways this can
occur. All PUSH inmructions decremment the stack pointer twice, so
loop rype A2 results Suucture type 1A2 must exist for loop Type

4 w N i
\ L xe- o 0o
oo | TR [(o R g
Troc ‘! [Vl o o
o Eum w e I Ko
L — oo X
TR
TR e v e v uy 1
™ [soov o
L) nn wun 1 aY
anm
e ™ il vy
oLt i AR rs 00
1o] 1w Apaess oo
| NE——
aomLss BB
riam) L Rl

IA2 to exist. The siack poinier may directly be decrernentied rwice,
resutung in loop type 1A3. Structure type 1A3 is necessary for the
exisience of this loop type.

Fr each, instrusuon in the call categary, the sack poinier is
decremeuied by wo. i.o0o0p type 1A4 results, for which strucrure
type TA4 must cxist It chould be obvious that this suructure is that
of a sundard subroutioe.

Loop type IA4 can be furtner divided imo those in which (a)
renan is a3 expected, and those in which (b) renrn is incorrect.
For the first tvpe (1A4a), the all to subroutine X is not necessary
to form the loop. Even if the "CALL X* instruction is bypassad,
the loop still exists, since upon & normal subroutine retumn execu-
tion continues af the instruction after the "CALL X© instruction.
Hence, this return instruction is pot diveriing prograro flow, it is
not the sourre of the Jocp- The loop structure remaining when the
"CALL X" is removed must itself be one of the loop ypes categor-
ired which does not contain the specific rerumn instruction teing
considered. Far this reason, in the search for all loop sTuctures,
type [Ada need not be considesed.

Loop type 1A4b is such that the rerurn is aot to the correct
location. This can happen for two reasans: (1) the sack powater
4o o paint W RAMG o {2) d sack poiiiar OOSS AN W
RAM, tant the contents of that RAM addressed by the stack poinier
—~ the stack space ~ is madified berween the arigimal "CALL X and
the renxn sialemenl Subroutines which maodify either the stack
space or the suack pointer in such a way thal reurn is not 1o the
instruction afier the call will be dassified as maoper suirogines

To simplify the search far loop types TA, the roie of cll
ategary instructions encountered in the segments of code listed as
“BODY" must be considered. If the CALL leads 10 a code segment
which conuins a8 reium cuiegory instrucuon, this falls under loop
type IA4 If the CALL leads 1o a code segment which does not
conlain & renxn, then this subroutine is also dassified as an
improper subrounne. Hence, for the considerznon of “BODY,” all
insrucions may be ignored, since their exisience can only lead toa
structure already covered, or 10 an improper subrouune.

In sunmary, then, for & loop of form 1A 10 exist, une of the
structrus (AL, 1A2, TA3, IA4bl, or an tnproper subroutune must
also exist

Loop prognms of form 1B coniin & rengn caegry instruc-
tion, and medify the suack painter each iterston These joops will
cause the slack pointer to travers the entire address spece. As an
aid 10 the discusson of type B loops, the STACK WALL is
defined.

Let I, be the largest positive value within a body of code not
conmimng & structural loop by which the smck poinler can be
decrernented. and £, the rgest by which the suack pointer an be
incremented. Let W =1+max{/,~2/,+2). The STACK W ALL oo~
sists of & contiguous block of memoary locations of length W, such
that for any corsecutive pair of bytes wathin that biock, an address
is farmed which 1s guannieed nox 1o be wathin a type 1B loop

Each iwmauon of a type TB loop changes the sack - nter by
SP=SP+K, where —{I,~2)K U, +2). 1f a STACK WALL
sxsts, then any type B loop must cither conisin 8 siructural loop
(permitting the stack pounter 1o be changed out of the limits set by
K} ~ evemumlly caune the siack panter to address locanons
entrely conmined within the STACK WALL. When this occurs,
the retumn addi=ss will be (eiched fram within the STACK WALL,
and prograr flow will exit the potenusl rype TB loop, cffecuvely
brealang the locp.

In surnmary. pveo the exsience of a STACK WALL, type B
loo;-amnws(mu-:nndymc,muemudbymha
type of loop strructure.

Type 11 — Loops Containing Calls

Type N loops conuin call category path diverters. If the sub-
routine called jeads 1o a return type instruction, it will be covered
as & type | loop. Therefare, oaly alls 10 subvoutines not leading 1
returns need he conmdered. If the call does not iead 10 a return, it
must lead o a loox if that loop does nox conlaun the original call
instruction, it s oot a type I loop. If the subroutine leads o the
call insguction, it will be cassified as an improper subyoutine.
Therefore, the exisience of type IT loops is dependem upon the
existence of an improper subroutine.

Type N —- Loops Contaiming Jumps

Type 1T loops contain jump calegary path diverers. Such
poential loops conning return instructions need not be con-
sidered, as they are covered gs type | loops. Calls can be byy seed
in a search far type IT1 loops, since if they act as path diveriers,
they will be covered as type | ~ 1T ioops. Therefore, type ITT loops
consist of smpie branching souctures, and the loop itselfl is con-
siiered a program structure.

Type IV — Loops Without Path Diveners

Type TV loops conmin nc path divereers. Actally, there is
only o possibie type IV loop, and it loops by arcessing each
mernary location in the ‘iress space. This aan only occur if the
entire ROM conizins no path diveriers a1 all (the program counter
eventually overflows back 1o the smrt of the ROM); this never
occurs in actual practice.

In summary, with the exisience of a STACK WALL, and the
lack of improper subroutines, any program loop must be of ypes
1AL, TAZ, 1A3, TA4DL, or M. Figure 3 depicas all of these loop
ypes. An improper subroutine modifbes its return address or does
not lead 1o & return satement This can occur if it comains an
intermal loop, or alls another subrouline which calls the mproper
subroutine.

This program structursl amlyzis wili be the basis for the
design of faull wierant controliers developed in the next secuon.

Fault Tolerant Contreller Implementation

Upser theory applial w0 the B0BS CPU will now be used v
produce a pew design approach for tmnsent fauwlt teierant coarroli-
ers The deuiled progran: structiral analysis plays an inlegral pan
in the implernennton method Design ruler — both hardware ard
softeare — will be suppiied, such that 2 coatrolle so consouced
aan be shown 1o have no sieady suate joop structures which are not
designed-in, and those [oop structures which are designed-in can
recover from transient faults This implernenanon produces a con-
troller which is crash-proqf, wnere crash 18 considered 10 be amy
situation which causes the processor 10 permanenlly cesse mxecy-
von of its inlended funcuon.

In order 10 provide 2 base from which 1o evolve this desgn
approwch, ard 10 1est {1s practcelity, an experimenial syfiemn was
deveiopad. This systemn also served 58 1 testbed with which o
aseess the difSiculty or ease of the application of this approach, and
provided an indicxtion of the number and types of erroneous loops
whuch could be found in real sysiems

Design Rules

The design ruies Jor gamen faull wierance cover both
hardware and software aspects of the controtier. Tt will be seen that
for & targe numter of applications these additions] requurerments are
not overly restnctve.

Hardware

The CPU must uncondinonal.y execute instructions. This is
scheved with the additon of special suate and tad feich detectors
Program execuuon must be restnicied so that the instructions reside
in ROM. As an oplion, program execution can be checked with the
«ddition of a SAFE KOM.

Circuits which satisfy the requirermems imposed by thes
hardware design rules have been (oveioped far the 8085, and only
wo inexpensive iniegrated arouit packages noed be added t0 8
sundard design not conodering faulis If 8 SAFE ROM is further
desired, then that ROM increases the sadditionat chip coumt
three.

Sofremre

The application program mus be wnoen such that program
sructures AL, 1A2, and TAJ ae not used This is bocsuse the
suck ponter 18 N necessity in RAM, and these structures aan jead
10 loops dependent upon the conems of the RAM ares used as
stack spuce; these loops aannot otherwise be prevenied This
requirement is nol partcularly resmictive, with the prssible excep-
tion of IA2 Sarmetimes, when & program vanable Jmp s required,
the following instruction sequence is used: PUSH H, RET. This is
sructure 1A2. This structure an b permined if the HL regiser is
checked sfwer the PUSH and before the RET 10 verify thet it con-
wins a valid address, and that Jmps to that address cannot lead o
a0 unknown loop. In most cuses, this sTucnre can be replaced by
surus flags.

A special case of type 1Tl 100ps is that of the PCHL instnac-
von This instucnon must nox be used, for it s possibie for the
HL regser (o conmin the sddress of the PCHL instnutiory, if this
occurs, then a joop results involving only one instruction, and there
is no possible way to verify that 1%z cannot ocar. However, the
PCHL insyuction perfarms precisely the mme function as the
PUSH H, RET sequence, and may bte replaced with the sequence
descaribed above.

A STACK WALL must be incduded. A simpie way 1o handle
this is 10 leave all umsed memary iwstions in the program store
ROM cither 00 or FF. In the first case, any retum address
rereved from the STACK WALL wil cause execution to begin a1
address 0000. This is the reset loaton, and by defimuon, must
tres': any type IR loop. If the STACK WALL contuins FF's, exe-
cuuon will begin a1t address FFFF, and 1f this address does not
access the ROM, ihe ROM restnct hardware will foree a reset, aiso
treaiung any type 1B loop.

Improper subrouunes must not be permitied The return
scdiress must remain intact. Subrouunes must not dirscly modify
the stack ponter or stack space- In order o gurnaniee the lanes,
wherever 8 memory sicre insrucuon uses &8 varmbie address 1n s
regsier for the siare loauon, that regster must be checked 1o ver-
ify that 1t 18 not mithin the stack space. A subrouune must not call
itself. Interrupt service routnes are trested as subrounnes

To elimumte 1A4b] |oops, returns from subroulnes must ver-
ify that the stack pointer 8 panung 10 sack space in RAM.
Inswead of performing a refum insmuction, & Jrnhp must be made 1o
a specul retum rouune. This rounne checks the sack pouter, and
if it 15 8 valid address, 2 return 15 executad. 1f an invabd address is
found, the siack poiniey must be reloaded, and s program restan
made. This restncuon is perhaps the mast limiung, since it
increases the execution ume agmficantly for return Sswemems
Sull, there are 8 larpe number of applhications waere the CPU 15 nox
runmng reas i lmit of speed. and {or these appbcstons. this
fequuement would not cause & problern. Elirmnsung sl reurns
cxcept the oce tn the RET routine removes any pasability (or loop
ype IA&! 0 oot

ORIGHAL V0 o0
OF POOR QUALITY

A" possbic type 1M loop sructures should be examined
Loops which are iniended 1o be wmparary must be verfied w
ensure that under all circurnsances, they are wemparary. This can
alvays be accomplished with the addiuvon of a loop counter, if
necessary. An examnie of a subroutine which ariginally is not fault
tolerant, and is modified version, is shown in Bg 4. The
unmodified version can form an endiess loop if input varishies are
iovalid Determimgnon of the maxumum exacution lime befare exit
famcblmpnnmvrhmuppuboumfauremuupel
recovery ume.

A) Routine Correct for Define ' Imaputs, Dut
an Undefined Input Causes Endlets Loop

1B.T POSITION TO BINARY CONVIRTEIR ROUTINE

]

JENTER WITH A SINGLE BIT SIT IN REGISTER A
JEXIT MITA REGISTER B CONTAINING THE DINARY
1POSITION OF TMI SINGLE SET BIT.

1DESTROYS RECISTIR A.

1

MVl | Tkl sINITIALIZE REGCISTEIR B
LOOP 1 INR » 1BUMP COUNTER

RRC JROTATE RECISTER A RIGHAT

JNC Loor :CHMECK FOR CARRY SET

MNT SRETURN FROM SUBROUTINI

B} Corrected Subroutine
yBIT POSITION TC BINARY CONVERTER ROUCTINE

1

JENTER WITH A SINGLI BI7T SIT IN REGISTER A
$EXIT WITN REGISTER B CONTAINING TNE BINARY
JPOSITION OF THE SINGLE SET BIT.

1DESTROYS REGISTER A.

H

JNOW WITR CUAMANTIED EXIT.

y

| FER] JINITIALIZZ REGISTER 8

» 1BUMP CCUNTIR

A 1SIT IT RIGISTER A0
JYES, ABORT AND RITURN
JROTATE REGISTER A RIGET

LooP sCHECX FOR CARRY SET
PRETURN FROM SUBROUTINT

LOooP

LEY R FE

rigurs 4. [Effects Of Out of Range Input Variables

Al inwentional steady siate loops must guaranier all operaung
assumpuons. This can be accomplishad by caling a check rouune
from cach of these joops. The check rouune should guamntee that
all 170 devices s-¢ rogrammed properly, inuermupts are enahied and
unmasked (if used), and any 2ssunpuons that the program makes
on varubies for proper operation are fuifilled.

Exit roust be gusranised fram all possible interrupts. Unused
vectored imerrupts shousd Jmp to the start of the program. Inies-
rupts »hich are generated from s programmable divder must
assure the integnty of the divide rano within the inmerrupt service
routne.

The preceding software requirements must be met, conader-
ing both vald and erroneous ioops if & SAFE ROM 1s oot used.
The appearance of ary banned structure as 3 porucn of an errone-
ous loop usually resuiis from speafic address values being inter-
preted 13 op-ondes. Erroneous aalis 10 eroneous subroutines must
be invesugated to venify that thal erroncous subrounne is Dot an
improper subrouune; if it 1S, it must ather be changed, a the
erronsous all removed. To remove erroncous sinuctures, the pro-
gram should be shifted one byie at 2 ume, unil s shified version
results in no erroacous loop structures. There 1s no gusranee that
this 18 possible; howmever, progmms of length 1K 10 2K shouid pose
no raal difficulty. Rr lerge progmams, & SAFE ROM i3 prombly
deirable.

Table | summanms theee Danvem fault wWieran sofiware
dexign ruies. These software requirements may appear dufficult 10
empioy, 3O with approprate sofiware axds, the problem is gready
alleviated.

TABLE)
Crash-Preof Saftware Design Rules Susmmary

1. Progem emecuon from RAM is prohfsed.

Bxh from wmporery loops rrust be pasrtreeed.

Subis lbops must inchude 8 Al © & chack b which guar]

TwpOTe the progrem requires for contmeued exscsuon. (Them inchude

ssurguoss on 1O, inesrrupta, ard verabies)

Reture from a8 possihle rasrrupt Mus b e eed.

Subroutsnes carot () Uhgrm anl v,

drovines canrot modify the sack oimer or (he rotrn address.

Within sulrouUnms, MEMOry SO NENKTOTS Whck pems & wrishis fore

sddress mus gaarsraes Ut the repisew uasd 03 Ows aditrese pOérEEr CRTWIOU

oI W0 e sIRCK gTWMOR.

8. bwwad of usirg RET or RCN metrucuome, 8 JMP or JXON 0 & specs! retsrn
ouune which puasmmecs thal te stck pOITREr fOITS within the sk moS
before murmarg must be used (The return OUUTe corsme the only RET
tnetruction m Uve entire program.)

9. A STACK WALL must be addad. (Lasve urarsad ROM space a3 D or FF)

10. The FCHL insruction canrot be uesd

13. Cfther 8 SAFE RUM must bs vend, Or AR er
alls © sddresses whh. shen conmderad © be sub
afther Ruls &, 6 7, or § must be removad.

- e

N

looos srd er
do rot mlisly

Soirware Tools

Two programs ~ere writien 1o case the implemenition of the
software requurements for fault wierance: SAFE, and LOOP. The
SAFE program accepts as inputl assembly language source code (a
text file). Tt determines which memary locauons conuun the first
byte for =ack wstruction. This outpul oan be usxt direcily as the
SAFE ROM conients. 1t 1s ajso used as input 1o the program
LOQP.

LOOP is a tool used 0 loaaie program structures (developed
in secuon three) which can jead 1 loops. 1t accepts as input obpct
cade far the appliation progre-a of inerest, and optionully a safe
flie generated by SAFE. The latier is used 10 perrmt classification
between valyd and erroncous Inruchions.

Whik: comducung 8 search for a specified request, LOOP
spans all posuble trees created by corditional branches. In the loop
scarch made, it Lsts all type TAl, 1A2, 1A3, snd 1T structures
Same of the structures are vald, and same are eroncous. The
wvalid type 1T siructures must then be venfied 10 ensure that those
loops oot inended as sieady siale loops have an uncondivoml
esape mechamsm. There should not be ary vald gre 1 szuciures.
The erroneous suructures of all iypes must be removed

LOOP an be commanded 10 s all subroutne calis This s
used 10 search for evroneous calls. Each erroncous aull found must
be checied: if §i keads 10 an sddress not conuuned 1n ROM, nothing
noed be dane (the hardware wil] handie 11); otherwise, 1hat errone -
ous subroutine must be checked 10 determune 1f it 18 &0 puproper
sutyouune, 10 which aase, either the erronsous aull or the errone-
ous subratune must be changed. As an ad far the venfimnion of
esTonoous subroulnes, a dimasembier cpton 13 included in LOOP

A search can be made for all memary store insmaxctions which
uniize varabie sware locaunes Thus 15 used 10 venfy that the pro-
gammer has aught all «uch insirucuons 1n Aubrouunes, and has
uken sieps 1o elimimte type JA4D2 sructures

With the inierscuve use of the loop search program, the pro-
grammer an effecovely and efficenly produce s modified spplcs-
uon progam 10 acheve fault tokerance

Feult Tolerant Cantroller Test System

The st smyswem is self-couainsd and consisis of two
mifroprocessar controlless, power suppbes, and a fault source. It
was used (0 verify the viability of the demgn ruies deveiopad for
fault 10lerant controlier implemeniation Messurernents of progrum
excculon were taken with & jogc anslyzer and an oscilloscope.

A Doisy power supply was chosen as s reasomably reslisic
fault source which can be contralled in the labomtory eovironment.
The wsthed conuroliers are 8085 besed and wtilize a wxal of six
sianderd inwegrmied crcuits, exdusive of the additions] hardware
(rwo ar three integrated drcuits). The controler function is 10 read
the input switches and write appropriare cisplays to the ourput
lamps.

Crash-proof versians of the original toatrol program were wri-
en ax exercised in the st sysiam. No pormamenl program
crashes were observed

Concimsioas

Design ruies have been deweloped for microprocessor con-
trallers 10 rovide 1alerance 10 tanment faults at 2 funenoml level.
It has been proven that adherence 10 these ruies will produce s
crash-prool controller: all possible program loops are known, each
corresponds 1o a valid made of operation, and coatinued processor
execution is assured To acoomplish this end, 8 very smail aumber
of addivona! components are required and the incresse in software
compiexity is low. The tesibed conrrollers requured from 8 w0 14
percent increase in program uze o salisfy the software design rules.
This approach 10 fault olemance without the use of massive redun-
dancy oust be viewed in the proper perspective. [t is not intendad
as a replacemment for high reliability daia inieneove applicauons,
which would normmally require duplication o tripbcaton of
hardware. It is, however, appiicable 10 the much larger class of sys-
tems whuch do not have such severe requuements, bui which can
greadly benefit from a2 guaranmee that the system will continue ©
openaie 11 the lang wrm. Rourds on recovery ume aan be found
through loop amiysis, and this can be lowered if desired with the
sddition of a waichdog umer activeied by the check rouune.

Testhed Results

Complete adherence with the design nules produces 8 owlly
crash-prool coatrolier. The questions are sameurres rused as 1o
how prevalent vanous loop siructures are in the software, and how
ofien & coniraller will be dnven 10 these loops. With regard 10 the
first quesuon, afier loop amalysis of approximately a dozen program
vermons, the presence of ermoneous 0op sTuctines was observed in
many of them. Mos of the observed erronoous strua ures were of
the siack vaneties. One verson conmned & PCHL instruction, and
another & ump loop. The answer to the first question is that (hese
CITONEOUS SUUCTUres are quile common, though 1t 8 possibie to find
program versons which are free of such strucTures.

To respond 10 the second quesnan, it first must be noted that
t'mple intuion concermng the Lixebhood of vanous loops 13 not at
al relube Tranutions iolo erroneous .00p prograrms which are
ratwuvely highly unbiely were observer.

The t1est conuollers were run with vanous contimsuons of
hardware and sofiware. It was found that the rernoval of either the
hait detect ar ROM resuxt merhamans caused some mode of pro-
gun aush. Unmaodified program versons were oteerved 10 crash
with the hardware restncuons in place. Therefore, it has been
found that pracucal systermy 4~ _Gure both the hardware and the
sofiware modfiaiors thai have been shown thearcually 1o be
ecessary

oid

L] Ky
R

Comparisen with the Watchdog Thmer

Probably the wmpiest and most prevakent exernal hardware
additioa used far (ault detwecuon is & waxhdog (e~ In normal
operauon, the microprocessor penodically puises the 2xiernal umer.
The software is wnuen such that the processas is guammeed 10
pulse the umer before a specified tmme clapses The tmer
retnggerabie, so thet under normal operation it never troes oul
Should the processor fail 10 Tigger the waichdog within the alloted
ume penod, the umer initates recovery action, which can be as
simple as resetiting the processor, of as complex as calling & test
progrem which thouroughly exerases the eaige systern and logs the
results. Waichdog timers are discuseed in (7] an impiemenisnon
can be found in (8], and discussion of the cffectivences of waichdog
timers can be fourd in (9,101

The conainmern spprosch must be corrpared with the waich-
dog timer echmque, which is also usexd 1o prevent caehes in the
long term. The watchdog tmer has been found 1o be effective in
many applicanons - however, ot suffers from a magx drawhsck
ypanlly, it 8 not provably complete. When used, there is no
assurance that there does ool exist some loop progrum wiich can
tigger the watchdog. ye! oot maintain corect sysem funcnomng.
The techmiques developed in this research aan be used o0 validate
such watchdog umer apmrsches 10 Wierance. Howewer, withowt
the ROM resmiction, oo such validanon aan ocour, since there is
always the possitility th: & loop aan be set up in RAM, activanng
the umer, and not performing the gystern funcon With & loop
amsiys, and &8 ROM restncuon mechamsm, then, the warchdog
umes technuque cxn be validaied. Fach possibie loop structure need
only be inspected 10 venfy that erroneous loops do oo trigger the
umer. This approach uses the same mumber of pans as does the
contanmen suxiegy: the ROM restnct mechamsm, and & retngger-
able timer. The oniy advanuage of using these new toois 1o validale
a warchdog timer approach wouid be 10 smplify the software
changes These sofrware changes have been shown 10 be relatively
easy W0 aclueve with small controliers A cambined loop
amiysss/waichdog uroer approsch could be useful for larger sys-
wems. In s sense, the waichdog approach can be scen o be & subset
of the comumunment approach.

Warchdog umers rymcally operate with s long ome imerval.
As & resull, they reset the system relatvely long after the synem
has cashad. The suxt conuwnment approach reacts much faster
than the waichdog approach, since the only umer (feich detecy/ halt
resuict) 13 on the arder of a angle istrucuon ome. This shorter
umer period, and the immedie response 0 an efroacous f=tch
cause thesa hardware forved reses 10 respond much quicker 0 a
fault than would & watchdog trper ard can have the effeat of resior-
ing sysitem opersuon befare errars can propagate as far as with a
waichdog approach

In summary, the saichdog tper approach o tamser,. fault
‘~lefance 18 viewed a3 incompiete 10 tself, but useful as an opuon
10 be icorponaied mthin the containment method.

(1}

(2]

(3

(4]

(5]

l6)

(7

(8]

(9]

[10]

References

Ghﬂ RE, and GM. Masson “Tramaen: Upsets in
Controllens,” Proceewings FTCS-1], June 1981,

Pp. 165-167.

Glaser, RE, and GM. Masson, "The Commmment Set

Approach 10 Upeets in Lngial Systems,” [EEE Transactions o

Compaers. July 1982

Schoexder, PR, and R.D. Schlichting “Towards Fault

Tolerant Process Control Software,” Procesdings FTCS-11,

June 1981, pp. 48-5S.

Intel Corp., MCS-85 User's Mamuat, Sana Clars, CA, Jamary
1978.

Dehnhardl, W., and V. Sarensen, “Unspecified 8085 op codes
enhance prognmming,” Setromcs lanmry 18, 1979, po.

Denmnis, J.B, and EC. Van Horn, “Programming Semannics
for Muitiprogmnmmed Computauans,” Cowrsmcations of the
ACM, March 1966, Vol 9, Na. 3, pp. 143-155.

Knfiy, G.D, and W.N. Toy, Microgogumened Comrol and
Reliabie Design of 5mall Compaers, Engiewood Qliffs, NJ.,
Prentice Hall, 1981, pp. 321-323.

Fallard, D.R., “Designing Fil- Safe Mxoprocessor Systemns,”
Becronxs. Val. 52, No. |, january 4 1979, pp. 139-143.
Courtnis, B, “Same Results sbout the Efficiency of Simpie
Mechamsms for the Detection of Microcomputer Maifunc-
tions,” Proceedings FTCS-9, June 1979, pp. 71-74

Courtnis, R, A Methodology for Oo-Line Testing of
Microprocessors,* Proceedings FTCS- 11, June 1981, pp. 272-
s

	GeneralDisclaimer.pdf
	1982018700.pdf
	0006A03.pdf
	0006A04.pdf
	0006A05.pdf
	0006A06.pdf
	0006A07.pdf
	0006A08.pdf
	0006A09.pdf
	0006A10.pdf

