
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

wo

., a
THC

.!OHMS HOBklims
NiVER

(NASA -Ckl- 16 90d.4)	 IN I LH SI I I k hl/T9 A N.'ilt h'i	 N82-2657u
kAULIS 19 DIGITAL SiSlEfUi (Jch •is duL.kiLlh
UliiV	 9	 HL A02/Mk AUI	 C5CL 09C

unclas
G3/3.i28045

N 82a(280 '4 25-65 7o

-'KELECTRICAL E IGINEE
c
G

AND -	 ------------
COMPUTER SCIENCE

-Tw.	 MW-Twxlw"	 Tw

REPO RT

NASA GRANT 1442

INTERMITTENT/TRANSIENT

 FAULTS

IN

DIGITAL SYSTEMS

By

GERALD M. MAS

4

;AAN

OF POOR QLni-! t -t.

The Containment Set Approach to Crash-Proof
Microprocessor Controller Design*

Robes E Gloat► mad Ge meld M. Mamm

Department of Electrical Engirroerir^g and Computer Science
The Johns Ho ns University

Baltimore,	 land 21218

Aland

Fm& aso tm OF d10d Mean fro box sWwM M be Ion
thmpt do kwmWm er ey a wfisc re d-Almx ftsd apwoo t
SaW cads/ • eoswrbasses s. Tire aoemrwaers sea apvuork fade a
a wew arIAW 16r rice bsplstaesadsee el AN& tofvewe to

(Br) A b by nmao 2 aff er Mon eieremtt
j#m &hc ewwwn as aa. The adsi comas cbf *own jbmr kdff&4 oe a
thew &.shales to papmang a cmarwsew >Q aaw/fdare mad pvrtwt
rho the aawddme a a coesawnw s. The rem kfq cotaatAmM 30

amts rhos be jda to bt aeaabi& 16r pwdcd 4pplkd0MM AY a4+OPM9
a wveNaod to pvAcr mwk of b eietaeess, and to Pori& a asaaws to
,"noway at eee_.ttnrrt Ckmew ff+aw MW ace. rims Aw apdiri Lien
tarhnptts to swempuzzw co+oadens sfl as to na,tg6rwe a typed ast-
uol tysow Wo a ligAdy NWdUad wwaatt vrltkk it pashr a be ooh-
~. SOW tit irpOMM Olen R jbLdL the bdhreeta Aw r of the vs-
taw is scat: tint emiand rows to thr polar cum mfjw*Arw a
aattaaL a n w s no yswsarewfaab anti ►.

A undid eawsnamw a otnd+eiott is AwAd)fir the ROBS CCU
n&tell as a¢a+tlaMIng ~(Am a is a COMMMww[ss. T)w ss is tie
barn Or aoostrrpetd dw r Jbr der 8t18S —opatem . dr Lowe
app sack can be ax6ed to odes mkn*voceaors

latrwdumm
Commmm set theory was first developed [11 to better

understand the effects oa digital system which. part rhuroa IT i!T
faults an prodtm _ The approach eeoexntraws argentm w the
apse ievel, where systeso futra a is of prime momsm When the
cpva . of the system can be eanpietety des it I in terms of a
finite tat of mumsibt cmiusive funcaoat saws, covering all P-0-
bill der ftmmom this amt of ftmedonal states is teferred to as
the ctweWwwewt as. All possible system atasees muss ca,,.. (uac-
doal apetation of am of the edemeas of the co—woem ssa.
This on must mdude all possible valid fumamal maws of the
"-free system but this act town also wdude tmaW funmend
sores, not explicitly de nowd Lao the ayuaa but into which the
syst, as wwrth-iess be driven by a ttanaieat It ws shown in
11) how probsWisoc modeling and anL4*s of a motmi system's
sum,* exam n apom to ttansieat kults can be tads given a eat}
mtanes se4 that a statabie fcrrn for containment set elements in
mwroprmeesar watraiiers is the program loop. sad her artneous
loops (errooeaa comatomect set &loners) as resuh The
modeling and aalftris ideas ate geasahwd in 12L

The program imp examples of (11 serve as simpie —pks
,--rdiaong bow a comaiaaent on an be fanned The task of
finding all powNe bop stru=— wtnch a mteroprocesaor coo-
robw act support a handled in this paper.

• Tics ,moth was arysarsed by NASA Garr AW 1442.

UPUK TMaey APPOW to Mki"00-saw Calittenem

The dival sy mews of uumm we roiao¢oevQ conam lam
Them enmvdlers typically come of ease ¢used aarcm board sad
.romin the CM seaetal thousand byes of ROM for program
storage. several handmd byes of RAM for dam stumkr. and UO
devices Ptevw sty developed dxmy a applsd w them 4sema in
prepuz ice for the M=m of assb-proof aontmBer dmdtt rider

The purpose of this aectroa is m prodttte a fiats set as a out-
em— far a mia<opraomrs momiler mamiaaes sM and to
prove that a is indeed a co®iames set To aehvewe this pal, the
tdris of bop set; errionm s loops ROM restrict medur an= apt`
dal ante deteerur SAPS ROK p)Warn :Quanta path diverteim
lmp sattmre types; improper whoudnes; and STACK WALL are
introduced.

CasalaaaeRt Sec Chataetaltatlaw

The de5mdoa of a useful eamtammm set a the loaf to the
practical we of the developed theory. The coca-me rs set eier
metes must deft motrdler fuaedoet Tk= fmcoom of miaopro.
cessor hued desists are detecmimd by the appliatyoe prapam.
The cooed propam is as mum a put of the comroder deign as
are the Lsrdvate details, and auy useful appr-ach to fault analysis
of such system should be exr wwd to tale Lute sc u uta the psruc-
War appiiatioe progatn. For there tessom the motainmes set
approach to the undetstamdia of UT fault miaticowups in
m=Dprnmsoc commUers tat omf includm but in troamty
tavoives, the applianon prow— TH-Aaw, the hardware 'srs-
em' amot be aalytsd ; Wcp n&vs) $om the software; far the
hardwe a rice[the wra m — the hudwate in conpoctim with the
software is the real 'system

Progams
For mcop oamor amumilets, program can be Ba ndied as

one of two types those whiffs exit aft r eaecu000, and thane Which
matmuc sly loop- An -dtnt p*Sn- pYfams Borne akulsoM
cr pxriomrs some functio4 and then a — aale, A loop popow,
or stmpb loos a a program which has the capability of kxviatg
indc5m" aW the bap set (L) is the sa of W posobie loops
defined by a Uven iwsft Undo some moditiom the program
may iermins ie, but unless it wst awes tinier all pow-bie conb-
tinna, it is classified as a program bop. A loop program tesually
monitors u3puts or proaeses u3Lwt dace sad taafen results to the
output. Often. a Loop monitors some tnpua coexh iom waiting for
: b-c amval of sane specified sate before tat_ in the fcilawtag.
ersb loop p mw ms will be mmidesed. This is cot p rtinttarty res-
trictive fer microprooesser coatoLkm mane praCets ces u i
software 1 31 is such that most often axmukr programs ate indeed
loops. Alsq a numbe r of exciting itrapam: emmvlad to sequence
can result in a single Imp program.

OF POOR

Within this ftunewwk of a miaoprocesar controller. the
loop prorarms are rYtuta1 chorus for futrtiooal level program
at-- A program loop defines VO relanonships The promsang
berwe)en the reading of input smsors and the writing to systems
actuators sell the system transfer funicum if a loop mntaia to
outptus, the VO relsiiooship ration to the trivial The opentuatirl
status of the mntroils oar be g ven as a speaSatiao of the part=-
ular bop Program currently Lida eitecutinn. Moreover, in addi-
non to valid loop prog nimi; that are expliethy written for the amb-
canmq these can be erroneous embedded loops to which the system
an be driven by a tnnmrst faulL The loop set is then the COUCL
non of all valid and crioncous loop progams Before Retuning r,
these effonw a blips, the interaction between rmusmnr faults and
the loop set will be discusand

Gvem that the controller is executing some loop program,
L, E (L), upaets an be ctrtactaimd in three ways

Om I Upss Dtaa 0anr- A van&rm fault is said to pro-
duae it 	 champs upset when that fault charge 's dam values being
transfe rW and/or stored, but 	 prag urn I, cootimrs to be exe-
cuted

0= 2 Upas Phlgrmn Soap A mr.nrnr fault is said to pro.
duce a program buamp upset when that fault doses a templray
divQ¢lra from loop program I„ but the tonne)`_. -vennially
rentrm to that program

Cl= i U;mw Pmvivir Trunstim A name= fault is said to
pro¢.uz a proggra: ttsasitioa upset when that fault causes the loo-
troller to jump from the execution of 4 to the ctecunm of
Lf E(L). irrj-

The dam ch=W upsets and program bump upsets are the
kiss sigriifinm of t.`re three upset basses bmtse their effects on
the controller 's opeanon ate temporary, and the conm)Lkr Itself
either c= i - 5, of mnrm within a finite time to the c x=mon of
[be prow loop orogritm. in many control aprplianom such as
tam in which a mectnnial dev= is being operated, temporary
data changes or program bumps usually occur at rate exceeding
the devici: 's capacity to respond On the other hand, a program
Ts.risinm =aft .-4 froca a naagent fat:`: is a steady state
operational deviation which can have most se rious tzioaegtiemrs.
Indeed. the result of a rrsus=on into an errnoeotu embedded loop
is Lw afly referred to as a system dash. These tanmenL; of
cmu-se. are a reiteration of the xtstifiation for the irnponam of
operational level containment sets put in tams of microprocessor
Controllers.

...°^..	 CONTNTS

NO? ,SAL EXEC) T :ON	 N	 t•^-CODE

ERRONEOUS EXECUTION	 N•1	 DATA

NCR"kL EXECU T ION 	 N	 OF-CODE

ER.,^.ONEOUS EXECUTION	 N•1	 DATA 0

ERRONEOUS EXECU 1 ICx1	 N•2	 DATA 1

PRONEOUS EXECUTION	 N	 DATA TABLE

ERRONEOUS EXECUTION	 1-1	 DATA TABLE

FIGURE 1. E°R^NE`VK LOOP INSTRUCTION EXECUTION

The loop set is proposed as a candidate for a coriuiamena =L
Since the mnnin.nent set is deAned in srr= of loop programs, a
complete inveatigation into the gays in wrhieh them loops an be
formed is wary. it will be shown that there are a variety of
program strticnues which an anpport program bops. These strut
trues may be either valid or erroneous bops.

Frromola LAOps

In addition to valid loop programs. the existence of erfnoeau
embedded loop programs has been men mmod. A fix—sit fault
an aus program execution to begin at any —my legroom

a aw	 executionn	 e incorrect tecution of a valid bop program. of more
than one valid loop ptag; casts. or it can disc the execution of
an enonsav loop program which a embedded in the appliatioa
program (program mss). it therefore is appropriate that a simpb
example of the ex i— of web phenomena be Vve•L Est is
program loops exist bemuse of multiple byte insuu mosis and data
storage, as shown in Fin- 1. If execution mooeatsly begins at a
data location. the dam will be inte preted as an op-cflde, ind esenr-
don of an enomous loop program an begin.

r^I. -ft ML, u err.	 ^, c.r u c.r o.a..
Y .o.. M o

N ..G. M s
u ..^ u i ♦, K..

wo c) tea. .oat
:J N6 •) Wr .
u

u
MO

..Q
M

7l tat ...Oti ^
^ .O.

•	 . wv CI
ww o

^ ^K..
tar .

Y
L,

w0+
wpl

M
v

.O..r. K1Cv
L t Np) CI a KY
Y .a C) on
u wo) w
Y
u

ND.
woe

C)
v n .

u wr. w w.

u wn w v

Li wrt w .o.
u wrt err nr .

An esampk program foe the Intel 8085 9-bit CPU 141 is given
in Fig. 2- The loop set (1-1 consists of ore inr►nrinnal loop, LA and
two erroneous loofa. Ll and 1 .2. The entire moments of the 256-
byte ROM am shown, ircm address 0000 to (MIFF. Execution of L.0
mrmal)y begins at address OOCA. when the 3E is the op-code for
the MVT inswwtioa LO consists of seven iffirus:tionz. and if exe-
cuti

o
n begun at the first byte of arty of these ir±strucaiom w=u-

tiou will remain in LA. These address am OOCA. OOCr~ OOC:F-
OODI, OOD2. 0005, and 00136. if exam lion begins at OOCR, the
data value Q will be iruepreted as a JMP irtca-tiction. The result.
thel.:fare, is the execution of the erroneous; loop. Ll. Ex=tion at
0003 also results in the execution of letup Ll_ Execution at
produces a am irsuumon bop. 1-2- if execution begins at
addresses 0000 through o0C9, each 00 will be interpreted as a NOP
instruction. leading to loop LO- Similuiy, addresses oOCD, and
OODB through OOFE result in NOP'L Addfes OODD = interpreted
as RSr I. which sends control to the NOP block at the head of the
Program. At address 00134 is found the data CA- This is not an
Intel defiried SM5 insauctioa it has been found, however, that
upon execution Pf this op-cod& an instrticaon abed RSIV, restart
on weribw, results [51 Excanx:)n either continues or eorttral
passes to the top block of NOP'; in either ace the result is loop
LA At Address 00M. the CA is interpreted as JZ; so control either
gas to address 0000, or to the trailing NOP's. The lase memory
location comaias C7. interpreted as RST 0. which semis comml to
address 0000. The RESULT column of M& 2 shows which loop is
reactiad if execution begins at each memory Imam in this exam-
plc. them are ool> throe menscry locations from which a xec u tin
will result in an erroneous loop program.

These enimmus unp loops ate bun one type of lore pro-
gram- As will be seen later in this sicum other program stnc-
tures permit other farm of both valid and e=rone cats loops.

Hardware Raquiremem•

The set of loop programs has been Aoposed as a containment
set fa micrmprmeesaa oonuol M Up to this point, it is not clear
that this loop set sties= the cotuunment st requirements:
runic Y. thu they form a complete, Snug, muaually acdufave as of
all possible operational rote: The set of all possibie valid and
ermn=n loop progrmms n certainly munaiir udunve- However.
it mom be feather shown that this set is finite and that it is possible
to de te m== each element of the set. It is also necessary to show
that the bop am describes all possible operational mfrs of the c on-
troam. Tbese mquint ens will ant in prrsal be met by an
unmodifed mdoproces= connc_'ler. However, it will be moon
that it is pambie to nu* then requirements tbmugh the
modification of typical microproamor controllers.

The mtsliaoon of a contno le in which tests can be chaac
mind as loop MW= ttamaitiom ra u m that same specific, but
not esorsave ca uan=mss, &=Mu= to oasignea into me ws-
lem- Fast of alt, if I. rograrm ate pemitt=d to eroearae froth RAM.
and claim the mtmmts of RAM can be claged at am time b D I,

dung program operation and by a transient furls, there would be a
awly infinite met of powbie loop programs which could be cxL-
cuied from RAM. This is beaus in this ors the RAM Canis s

ate the instructions themse wax it is possible for any seq uence of
immrioos to be placed into RAM mad esecuuA and the set of
bop ptoaams arrnsxm of all pasmble loop programs whrh can be
wnnrn within the CPU

instruction set. Then:fcre, it is oeasary
Ow the ayplieuion program be sured in the mnwolies's ROM, and
the ptmgram eat tom be forcibly resuiaad by hardware to that
ROM- This ROAf reamer mierham m is not a ptograrm resuicuou.
since this alreedy is the ease for microprocessor cortuollu de&Wm
Sure all of the valid loop programs are defined by the application
program, the ROM restriction F=Lnvees that the set of nlid loc-p
prngrarm — a subset of the comiturnem set — remains S:od denier`
sywrrm operation. as long as no permanem faults occur-

The set of e=rt m loops must be finite, fixetl, and deoer-
rninallie Dee to Or ROM mstnaiom only program emttrucin
from the ROM need be considered Howeva. since small
microprocessor sysu=ns often use incomplete address decoChg, in
such cases the ROM me be acuvated from muse addresses othea
than the ones which are intended. creating mane' twinges of the
ROM. In normal open bom this does not muter, titre the Control
program 1 e semis control eta of the primary ROM address
space. With the addition of faults, it is posible for these irma8es of
the ROM to be accessed and the ROM restnaion will not prevent
the omar'ener_ This an be pertmitied. but she complete set of
addresses wtucih nn access the ROM mutt be known. in addition.
We mnplete ROM contents morn be known — there is ustany
unused storage span which is not defined. and not ncam i7 for
fault-free program oticratian. With a com plete ROM specification,
the set of erramus loop Programs is litre, (bond. and dettrmin-
abie- Therefore, since the contammea set is the unaon of the valid
and erromotx loop seta and radi is Srite, fixed, and dMentet able.
the enum loop set is Scene, fitted, mad tSetermuabie All that
rermuna to be shown to crtrlude that the loop set is a cumin me i
Set is tltt it covers all pombie operational states-

The loop set deaeaibe s" pomble opr'uiaal states -title the
proms" is exectitug insnWtia S. However, these are start the
CPU can tarter which can halt the execunan of instrtrctrortt These
sates will vary from processor to processor, but far e xample. will
ustally crdude the halted srax- Haire, mm specW fur-lion that is
included in a pmcesrsor'S operaauonij apabiLues, and while an
preven ocimul Wr*mm cizruaion. must be retncrve - If the is
dory, then the loop set bermes mmpeett: (the CPU anent remain

in aM state not in the loop set), and tnslifies as a cosa.i anent set

The fttiotal hardware, thm must u3durde the ROM ex cu-
non restriction and a Varml Ross Aftnow. The special state detaetr>
lap a cry into other prohibited staax If a bed mm is emceed.
somethrg must be done to eenpe it. A noomsande trap input
an be used to forte colt from them special states, or a simple a-
t:. reset may lileemise be rand. Regardless of the implemenudiao
cie.vils, it should be appreasted that . together, the two additional
r ,tl.. sections have it mmpk=gr on the ceder of two m titres

;cryntetd cuunts.

': siotiv be noted that with the addition of huduve m the
cormnc;c- the ame m is inherently clanged It is possible for the
new ha.^dwam to caste zw sate; which an prevent pivgram
opemm The hardware additions must be analyzed and mool8ed
if necessary to verify that this is mot the ease.

With tbew re su momma the protean a gtraranteed to be ea-•
euang insuuaianc: those is uuctioos are guuanteed to be mar
[aired in ROM; the ROM address space is ®pkwky defined; aid
therefore, in the steady sate, the ptrootaor must be euaatvg ore
of the proIgarm in the loop seu so the loop seta a containment
set

An alternative to derrminig all possible eYromous bops is
to prevent their waxtition will: hardware. This cam be dam with
the addition of what will be idled a .SAFE Whf. The SAFE ROM
is a 1-bet wide mesmcry. with .hie same nstmbe t of Wmtoms as the
main ROM (wteere the aomml program is sar ad). The seine addi-
tional bit is used to distinguish between valid ace: erroneous
insctuction feuftm The fins byte of multiple tyre insuumarts is
marked as valid; all other kmnont — loot, addresses, and lookup
tables — ace mark-ad as ermmaa The ROM nuts hardware
must then reify tnttxigh the SAFE ROM the a valid tranuction is
being fetched If net, a trip interrupt or a reset mum be issue6-
SAFE ROM hudware supplies the option of trading off hardware
for the additioeal atmpleit pcogun analysis needed to d- termite
the erroneous loop set The SAFE ROM performs the function of
lunttuV the eapa6Ma/ens of the opentig software, used here at a
lows i-rc1 than as first drAned in 161

Program S"iscrum

The problem rernains of finding all possible valid and ertmoe-
oeu loops, soviet complete ROM contents and ROM address
sp—f—um This problem will be artadmd by finding an pogrom
snacnoer which as possibly resztb in a loop. Mier prnossom exe-
cute intctnumons in mgiertia until an event inierrenes to direct
the path of the program. The sear& for all loop program strtrcttaes
will center on the com=p[of a path drve er. A prah dlvesrer is
defined as am event or condition which an duet pcogtatn flow
from the normal inaemenung address wqurnoe- Path divertrrs
may either be hardware a software used

Hudware Path Di vertu

For aenaacy and completeness, the fol, swum will be rm-
triaed to the BUGS CPU. Similar, if not xk= cLl, analysis an be
done for other microprocemom

For the 8085. the following hardwue feaMn% cam divert pro
gram (lease. dock stop, halt. ready. hold, and wie rrupm. The dock
—!'A— meta be arch that it unconditionally oacillaret, This is an
often overlooked but very important rstut in ass micnprocesaar
design. btn it is pamallarty agdfiant for fruit uAmarim Far

-utrnteiy, this rtruaroc of path diversion an be avoldetd Sampty by
sm-artntly adhrttg to the manufacnaa's spmfianenx- Pmphual
carrwory wtneh uol, the hold or ready inputs meat be conftguamd
such that a reset pulse assures rinr mal operation ntcLTmes should
sormG uriphmned lockout trim effect (Sire as a poor btls arbrtra-

tion ttcierme which would grant the hits to neither device if two
devices contend for the bus at the same tam) This is normally
ayt• roat , if it is vaurned that the hardware additions from ire
Previous section are inmrpataied (speesal state and bad fetch detoc-

tots, .tad possibly a SAFE ROM), then program fetches ate
puan m nod to ocew within a specified period of time, or a reset
ooatc Therefore, halt. hold, and ready features cannot stop the
prograt,: etesunon in the steady state.

This ham' es interrupts to be considered Normally, when an
inerrupt sector, an interrupt service routine is executed, and pro-
gram flow tettuas to the interrupted program. When this happens,
the program path has been diver ed. but only in one se nse, far the
progun Dow everru LUy returns to the plate at which the interrupt
occurred. comnWng the original pub. A normal ime:rupt
segttrnce treed not be considered a path divenu for the purposes of
Imp arraiym because any program tong which contains a normal
intrrrupc sequence will still be a program loop without the intusupt
sequence Therefore, the wmmpt sequence muss be 'normal' in
t'te sense that the intaupt service routine mum MnIm The ser-
vice rout+*±' is a subroutine, which also an be a ped from within
the program, o with the umdcaaoding that it will be considered a
subroutine. and that subroutines wilt be handled im the section m
software pub diveriem this hardware path dive rwr an be bypaaed
— with one exception. A feather requiremem of an interrupt ses-
vroe -subroutine is that it executes in less tune than the time
between Succesive inaertup- In a property operating program
this will &Ivan be the ass However, in scene special cases, addi-
tional provisions must be made to enforce this If the device which
a the rource of the interrupts is a prngrrnmabie peripheral device
which has modes of operauon which an allw the in¢rntpt interval
W decrease under program control (and therefore possibly as a
result of a trunient fault) seeps must be Mona to enmm that the
insrrrupt unn-val is restored af=t each interrupt An =arm* of
this would be a programmable divider driving an intentpt inpuL
Should the programmable divide ratio be chrrtged such that the
period between intemspts bwames lest than the service rou tine
execution nine, then as soon as the interrupt routine etas, another
interrupt will immediately omit'. This causes a program loop. in
such a case, if within the interrupt service routine the divide ratio
of the programmabie divider is reinntialimd to the proper value,
then this interrupt loop can aver occLw in the study sane

For the case of external sotatu of ittterrupur the hardware
should be c amused to verify that no modes of oppemum exist
which an cause the period betweeen uucrrup rs to de cmm below
that of the uneff rpt service routine execcttion ti me-

Software Path Divertas

E,umitaucin d the u suvcvon set of the microprocessor of
lames rives the uist -mmors which an divert mrrcal program
flow. A prohiem exist with undefined op -codes Two opuorts may
be employed with thew opcodes_ A SAFE ROM may be triliaxl.
--sunnns that only v&W insuwuon fetches ate made, which would
never include undeStried opivdm Alternauvrly. the undeAmd
opeodm an be defined by the hare. For the 8095, all op-oodes not
defined by the manufa tai er have sine been desired by others
hrvesulptuon has shown that them 'undefined' op-codes may real-
ably be employed 1 51- 7twefore, the SAFE ROM approach need
not be used with that CPU.

To the 8085. the software path ti-verte inu uctirns are is the
toltowwuu6 cttegunm)tie, all, and reran The jump atcaory
irtdttdes the unconditional JMP. and the ten cordiuonal Jumps
(induding the Ztrdcflmd' heaps). The spoaal instruction PCHL
(jump to the address specified by the HL register) is also in the
Jump tartguy. The e=ll cml ory includes the uncor 'rditions.1 CALL.,
and the eight cordtuonrl allt The nine RST (rrstLm usually used
for uxerrutim but avnewmes used in place of CALL) inuractions
(iocludutg 'undefined' RSTV — resurt on overflow) ate single byte

calls, and ate also in that category. The return strsory consists of
the unconditional REr (return from subroutine), and the eight
cordiuonal returns A program structural aauysa cem7ing on
these path diverters follows.

Program Structural Analym

The assumption that the processor nootimously cte sites
iaswuctions is satisfied through hardware rogtut®emts _ Tberefore,
in the study state, a program loop must exist. More precisely. this
implies that there emsts at least one address an uwnx-
wn rattan that program Dour eventually tenons to this address whet
ctocttuon of this u urumon. It is desired to determine all possible
program saiie=taes which an permit surd' a loop to exist. Then
wit! be found by mreade nng the four loop srraa.rc r"m mnraimn
the various path dive%cm

Type I — Loops Containing Rerurns
This loop type ma- ins a path dives ce: of the return category.

As shown in Filp 3, there is a body of code leading to a renrn
insrrUMM which men sends proomn: flow back to the beginning
of the preceding body of cede. The return umtrueaans divert pro-
p= now by changing the program counter to an address found at
the top of the staci; therefore, the stack pointer plays an important
role in the path sekcnom Type I loops will be divided into (A)
those which leave the sack pan,rt unchangeed between loop itera-
tions, and (A) those which cruse the stack pointed to be changed
between loop ite ratiom

Considering first the loop type IA. it should be noted that the
execution of return insm —ons increases the suck pommr by two.
In cider for there to be m rset c •uge in the stack pointer in am
loop iteration, it to Ihaefore necessary for either the sack pointer
to be decreased by two in the body of code preceding the return
irlsavice-ion. or for the stack primer to be ine..t;aed at least once per
loop: Those loops which lad the stack pointer are classified as type
IAL There ate only two iizauctions which an Iced the rock

pointer. LXI SP, and SPHL. It is evident that for loop type IA1 to
exist, strutatae tape IAL, shown 1v-nxth loop type 1A1 in Fi& 3,
mttA eXiSL

Conmdering rtut lace types TA which reduce the stack poimrr
by two prior to the return inaructiab [hest are three ways this an
occur. All PUSH iw-ructions decre mein the tuck pointer twice, so
loop type dA2 results Surtcute type Lk2 mast exist for loop type

r^

ton.
a^

W	 ui	 lu	 la

^	 e^ ^

mr	 v
tm^

►:r
ems

to v
sm^

ter ,
MCI

^—^ !'wont [1Ubi

wttuu

LOU v	 "M	 xfx v	 e.,.1

Trrt	 BCD,	 M	 rat^
trt"	 lu urw	 It 	 1- wt'r

ICU"

tx	 ,ss c	 AMU nom

e 1(D'	 i 7m'	
^mR4 00M

^mie[tt w ,

r,4R t s s'an TrL•

-
r--.—^^.__-^-^ .._^..__ ^ ____.^ ._	 - -^ • _	 --- ^_ ^.^^ ^_-' ...i _. ^	 __.^.^ _ ^ _^.._. ^	 ^ ,.may'= '	 ^'-Y^r^

iA2 to exisL The stack pointer may directly be deartnenied twice,
resulting in loop type iA3. Suva= type IA3 is necessary for the
exuteme of this bop Mr -

Pw each instru Lion W the call category, the stack poancrt is
daxrerneuted by rwm Loop type iA4 results. for Much structure
type iA4 must Cxisi- it rhottld he obvious that this structure is that
of a standiard suhroutitra

loop type IA4 can be funner di riled into those in which (a)
rera n is as expected, and those in Much (b) return is incorrect-
For the first type (IA4a). the call to subroutine X is not necessary
to farm the loop. Even if the 'CAL. X' instruction is bypassed,
the loop still exist; am upon a normal subrotuim return exectr
lion continues at the insaumon after the "CALL X' instruction
ocarina this reran itvz=on is not diverting program flaw; it is
not the sours of the loci- The loop strucnaa rernsinma when the
+CaAL. X' is removed must itself be one of the loop types oateaar-
imd which does cot ceocsin the sp=& return instruction beag
considered For this reisuix in the search for all loop structures,
type iw4a need tit be cmrmduod

Loop type IA4b is stch that the return is not to the correct
location This can hapoen for two reasons: (1) the stack pointer
,.—+	 j-- ;a.°.%.:.:; u (i) i -- — - ` - a does fey to
RAM, but the conteris of that RAM adsressed by the stack pointer
- the stack spent - is modified between the anginal "CALL X' and
the return staterneaL Subreuuma Mach modify euher the attack
space at the stack pointer in such a wrap that return is not to the
itssttvaion after the all will be cascfied as ouroper srbroraimm

To simplify the search for bop types TA, the role of call
ateg(ry ntstruictiOn encounteze d in the setmentf of code listed as
'BODY' must be considermd. if the CALL leads to a code segment
Much rmuins a ret:an category instruction. this falls unch-L loop
type 1A,& if the CALL lads to a code segment Much does act
contain a return. then this subroutine is also ri—fled as an
improper subroutine. Hen= for thw corsxkr "en of 'BODY,' all
ioatructioas may be ignored, sirne their custeffi can only lead to a
siuctuc aftedy covered, or to an improper i ubroution

in sL canary, theta for a loop of farm IA to crosz, sae of the
siruauts JAI, IA2, IA3. iA4bl, or an improper subroutine mist
also =sL

Loop programs of form 1R contain a return ateyry instruc-
tion ad rnrdify the stack pointer each iterarort Thee loops will
cause the static pointer to tra+.em the entire: address space- As an
aid to the discussion of type TB loops, the STACKC WALL is
defined.

Let 1, be the largest positive value within a body of code not
coritita nn. a strtwt+*+ l loop by which the stack Pon tier an be
decre n -nind, and f, t. c largea by which the stack politer can be
inavtiented. Let W - t+nux(l,-2./,+2). The STACK WALL coin-
mm of a conuguou. '.hoick of :mnary locations of length W, st.ch
that for cop corsecutive pair of bytes within that Mock. an address

is formed which is guaranteed cot to be within a type TA loop.
Each iteration of a type M loop odungrs the stack Inter by

SP-SP+1C, where -(l,-2)4;K4;(1,+2). if a STACK WALL.
mists, then up rype TB loop must either coruain a structiira! leap
(permitting the stack po m= to be changed out of the limits set by
K) ^ eventu it% aurae the stack pointer to addreaa lnati[na

entirely conta i within the STACK WALL When this occurs,
the mrurn iddiear will be fetched from within the STACK WALL,
and program flow will exit the potential type TB loop, effemvely
bruln4 the ►acq.

in surnnary. oven the existence of a STACK WALL- type M
loops cannot tut in the aadY stale, or am cnv*Yed by another
type of loop structure -

Type ii - Loops C -u—ing Calls
Type iT loops contain tall citu*wy path diverliets. if the sub

twtine called krds to a return type instnruost, it will be covered
as a type i loop. Therefore, only calls to sutrounaY not baling to
returns need be considered. if the tall does riot had to a rents it
must had to a loop: if that bap doa not cmu[n the originl all
iastrtictio41t, it is not a type II loop- if the subroutine lads to the
call intructiom it will be dassified as an improper subroutine.
Therefore, the existence of type IT bops is dependent upon the
existence of an improper subroutine

Type in - Loops C ti ;n;. g Jumps

Type M loops connin jump cs-gory Path diveraers- Such
potential loops mn-ring return instructions coed tit be coo-
sidered, as they ate covered as type 1 loops. Calk an be byy seed
in a search ftir type M loops, sitice if they as as path diveners,
they will be covered as type i -r IT loops Therefore, wpe M kxvs
consist of simple branching structures and the IoW itself is ono-
sidered a program suvctum

Type F V - Loops Without Path Divertas
Type TV loops contain no path divercers. Acmally, there is

only ore possible type TV bop, and it loops by anoeaung each
memory location in the `-ltess space This can only coon if the
entire ROM contains m path divertas at all (the program counts
eventually overflows hack to the start of the ROME this never
occurs in actual practice.

In summary. with the existence of a SI'ACSC WALL. and the
Lark of improper subroutines, a pp+ program loop must be of types
iA1, iA.4 IA3, iA4bt, or in _ Figure 3 depicts all of thew loop
types. An improper sutrotnine modi5es its return address err does
not lead to a return statement- This can occur if it monins an
i nerrcal bop, or calls another subrouum which ails the improper
sutrmctine_

This p'ogran suvctunl analy sis wrili be the basis for the
design of fault u)lerant mounikrs developed in the rat section.

Fault Tolerant Controller Impleamndm
Upset theory apptiol to the SWc CFU will now be used to

produce a new design approach for t&nQcn. fault tolerant aontroll-
em The detailed prngrars3 structural analysts plays an integral part
in the implementation memcd. Design rule - bah hardware and
software - will be supplied, such that[a conuulle, so constructed
ran be shown to have m steady sate loop structure which are not
dmgrrd-in, and those loop structures which are desigmd-in can
recover from transient faults This implementation produces a coo-
troller which is oink-~. where oath is considered to be any
situation which causes the processor to pelmatieutly case cxwu-
tion of i ts intended function.

in order to provide a base from Much to evolve this design
approach, and to test its pnc icLity, an expenniemal system was
devel oped. This system also served as a testbed with Muth to
assess the difficulty or ease of the application of this approach, and
provided an inrh=on of the number and types of emxmzta loops
Much could br found in real systems.

Design Ruin
Tlic design miles :ox trussiem faun tnlera ce cnvQ both

harofware and software aspects of the murolirr. it call be seen that
for a large nrritet of appliauom theme additional regtnrenenrs are
not overly restrictive_

[ri

nF POOR QUALiTY

Hardware

The CPU must unoodiuon Ly execu te i mn=om This a
achieved with the addition of special stmt and bad fetch detectors.
Program execution mug be reurwted so that the iawucvons reside
in ROM. As an option, program exauuon can be checmd with the
sddiucin of a SAFE KOM.

Clrnlits which satisfy the requireroems, imposed by thew
hardware design rules have been .`e%elopad (or the W85, and sob
two inexpetmve Integrated —I ptduprs need be added to a
standard im an not wandering faults. if a SAFE ROM is further
desired, then that ROM incres es the additional clip courts to
throw

Softwwut

The apphcLwn program must be wri en suet shat program
sutnlaes tAl, iA2, and IA3 are am used This is because the
aadk pcxn= It r4 necesclry in RAM, and these stnnctuires an lead
to bops dependent upon rte consents of the RAM am used as
stack $rQ them loops aruxx othnerwixe be preveared Ths
requuemcat is not particularly resrtcuve. witb the prsssrbie eaeep-
tion of IA2 Somers.®es, when a program variabie jump is mgtnred.
the Wowing intrusion sequence is user- PUSH H, REr. This is
structure iAZ This structure an be permined if the HL register is
clicked after the PUSH and before the RET to verify that it coo-
rains a valid address. old that lamps to that address cannot lead to
an unknown loop. in most ease& this structure can be replaced by
status flagL

A special ass of type M loops is that of the P01L instruc-
don. This Instruction must not be used, for it is po®be for the
HL, register to contain the atiiress of the PCHL Ineanu on; if this
om-um then a loop results trivaMng only one instnucum and there
is no possible way to verify that !I.:- cannot occur. However, the
PCHL instruction performs precisely the same function as the
PUSH K RET sequence, and may be replaced with the sequence
described above.

A STACK WALL must be inducted. A simple way to handle
this is to leave all unused memory lofaticns in the program store
ROM either 00 or in the first asi. arty return address
retrieved from the STACK WALL will cause exemuon to begin at
address 0000. This is the reset bauom and by ddlmuom must
brei: ally type iR loop if the STACK WALL mrnatris FF's, exe-
cuuon will begin at address FFFF. and if this address does not
saes the ROM. the ROM restrict hardware will force a reset, also
breaking any type 1R loop_

improper subroutines must riot be permitted. The return
aridness must m uin intact. Subroutines mist not directly modify
the stack point= or stack spates in order to guarantee the lane:,
wherever n memoiry sloe insrilction tats a variable address in a
register for the store bowuom that register mu is be checked Ica ver-
ify that it is not within the stack space. A subroutine gun not all
itself. InIzrrupt servsm routings ate creased as subroutine+_

To eliminate IA4bi loops, returns from subroutines mum ver-
ify that the stack pointer is panting to stack space in RAM.
insnyd of Performing a return inatrtlaion, a jump must be made to
a special return routine. This routine docks the suck pasnur, and
if it is a valid addresk a return is executed If an invalid address is
found, the suck potntcr must be reloaded. and a prlgrarn restart
made. This restriction is perhaps the mint limsuns, am it
in c rases the execution timer Qgnif lath)) for return sLTrr+rma

Still, ,hue awe a large number of applications where the CPU is oa
running raw lanit of speed and (or appl—LioM 11u
requitemefu would not cause problem llrrsnaung all returns
except the ore in the RE'T routine rt~no es asp' paabcury (or
type IA4bI to caxla.

A1' possible Wpe in loop structures should be examined.
Loops which are intended to be temporary must be %crifiad to
ensure that under all dreurnsulrees, they are rernpor& y. This an
always be accomplished with the addition of a loop counter, if
necessary. An exaro-Je of a subroutine wh ich originally u not fault
tolerant, and its modified wersoo, is shown in P41, 4. The
unmodified vemoo can form an endless loop if input variables ate
invalid Detamirancn of the maximum execution time before exit
for each loop an provide an tipper bound for the overall upset
remw-ety tinge.

Ai RDHtlba Correct for Define' Inputs, gut
an Undefined Input C-USGS Endlets Loop

,B.T POSITION To RINART CONVERTER ROUTINE
,
I OUTER NITS A SINC.I SIT Sr- IN REGISTER A
,EXIT NITR REGISTER n CONTAINING THE BINARY
I PoS ITION Or THE SINGLE SET BIT.
:DESTROYS AIGISTIR A.
I

NVl	 3, -1	 ;INITIALIZE REGISTER I
LOOP,	 INK	 B	 ,BUMP COUNTER

ARC	 ,ROTATE REGISTER A RIGHT
JNC	 LOOP	 ;—,NECK FOR CARRY SET
MIT	 ;RETUR.N FROM SUBROUTINE

BI Corrected Subroutine

,BIT POSITION TO 11I 11 ARY CONVERTER ROUTINE

,ENTER 3 ITN A SINGLE BIT SET IN REGISTER A

,rxIT NIiN REGISTER B CONTAINING TAX BINARY
,POSITION OrTHE SINGLE SET n IT.
DESTILOYS RIG ISTER A.

:WW .:211 GUAMNTEID Ix IT.
I

-(VI	 11 - 1	 ,INITIALIZE REGISTER B
LOOP,	 INR	 a	 ,BUNP COUNTER

ORA	 A	 ,SII rF REGISTER A-0
R1	 ,YES, ABORT AND RETURR
RRC	 ,ROTATE REGISTER A RIGHT
JNC	 LOOP 	 ,CRICK FOR CARRY SET
RIT	 ,RETURN FROM SUBROUTINt

Figure a . Effects of Out, of Range Inp%;t Variables

All intentional steady state loops must guainu m all operaung
assurnpuots. This an be accomplished by ailing a check routine
from each of these loops. The check routine should guarantee that
all 1/0 devices s ee prognurtrned property, interrupts are enabled and
unmasked (if used), and any assumptions that the program maim
on variables for proper operation are fulfilled.

Exit must be guaranteed from all powbde uut=ruptt Ummd
vecuxed arc rupts should jump to the star of the program. inter-
rupts Ntlich are peneraled from a prtAtrammable divider must
assure the integrity of the divide ratio within the inarrupt service
routine.

7 he preceding Software requirements mum be met. onnOder-
tM both valid and erroneous loops if a SAFE ROM is not used-
The appearul¢ of am banned structure as a portion of an ernrtN
ous loop festally resents from specific address values bring inter-
preted is op-codes, Erroneous calls to erroneous subroutines must
be investigated to -verify that that erroneous subroutine is not an
impiopei subrYxm= if it is, it must rather be ehueged, a the
erroneous call removed. To re nove ermneocn structures, the pro-
g ice should be shifted carte byte at a erne, until a shifted mason
results in no eroorlous loop suirturrs Thee is no guarantee that
this is possible; how m, programs of length IK to 2K stxxuld pose
no real dif5nilry. For programs, a SAFE ROM is proknbiy
destrable.

Table 1 sumnianans these DrarCen: fault tolrrm software
dmgn rules. These software requirements may appease difficult to
em ploy, but 'nth appropriate software suds, the problem is greatly
alleviated

TARLE 1
ammlb- met cartoon [sftkx tar.	 soy

1. tiopmt s aivmn firm RAM is pmts bitad
1 tat fhom move my bans mum be psmmad.

3. *&w boa rows bicksk a aaa to a dtadc vdaws, duct piwason as
astsav"s the weerwn rurAu for aoaiawd maonies Meal "Chose
rawavt+os on 1/0. muenaoea and vwtabiaa.)

4, aawra fmm as poaaa - buornam mus be pint

S.	 lubicuu no borer s9 u aero %ea

6-	 librovurrs comer mods y hta ruck toinr or tta rsaam address.

^. w1rMa mrcuums, nraory, sow irtwnoru .Ad ow+wn a rauiaNa won
dbmos must aharamoo, 0101 dta rogiss* woad an an addsta pah comet
pent b *4 rick =wOF

lrruad of vain RET or RCN mrvs+om a JW or KN to a lrlayl rownt

rowan .Aids avoarsaa dot dta suck timmor points whin Ma pork m
befom saaarn rout two wad alis roam rouura coamn its otft RJT
ftwW loo in true mum ptapwa)

9. A SUM MALL must be addm& (larva vrat od ROM spars as CD or FV J

10. The FCHL hoer coon comet be rid

11. Fltirw a SAFt RUM must be ur ,& or as arronaous -,,, and onoraa7us

tam o adbswas whck wren to 	 I to be asbmtrmn, do rot wudy
aliAw Rut S. 6 7. or g must be mmorad.

Software Totals

Two programs err wnrmn to ease: the imtik men anion of the
software requirements for fault tcienuice: SAFE, and LOOP. The
SAFE program accepts as u^ut amesmbb la nsi m a scum aide (a
ta=t file). It deterininrs which mentoey locations contain the first
byte for -A& icettvc ion. This output can be used du=ty as the
SAFE ROM ;rxunnu. It is also used as input to the program
LOOP.

LOOP is a too[used to hate program crurnass (developed
in section three) which an lead to loops_ It accepts n input objxt
code fQ the application ptogaa of inieresi, and optior ially a safe
The generated by SAFE The latter is used to perTmt cia stifiation
between vt1aA and erroneous instrucutins.

Whik: conduicung a search for a sperafiod request, LOOP
Spam all possible trees seated by cvrditittnal branches. In the loop
search made, a lists all type IAI, 1A2. IA3, and M smxnam
Some of the structures are valid, and some are erroneous. The
valid type M s •.ructurrs must then be verified to ensure that three
loops not trended as steady sate loops have an unconditional
escape rmedurnsrn. There should not be any valid qtr I saw-zee
The estortecxu cructim" of all types must be resttoved

LOOP an be mrtvnarsiid to list all subrauune calls. This is
used to search far erroneous ells. Each enrineotu tail found must
be cneclard: if is kinds to an address not contained in ROM, nothing
nevi be done (the hardware wtU handle it); otherwise- that errrice-
oars subroutine must be checlmd to determine if it is an snprvpe
sutroutine, in which use, either the erroneous

all
or the errorse

ous subrouum must be chttr>scd As an aid for the verification of
rrronecxis subrouunes, a dis+serrible r option is Misled in LOOP

A search can be invade for all merrsciry store instructions which
uulia variable store lcic"rm This is used to verify that the pro-
grammer has caught all tuieh instructions in aitrouunex and has
taken steps toeum nsue type IA 4b2 stricture&

With the interactive use d the loop search prvQrm, the pro
Vwnrtxr an elfeeuvety and elticiermty prtvdum a modified a pputa-
uon progriun to achieve f"t toicriuwe

Fatsh Tolerant Caa+usller Test System

The rut system is aelf-c o aimed and comma of two
microprocessor atntro[lers, porn supplunk and a fault sourer- It
was used to verify the viability of the demp rules developed for
built tok=en conuoller impkamemtauoa Measu rements Of program
execution were tltloen with a lopc aalyisa and an oscilloscope.

A noisy power Supply was chosen as a reasonably realistic
fault source which an be controlled in the labosatoy , eovionmem.
The itstbed controllers; are 8085 based mad tai lia a total of ax
suadard integrated cirrus. cxdtmve of the additional hardware
(two or integrated arcuits). The oenuoller function is to rod
the input switches and write appropriate displays to the output
lumps.

Cruh-proof versions of the original control program were wn-
sea acrd exelaaed in the test system. No permanent program
crashes were observed

Conclasisas

Design rules have been developed for microprocessor coo-
a Omit to provide uientrtm to transient faults at a furrnrrial level.
It has been proven that adherence to these rules

will
produce a

crash-proof controller all possible program loops are known, each
corresponds to a valid mode of operation. and continued processor
execution is assured To accomplish this end, a very small number
of additional cotnpoaertts ace required aai the tttcresse in software
complrlciq is low. The tesibed comudletx required from 8 to 14
percent ir.,ns in program eta to satisfy the software denim rules.
This approach to fault tolearre without the use of massive redun-
dancy must be viewed in the proper perspective. It is not intended
as a tepiaantent far high reliability dam mien bve appliatuoos,
which would normally require diiplisuon or triplication of
hardware. It is, however. applicable to the much larger ciao of sys-
tems wtuch do not have such severe requirement but which an
greatly berefit (ram a g ="size that the systom will continue to
oprrue in the Ions term. Pounds on rramtvy time can be found
through loop analysis, and this can be lowered if desired with the
addium of a watchdog tuna activated by the chock routine.

Tembed Results

Complete adherence with the design rules produces a totally
ash-proof controller. The questions are sorneurres raised as to
how prevalent various loop nnicttaes are in the software, and how
often a ccnuodkr will be driven to these With regard to the
first question. after loop anlysu of approximately a down program
ve morm the presence of envrrotn loop srnicui rs was obeery in
many of them. Mom of the oberved euninvous sutioures were of
the stack varteimm Otte version ®ntai rd a PCHL. inautuziciM end
another a jump loop. T'he answer to the first question is that these
crrorcous structures are quite common. though it is possible to fund
program versions which are free of such sunictires.

To respond to the second quesuon, it first must be -toted that
s'mpie uuwum mrxnrrang the likelihood of various loops is rot at
al rehabs_ Tnasitiom into erroneous :oop programs which are
, .uuiuvely highly undikzly wire oercrvor_

The tess conucilltsx were run with% various cttbauons of
hardware and sofiwara It was found that the remrnal of either the
halt detect or ROM restrn rnrecharnsrns caused some mode of pro
gram crash. Unrttadified program vcrzons were obmwved to crash
with the hardware restricmnot in placie. Thcrfae, it has been
found that draoical systeire A - -quire both the hardware and the
utfiwxre mode5auors that hove been shown theereually to be
necessary

Csaapartass wtth the Wstdmkg Tbon

Probably the simplest and most prevalent exiernl hardware
addition used for fault de—lan is a wwhdos rshr In normal

operaum the mtwprooesu r penodially pubea the , xtertral tuner.
The software is written such that the processor is guanateed to
pulse the tuner before a spec: time dapaes The urner is
remaverabie, so that umde normal operation it ocv" times our.
Should the processor fail to trigger the watchdog within the allotted
time period, the Liner initiates recovery amcr% which can be as
simple as resetting the proonmr, or as onnplex as chins a test
program which thouroughly ex== the entire system and logs the
results. Watchdog timers ate discussed im 17L an wnpi* erita+ wn
can be found in l8 L and discussion of the edecuvenm of watcdog
amen can be found in (9,10L

The motainrme tt approach must be corrtpared with the wau%-
dog timer technique, which is also used to prevent c m—shes in the
Long terns The watchdog urner has been found to be effective in
s ern applran= - however, u suffers from a nnxr drawback
typically, it is not provably complete. When used, there is no
nsma nae that there does not e=at some loop program Much can
inner the watchdog, yet ooh maint a in cornea system fUWrionsng.
The techmqum developed in this research can be used to validaee
such watchdog timer appraches to tole uice Hoaevi r. without
the ROM restriction. no Much validation an occur. sty therm is
alwis" the possibibty tMu a loop an be set up to RAM, activating
the comer. and not p^afortming the system fumiea With a loop
analysis. and a ROM reancuon mechanism. [lien. the watchdog
timer technique an be validated. Fish possible loop svuucttae treed
(]lily be impeced to verify that c rorsous loops do not trig ger the
unin. This approach u is the same number of pants as does the
coriurnoemt strategy: the ROM tesuin mechanism, and a retngger-
able turner. The Only adVlniage of ustn` these new toot{ to Validate
a watchdog [inner approach would be to amplify the software
changes. Thee software changes have been shown to be relatively
easy to aduicve with anall cvaudlem A combined loop
anlysis/watchdog tuner approach could be useful for larger s ys-
tems. In a arms, the watchdog approach an be seem to be a subeiet
of the comainme t approach.

Watchdog umers rypially operate with a long time tttterval.
As a result. they reset the s y stem relatnely long after the system
his crashed. The strut contauRnemt approach reacts much fasts
than the watchdog app roach. sine the only turner (fetch detec3halt
resutea) is an the arder of a single trtttrucuon tuna This shorter
timer period. and the ummalute response to an erroneous fetch
attire these turdwarn forted resets to respond much mom-, ;o a
fault than would a watchdog time and an have the effect of restor-
ing systeun opemuon befQe en-ors an propagate as fan a with a
watchdog apprmch-

In sumnhary, the watchdog tunes approach to uarsici- fault

--vxnee is viewed as tmofmpiete to itself, but useful as an opurrh
to be urcrperated within the cnnixlnrment method.

Rdermm
(1) Glaser. R.P. and G-M. Mason 'Tranns :ot Upsets in

Kcroprecemser Cowcilh m , Prooeeliv ffC311. Jun 1981.
pp. 165-167.

(21 Glaser. R-E. and G.M. Masson, `Tbe Casaaiament Set
Approach to Upsets in Lig;tal Systems,' Llg Tnvnsre>ororat ar
Compass. July 1982

[3) Schrader. F.B. and R.D. SchlichtiaL 'Towards Fault
Tolerant Proorsa Control Software,' AvrsraMV Pr S-11.
June 1981, pp. 48-33.

141 Iniel Carp, AKS85 Uas's Adanata, Sans Clan. CA, lacasry
1978.

[51 Dehrih rdt. W. and V. Sareroea 'UriRmi and 8085 op esJd<a
enhance WvVwnming,' Eleeromm lantrsry It 1979, pp.

144-143.

161 Dennis. JJi, and 1=G van Horn. 'Prngratmmaig Sernuma
fa Muitiprogammed Computations.' Ca+s+arns u— d the
AC74. March 1966, Vol. 9, No. 3, pp. 143`155.

[7) Kraft, G -D. and W .N. Toy, Micropovtawwd Connd and
Rd:adr Dr- r V S'neaU Cawwww , Englewood Cliffs, NJ,
Prentice Hall, 1981, pp_ 321-323.

181 Ballard. D.R. 'Designing Fail- Safe Micoprnoes,nr SystaM'
B romm Vol. 52, No. 1, January 4, 1979. pp. 139- 14J_

191 Courtom B. 'Scum Results about the Effwkncy of Simple
Mechanism for the Detection of Mieoeomputa Malfunr
nom' Proc+a imp fTCS-9, June 	 pp- 71-74,

[101 Courtas, B., 'A Methodology for Oo-L.iae Testing of
Mieoprneeasors.' Amwdngs FTCS-11. June 1981, pp. 272-
27,

J

(

	GeneralDisclaimer.pdf
	1982018700.pdf
	0006A03.pdf
	0006A04.pdf
	0006A05.pdf
	0006A06.pdf
	0006A07.pdf
	0006A08.pdf
	0006A09.pdf
	0006A10.pdf

