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t	 ABSTRACT

Title of Dissertation: Pulsed Multiwavelength Laser Ranging System

James Brice Abshire, Doctor of Philosophy, 1982

Dissertation directed by , Leonard S. Taylor, Professor, Department of Electrical
Engineering

A pulsed muitiwavelength laser ranging system for measuring atmospheric delay has

been built and tested, and its theoretical performance limits have been calculated. The

system uses a dye-modelocked ND:YAG laser, which transmits 70 psec wide pulses simul-

taneously at 1064, 532, and 355 tint. The differential delay of the 1064 and 355 nm

pulses is measured by a sp)cially calibrated waveform digitizer to estimate the dry atmos-

pheric delay. The delay time of the 532 nm pulse is used to measure the target di0anee.

Static crossed-field photo; multipliers are used as detectors for all wavelengths.

Theoretical analysis shows that path curvature and atmospheric turbulence are funda-

mental limits to the ranging accuracy of both single and multicolor systems operating over

horizontal paths. For two color systems, an additional error is caused by the uncertainty in

the path averaged water vapor. The standard deviation of the multicolor instrument's timing

measurements is shown to be directly proportional to the laser pulse width plus photomulti-

.	 plier jitter divided by the square root of the received photoelectron number. The prototype

system's maximum range is calculated to be 25 km, which is limited by atmospheric

and system transmission losses at 355 nm. System signal detection and false-alarm cal-

culations are also presented.

1ltulticolor ranging measurements over round--trip horizontal path lengths of 193, 921,

and 4760m show occasional receiver biases as large as 80 psec. These biases are caused by
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optical spot misadjustments in the receiver. More typical receiver biases of 10 to 15 psec

cause atmospheric delay prediction errors at the 1.5 to 2cm level. A redesign of the y receiver

optics is expected to reduce these bias errors to 5 psec, which will result in an atmospheric

delay prediction error of less than 1 cm. Several suggestions for future work and applications

for the modified system are discussed.
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CHAPTER 1

INTRODUCTION AND SUMMARY

Many applications in surveying, geophysical research, and positioning require accurate

long distance measurements. Since the delay times of optical or microwave signals are

'

	

	 used to infer the distance, atmospheric refraction is a limiting error source for all these

applications. For example, in NASA's satellite laser ranging systems (1.11,  the uncor-

rected atmospheric refractive delays cause an error of 2.6 m at zenith, and 7.8 m at

an elevation angle of 20 degrees. These errors can be reduced to approximately 2cm at

20 degrees by using atmospheric refraction models (1.21, (1.31. This residual error has

become a dominant one in the system error budget with recent improvements in ranging

instrumentation [ 1.41

There is considerable interest in developing instrumentation which can improve the

estimates of atmospheric delay in both ground—based and in ground—to—space applications.

This improvement can occur either by using the instrument&%Jko - to directly estimate the

atmospheric delay in each measurement, or by making representative delay measurements,

which then can be used to improve atmospheric delay models.

The technique of using atmospheric dispersion to estimate atmospheric delay was

first proposed by Bender and Owens [ 1.5 J . Since then several continuous wave (cw) dual—
k

wavelength systems using this principle have been built for operating over horizontal paths

[ 1.61, [ 1.71. However, these systems have had limited distance capability and cannot be

used over quickly changing paths. Three—wavelength cw systems have used two optical	 f

colors and a microwave `color' to measure both the dry delay and the `wet' delay caused

by the water vapor in the path [ 1.8 J . Unfortunately, the larger angular width of the

microwave; beam makes the wet delay determination sussiptible to multipath errors from

the ground reflection.
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Pulsed optical multiwavelength systems do not have these constraints. High power,

mode-locked laser transmitters are convenient sources of short (70 psec) pulses. Part of

this energy can be cor!verted to shorter wavelengths by using nonlinear optical crystals.

The resulting pulses of differing wavelengths can be used with fast optical detectors and

timing electronics to measure the atmospheric delay over long '.atmospheric paths. Since

doppler effects are negligible with direct-detection receivers, pulsed systems are very in-

sensitive to target motion. Preliminary work on pulsed multi-wavelength systems recently

has been reported [ 1.9 1, [ 1.101. However, no detailed analysis of theoretical or actual

system performance yet has been given.

A pulsed multi--color laser ranging system has been built, and its performance over hori-

zontal paths has been analyzed for this dissertation. First, the physical principles which cause

refractive atmospheric delays are reviewed in Chapter 2. The resulting Lorentz-Lorenz equa-

tion expresses the relationship between gas density and refractive index. The refractive prop-

erties of gas mixtures then are reviewed, and the measured indices and densities of the

gases which compose air are used to compute its phase refractive index. This result then

is extended to compute the group refractive index of air.

The theorie,., of single and multiwavelength ranging systems operating over horizontal

paths are derived in Chapter 3. The results show that the dominant atmospheric error

source in single wavelength systems is the error in estimating the integrated path tempera-

ture. Other error sources are path curvature and turbulence. Three color systems are

found to require approximately thirty times more accurate differential delay estimates than

two-color systems, when using the wavelengths of the prototype system. Limiting error

sources for three-color systems are shown to be path curvature and turbulence. Two-

color systems have these same errors, as well as errors in estimating integrated path water

vapor. However, they require much less accurate differential delay measurements than

three color systems.

i
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In Chapter 4, the prototype pulsed multicolor system is described. The laser transmitter

is a dye-modelocked ND: YAG, whose 70 psec ride output pulse at 1064nm is both fre-

quency doubled and tripled, The 355 and 1064nm pulses are used to measure the athnos-

pheric delay in t he system, while the 532nm pulse is used to measure the distance to ttha

target corner reflector. Static crossed-field photomuitipliers are used as detectors for all

colors. A specially calibrated waveform digitizer is used to measure the differential delay be-

tween the 355 and 1064nm pulses caused by dispersion in the atmospheric path. A photo-

diode, discriminators, and a tithe-interval unit are used to measure the 532nm path delay.

In Chapter 5, the single-nwasurement accuracy of ideal pulsed ranging systems is shown

to be directly proportional ho the laser pulse width, and inversely proportional to the square

root of the number of received photoelectrons on each laser firing. These results then are ex-

tended to the technique of recovering the atmospheric delay from subtracting averaged sets

of reference and atmospheric path measurements. This method is used in the prototype

system. Subsequent analysis includes the effech► of the timing biases and jitters contributed

by the photomultipiiers and waveform digitizer iin the prototype system. Calculation of the

signal detection and false-alarm probabilities also are presented, along with calculations of

the maximum range of the prototype system.

The measured performance of the prototype system is reviewed in Chapter 6. System

measurements of the dispersive atmospheric delay in til :e horizontal paths show that bias

errors as large as 80psec occur when the optical beam in the receiver is no ► carefully adjusted.

When properly adjusted, the biases are reduced to the 10 to 15 psec level. Suboptimum

magnetic-field conditions within the detectors are postulated as the cause of the receiver's

sensitivity to the optical spot position. This condition also causes an Increase in the detector's

single photoelectron jitter to 100 psec, which is three times larger than when tk, detectors

sue correctly biased. Measurements of tile single-dependent system jitter confirm the the-

oretical receiver model. The residual system bias is 5 psec, which is the bias level of the

calibrated waveform digitizer.

3



In Chapter 7, several su giestions are made for future theoretical and experimental re-

search. They include extending bath the ranging theory to include muitipath effOcts and

the detection probability calculations to include laser energy fluctuations. Further sug-

gestions are to modify the prototype system to alleviate the detector problem and to min-

imize misalignments and motions between the reference and atmospheric path optical

beams. Once these are completed, the prototype system shoulJ have sufficient accuracy

for 1 cm atmospheric delay measurememts. Such a system then could be used to verify

the ranging theory.

The modified prototype system should be useful in several applications. They in-

clude length measurements of extended horizontal paths which are used for geophysical

monitoring. Another use is for measuring the atmospheric delay over slant paths to air-

borne targets. With cube—corner reflectors mounted on weather balloons or high altitude

aircraft, these measurements could be used to investigate the accuracy of atmospheric de-

lay models currently used in satellite laser ranging systems.

i
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CHAPTER 2

THE REFRACTIVE PROPERTIES OF AIR

In this chapter the propagation characteristics of an electro-magnetic field through a 	 r

medium consisting of a single gas will be reviewed. This review will follow the general

outline given in Born and Wolf 12.11. These results then will be generalized for a sub-

stance which is a mixture of individual gases, such as air. Next, a formula for the refrac-

tive index of air will be derived from these results and the measured indices and densities

of the atmospheric gases. The phase velocity will be shown to depend on the index of

refraction of the medium, and the relationship between the index and the number den-

sity of the molecules will be derived. Finally, a general formula will be derived for

the group refractivity of air which can be used with measurements of temperature (T),

total pressure (P), and relative humidity (Rh).

2.1 Electromagnetic Vector and Scalar Potentials

In atomic theory, matter is assumed to be composed of interacting atoms and mole-

cules embedded in a vacuum. The local electromagnetic fields produced by these atoms

and molecules have large variations. However, the internal atomic and molecular fields

are modified by externally applied ones, and the average electromagnetic properties of

the material can be derived by spatially averaging the sum of the externally applied and

the local fields.

As long as the averaging region is large with respect to the particle dimensions, the

electromagnetic properties of the particles can be accurately described by considering

them to be simple electric and magnetic dipoles. Since the atoms and molecules are polar-

izable, most substances show these electric and magnetic moments only under the in-

fluence of externally applied fields. For the gas molecules considered in this chapter,

the induced moments are linearly related to the polarizing component of the incident

field. For materials in general, however, the moment vector does not always coincide with

the direction of the field.
6
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The vector and scalar potentials of an electromagnetic wave can be reviewed by start-

ing with Maxwell's Equations,

	

V X B = - ap./at,	 (2.1)

	® X Ij _ + aQ/at,	 (2.2)

®-Q► = p,	 (2.3)

and

wet = 0.	 (2.4)

The electric displacement and magnetic induction also can be defined by

	

Q a eoA + Z	 (2.5)

and

	

I W µ0(Q + ki) .	 (2.6)

By using the above equations and simplifying,

.	 = p'/Eon

and

0 X B- µoeoa s µo1 . 	 (2.7)

Here the modified charge and current densities are defined by

P, = p-0 .B

and
a

+ at 
+ v X V.	 (2.8)

Now if the vector and scalar potentials A and 0 are defined by

B = 0 X A	 (2.9)

and

Q	 - ®O	
34

- at ,
	 (2.10)

and the J orentz Gauge is chosen, then

7
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Furthermore, ,Q and Q, must satisfy the inhomogeneous wave equations

aa 
® 2 4 - 110e0 

at
2 	 p0	 (2.12)

and

820
®20 - 

p0e° at e 	 _

	

-P/e°.	 (2.13)

a

These conditions are consistent provided that ap'/at + ® • = 0.

The solutions to (2.12) and (2 . 13) are

po 	 [ l
Q(.f,, t) _ --	 dv 	 (2.14)

41r fV R
and

1
O(L ' t)	

4zre f 
[p
"

] dv
, 

.	 (2.15)
o v

E

f

In these equations, [ ) a,j'(^,r,', t - R/C) and [p'] ss p' (r', t - R/C), and the square

brackets indicate evaluation at the retarded time t - R/C. Throughout this chapter, y

the notation is used where ,f,' is the vector from the origin to the source point (x',

y', z'), E is the vector from the origin to the field point (x, y, z), and R

2.2 Polarization Potentials and Dipole Fields

If the polarization potentials [2.1 J, [2.211. and Zm are defined by

A	 AO eO ke + po V X Zm,	 (2.16)

and

0 • Ze,	 (2.17)

8
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then the Lorentz condition in equation (2.13) is satisfied. Here the (') operator denotes

differentiation with respect to time. Equations (2.12) and (2.13) also are satisfied (2.31 if
1

X. and 1Zm are chosen to satisfy the wave equations,

V2 Ze - POO L = - ,@/eo	 (2.18)

and

©2Zm -µ06o Am s - M.	 (2.19)

Here X denotes the density distribution of electric polarization and Ld is the density distri-

bution of the magnetic moment.

The solution to these equations can be expressed in terms of the retarded electric

polarization and magnetic moment by f ^1dv'
41reov R

and

(2.20)

Zrm = 4a fV
 1 

1 dv.	 (2.21)
 R

The electric field due to the sources E and M can be found by substituting (2.16) and

(2.17) into (2.10), yielding

A = ©(® ' Ze ) - µ0 E0 L - µo V X tm.	 (2.22)

Using a vector identity in this equation gives

= 0 X 0 X Ze - µo ® X Z'rm + (V2 Ze- µ0 60 Zre l.	 (2.23)

`	 Now by using (2.18) and (2.23) in (2.5), the electric displacement vector can be written

t
as

D = co V X © X Ze - µoeo 9 XZrm.	 (2.24)

Similarly, Ij can be found by substituting (2.16) into (2.9) and using (2.6), yielding

(2.25)H = VXeote +VXVXtirm -M-

9



Now by using (2.19),

Ij • ® X (eo to + ® X Zm) + ( V2jEM - poeo Itm).	 (2.26)

Equations (2.24) and (2.26) give the field vectors Q and 11 due to the polarization poten-

tiais ono and ff m . These are in turn related to the electric polarization and magnetic mo-

ment by (2.20) and (2.21).

Now consider the electric polarization from a single electric dipole located in a

material at a point ro with an orientation unit vector fi,

,E(d)(L, ti ° p( t) 8(X -'LO) I	 (t) b(.L - 'CO).

From (2.20), the polarization potential for this dipole is

!d) a	 I	 P(t - Ro/c)

f̂ 	 47reo Ro

where Ro = It - LO 1.

(2.27)

Now if the remainder of the medium surrounding this dipole has no permanent elec-

tric polarization, Z = 0. Furthermore, if the medium has no permanent magnetic moment,

LA s 0. From (2.21), this implies Zm = 0. Therefore, by using (2.27), (2 . 23) simplifies to

E(d) = ®X ®X 1
	 Z(t - Ro/c)	

(2.28)
4veo Ro

In a similar way, (2 . 25) simplifies to

ji(d)
 -	 l

®X k(t - Ro/c).	 (2.29)
47rRo

'these results for the fields from a single dipole will be used in the next section to

derive the electromagnetic interaction of the medium with an incident wave.

2.3 Dipole Interactions with Propagating Waves

Let t and A! 	 fields acting on the jth dipole in the medium. Thesefields can be

separated into the sum of the fields of the incident wave, O and L( i), which are

10
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propagated with phase velocity c, and the fields from all other dipoles, such that,

^(1) + E j Q 	 (2.30)

a

and

^tl) +	 rjQ•	 (2.31)
Q-Oj

Here the ournmation is extended over all dipoles in the medium except for the jth one.

jth	 thAt the point ,^,j , where the ^ dipole is located, the fields of thr, It dipole are given by

using (2.28) and (2.29) ► yielding

jQ = ® j X q X kQ (t - RjQ /c)/(47teo RjQ)	 (2.32)

and

Uj'Q = vi X kQ (t - RjQ /c)/(4Tr RjQ).	 (2.33)

Here ZQ denotes the dipole moment of Qth dipole, Rjp - 1,,j — •g•Q 1, and ®j X () is the

curl operation on the j th coordinate of the dipole.

If both the dipole number density and the molecular dipole moment are written as

possibly discontinuous functions oft, then the total dipole moment per unit volume

within the medium can be written as

,E(E) - NQ Z( L)•
	

(2.34)

If the polarizability, a, of the medium is defined by 'E(E,) a aeo Z'(,E,), then ( 2.34) can

be rewritten as

(Z) = N(Z) eo a Z'(,E,•).	 (2.35)

The total fields at the j th dipole can be given by substituting (2.32) and (2.33) into

(2.30) and (2.31) respectively, and by using (2.35). The resulting summations can be re-

written as integrals, since the number density is a discontinuous function of position,

yielding

^'	 11
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	 7
)

'(,g,, t> _ ,^(i) + J ®X X 
Not

	

4;R (V dv'	 (2.36)
^ 

and

	

b'(,`,,,0 = 1JO) +	 v X 
4a

Nae

l;
 (k'] dv'.	 (2.37)

E

Note that if the field point ,E is outside the medium, the integral boundary Z will be that

of the medium. If the field point is inside the medium, the small domain including the

polarized atom or molecule must be excluded from the integration. This can be done

considering the atom to be a small sphere with boundary v and radius a. The integral

value can be found by integrating the over Z excluding the small region o, and then tak-

ing the limit as a -* 0.

Within the medium, (2.35) can be written as

	

Z = Naeo (Z( i) + E(d)),	 (2.38)

where @(d) denotes the contribution to Me field from the dipoles. From (2.28),

	

1	 E

	

901
4im	

® X V X -	 dv'.	 (2.39)

	

o vf 	 R

This intermediate result will be used later in the analysis.

If the incident field is monochromatic with angular frequency w, then

p) s= E(i)(E,)e-'wt,	 (2.40)

Also assume as a trial solution for P a monochromatic wave of the same frequency, but

with velocity of propagation c/n. Then

where

02 - 1)/ko

and ko = wo /c.

(2.41)

(2.42)

12



Although, at this point, the value of the constant n is completely unknown, finding

it's valet is one of the goals of this section.

The vector function Q also must satisfy the wave equation,

® 2 Q + n2 ki Q = 0.	 (2.43)

Assuming that Q has no sources in the medium, then

a,	 ® - Q - 0.	 (2.44)

By substituting the trial solution (2.41) into (2.38), and by rewriting the equation in its time

free form,

Q = Naeo {E(i)/p + E(d)) .	 (2.45)

In this equation,

E
,E(d) $	

1	
® X © X Q(E) G(R) dv',	 (2.46)

41reo fa
G(R) w eikoR/R , 	and (d) ss p p(d) owt.

In this derivation G(R) represents a unit amplitude spherical wave propagating in the

vacuum between the dipoles. Therefore it must satisfy the wave equation,

® 2 G + k2G - 0.	 (2.47)

It has been shown (2.41 that for sufficiently small a,

E	 E	 gn
i	

J	
® X ® X Q( oE') G(R) dv' = V X ® X 

J 
Q(,E') G(R) dv' - 3 Q( L), (2.48)

..III a	 a

Therefore by rewriting (2.43) and (2.48) by using (2.42),

®2G/G - ® 2 Q/Q = p	 (2.49)

and
1

GO. 
= R 

19 ® 2 G - G® 2 Q1.	 (2.50)

r

13



Then by using these intermediate results and Green 's Theorem,

E 1	 a	 a	 i	 a	 a1 QQ^)G( R) dv' _ — 1 Q an' G - G an' Q ds' - — Q an' G - G an' 
Q ds'. (2.51)

o	 Q E	 v
x	 a

Here — denotes differentiation of the source coordinates along an outward normal to the
an'

volume boundary.

The right most integral in (2.51) has been shown 12.5 1 to approach the value -4zrQ(r) as

a -► o. Using this result with (2.4$) and (2.46) yields

Lim E(d) = i ®X ®X J Q 8G - G 8 Q ds' +te0o1 ® X ® X Q(•L)
E	 an'an' 

2

- — 
QQ) .	 (2.52)

Now by using a vector identity with (2.44) and ( 2.43), the second term on the right hand

side of (2.52) becomes

a
I ®X ©X Q(X) = n k Q(d ).	 (2.53)
eo61 	Fob

By summing this with the last term of (2.52) and by using (2.42), the bracketted value in

(2.52) becomes

na +2
_

3eo(n2 - 1)	
(2.54)

 
Q

Substituting this result back into (2.52) gives

aE(d) = 1 n+ 2 Q+	
1 ® X® X	 Q a G- G a Q ds'•	 (2.55)

Teo na - i ,	 4rreoQ	 E	 aft	 an'

Denoting the second term on the RHS of (2.55) by e, and substituting (2.55) into (2.45)

gives

aQ = Na n + 2 
9 

+ Naeo 
EO) + NaEo t. 	 (2.56)

3 (n2 - t	 ¢

14



From the assumptions which led to (2.45), the first term in the equation above is a wave

propagating with phase velocity c/n, while the second and third terms represent waves

propagating with a phase velocity c.

Since the terms of (2.56) with the same propagation velocities mist be equal,

Not (n2 + 2

3 n2-1

and

E(i)/i3 + E = 0.

Substituting the value for into these equations and simplifying gives the final results of

this section,

Nei
— _ 02 - 1)/(n2 + 2)	 (2.57)
3

and

E(i) + I © X ® X
fz
	 3G - G a	 ds'	 0.	 (2.58)

o 	 C4irF	 an	 3n

Equation (2.57) expresses the index of refraction n, in terms of the number density of

the dipoles N and their polarizability a. This equation is known as the Lorentz -Lorenz

formula. Equation (2.58) shows that the wave PO) incident into the medium is exting-

uished at any point in the medium due to part of the dipole field. The incident wave

is replaced by another wave,

I
(n2 - I) koQ(E)e-iwt'

Naeo

which has phase velocity c/n. This result is known as the Ewald-Oseen extinction theo-

rem. It implies that the index of refraction of the medium must be known in order to

find the velocity of electromagnetic waves traveling through the medium. Equation (2.57)

gives the relationship between the needed index and the material's density and polariz-

ability. These results will be used in the following sections to derive the propagation

velocity of optical signals through the mixture of gases which constitute the atmosphere.

15
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2.4 [refractive Properties of Mixtures

The results in the previous section are applicable to substances with only one type of

polarizable atom or molecule. However, the atmosphere is a mixture of many gases, the

most prevalent ones being nitrogen, oxygen and argon. Therefore the relation between

the index of refractioa of a mixture and its constituents must be fot:nd in order to ex-

press the refractivity of the atmospheric gas mixture.

For any gas, the relationship between the '.number density and mass density is given

by

N = No p/M,	 (2.59)

where N is the number of molecules per unit volume, No is Avogadro's number, p is the

density, and M is the molecular weight of the gas. If (2.57) is solved for the polarizability

a, and (2.59) is used, then the molar refractivity can be defined by

A = M'Y/p.	 (2.60)

Here the index term is defined by

7 = (n2 – 1)/(n2 + 2).	 (2.61)

Assuming that the polarization properties of the constituents do not change when

gases are mixed, the molar refractivity of a mixture of R gases is given (2.6] by

Q
Arr, = —	 NiAi.	 (2.62)

NM i= 1
Q

Here NM=	 Ni . The specific refraction of the ith component can be defined by
i=1

Ri = Ai/Mi = 'Y!/pl.	 (2.63)

Here the prime denotes that the index term 7' is evaluated at the fixed gas density pi.

The index term of the mixture can be found by using (2.60) and (2.63) in (2.62),

yielding

16
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ym : M NI ^ N
i Mi Ri	 (2.64)

T m ist

In this equation, pm is the density of the mixture.

By using (2.59) for each component in (2.64), the index term of the mixture can be

simplified to

u
'Ym = F, 	 (2.65)

i=l

For the . ase of three atmospheric constituents, ( 2.65) can be expressed by using (2.61)

and (2.63) as

C

n2 - t	 - 
3 

pi 	 '
-	 —	 (2.66)

n2 + 2	 i
a p' ^n 2 + 2

M

	 t	 i	 i

This result shows that the index term of the mixture at an arbitrary density can be

found from the index terms of the components. However these component index terms need

only be given at the measured densities p{, and not under the actual gas densities

pi in the mixture. This result separates the problem of finding the index term of the

mixture into finding the index terms of the gas component under some measured condi-

tions, and then determining how the component densities vary with the conditions.

Since most measurements of the index are in terms of the refractivity, the relationship

between it and the index term also should be review A. By first defining the refractivity as

r = (n - i ),	 (2.67)

and then by using ( 2.61), the index term can be rewritten as

Or +2)
y	 (2.68)

r(r+2)+3

Expanding this equation to second order in r gives

'Y - 
2r
-- (1 - r/6).	 (2.69
3

17
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For air under standard conditions and for X in the visible part of the spectrum, r x

3 X 10-4 . Therefore, for these conditions, (2.69) should be accurate to better than

10-10 in n.

By using ( 2.69) i n ( 2.66) and simplifying, the mixture refractivity becomes

rm	

3 pi 	I - ri/6
 

1: 
_'r^ .

i=1 pi 	 1 - rm/6
(2.70)

Now since r1/6 is small relative to 1, the refractivity can be approximated by its wave-

length averaged value in the square bracketted terms. A further approximation can be

made, since dry, CO 2 -free air is the dominant term in (2.70). Therefore,

1 - rm /6	 1 - ( rm )/6 - 1 - 
( r t ) P1 .
	 (2.71)

6 pi

Using these approximations in (2.70) gives the final result,

3 p i	 1 — (ri) /6
r	 =	 —	 r•.	 (2.72)m	 i=1 p'1 — (ri)pi /dpi

This formula will be used with the expressions for p i and ri which will be developed in

the next section.

2.5 The Phase Refractive Index of Air

The most accurate investigation of the dependence of the index of refraction of air

on wavelength, composition and density has been given by Owens [2.71. He states the

common assumption made in index studies, which is that air may be considered to con-

sist of only three components: dry air without CO 2 , water vapor, and CO2 . In this sec-

tion the wavelength dependence of the index terms and the density dependence on tem-

perature and pressure given by Owens will be reviewed.

A second term "standard air" is used in the remainder of this thesis. It is defined

as air without water vapor at a pressure of 1013 . 25mbar, at a temperature of 15°C, and

18
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containing the following components in molar percentages - 78.09% N 2 , 20.95% 02,

0.93% Ar, and 0.03% CO 2 . The concentrations of the first three atmospheric constitu-

ents are very stable. However, the amount of water vapor varies both spatially over km

distances and over hourly time spans. The amount of CO 2 has been slowly increasing

over the past decades due to the burning of fossil fuels.

Dry COZ Free Air

Owens derived the refractivity value of CO 2-free standard air, by taking Edlen's 1966

formula [2.8] and compensat?ng it for the effects of CO 2 . The result was

r l X IOs = ai +	
b i	 +d+d',,

ci - 02 el - 02
(2.73)

where the value of the constants are given in Table 2.1. In this expression, a 2 = 1/7,2,

and X is the optical vacuum wavelength in microns. The error introduced by compensat-

ing the earlier data for CO 2 was estimated to be less than 3 X 10- 10 in n over the wave-

length range of 0.3650 to 0.6328 microns. Equation (2.73) was estimated to be accurate

to 1 X 10-9 in n for X from 0.2303 to 2.0586 microns.

The density of dry, CO 2 -free air was found by fitting experimental data [2.9] to a

general equation of the form p = MPZ- 1 /RT. Here M is the average molecular weight of

the gas sample, R is the ideal gas constant, and Z is the inverse compressibility factor of

the gas. The final form of Z- 1 chosen after fitting the experimental data to formulas

with increasing complexity in T and P was

Z1` 1 = 1 + P(b 1 + c 1 T- 1 + d1 T- 2) . 	 (2.74)

The constants chosen by performing a least squares fit to the experimental data are given

in Table 2.2.
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Table 2.1
Refractivity Constants

Constant i= 1 i- 2	 1-3 i- 4 i= 5

ai 8,340.78 295.235	 22,822.1 2,371.34 -

bi 2,405,640.0 2.6422	 117.8 683,939.7 -

ci 130.0 -0.032380	 2.406,030.0 4,547.3 -

di 15,994.0 0.004028	 - 6,487.31 -

ei 38.9 -	 - 58.058 174.174

fi - -	 15,997.0 0.71150 -3.55750

gi - -	 - 0.08851 0.61957

Table 2.2
Density Constants

Constant i= 1 i= 2	 i= 3 i= 4

ai 348.328 216.582	 529.37 -

bi 57.90E-8 3.7E-4	 - 57.90E-8

ci -9.4581E-4. -2.37321E-3	 - -9.3250E-4

di 0.25844 2.23366	 - 0.25844

ei - -710.792	 - -

fi - 77,514.1	 - -

To complete the evaluation, the ratio M/R was evaluated from the density of stan-

dard air from [2.9], then the result was adjusted to compensate for the effect of CO 2 in

the standard air. The result,

P
p l = al — Zil ,	 (2.75)

T

Y,

is in units of g/m 3 , when P is given in mbar, and T is given in deg. K. The values of the

constants above are given in Table 2.2. Owens compared the density values given by

20
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(2.75) to those of the original experimental data. He found the error to be less than

3 X 10,6 in density for P in the range from 0 to 4 atmospheres, and T from 240 to

3300K.

Water Vapor

Owens found the absolute refractivity of water vapor by multiplying Erickson's [2.101

experimental values for the relative refractivity of water vapor by the refractivity value

given by Barrels and Sears at A = 4679.46A. The resulting equation for the refractivity of

water vapor under the conditions of P = 13.33 mbar and T = 10°C was,

r2 X 108 = 11'2 + b2 u2 + c; 04 + d2 06 .	 ( 2.76)

The values of the constants in this expression are given in Table 2.1. This equation is ac-

curate for n to 1 X 10 9 over the wavelength range of 0.3611 to 0.6440 microns. The

value of water vapor refractivity is plotted versus wavelength in Figure _1.1.

The derivation of the formula for density of water vapor was carried out in the same

way as that for dry air, except that calculated values were used for the compressibility

factor of water vapor at low temperatures. Polynomial functions were fit to the temper-

ature and pressure dependence of the inverse compressibility factor by using the equa-

tion of state given in [2.111 and the formula for the saturation pressure of water vapor

given in [ 2.121.

The resulting expression for the density of water vapor at a pressure Pw was

p 2 = a2 P T [1 + PwQ(Pw) 7(T)1,

where

Q(Pw) = 1 + b2 Pw

and

(2.77)
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Here P2 is given in g/m 3 when Pw is given in nib and T is given in deg. K. The values

of the constants in (2.77) are given in Table 2.2. The accuracy of the above formula

'

	

	 was estimated by Owens to be not less than a few parts in 10 .6 , relative to I atmos-

phere. The v;Aue of water vapor density given in (2.77) is plotted versus temperature

't	 in Figure 2.2,

Carbon Dioxide

The influence of CO 2 on atmospheric refractivity is usually small due to its low con-

centration in the atmosphere. However the refractivity of CO 2 was treated separately by

Owens, since there can be situations (such as in polluted air) where an abnormally high

CO 2 concentration will cause noticeable refraction errors.

The expression for the dispersion of CO 2 was taken from 12.81 and evaluated at

15°C and 1013.25 mbar. The result was

C3	 l3
r3 X 108 = a3 + b3 a2 +	 +	 ( 2,78)

(d i - a2 )	 (ej - a2)

where the values of t :e constants are given in Table 2.1. This result is accurate to I X

10"9 in n, for X in the range of 0.2379 to 0.6910 microns,

Since the partial density of CO 2 is low, Owens a ,,sumed it behaved as an ideal gas.

By taking Hilsenrath's data at 10 -2 atmosphere, h e found the density of CO 2 to be given by

P3 = a 3 Pcp2/T.	 (2.79)

The value of a 3 is given in Table 2.2, and p3 is in units of g/m 3 . This equation gives the1

density to an accuracy of 10-6 relative to 1 atmosphere.

Combined Formula

By using these results, Owens has evaluated (2.72) for air with 0.03%r CO 2 and dry

and wet partial pressures of Pp and Pw. . The result was
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b'

ralr X 108 -u$ +	
4	 +

(d l — o2)

I`

Here the density factors for the dry and wet air are given by

P

	

DD = T  I + PD (b4 + c $ i -1 + d4 
T-2 )^ 	

(2,81)

and

DW = Pw { I + PW (i + b 2 PW )(^. 2 + d 2 T- 1 + e 2 T-2 + f2 T-3 )}' .	 (2.83)
T `

The values of the constants in (2.80) arc given in Table 3.1 and the values in (3.81) and

(2.82) are given in Table 2.2.

The final formula ( 2.80) can be sisvd with commonly measured meteorological param-

eters of P, T, and relative humidity (Rh) by first using the law of partial pressures,

P = PD + Pw.	 (2.83)

Then by using the formula given by Marini & Murray [ 2.13) ,

_	 Rh 
PW	

(100%) 
(6'11) 107.5(T-273.I5)/(T-36).	(2,84')

The value of saturated water vapor pressure is plotted versus temperature in Figure 2.3. There-

fore by using the measured values of P, T, and Rh for a sample of air with ( 2.84) and

(2.83), the partial pressures of the dry and wet air can be found. These values sub-

stituted into (2.81) and (2.82) give the dry and wet density factors for the air sample.

The refractive index of the air sample can then be computed by substituting these

values into (180).

2.6 The Group Refractive Index of Air

For electronic distance measurements, modulated light commonly is used. The modu-

lation envelope of the light travels at the group velocity vg.
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If the group index of refraction is defined by

ng 'a c/v8 q
	

( 2.85)

then the group refractivity can be found by using

rg = 
r + o ( 8r	

(2.86)
de

By differentiating (2.80) and substituting the result into (2.86), Owens obtained

r 	 (CI +QZ)	 (el +q2)	
i	 4	 6rgX 108	 as+b^22+c4DI) +fd4' + es o2 + ks v + gs a 	Dw . (2. 8 7)

Here the values of the refractivity constants are given in Table 2. 1.

A plot of rg versus wavelength is shown in Figure 2 .4 for standard air with 50% Rh.

The values of the wet and dry refractivities under these conditions at the wavelengths of

the prototype system are given in Table 2.3. The final results in (2.87). (2.81), and

(2.82) will be used in the remainder of this dissertation for the group refractivity of air.

Table 2.3
Group Refractivities in ppm for Air at P = 1013 .'_' 5 mbar, T = 15°C, Rh = 5C"'r

for the Wavelengths of the Prototype System.

X(nm) 1064 532 355

Dry

Wet

274.40

1.967

287.30

2.100

311.34

2.357
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CHAPTER 3

MULTIWAVE:LENGTH RANGING THEORY

Atmospheric retraction causes errors in the measurements of all 	 ran•,ing in.

strument in two ways. 'Tile greatest error is caused by the variable velocity of the signal

as it traverses atmospheric regions with differing refractive indices, This causes tite mess-

tired distance to exceed the actual geometrical distance to the target by a variable

amount. A much smaller error is caused by deviations in the signal path geometry. These

are caused by gradients in the refractive index which are perpendicular to the propagation

direction, The gradients cause ti ►e optical path to deviate from a straight line, which also in-

creases the measured range. Atmospheric turbulence causes both the refractive delays and

the path deviations to change randomly in both space and time. Since these errors are present

whenever ranging over all 	 path, they are irreducible error sources for both

single and multicolor ranging systems,

'File propagation theories for both single and multiple wavelength laser ranging systems

operating over horizontal paths are derived in this chapter. The geometrical optics approxi-

mation is used for the path deviation calculations. This method is adequate for light to mod-

erate turbulence, since the optical wavelength is much smaller than the smallest refractive

atmospheric elements. This approximation is not expected to be valid for strong atmospheric

turbulence, when multipath eff cts are evident. In the derivation the single wavelength

theory is developed first, then it is extended for multiwavelength ranging.

The results show that the dry atmospheric delay errors call 	 measured and corrected

by ranging with two optical wavelengths. Both tale dry and the wet atmospheric delay

errors can be measured and corrected by ranging with three colors, but this requires more

accurate instrumentation. The magnitude of the uniting atmospheric error sources for

both single and muiticolor systems operating over long distances are derived in this chapter.
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3.1 Single Wavelength Rangin^t

At any instant of time, the optical range to a target can be written as

L(h) = ILI I +	 r,(,,,, A) dam.	 (3.1)
p

Here 2 is the ray path. A is the measurement wavelength, and rg is the group refractivity

of the atmosphere. The refractivity can vary along the path in both position and time

due to fluctuations in atmospheric pressure, temperature, and water vapor. Since air is

dispersive, r  is wavelength dependent.

The ray path	 itself depends upon .•g . It' the group index were known along the

path, then j) could be found 131 1,, 13.2 1 by solving

	

1Ydt/ds) + (_j • 0 ng) = Q ng.	 (3,2)

Here V = (I .L/ds is the unit tangent to the ray path and Q , 0 n^) = king/ds is the gradient

«t' the group index in the direction of the propagating ray. Unfortunately, for almost all

distance measurements, the detail ,.-d structure of n  along the ranging path is not known,

and (3,1) and (3,2) cannot be solved explicitly. Therefore, measurement systems must be

used to estimate the path geometry and the atmospheric path delay. The following deriva-

tion reviews the physical basis for operation of these systems,

Thayer 13.3 1 has shown that Z can be closely approximated by a simple circular arc

for propagation over horizontal paths near the earth's surface. Thayer also noted that

since the path curvature ,error was small, the effect of the higher order curvature terms

was negligible. The radius of curvature of the arc is given by

R = I/(rg),	 (3.3)

where r'9  dry /dh is the change of the refractivity with height above the earth's surface.

The angle brackets in (3.3) denote averaging over the length of the path. Since the refrac-

tivity is most strongly dependent upon the atmospheric pressure and temperature.
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V

r' x (dr /dP)(dP/dh) + (dr /dT)(d/dh) ft r (dP
/dh) - (dT /dh)	

(3.4)g	 t3	 8	 g	 P	 T

The pressure lapse rate near the earth's surface has a nearly constant value of -0.12 mb/m.

For temperature lapse rates of less tha' ;i -0.34 deg. C/m the temperature lapse dominates

in (3.4). Under these conditions, the air near the earth 's surface is lower in refractivity

than the air above it, and the ray curves upward. This effect is responsible for mirages,

where the refracted image of the blue sky appears as water when viewed across a long hot

surface. For temperature lapse rates of smaller magnitudes, the pressure term dominates

in (3,5), and the ray curves downward ;rom the source. Since in distance treasuring, the

angle of the transmitter is adjusted to the apparent position of the target, both these

effects cause the ray to travel in an arc.

Using these results, (3.1) can be rewritten as

L(X) = .I arc(R)I + f
are(R)

rg(r, Mdr.	 (3.5)

The arc length can be written as Iarc(R)I = L + ^(X), where L is the straight line geomet-

rical distance to the target. The 'excess' geometrical path length caused by the curvature

in the path is given in [3.31 by

^(X) = L3 /(24 11 2 ).	 (3.6)

Plots of ^ versus L for X = 532nm are shown in Figure 3.1 for several temperature lapse

rates. The plots show that the path curvature can cause 1 cm ranging errors for path

lengths of 10 to 100km. For roundtrip paths of one-way length L, the magnitude of the

path curvature term in Figure 3.1 is doubled.

As a further simplification, the integral over the slightly curved arc-path in (3.5) can

be replaced by an integral over a straight path of length L + ^, at the average height, z(A)

of the arc. If the local vertical direction is denoted as z, Thayer showed that

z(A) = L2 /(12 R).	 (3.7)
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By further denoting the direction of propagation as x, (3 . 5) can be rewritten as

L
LM = L + t(X) + fo rg(x, z, X) dx.	 (3.8)

Here the very small term due to the refractivity in the excess path length has been neg-

lected. This equation will be used as the basic ranging equation for this chapter.

The analysis in Chapter , showed that the group refractivity can be written as

	

rg(k) = D(A) Pd( Pd, T) + W(X) Pw( Pw, T).	 (3.9)

Here the p's denote the densities of the dry and wet air components, and D(N) and WW

denote the specific refractivities of the dry and wet air.

Substituting (3,9) into (3.8) gives

	

LW = L + ^(Xi + D(A) Id(z, L) + W(N) l w (z, L)	 (3.10)

where

I.

Id = J
	

Pd (x, z) dx	 (3.11)
0

and

L

W =	 Pw(x, z) dx.	 (3.1 ^')
0

As was shown in Chapter ?, the terms D(a) and W(N) are well known from laboratory

analysis, The dependence of P d and p w on atmospheric conditions is also well known,

but the values of I d and Iw are not known due to uncertainties in conditions along the

path. For horizontal paths, the primary uncertainty is in the temperature structure.

In single color ranging, L(X) is measured by the instrument and the dry and wet re-

fractive corrections are made from endpoint observations of P, T, and Rh. This technique

has several inherent errors. One error is due to lack of correlation between endpoint den-

sity readings and path averaged ones. Another is caused by the error in estimating the path
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averaged refractivity lapse rate. A third error is caused by turbulent fluctuations in the

refractive index. These cause the measured path length to change with rates approaching

k elz.

All these errors limit single—color distance measuring accuracy to approximately I

part per million. The average refractivity effects can be reduced by making airc raft meas-

urements of refractivity near the ranging path, as has been reported by Berg and Carter

13.41. However, this method is only applicable for paths well above the ground, and it

makes distance determinations more complicated and expensive. The lack of correlation

between the aircraft measured and the actual path conditions typically limit the improve-

ment to a few parts in 107.

3.2 Three Color Ranging

Ranging simultaneously at several optical wavelengths can give substantial improve-

ments in distance accuracy, and the single wavelength ranging theory can be readily extended

for this case. Since the primary uncertainties in such measurements are L, I d and lw, three

wavelengths are needed to estimate the unknowns from the ranging measurements.

For ranging over the same path simultaneously at wavelengths Ac, A 2 , and X 31 (3.10)

can be rewritten as

Lt = L + ^i + Da ld (z a ) + W t lw(zc),	 (3.13a)

L2 = L + ^2 + D 2 ld ( Z 2 ) + W 2 lw(Z 2 ),	 ( 3.13b)

and

L3 = L + t3 + D 3 1 d (Z 3 ) + W 3 Iw(Z 3 )-	 ( 3.130

Here all terms depending on Xi have been denoted by the subscript i. The integrated den-

sity terms depend weakly upon wavelength, since both the average beam height and in-

stantaneous delay depend upon the temperature and pressure lapse rates and the atmos-

pheric turbulence. These equations can be solved simultaneously for the unknowns L,
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Id , and Iw from measurements of L t , L2 , and L 3 . The resulting expressions for the wet

and dry air densities are

Iw(z i ) = (-b/d)t©L31 - e 3 ) + (I /©W32 + baw/d)(AL 32 - e2),	 (3.14)

and

ld(zl) = (1/d)(AL31 - e 3 ) + (aw /d)(AL32 - e2).	 (3.15)

Mere the AXi1 terms are defined as Xi X) . The intermediate terms in (3.14) and (3.15)

are aw = OW31/©W32, b = ©D 31 /©W 32 , and d = AD 31 - aw0D 32 .

The turbulence and path curvature are error terms in (3.14) and (3.15), since their

values cannot be reliably predicted by endpoint measurements. Their values are

e 3 = AN + OL3 1 ,	 (3.16a)

and

C 2 = W31 ' A^21 ) + 6L3 1 - AL2 1 .	 (3.16b)

The differential path curvature term AN is plotted versus L in Figure 3.2. The differen-

tiai path curvature error can be seen to easily exceed 1 mm for moderate length (10 to

50km) horizontal paths. In two color ranging, the value of this term is magnified by the

dispersion multiplier when solving for L. For t1te two wavelengths used in the figure, the

multiplier value is 7.46. For two-way ranging, the magnitude of the path curvature values

shown in Figure 3.2 should be doubled.

The differential turbulence terms in (3.16) are given by

OL31 = D 3AId 31 + W3©Iw31	 (3.17a)

and

OL'21 = D2AId 2t + W266 21 '.	 (3.17b)

Differential turbulence errors are caused by the difference in the integrated path refrac-

tivities for the measurement colors. The values of these terms cannot be estimated with-

out extensive measurements along the ranging path. In the absence of such data, these
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terms constitute an irreducible error in the ranging system. The magnitude and statistics of

this error will be disr.-ussed in a later section.

The total atmospheric path correction at X, can be found by substituting (3.14) and

(3.15) into (3.13a). The result is

D I ld, + Wtlwl - AAL31 - e 3 ) + g(®L 32 - e2 ).	 (3.18)

In the above equation, the constants are given by

f = (D I - Wlb)/d

and

g = (W I /AW 32 ) + ( W I b aw - DIaw)/d.

These arc a function of wavelength only.

Since the dispersion curves of dry air and water vapor in the near visible region have very

similar shapes, accurate measurements of the AL's are required. For example, in the proto-

type system, h t = 1064nm, A2 = 532nm, and X3 = 355nm. The total refractive correction

at X1 for these wavelengths is

Dtldt + Wtlwl = 167(OL 31 - CO - 245(©L 32 - e2 ),	 (3.19)

This result shows that the dispersive delays must be measured much more accurately than

the single color range delay. For state-of-the-art systems, L I can be measured to about

I cm. Therefore the AL's must be measured to 40µm for comparable accuracy in the

delay correction. Unfortunately, this requirement exceeds the current capabilities of both

pulsed and phase measurement systems operating over long paths.

3.3 Two Color Ranging

The accuracy requirements for measuring the differential path lengths can be relaxed

by using a single AL measurement to estimate only the dry index term. The much

smaller water vapor delay term then can be estimated by a single endpoint measurement

of humidity. Such a system requires only two optical wavelengths.
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The required performance can be calculated by first noting that with this approxi-

mation, (3.12) becomes

lw ft Lpw (0).	 (3 20)

Here pw (0) is the water vapor density computed from measurements taken at the ranging

site.

The simultaneous ranging equations are given by substituting (3.20) into (3.13x) and

(3.13c), yielding

Ll = Ll I + W i pw (0)l + ^i + D,Idl ,	 (3.21 a)

and

L3 = Ll I + W 3pw (0)I + ^3 + D3Id3 .	 ( 3.21 b)

In these expressions W i pw (0) is the endpoint group refraction of water vapor at wave-

length i.

Next, solving ( 3.21) simultaneously for the integrated dry air density yields

Id l = 1OL31 - OW31 L 1 pw(0) - 0 31 I /AD 31 .	 (3.22)

In this equation, the approximation L Wipw(0) ^-- LiWipw(0) was used.

The target distance can be found by substituting ( 3.20) and (3.22) into ( 3.10). The

result is

L = L l - L 1 W l pw(0) + L l pw(0)AW 31 ad - adAL3 1 + ad AL31 + tc .	 (3.23)

In this equation, the dry air dispersion factor,

ad = D 1 /AD 31 .	 (3.24)

The first three terms on the right hand side of (3.23) are, respectively, W measured single

color range, the water vapor delay correction, and the water vapor dispersion correction.

The next term is the dry air delay correction which is based on the measured differential

path length AL 31 1 and the following term is the error caused by atmospheric turbulence.
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The magnitude and statistics of this error will be discussed in the next section,

The last term in (3.23) is the geometrical correction to both the dispersion and the

single color measurement. Its value ca ►i be simplified by using (3,6) and by neglecting

the small contribution of water vapor to path curvature. The result is

re = t 1 !(D 1 + D3 )/D I - I I *, r1
	 (3,25)

This last approximation is valid to approximately Wk. since the dispersion of air is small

relative to its refractivity. The approximation will not significantly effect the accuracy of

(3.23), since rc is already small.

For comparison with (3.19), the two color system range correction given in (3,_'31

can be evaluated by using A ► = 1064 and X 3 = 355 nm. Under the condit ions of P =

1013,25mbar, T = 15 deg. C and Rh = 50%. the value of the refractive correction is

Dlldl + Wllwl = 7.43 AL 31 - 0.928 X 10.6 L 1 + 7.43 ©L3 1 + r1•	 (3.'_6)

Therefore thirty times less instrumental accuracy is required for mea4uring the differential

delay with a two-color system than with a three-color system.

However, the two-color system is susceptible to errors in the water vapor estimate.

The magnitude of this error is directly proportional to the water vapor density. A plot

of the temperature dependence of this error is shown in Figure 33. For the atmospheric

conditions listed above, an 117o error in estimating the path-averaged water vapor results

in a fractional path length error of 10-7, Therefore, high accuracy relative humi.iity read-

ings should not be required under most circumstances.

The measured range also is used as an atmospheric correction term in (3.26). Since

the accuracy required of L t for the water vapor correction is less than the accuracy re-

quired for the uncorrected delay measurement, no additional requirements are placed on

the measurement system, Since this technique requires the least accurate differential de-

lay measurement, it was used for rile prototype system's operation.
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3.4 Turbulence Effects on Ranging Accuracy

Atmospheric turbulence randomly changes the path delays measured by single and

multicolor ranging systems. For multicolor ranging systems, the gradient in the index across

the ranging path causes the colors to separate spatially, and the turbulence causes the

separated paths to undergo slightly different delays. Paths which are separated by the 	 l

outer scale of turbulence have nearly uncorrelated delay values, while paths separated by

le,.s than the inner scale have well correlated delay fluctuations. Gardner 13.51 has

studied the effects of atmospheric turbulence on single and multiple wavelength -anging
c

systems, and the analyse. in this section follows his approach.

The two scale sizes mentioned above are important in characterizing turbulence. The

outer scale, Lo, is a measure of the largest turbulent atmospheric elements. For horizontal

Paths, Lo x z/4 13.61. The inner scale, Qe, is the smallest size refractive eddy supported

by the atmosphere. For near the earth's surface, the inner scale is typically several nun.

The magnitude of the average path separation for two color ranging can be computed

by using (3.7) for the measurement wavelengths. This path separation is plotted versus

length for various temperature lapse rates in Figure 3.4. The figure shows that even for

moderate lapse rates, the average path separation can equal the outer scale of turbulence

in 20 to 50km. The average beam separation for two-way ranging will be the same as in

Figure 3.4.

The magnif ade of the turbulent fluctuations in path length are described by the co-

variance function. For paths Zt and Z2, the covariance of the length fluctuations AL'

can be written as

l3pL' r r d ,t f dZ2 (n t (r t ) n 2(Z2 )>.	 ((=. 2 7)

l	 p2

By assuming the refractive index fluctuations in each path are isotropic, the covariance

function of the index fluctuations can be written as
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(n(LI ) n( .t2)>	 Bn((t,t + ,, 2 )/ 2 1 BO OLI -L2 1 )'	 (3.28)

Here BI is a measure of the strength of the fluctuations in index at the average coordinate

of the two	 while B0^ is the correlation between fluctuations at points y and X2,

Gardner has shown for parallel paths of one-way length L, separated by a distance

Az, (3. 27) can be rewritten as

/' L	 f L -x'/2
B©C(Az) = 4 J	 dx' /	 dx Bn(x) B^^((x' 2 + pz 2 ) 1 '^`1.	 (3.29)

o	 x'/2

Here x is the average coordinate along the direction of propagation, x' is the difference

value in the same direction, and z is the local vertical. For ranging to a corner reflector

over a path length L, the beans will traverse a distance of 2L, and tite value of (3.29) will

be doubled.

For pith lengths L >> Lo, tl,e upper limit of the outer integral in (3.29) can be ex-

tended to -, since the additional turbulent elements included are uncorrelated. The

limits of the inner integral in (3.29) also can be extended to (0, L), since the turbulence

strength does not change significantly in the small additional path length. The ttrror in-

troduced by both these assumptions is approximately equal to Lo/L.

By using these assumptions, (3.29) can be rewritten as

fo

L
BOL,(Az) = 4 	 dx BI(x)	 dx' Bn1(x'2 +6z2)tf21.	 (3.30)fo

The spatial correlation function B O can be described in terms of its spatial spectrum (DO by

80 (r) = 4rr

fo
 dk k2 tDO(k ) sin(kr)/(kr).	 (3.31)

Here k denotes the wave number. The covariance function for the path length fluctua-

tions can be found by using (3.31) in (3.30). After simplifying, the result is

L(" cc

BpL, (®z) = 81r2	dx Bv W J	 dk k bo(k) Jo (kAz).	 (3.32)
f0	 0
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The refractive index variance at location x can be written in terms of the turbulence

structure parameter 13.71 by

S

	 B°(x) = 10.033 n 312 f(1/3)/['(1/6)1 L 0J3 Ox) = 0.523 C2 (x) Ln 3 .	 (3.33)
F..

The turbulence structure parameter is constant over statistically homogeneous horizontal

paths, so that

f^
	 Bv(x) :zw 0.523 Cn (0) L 2/3

	
(3.34)

The dependence of C2 with z has been modeled by Hufnagel [ 3.81, as was reported by

Brookner [ 3.91. For horizontal paths 10m above the ground, Cn was found to range

from 2.15 X 10-15,11-2/3 for the dawn-dusk minimum, to 5,4 . X 10` 1$ 111-2/3 for a sunny

day.

Gardner considered both the modified von Karman (VK) spectrum and the Green-

wood and Tararano (GT) spectrum 13.71 for (PO. For die VK spectrum,

I t o (k) _ ^P(I 1/6) Q jr -3l2 /r(1 / 3 )^ ex p(-k 2 /km )/C 1 + km L,Q1 11 ^6 ,	 (3.35)

where the constant km = 5.92Qu.

For the GT spectrum,

(D 1O W « (k2 Lo + k Lo )-1116	 (3.36)

The GT spectrum is a new model derived from atmospheric microtemperature measure-

ments. It agrees well with the VK spectrum for UO > 1, but has substantially more tur-

bulent energy in the lower wave numbers. Therefore the refractive index fluctuations re-

main correlated over grea ter distances than for the VK spectrum. Since the GT spectrum

was derived from actual atmospheric measurements, it is expected to be more accurate

than the VK spectrum.

The mean square path deviation for ranging at one color can be computed by setting

Az = 0 in ( 3.32) and by using (3.34). For the VK spectrum, by using the results in (3.35),
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1

(AL'' )VK - 1.564 Cn (0) L3 0 L.	 (3,37)

Similarly, for the GT spectrum, by using (3,36),

(6L' 1 )GT = 13,16 00) L113 L,	 (3.38)

These results show that the rtes path deviation predicted by the GT spectrum is 2.9

times larger than that predk0ed by the VK spectrum. For two-way ranging, as in rang-

ing to a corner reflector, the numerical coefficients in (3.37) and (3.35) will be doubled.

The rrns ranging error in (3,35) is platted versus length in Figure 3.5, for beam elevations

of I and 10 meters above the ground, In this figure, La = z/4, and the magnitude of C n was

taken from ;3.91. It snows that tite turbulent range deviations are larger at higher beam ele-

vations, due to the larger value of La. Oil a sunny day, the range deviations can approach

0.2rnm for a 10km path. For two-way ranging, the rms error in Figure 3.5 shauld be

multiplied by V7

For multicolor systems, the path deviations at each color will be different due to the

spatial separation in the beams. The mean square fluctuation of the path differences be-

tween colors i and j due to the turbulence call 	 written as

(AL") = 2 (1 - PAL(dz)) (AL' 3 ).	 (3.39)

The correlation coefficient PAL can be expressed ir terms of BAL by

(I - PAL (Az))	 I - BAL(Az)/(AL' 2 ).	 (3.40)

For the VK spectrurn, BAL can be found by substituting (3.35) into (3.32) and simplify-

ing. Tile result is

{ i - PAL } VK = 1 - (2
1/6 /r(5/6)) (dz/L,) $16 K5/6(Az/Lo),	 (3.41)

where K is the modified Bessel function. For short to indium length paths, the separa-

tion between colors will be less than Lo. Therefore, when Az << Lo, (3.41) can be

simplified to
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{ I "PAL} VK "' {r(1/6)/[2s/3r(Il /6)1} (Az/Lo)s/I

1.864(Oz/Lo )5/3 ,	 ( 3.42)

For the GT spectrum, Bp L can be found by substituting (3.36) into (3.32). The result is

r	 -	 U[ 1 /6, - 2/3, - i(Az/Lo) cos 0 J
{ I " PAL} GT ° 1 - 7r'i 

f 
dB	

U[ 1/6, - 2i3, 01	
(3.43)

`	 0

Here U is a confluent hypergeometric function.

For Az << Lo, this result can be simplified to

' I - PAL} GT ^ 0.2093(Az/Lo )SJ3 .	 ( 3.44)

The correlation coefficient decreases more slowly with ®z for the GT spectrum than for

the VK spectrum, which results in the smaller numerical coefficient.

The final expressions for the mean square fluctuations in the path differences for

Az << Lo can be found by using these intermediate results. For the VK spectrum, using

(3.42) and (3.37) in (3.39) gives

(ALij )VK = 5.831 (Oz) S/3 Gn(0) L.	 (3.45)

For the GT spectrum, using (3.44) and (3.38) in (3.39) gives

(AL!? )GT = 5.509 (Az) 5/3 Cn(0) L. (3.46)

The similarity of the results for the two spectra is at first glance surprising. However, the

result is based on the different correlation lengths of the two spectra. The GT spectrum

has a longer correlation length than the VK spectrum, and also has a higher single-color

mean-square error. However, the longer correlation length also causes the two colors to

undergo more highly correlated turbulence. This higher correlation compensates for the

larger single color fluctuation, and gives very nearly the same result for the trican square

path length difference as the VK spectrum.

a
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The rms differential turbulence error given by (3.45) is plotted versus path length

for several temperature lapse rates in figure 3.6, It shows that the turbulence error can

introduce 0.1 to I mm differential errors for paths of 20 to 50Rm. This error is magni-

fied by the dispersion multiplier when solving (3.26) for L. For the 355 and 106411111

wavelengths, the multiplier's value is 7.43. For two-way ranging, the values shown in

Figure 3.6 should be multiplied by

A plot summarizing the curvature and turbulence errors for both single and two ,olor

ranging systems is shown in Figure 3.7. The temperature lapse rate chosen for the com-

parison was -0.10 deg. C/m, and the single color system was assumed to be I in above

the ground and operating oil sunny day. The errors shown in the figure will increase

for higher lapse rates or for higher beam elevations. The path curvature errors are bias

errors, and their value should be doubled for two-way ranging. The turbulence errors are

rms values, and should be multiplied by %/_2 for two-way ranging. The dashed line shows

the accuracy limit of I part per million typical of commercial single-color systems. This

error limit corresponds to an average path temperature uncertainty of 1 deg. C.
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CHAPTER 4

INSTRUMENT DESIGN AND OPERATION

A pulsed three,-color ranging system was constructed and tested for this research.

The objectives fcr building this system were both to verity the theoretical instrument per-

forniance analysis and to determine the technical limits in measuring the atmospheric

delay. This chapter describes the design and operation of this system in detail.

The prototype system utilized a dye mode-locked, frequency-tripled ND,YAG laser

transmitter, a 30cm diameter receiver telescope, and three static crossed-field photomulti-

plier detectors. The detector outputs were processed by the timing electronics system.

This system measured the total path delay for the 532 nm pulses and the differential delay

between the 1064 and 355nm pulses. This information was used to estimate both the

path length and the refractive correction for the path.

4.1 Laser Transmitter

The laser transmitter wa the source of the 1064, 532, and 355nm pulses used for

the path measurements. The design of the laser is shown in Figure 4.1, and detailed

specifications are given in Table 4.1.

When the laser is triggered, its flashla .mps are fired, and the 1064nm radiation rapidly

increases within the oscillator, cavity. This cavity contains both a dye cell to for ge mode-

locking, and an etalon to control the width of the oscillator pulses. The dye used in the

cell was Kodak A9740 in a chlorobenzene solution. For these tests the introcavity etalon

was adjusted to give pulses of a nominal 65 psec width. The optical output from the os-

cillator contains 6 to 12 of these pulses with a pulse separation time of 7nsec.

The Pockels cell is triggered by the oscillator output pulse train. It and the output

polarizer pass only a single output pulse and attenuate the remaining input pulses by 20 times.
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Table 4.1
Laser Specifications

Manufacturer:	 Quantel International, Model YG40.

Dye type:	 Kodak Q-Switch-I A9740.

c_
Dye cell:	 40cm3 volume with magnetic stirrer..

Laser rods:	 ND:YAG, 1% ND ion conc., 6mm diameter, 65 mm
long, ends AR coated and rut at 6 degree angle.

Flashlamps:	 Helical, Xenon filled.

Etalon:

Oscillator pulses:

Oscillator pulse energy:

Pulse selector:

Amplifier gain:

Harmonic conversion crystals:

Output energy:

Output pulse width:

1.5 mm thickness.

7 (nominal).

I mJ maximum.

Krytron driven Pockels cell, triggered on laser optical
output.

10 with I mJ input pulse.

KD*P - Type 1.

6 m at 1064 rim, 3 m at 532nm, 1 mJ at 355nm.

60 - 70 psec (nominal).

Repetition rate:	 36 pulses per minute.

The energy of the selected pulse is then increased ten times in the amplifier assembly.

This output pulse, which has approximately 10 mJ energy, is then input to the frequency

doubler. This crystal harmonically converts 30% of the 1064 nm pulse energy to 532 nm.

The two pulses which exit this crystal are next input to a frequency tripling crystal.

This unit is identical to the doubling crystal. It converts 30% of the 1064 and 532

nm pulse energy to 355 nm. The nominal laser output is 6 mJ at 1064 nm, 3 mJ at 532 n ,

and 1 mJ at 355 nm. The three output pulses are coincident in time, since the two har-

monic pulses were produced by 2 photon processes from the 1064 nm pulse. To
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prevent damage to the final metal turning mirror, the energy in the three pulses is attenu-

ated by a filter before they exit the transmitter assembly. A photograph of the laser is

shown in Figure 4.2.

4.2 Optical System

After leaving the laser, the output pulses are first sent into the optical system shown

in Figure 4.3. Here a beam splitter reflects approximately 1% of the output pulse energy

and directs it into the reference optical path. In this path, a second beam splitter reflects

approximately 1% of the energy to a photodiode, which registers the laser firing time in the

receiver electronics package. A list of the specifications of the components used in the op-

tical system is given in Table 4.2.

The remainder of the pulse energy is then attenuated, and passes through the refer-

ence path shutter. This device is used to block the reference pulses when ranging over

horizontal paths. When the shutter is open, the pulses are reflected into the receiver de-

tector assembly. Here the pulses are first reflected from a beam splitter and the 355nm

pulse is reflected from a dichroic beam splitter. This pulse is then attenuated and focussed

onto the 355nm photomultiplier. A narrow—band filter attached to the detector is used

to reject background light.

The 532 and 1064nm pulses are transmitted by the first dichroic splitter, and the

532 nm pulse next is reflected by a second dichroic splitter. This pulse is then attenuated

and passes through a narrow—band filter. It is then detected by the second photomultiplier

The 1064nm pulse passes through this second splitter, and is then attenuated, narrow—

band filtered, and focused onto the third photomultiplier. All the photomultiplier out-

puts are processed by the receiver electronics package. The details of this package are

given later in this chapter. A photograph of the optical system is shriwn in Figure 4.4.
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Table 4.2
Optical System Specifications

Turning mirrors:	 Enhanced Al surface.

Beam splitters:	 Fused silica, 2 .54cm dia., cut at 2 deg. wedge, single layer broad-
band AR coating on both surfaces.

Photodiode:	 Spectra Physics Model 403.

Roof mirror:	 38cm dia. flat, enhanced Al surface.

Telescope assembly:	 Elliptical cross-section (30.5cm dia. flat with 10.2cm dia. center
hole turned at 45 deg.), 459 sq. em collection area, 91.4cm
focal length.

Field stop:	 0.16cm dia., restricts telescope FOV to 1.78mrad.

Narrow-band filters: 	 355nm: 10nm FWHM, 532nm: 2nm FWHM, 1064nm: 2nm
FWHM.

Photo multipliers: 	 Varian static crossed-field, Nominal electron multiplication gain:
2.0 ES to 5.0 E5, nominal impulse response: 160psec.

PM3:	 Model 154D/16G, S-20 photocathode, Quantum Efficiency:
17% at 355 nm.

PM2:	 Model 154A/1.6L, InGaAsP photocathode, Quantum Efficiency:
12% at 532nm.

PM 1:	 Model 154A/5.6Z, InGaAsP photocathode, Quantum Efficiency:
2.8% at 1064nm, mounted in cooled housing at approx. -10
deg. C.

4.3 Transmitter and Atmospheric Paths

Most of the pulse energy from the laser passes through the first beam splitter. From

there the pulses are sent through the transmit path to a periscope mirror mounted on the

roof of the laboratory. This mirror was steered to allow atmospheric delay measure-

nents over several available horizontal paths. A list of the paths used for this research is

riven in Table 4.3.

After exiting the roof mirror, the pulses traverse the selected path. A fraction of the

ransmitted energy is reflected by a corner reflector at the end of the path. This energy

s returned over the path and is reflected by the roof mirror into the receiver telescope

t^

60	 'a

I



Table 4.3
Horizontal Paths Used for Atmospheric Delay Measurements

Path:	 Location:	 Round Trip Length:	 Elevation Angle:

Receiver calib.	 Building roof	 193 m	 0.00 deg.

Short Atm Meas. 	 Parking lot	 921 m	 3.50 deg.

Long Atm Meas.	 Park. lot, Woods	 4760m	 -0.29 deg.

assembly. The returned pulses next pass through a field stop, and through the receiver

shutter into the receiver detector assembly. The receiver pulses traverse this assembly in

the same way as the reference pulses.

For best timing performance, the reference and return optical paths are adjusted to

be as close to spatially coincident as possible in the receiver assembly. Separations be-

tween the paths here cause a bias between the reference and receiver pulse separation

times. This bias is caused by the difference in photomultiplier transit times when it is

illuminated at different photocathode locations.

4.4 Receiver Electronics

111- o photomultiplier outputs are processed by the receiver ele+i conics system shown

in Figure 4.5. After the laser tires, the photodiode output triggers the start discriminator

in this system. It's output signal then starts both the time interval unit and the stop gate

generator.

The 532nm detector outp,:: is used to stop the time-interval-unit and to trigger the

waveform digitizer. A range gate configuration is used after the discriminator to reduce

false triggering from the photomultiplier noise pulses. This gating unit operates in two

modes. In the reference mode, a short cable delay is used for the gate delay. This allows

only the reference output from the photomultiplier to pass through the gate. In the tar-

get mode, the generator output enables the discriminator pulse to pass only during the

expected return time for the target pulses. This time is preset in the gate delay unit.
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The output from the range gate is used to stop the time interval measurement, and to

trigger the waveform digitizer. More details on the components used in the receiver elec-

tronics package is given in Table 4.4.

The 355 and 1064nm detectors outputs are used for the dispersion measurement.

-	 In the system their outputs are first attenuated, and then electrically summed by a

power spotter. The fixed optical and electrical delays in the system cause the 1064nm

pulse to be delayed in time by approximately 2 nsec after the 355 nm pulse output. The

resulting double peaked waveform at the output of the power splitter is then amplified

and recorded by the waveform digitizer. A typical recorded waveform is shown in Fig-

ure 4.6. 'The waveforms input to the digitizer are available for viewing in real-time on a

TV monitor, or can be recorded by the system minicomputer through an interface.

The digitizer operates in the same manner as a high speed oscilloscope, except that

it writes the recording electron beam onto an array of solid-state detectors instead of a

phosphor screen. This detector array is then scanned on the reverse side by a second

electron beam to read the stored data. The recording array has 512 elements in the x-

direction, which corresponds to 51.2 elements per x-division. There are 480 elements in

the y-direction, which corresponds to 60 elements per y-division. For this research, the

time base of the digitizer was set at 500psec/div., which corresponds to a time resolution

of approximately 9.2psec per digitizer element.

The output data from the digitizer and the time-interval-unit are read by the mini-

computer. The ranging program processes the data to extract the total single-color range

delay and the differential pulse delay caused by atmospheric dispersion in the path. A

photograph of the receiver electronics rack and the minicomputer system is shown in Fig-

ure 4.7.
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Table 4.4
Receiver Electronics

Calibration source: 1 GHz V'CO, manually tuned and referenced to frequency counter.

Amplifier: Hewlett-Packard 8447F, 26dB gain, 0.1-1300MHz bandwidth.

Power splitter: Weinschel 1515, DC-18GHz bandwidth.

Discriminators: Ortec 934, constant fraction type.

Time interval unit: Hewlett-Packard 5370, 100psec accuracy.

Stop gate generator: Ortec 416A Gate and Delay generator.

Waveform digitizer: Tektronix R7912 with 7A29 and 7815 plug-ins, 600MHz band-
width, used at 500 psec/div sweep speed.

Minicomputer: Digital Equipment Corporation Minc-11, with LSI 11/23 proces-
sor and 64K words memory, used with RT-11 operating system.

4.5 Calibration

The dispersion measurement requires timing accuracy at the picosecond level. To

permit this accuracy, special calibration procedures were developed for the waveform

digitizer. The calibration methods compensated for errors in both the sweep unit and the

vertical amplifier response of the digitizer.

The slightly nonlinear digitizer sweep speed profile was measured by using a I GHz

calibration sine wave as an input. The location of the sine wave peaks were found in the

digitized data. From this information the number of digitizer elements between successive

peaks was computed, and a cubic polynomial was fitted to the sweep-speed profile. A

typical calibration waveform and sweep speed calibration data are shown in Figures 4.8

and 4.9. The output data shown in the figure is stored on disk for use by the ranging

program after each system calibration. A detailed description of the actions of the cali-

bration program is given in Table 4.5.

The waveform digitizer was also found to have time shifts which were dependent on

the input pulse amplitude. If left uncorrected, these effects would introduce up to 66 psec
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Figure 4.8. Typical 1 GHz calibration waveform as recorded by calibration program.

SWEEP SPEED POLYNOMINAL COEFF'S 10 TO 31 IN PSECIIDIAITIZER ELEMENT):

8.468189, 1.1466716E — 02, — 5.8947283E — 05. 8.5335920E — 08

Date & TImr 17-NOV-81 15:27

STATISTICS OF PEAK POSITIONS:

MEAN (EL*):	 43.08	 152.80	 262.14	 372.21	 476.53
ST DEV (F.LI:	 0.17	 0.13	 0.15	 0.28	 0.1?
CENTER POS (EU: 	 97.Q	 207.5	 317.2	 424.4
PSECIEL:	 9.11	 9.15	 9.09	 9.59
AVERAGE AMPLITUDE - 278 ELEMENTS

Figure 4.9. Calibration program analysis of 20 digitized waveforms.
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Table 4.5
Receiver Sweep-Speed Calibration Program Specifications

Purpose:	 Calibrates sweep speed of waveform digitizer with sufficient accurhey to per-
mit picosecond timing.

Actions:	 1. Reads digitized 1 GHz sinewave from 87912.

2. Interpolates and extrapolates any miesin8 points.

3. Smooths waveform by convolution integral with raised-cosine impulse
response.

4. Locates waveform minima time locations to nearest resolution element.

5. Locates high resolution minima positions by quadratic interpolation.

6. Prints and stores peak positions and sweep rates between peaks, and plots
sample waveforms.

7. Repeats steps l through 6, 10 to 20 times.

8. Computes mean and standard deviations of peak positions and sweep
rates, prints and stores data.

9. Pits third degree polynomial to sweep speed data points, and prints and
stores coefficients.

of measurement error when the input pulse amplitude changed from 0.6 to 5.5 screen di-

visions. In ranging operation, the measured values of time-shift versus pulse amplitude are

used to correct for this instrumentation bias. Typical measurements of this error are

shown and discussed in Chapter 6.

4.6 Ranging Operation

For ranging, the three color system is used in two modes. In the reference mode, the

objective is to measure the fixed electrical and optical delays in both the single color (532

nm) and the dispersion (355 and 1064nm) channels. This is accomplished by closing the

telescope shutter, and setting the range gate to the cable delay setting. The ranging pro-

gram outlined in Table 4.6 is then started, and it records approximately 200 measure-

ments of the fixed system delays. Comparisons of successive reference measurement sets

also are useful indicators of the system timing stability.
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Table 4.6
Ranging Program ; f*.rlfiwions

Purpose;	 Reads the time interval unit and data, waveforms from the digitizer, extracts the.
pulse separation times, and stores the data.

Actions:	 1. Reads stored sweep speed coefficients.

2. Reads time-interval unit.

3. Reads newly digitized double-pulse waveform from R7912.

4. Interpolates and extrapolates missing waveform points, and smooths
waveform by convolution integral with 100 psec wide raised cosine pulse.

5. Finds time occurrence of pulse minima, pulse amplitudes, 5017b risetime
points, and separation point of pulses.

6. Computes actual separation time between pulse peaks by using data
from step 5, and polynomial sweep speed and amplitude corrections.

7. Prints and stores wavefo rin timing data.

8. Repeats steps 2 through 7, 100 to 200 times.

9. Plots summary histograms of C0% risetime and peak timing points.

10. Calculates means aud. standard deviations of plotted timing data.

In the ranging mode, the reference shutter is closed, and the telescope shutter is opened.

The delay module output is then used as the range gating signal. Usually the levels of the

355 and 1064nm signals must be adjusted with the variable attenuators at the entrance to

the detectors so that the detected signal levels will fall within the 11 ^ 1 dynamic range of the

waveform digitizer. The same ranging program is used for this mode as for the reference

mode, and 200 measurements of range delay and dispersion are also recorded.

The atmospheric dispersion causes the 355 nm pulses to travel more slowly in the

path than do the 1064nm pulses. Since the system is configured with the 355nm pulses

being recorded first, their pulse position shifts toward the 1064nm pulses on the digitizer.

Therefore the measured pulse separation times are smaller for the atmospheric path than

for the reference path.
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The difference between the mean values of the ranging and reference values give the

dispersion in the atmospheric path, and the total path delay at 532nm. These values are

compared against previously recorded ones, and values predicted from endpoint atmos-

pheric measurements to determine the performance of the ranging system. Figure 4.10

shows typical histograms and statistics of 200 system measurements for both the reference

and the short atmospheric ranging path. A detailed analysis of the system performance is

given in the next chapter.

4.7 Data Analysis

It was necessary to examine the stored timing data in detail for developing the in-

strumentation system and for monitoring its operation. A special data analysis program

was developed for this purpose, and an outline of its operations is given in Table 4,7.

This program was used to determine the limitations of dispersion measurements caused by

the systematic errors in the timing system.

The capabilities both to examine time drifts in the recorded data and to perform

scatter plots were necessary to calibrate the timing system. For example, the basis for the

amplitude correction algorithm used in the ranging program was the data from plotting the

measured change in pulse separation time versus pulse ampl tude. Such a capability was

also useful for examining data sets which deviated widely from expected instrument

performance.
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Table 4.7
Data Analysis Program Specifications

Purpose:	 Analyzes waveform timing data in order to permit maximum measurement
accuracy and to monitor receiver performance.

Actions:	 1. Reads stored waveform timing data.

2. Plots selected columns of stored data as either (a) histogram, ( b) time his-
tory, or (c) scatter plot.

3. Computes statistics on values of items selected in options (a) and (b) in
step 2.

4. Fits least-squares polynomial curve to items selected in options (b) and
(!^) in step 2. Calculates goodness-of-fit statistic and prints polynomial
coo fficients.
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CHAPTER 5

THEORY OF INSTRUMENT PERFORMANCE

The performance of any optical ranging system is determined by several factors.

These include the fundamental accuracy limits caused by the statistical nature of the photo-

	

detection process, as well as limits imposed by atmospheric turbulence, background light,
	 a

and instrumentation imperfections. The expressions for the measurement accuracy, maxi-

mum range, and detection and false alarm probabilities of the prototype multicolor ranging

system are developed in this chapter.

5.1 Ideal Receiver — Sin a Measurement Accuracy

The accuracy of any optical ranging system is limited by the finite number of received

signal photons. Even if the multicolor system were constructed of ideal equipment, these

would limit its measurement performance. The performance level of an ideal pulsed opti-

cal ranging system is derived in this section.

For a maximum—likelihood optical receiver system 15.11, the expected value of the

measured optical pulse arrival time is given by

(TM ) = Ta .	 (5.1)

Here the actual arrival time of the opticai pulse is denoted as Ta. The angle brackets de-

note averaging over the ensemble of photoelectron distributions possible for the optical

pulse shape. Since the expected value of the measured pulse arrival time is equal to the

actual optical pulse arrival time, the ideal receiver is unbiased.

This measurement has a finite variance due to the finite number of signal photoelec-

trons observed. For a raised—cosine optical pulse with full width at half maximum

(FW,HM) of w, the variance of its time extent is given by

Var(7P) = w 2 /7r 2 .	 ( 5.2)
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The variance of a maximum-likelihood receiver [5.1 ] operating with such a photon limited

pulse is given by

	

Var(Tm) = Var(Tp)/[b + n - b(b -+2n)].	 (5.3)

Here n is the expected number of received signal photoelectrons, and b is the expected

number of background photoelectrons observed during the full pulse width 2w. For most

laser receivers [5.2]  ope rating in the multiphotoelectron regime, n >> b. Under this

assumption, (5.3) can be simplified to

Var('fm) = Var(Tp ) / 11. 	(5.4)

Therefore the magnitude of the measurement variance is inversely proportional to the

number of detected photoelectrons per pulse.

Measurement of the atmospheric delay in the prototype system requires measurement

of the differential arrival tim between the 335 and 1064nm pulses. For the ideal re-

ceiver, the mean measured arrival time difference is given by

(ATM ) = ATa .	 (5.5)

Therefore, it is equal to the actual arrival time difference between optical pulses.

The errors in estimating the arrival times of the two photon limited pulses are inde-

pendent. Therefore their variances add, and the variance of the differential measurement

is given by

	

Var(ATn.) = Var(rpl )/n + Var(7p2 )/m.	 (5.6)

Here n and m are the number of photoelectrons generated upon reception of pulses pl

and p2. This expression shows that for an ideal receiver system, the error in the differ-

ential delay measurement can be made arbitrarily small. This can be accomplished either

by decreasing the transmitted pulse widths at each color, or by increasing the number of

receiver photoelectrons at each color, or by doing both.

. a
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5.2 Actual Receiver — Single Measurement , Accuracy

Ikon—ideal receivers introduce several additional errors to the previously given lower

bound. These errors are contributed ;primarily by the photomultipliers and the external

F timing system, and both bias the receiver measurement and increase its variance. The ex-

pressions for the prototype multicolor system single measurement errors will be developed

in this section.

Photomultiplier detectors contribute a bias to arrival time measurements which is

equal to the signal delay in the photocathode and dynode chain. The mean measured

pulse arrival time for a timing system using such detectors can be written as

(Tm) = Ta + (TPM )-	 (5.7)

Here rpm is the photomultiplier delay. For this derivation, it is assumed that the variance

of the photomultiplier output pulse occurrence time can be written as

Var(Tm ) = (Var(rpl ) + Var(Tpm)]/n. 	 (5-8)

In this equation Var(Tpm) represents the variance of the timing jitter contributed by the

photomultiplier detector. This variance can be assumed to be additive to the detection

timing variance if the timing fluctuations in the detector are independent of the statistics

of the photodetection process. The photomultiplier timing fluctuations are due to the statis-

tical nature of the secondary electron multiplication process occurring within the detector.

The two color receiver is composed of two such photomultipliers used with an ex-

ternal timing system. For such a system, the measured difference in the mean arrival

times of the optical pulses is given by

(ATm) _ ATa + (Arpm) + Tc + ( rd ).	 (5.9)

In this expression rc represents the fixed bias in the measured differential arrival time

caused by the fixed optical and electrical delays in the prototype system. The timing

delay introduL ' by the digitizer is denoted by r d -
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The variance of the differential delay measured by the actual receiver is determined

by the magnitudes of photomultiplier and digitizer time jitters. By using (5.8), and by assum-

ing that the digitizer timing jitter is independent of the number of detected photoelectrons

in each pulse, the receiver timing jitter can be written as

Var(OTm) = [Var(Tp l )+Var(Tpm l )]/n+(Var(Tp 2 ) + Var(TPM2 )1/n► +Var(,rd).	 (5.10)

For the prototype system, this single measurement timing error is too large to make useful

single atmospheric delay measurements. Therefore the system used the average value of

several individual measurements to infer a single value of atmospheric delay.

5.3 Averaged Measurement Accuracy

The variance of the measured atmospheric delay can be reduced by data averaging,

if the observations are independent, and if the atmospheric delay is stationary over the

observation interval. In this section, the Pxpressions for the mean and variance of such

an averaged measurement set will be derived under these assumptions.

The mean difference between the measured arrival times of the two pulses can be c.,;

culated by taking the expected value of (5.9). Solving the resulting equation for the opti-

cal pulse separation time yields

(ATa) = (ATM ) - (ArpM) - Tc - (rd)-	 (5.11)

Here the angle brackets denote averaging over the N individual instrument measurements.

`fhe variance of the averaged measurement set is related to the single measurement

variance by

N

Var((ATm )) = (1 /N 2)	 Var(ATmi).	 (5.12)
i= t

By using (5.10) in this result, the general expression for the variance of the set of N meas-

urements can be written as
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N

Var((ATm )) - Var(Td )/N +(I /N2)  E [ ( Var(Tpi) + Var(7P1N1) ) /ni

im i

+ (Var(rp2 ) + Var('rpM2) ) /mi l •	 (5.13)

For the prototype system, the optical pulse widths and detector characteristics at both

colors were similar. Therefore, to first approximation

Var(Tpl ) + Var(TpMI) x Var(7p2)+ Var(TpM2) = Var(Tp).	 ( 5.14)

To further simplify ( S.13), an equivalent photoelectron number can be defined by the

relationship

(1 /q) - (1/n) + (1/m).	 (5.15)

This is the number of photoelectrons which would be required in a single color system to

give the same timing variance as a two color system which received photoelectron levels n

and m in each pulse. By using ( 5.14) and ( 5.1 S), (5.13) can be simplified to
e

N

Var((ATm)) = Var(rd )/N + [ Var(rp)/N ] (1 /N)	 (1 /qi)^ •	 (5.16)

One last simplification can be made by introducing an average equivalent photoelectron

number, Q, defined by

N
I/Q = (1/N) F, 	 (5.17)

i-1

By using this, (5.16) can be rewritten as

Var((AT-13 )) = (1/N)[Var(Td )+Var(Tp)/Q[. 	 (5.18)

Equations (5.11) and (5.18) describe the theoretical timing performance of the measure-

ment system.

5.4 Averaged Ranging Measurement Accuracy

For the prototype system, the values of the system biases are not known a priori.

Therefore two sets of averaged system measurements were used to recover the differential
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atmospheric delay. In the reference measurement, the pulses trave,s e. the same receiver

path as for the atmospheric path measurement. The measured difference between the

mean pulse arrival times gives the sum of the offsets between the detector responses. By us-

ing (5.11), this mean offset can be written as

(OTm,r) _ (ATPM ,r) + Tc + (rd ,r).	 (5.19)

For ranging over the atmospheric path, the actual differential pulse delay is the difference of

the reference delay and that contributed by the ,atmospheric dispersion in the path. There-

fore the measured mean separation time can be written as

Wm ,p) _ (ATPM,p) + rc + (Td,p) - (ATatm )•	 (5.20)

Since the occurrence time of the 355 nm pulse is measureO first in the prototype system,

the atmospheric dispersion causes the pulse pair to move closer together in time. There-

fore the average atmospheric delay can be found by subtracting the path measurement

from the reference measurement. The resulting expression for the atmospheric delay

value is

(OTatm) _ [(ATm,r)-(OTm,p)] - [(ArpM,r)-(©%,p)) - [(rd,r)-(rd,F)1. 	 (5.21)

The last two bracketted terms represent the difference in the mean differential detector

delays and the difference in the digitizer delay between the reference and path measure-

ments. Any changes in these terms over the time period between these measurements

will bias the average dispersion measurement.

One cause of detector delay changes is the dependence of the photomultiplier delay

upon the optical spot position on its photocathode. Since the reference and atmospheric

paths can have different intensity distributions and can illuminate different photocathode

positions, these will introduce a bias error. Changes in the digitizer delay can be caused

by unmodelled amplitude-dependent biases in the waveform digitizer. Such biases will

cause reference and atmospheric path data sets with different average pulse amplitudes

roll-
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to have different .system delays. The difference

delay measurement.

Since the reference and path measurements are independent, the variance of the dis-

persion estimate is the sum of the variances of the two measurement sets. Assuming the

same number of individual measurements in the reference and path data sets, the variance

of the average atmospheric delay measurement is given by

	

Var(Watr„)) = (1 /N)[ 2Var(Td) + Var(rp) ( ! /Qr + l /Q p ) ] .	 (5.22)

This expression indicates that the variance of the atmospheric delay measurement can be

reduced in several ways. These include increasing the size of the reference and path data

sets, or increasing the average signal levels in both the reference and path measurements.

The variance also can be reduced by decreasing the variance of the digitizer and photo-

multiplier detectors.

5.5 System Maximum Range

The maximum range of the prototype system is determined by the required number

of received photoelectrons at the receiver. This in turn is determined by the length of the

measurement path and characteristics of the ranging system. The maximum range of the sys-

tem is computed in this section, assuming that the target is a single corner reflector.

For a pulsed optical ranging system, the average number of detected photoelectrons

per laser firing is given by

	

Npe = i?[Etr/Eph] [Gtri'(4vrR2)l [a tar/(4TrR2)1 Arecrsysratm	 (5.23)

Here rl is the detector quantum efficiency, Et, and Eph are the transmitted pulse and

photon energies respectively, R is the one—way target distance, AieC is the receiver area, and

ratm is the one—way atmospheric transmission. The system transmission rsys is the product

of the transmissions of the transmitter, the corner reflector, and the receiver.
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For Gaussian beam cross-sections, the transmitter gain and target cross section can

be approximated by

	

Gtr - 32/0 2trt
	 (5.24)

and

	

otar - A c(32/0 22 	 (5.25)cc

Here Otr and 0., are the full width at 1 /e 2 points of the transmitter and corner reflector

beam patterns, and it has been assumed that the gains are measured at the center of the

beam patterns.

Several terms in (5.23) are wavelength dependent, and therefore the expected num-

ber of received photoelectrons will be different for each color. For diffraction limited

optics, the beam patterns of the transmitter and corner reflector are wavelength dependent.

However, the transmitter and comer reflector are not diffraction limited for the prototype sys-

tem. Therefore the terms in (5.23) which are wavelength-dependent are q, Etr ► Eph , ?syp

and r itm . The system transmission is the product of all mirror reflectivities, rm ir, in the

beam path, including the corner reflector and the transmission of the bandpass filter. In

the prototype system there are a total of 9 reflections from aluminized mirror surfaces.

The one-way atmospheric transmission is given for horizontal paths by exp(-satin R),

where satin is the atmospheric attenuation coefficient.

Table 5.1 summarizes the values of the wavelength dependent terms in (5.23). It in-

cludes measured values or best estimates of the transmitter energy, the detector quantum

efficiencies, and system transmission. The values for satin were taken for a standard-clear

sea-level atmosphere [5.31.

The last column in the table represents a figure-of-merit for the system efficiency

in each color. It is the maximum number of receiver photoelectrons available for detec-

tion, ignoring all peth losses. The column shows that the combined effec + of fewer
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Table 5.1
Values of the Wavelength Dependent Terms Used in the banging Equation

Wavelength	 Quant. Et
(mb

E
%

Sam rmic T^ Max(N )
^(nm) Effie. (xE	 J) (I /m) (xE +	 )

-	 1064 0.02 6 1.87 1.2 E-4 0.90 0.27 173

532 0.09 3 3.73 1.7 E-4 0.85 0.16 117

355 0.18 1 5.59 3.1 E-4 0.65 0.014 4.5

transmitted photons and smaller system transmission limit the maximum received signal

in the 355nk-a channel to 2.5% of that of the 1064nm channel, Since both colors must

be received for a dispersion measurement, this channel limits the system's maximum range,

even in the absence of atmospheric scattering in the path.

The average number of received photoelectrons in each receiver channel is plotted

versus range in Figure 5.1 for the system parameters given in the table. The receiver area

was given in Table 4.2, and a 12.7cm (5 inch) diameter cube corner with a full beam angle

of 25 urad (5 areseconds) was assumed for the reflector. The plot shows the rapid decrease

in signal level due to the exponential decrease in atmospheric transmission. This decrease

is much more rapid at long ranges than the R- 4 range dependence. The 1064nm channel

has the longest distance capability due to its higher system efficiency and its low atmos-

pheric transmission losses.

Since the 355 nm channel has the highest atmospheric losses and the lowest system

capability, it has the shortest maximum range of the channels. The maximum range of the

system is limited by this channel to approximately 25 km, if an average signal level of 10

photoelectrons is required.

In operating the prototype system, variable optical attenuators preceding each detec-

tor were used to set the average signal level in each channel. For the short horizontal path

tests described in Chapter 6, typical attenuation values of 1000 to 10,000 were used in the
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Figure 5.1. Received photoelectron number vs. path length for the three color system
ranging to a 5 inch, 5 aresecond corner cube.
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1064nm channel, values of 100 to 1000 were used in the 532 channel, and valu

IV

100 were used in the 355 nm channel,

5.6 Single Channel Detection Probability

The Poisson detection statistics and lognormal atmospheric fading occurring in each

receiver channel cause the single-color detection probability to be less than unity. This

probability is further limited by the finite dynamic range of the receiver. For the three

color receiver, the amplitudes of both the 355 and 1064nm pulses must fall between the

receiver's lower and upper thresholds to permit a successful measurement. When the sys.

tem is properly adjusted, the probability of this occurring is always less than the detection

probability in the 532nm channel, and therefore it's statistics dominate the receiver per-

formance. The probability of this event is derived in this section.

Fo. a single channel receiver operating over a free space channel, the detection prob-

ability is determined solely by the detection statistics. Assuming an average signal of Q

photoelectrons per pulse, the probability of receiving q photoelectrons between the re-

zeiver amplitude limits of a and b photoelectrons is

b
Pr[a < q < b, = exp(-Q) 	 (Q► /j!).	 (5.26)

=a

For a receiver with dynamic range D, the upper threshold, b = D - a. Here it was assumed

that the receiver can be modelled as a photon counter over the pulse duration w. Recen ►.

work by Abshire [5.41 has shown this to be a good approximation for actual maximum-

likelihood receivers.

If such a system is operated over an atmospheric channel, the instantaneous signal in-

tensity at the detector also undergoes fading due to atmospheric turbulence. For weak to

moderate turbulent strengths (log-amplitude variances < 0.3), it is generally agreed

[5.5) that the intensity statistics (and hence the photoelectron levels) of such signals

have a lognormal distribution. The probability density is given by
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^T.
g

fl.N(q) s Vq V1 2Cq(0))-t r=x p {-[(l/2)An(9/Q)+CQ(0)D = 1[ 2CQ(0)Ir .

Here CQ (0) is the tog-amplitude variance of the turbulence. For -trong turbulence, there

is some controversy over the correct form of the probability density [ 5.61. Therefore, for

sake of simplicity, it will be assumed here that the lognormal distribution is the correct

one for turbulent strengths up to saturation.

For a spherical wave transmitter and point detector. it is widely accepted that

CQ(0) - 0.124 Cn k1/6 L11/6.	 (5.28)

In this expression, the turbulence was assumed to be homogeneous in the propagation

path of length L, k is the wave number of the laser, and C2 is the refractive index struc-

ture parameter. Typical values of this parameter are discussed in Chapter 3.

The detection probability for the single color receiver operating over the atmospheric

channel is given by

Pr(det q I turb) - fn Pr(a G q 6 b) fLN (q) dq.	 ( 5.29)

This probability is completely specified by the lower threshold, the system dyna.enic range,

the log-amplitude variance, and the average signal level.

The prototype system Las a dynamic range of 11:1, and can operate with its lower

threshold as low as 1 to 3 photoelectrons. The single channel detection probabilities for

these system parameters are plotted versus mean signal level in Figures 5.2 and 5.3 for

several values of CQ(0). The figures show that for weak turbulence, the detection prob-

ability decreases for mean signals near either threshold.

For stronger turbulence, as Q increases, the detection probability tends to approach

a constant value of approximately 0.59 in both figures. This effect is due to the asym-

metrical shrpe of the lognormal distribution, which does not change significantly with Q

(5.27)
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Figure 5 . 2. Probability of detecting a photon—limited log normally fading signal versus av-
erage signal level. The system acceptance range is I to I 1 photoelectrons, and log—
amplitude variance is used as a parameter.

when CQ(0) is large. However the probability distribution does shift laterally with increas-

ing Q values. In this region, the probability that the signal will exceed the lower threshold

k	 when Q is increased is matched by the increased probability that the signal will exceed the
t:.

upper threshold. Since only tha signals which fall between the thresholds will be accepted,

'

	

	 the detection probability stays constwil in this region. Both figures support the intuitive

notion that the mean value of the signal should be placed approximately midway between

the threshold values for the highest detection probability.

'^ a	 5.7 Two Channel Detection Probab-fllity

In order to measure the pulse separation time on the waveform digitizer, the signal

levels of both pulses must have values between the instrument's thresholds. If the
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threshold values of both channels are equal, then the probability of this occurring can be

written as

	Pr[nmeas . ) = Pr[a < (q 1 and q2) G b]
	

(5.30)

a, /' ^,	 b	 b

	

_^ 
1	 exP(°Q1)	 Q/j! e7.p(-Q2) 	Qilk l fLN(ge q2 ) dq ► dq2•

0	 0	 jua	 k®e

Here Qr and Q2 are the expected number of received photoelectrons in each channel, and

fLN is the jointly-distributed lognormal probability density. In the above expression, the

ri	 joint Poisson distribution was written as the product of the marginal distributions, since

the detection processes are independent for each channel.

k

i
86



In order to evaluate (5.30), the spectral irradiance cvrrelahon coefficient must be ex-

amined. This coefficient gives the degree to which the atmospheric turbulence is correlated

in the two receiver channels. Pitxmaurice 15.71 has given a convenient form f6r this

Coefficient,

p t = = NVAR(C'(0) G(V)j/ )1/ (NVAR(Cgt (0)) NVARICa$(U)) } a/g .	 (5.31)

In this expression, the normalized variance is given by

NVAR[xj = exp($x) - I,	 (5.32)

and the terms

C(k") = (I - k112)7/6 (1 - k"slb),	 (5.33)

and

V = Ik2 - ka 1/(k 2 + ka).	 (5.34)

In the equations above, CQ(0) is the ldeg amplitude variance evaluated at the wave number

k' _ (ka + k 2 )/2, and the terms CQi(0) are evaluated at wave number kt.

Equation (5.31) was numerically evaluated fair wavelengths 355 and 106+1 nm used

for the dispersion measurement, Tile results show that for weak turbulence pa t As 0.37,

vend as the turbulence for wave numbers k', k 1 , and kz approached saturation, p 12 ft 0.11.

t

Since the correlation coefficient has a low value, to first order the turbulent fluctu-

ations in each channel can be approximated as being independent. This approximation is

somewhat pes ,,imistic, since it slightly underestimates the probability of detection for the two

channel system. With this approximation, (5.30) call 	 written as the product of the indi-

vi dual channel detection probabilities

Prime-as.] = Pr(det qa Iturbl • Fr(det qz iturb].	 (5.35)

in this equation, the terms o

35'3 and 1064nm.



It can be seen from Figures 5.2 and 5.3 that the two color measurement probability is

nearly unity for weak atmospheric turbulence when the mean signal levels are centered

between the thresholds. For strong turbulence, the measurement probability decreases to a

lower bound of 0.36.

5.8 Probability of False Alarm

Background light collected by the receiver causes both false triggering of the receiver,

and can degrade the accuracy of the dispersion measurement, The probability of

these `false alarms' occurring in both the trigger (532nrn) channel, and in the measure-

ment (355 and 1064nm) channels will be derived in this section.

The false alarm probability can be derived by considering the receiver channel to be

a 'sliding window' photon counter. For this receiver model, the receiver is considered to

count photoelectron occurrences over the 'window' of its impulse response time, with the

window 'sliding,' over the receiver observation time. Lee and Schroeder [5.8) have de-

rived the probability of false alarm , ^curring for this receiver as

Pr[FA] a Pr(False Alarm)

- Pr[(# of backgrow"d rounts within w) > L at sometime during T]

t,-r
- 1 - exp V(bT/w) bL-r/(L - 1)! ] /	 bk/k1	 (5.36)

kno

In this expression, T is the observation interval, b is the expected number of background

counts per pulsewidth w, and L is the ,receiver threshold. Since for the prototype system,

L >> b, (5.3s) can be approximated by

Pr[FA', = exp(-b)(bT/w) b L-r / ( (L - 1)1) .	 (5.37)

.	 i

Abshire (5.4] has shown that this approximation was valid for an actual maximum-likelihood

laser ranging receiver operating in the region between very low receiver thresholds, where the

receiver was saturated with background counts, and high thresholds, where the false alarm

probability was dominated by ion-feedback events in the photomultiplier. For the prototype
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system, the probability of false triggering can be computed by setting T equal to the range

gate window, and 1% to the none count number expected for the 532 nm channel.

The expected background count ir► a time interval of the laser pulse width can be

'i

computed from

b = NX(rl/Eph) tX F ArecTrecTatrnw- 	(5.38)

Here NA , AX, and F are the spectral radiance of the scerv, the spectral width of the re-

ceiver bandpass filter, and the receiver field-of-view (in steradians) respectively. The re-

mainder of the terms have been defined previously in this chapter. In this equation, it has

been assumed that the scattering of light into the receiver from sources outside the re-

ceiver field-of°view can be neglected.

The value of Np depends upon she scene viewed by the receiver telescope and can

be highly variable. For daylight operation, an estimate of the value of NA can be com-

puted for several terrain types by considering them to be diffuse Lambertian scat crers.

The value of N), for each surface then can be computed from tabulated values of the

solar spectral irradiance, the spectral dependence of the atmospheric attenuation, the re-

flectivity of the surface, and the angle between the sun and the receiver line-of-sight.

Table 5.2 contains typical values of solar spectral irradiance and terrestrial surface re-

flectivities. From these values the terrestrial scene radiance values were computed, which

are given in Table 5.3. For these computations, it was assumed that the surface was a

'hillside' at a 30 degree angle from the horizon, and that the sun illuminated the surface

at the angle, normal to it. The ranging system was assumed to be operating over a hori-

zontal path to a corner reflector mounted on a hillside of the tereian, with the terraan

completely filling the receiver field-of-view.

The values of receiver optical power and the expected number of background counts

per pulse width computed by using (5.38) are given in Table 5.4 for each channel of the
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Table 5.2
Solar Spectral irradiance and Typical Terrestrial Surface Reflectivities for Wavelengths of

Prototype Three Color Ranging system. The * indicates. an extrapolated value.

NA (sun)	 Nx (sun)	 Diffuse Surface Reflectivity:
A	 (no atm 1	 12 air masses]

	

(nm)	 Snow & ice	 Sand	 Alfalfa	 Soil After
(mW/sq. in 	 (Quartz)	 (June)	 Snow Melt

	

1064	 649	 523	 0.74*	 O.S5	 0.40*	 0.21 *

	

532	 1835	 1190	 0.87	 0.29	 0.054	 0.052

355	 1083	 213 0.76* 0.12 0.016*	 0.015*

Ref:	 (5.9] [5.101 (5.9] [5.10]

Table 5.3
Typical Values of Terrestrial Surface Spectral Radiance Computed from Table 5.2, for a
Clear Atmosphere, a 30 Degree Solar Elevation Angle, and a Horizontal Viewing Angle.

X
	 Spectral Radiance [ mW/(sq. m ster nm)]:

	

(nm)	 Snow & Ice	 Sand	 Alfalfa	 Soil

	

10154 	107	 79	 57	 30

	

532	 285	 95	 18	 17

	

355	 45	 7.0	 0.94	 0.88

Table 5.4
Calculated Receiver Background Levels for the Prototype System with Field-of-view of an

Alfalfa Field. 7i4., calculation is the worst case for this scene, since no atmospheric
transmission or adjustable receiver attenuator losses were considered.

X	 Nx	 A	 Prec	 r?/Eph	 rb	 b

	

(nm) ;(mW/sq. m ster nm) (nm)	 sec	 (nW) (xE + 17) (pe/nsec) (in 0.6nsec)

	

1064	 57	 2	 0.51	 6.6	 1.07	 0.71	 0.43

	

532	 18	 2	 0.43	 1.8	 2.41	 0.43	 0.25

	

355	 0.94	 10	 0.19 0.20	 3.22	 0.065	 0.039

prototype system. The values in this table represent worst-case computations for the surface

of green alfalfa, since the atmospheric transmission was set to unity, and no adjustable re-

ceiver attenuation was assumed. Table 5.4 shows that the expected background counts are

maximum for the 1064nm channel. It also shows that the approximation used in (5.37) is
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accurate to better than 10%, for receiver threshold greater than 4 photoelectrons for this

channel. The false alarm probability calculated by using the values in Table 5.4 in (5.36)

is plotted versus threshold for each receiver channel in Figure 5.4. The plot shows that

even for the worst case values, the false alarm probability was less than 10 17b for thresholds

greater than 4 photoelectrons.

With optical attenuation added to the receiver channels, the expected background

count rate decreases in proportion to the attenuation value. Since typical attenuation

values for the 1064 and 532 nm channels were in the 100 to 10,000 range for the proto-

type system, the false alarm probability was <0.01 for all receiver channels. Therefore,

the false alarm events were not an operational problem for the prototype system.
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CHAPTER b

MEASURED INSTRUMENT PERFORMANCE

The prototype system was tested to determine its performance limits. First, the system

photomultipliers were calibrated in terms of their single photoelectron voltage and time jitter

versus photoelectron level. Next, the waveform digitizer was tested for both timing jitter

and for calibration stability. "inally, the assembled optical timing receiver was evaluated for

both amp41tAe-dependent time shifts and for timing stability.

The emphasis of the performance tests was on the instrument timing biases and rms jit-

ter. At the beginning of this work, these parameters were the least understood and were

judged to be most important of the receiver characteristics. Since the detection probability

was found to be greater than 75% when the average optical signal levels were near the mid-

point of the receiver's dynamic range, detailed measurem-,nts of the detection probabilities

were not performed. In practice, this condition was easily achieved by adjusting the optical

attenuators preceding the detectors. Detailed false alarm rate measurements also were not

performed, since the false alarm probabilities were observed to be very low for the photo-

electron levels used in the tests.

The calibrated system timing performance was measured over three horizontal paths of

different lengths. The results showed that the instrument bias errors in the differential delay

measurements could be reduced to plus or minus I Spsec. However, the present design was

found to be sensitive to the optical spot positioning in the receiver package. The results also

showed that when this is not properly controlled, bias errors as large as 80psec occur. The

suboptimum magnetic bias in the static-crossed field detectors is believed to have increased

their sensitivity to optical spot positioning errors. With proper magnetic biasing on the de-

tectors, and a redesign of the receiver optics, the bias errors in the receiver should be reduced

to those of the waveform digitizer, which is i5psec. Such bias errors would permit measure-

ment of the atmospheric delay with an accuracy of 1 cm over two-way horizontal paths.
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6,1 Photomultiptier Calibration

Calibration of the impulse response and photoelectron levels of the photomultipliers

was necemi.w y to permit signal level characterization of the y receiver package. The calibra-

tion eonsisto of measuring the impulse response and low level pulse-height distribution

of the dettectonc. The results from the tests were the first indication of the magnetic bias

problem in the detectors.

A GaAs laser diode puiser (Hamamatsu C1308) was urj3! as the optical source for

both detector tests. This puiser emits a 90 to 100psec wide pulse at approximately 820

nm, at rates as fast as 10 kHz. The nominal energy per output pulse is 0.1 W. This laser

was preferred to the mode-locked laser transmitter for these tests, since its amplitude

stability and its repetition rate are much higher. For these tests, the puiser output was col-

limated with an external lens, and it was coupled into the reference path in the optical

breadboard at the point of the irunslating beam steerer. The dichroic beam splitter and

bandpass filters in the receiver package also were replaced with ones which passed the

820 nm radiation.

The impulse response of the detector and power splitter combination is shown in

Figure 6.1. This was measured by connecting the power splitter output to a fast sampling

oscilloscope (HP 1811 A with 28 psec risetime), and tggering the puiser at approximately

a 5kHz rate, Figures 6.2 and 6.3 show expanded views of the 355 and 1064nm impulse

responses. From these measurements, the FWHM of the 355 and 1064nm pulses was

found to be 460 and 440psec. These values are considerably broader than the 130psec

. impulse response which has been previously measured for static-crossed field detectors

(6.11.  In the previous testing, the cause of such broadening was found to be a change

in the magnetic field strength of the permanent magnets in the detectors (6.2(.

The pulse height distribution of the detector output was measured by triggering
k

the puiser at a 5 Hz rate, and by connecting the power splitter output to the way.orm
x

95



0MGINAL PAV17

j3LACK AND WHITE PHOTOGRAPH

Figure 6.1. Impulse response of detectors and power
splitter combination as measured by sampling oscillo.
scope. The horizontal scale is 500psec/div.

Figure 6.2. Expanded view of 355nm detector output
shown in Fig. 6.1. The horizontal scale is 200 psec/div,
and the pulse FWI-IM is 460 psec.
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Figure 4 3. Expanded view of the 1064nm detector
output shown in Fig. 6.1. The horizontal scale is 200
psec/div, and the pulse FWHM is 440psec.

digitizer. The digitized waveform output then was analyzed by computer programs which

had been previously developed for characterizing GEHz bandwidth detectors 16.31.

Figure 6.4 shows the peaked pulse-height and pulse-charge distributions of the 355

nm detector. The figure shows both single and double photoelectron peaks in both histo-

grams. These are similar to those previously measured for static-crossed field detectors

(6.1), and are observable due to the high-gain GaP first dynode in the photomultiplier.

The most likely single photoelectron voltage and electron gain were measured from this

figure to be 4 mV and 4.7 X 105.

Figure 6.5 shows similar test data for the 1064 detector. The pulse height and charge

distributions were broader for this detector. Such distributions can be caused by improper

activation of the GaP first dynode of the detector, which results in both lower dynode

gain and a less-peaked photoelectron distribution. From these distributions the single

photoelectron voltage and detector gain were estimated to be I 1 mV and 1.4 X 10 6 , al-

though there is more uncertainty in these values than for the 355nm detector. These volt-

age and gain values are approximately three times those of the 355nm detector.
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The photoelectron level of both channels in the receiver system was calculated by using

this data with the measured system gain. The results of this calibration are shown in Table

6.1. The results show for most of the data sets, the receiver operated with 355 nm optical

pulses of 3 to 34 photoelectrons, and with 1064nm pulses of 6 to 63 photoelectrons.

6.2 Waveform Digitizer Timing Performance

1

	

	 The timing stability and resolution of the waveform digitizer were measured to deter-

mine their contribution to the total system error. These measurements were performed with

an electrical pulse generator, so that the digitizer timing errors could be separated from timing

errors contributed by the photo mult ipliers.

The equipment configuration used for these tests is shown in Figure 6.6. The FWHM

of the electrical generator (Avtech AVH-S1) output was approximately 120psee and the

generator was triggered at a nominal 5 H rate by an external source. The output pulse was

split into two paths by a power splitter, with one path containing an adjustable coaxial delay

line. The delay line output and the undelayed sputter output then were summed by a second

power splitter. Its output was connected to the waveform digitizer. In the tests, the undelayed

pulse was used to simulate the 355 nm detector output, while the delayed pulse simulated

Table 6.1
Photoelectron (pe) Level Calibration of the Prototype Receiver System.

Values are given for the 1064 n detector operating both with the 6 d attenuator,
which was used in the earlier receiver tests, and with the 2OdB attenuator, which was used

in the later receiver tests.. Since the distribution of the detector amplitudes is expected
to be Poisson, the ratio of the mean value to the standard deviation is equal to the

standard deviation.

Signal Level	
355nm	 1064nm (6dR)	 1064nm (20dB)

	

(pe)	 (PC)	 (pe)

Lower thresh.	 3.1	 1.1	 5.7

Upper thresh.	 34	 13	 63

Mid Level	 16	 5.7	 28

Std. dev. @	 4	 2.4	 5.3
mid level
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IRO

output, while the delayed pulse simulated the 1064nm pulse. The digitizer was externally

triggered by the discriminator used to drive the pulse generator. The same computer pro-

grams were used to measure the separation time of the pulses in the digitized waveform

as were used in the optical pulse timing.

Typical results from the stability test are shown in Figure 6.7. The dashed lines in

the figures represenW the average values of measured pulse separation time for three differ-

ent delay line settings. Each point plotted in the figure is the average valve of 50 indivi-

dual measurements taken by the timing program. The figure shows that the waveform

digitizer system has a stability of tS picoseconds over a time interval of 90 minutes. Changes

in the delay line setting also were repeatable within 10 picoseconds over the same 90 min-

ute interval. The standard deviations of the sample means were in the 2 to 3 psec range.

These tests were repeated on the next day, and the mean values between the two

days were found to agree within t5 psec. This result confirmed the stability performance

of both the calibration and the pulse timing measurements. The conclusion drawn from

these results was that the waveform digitizer measuring system is sufficiently stable over

90 minute periods to permit two—way single color atmospheric delay predictions with an

accuracy of 1.5 cm.

6.3 Optical Timing Performance

a'

The photomultipliers next were connected to the system, in order to calibrate the

entire receiver. These tests were performed using the laser diode pulser in the same con-

figuration used for the photomultiplier calibration, and included measurement of the amp-

litude dependence of the optical pulse timing and the stability of the mean timing values

versus time. Measurements of the receiver timing jitter also were made as a function of

signal level, to permit calibration of the photomultiplier jitter.

The mean signal delay of the photomultipliers and the waveform digitizer combination

can be amplitude dependent if either instrument is operating in a slightly saturated region.
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r

At the beginning of the tests, the photomultiplier outputs were observed versus signal level

with the sampling oscilloscope. No amplitude-dependent shift was noticed for either detector.

Therefore, any system time-walk was believed to occur in the waveform digitizer.
,a

r \ These time-walks were measured versus peak pulse-height by first fixing the optical sig-

nal level on one detector. Then the input signal level of the detector under test was changed

W"h a continuous neutral density wheel during the rec%rding of one set (200 measurements)

of waveform digitizer data. The recorded differential delay times next were plotted versus

the amplitude of the detector under test, and a polynomial was fitted through the data points.

Subsequently, the same test procedure was applied to the other detector in the receiver.

Typical measured time-walk curves for the 355nm channel are shown in Figure 6.8.

! The plots show a nearly linear time-shift versus amplitude, with an average time-shift of

-64psec when the signal amplitude is increased from 0.5 to 5.5 divisions on the waveform

digitizer.	 Since the larger amplitude pulses are delayed more than smaller ones, they are

closer to the	 064nm pulses. Therefore the time difference measured between the pulses

decreases with the amplitude of the 355nm pulses.

Similar data for the 1064nm channel is shown in Figure 6.9. The time-walk curves

measured for this detector channel had an average time-shift of 65 psec over the full re-

ceiver channel dynamic range. Since the 1064 n pulse follows the 355 nm one in the

pulse pair, increases in its signal delay increase the time difference between the pulses.

Therefore the time-walk values increase with signal level.

Both time-curves were neatly linear and had the same magnitude time shift for full

scale amplitude change. Therefore, to correct for this instrumentation characteristic, a

linear time-walls compensation with a magnitude of 6.6psec per division was used on sub-

sequent data sets. The sign of the time-walk compensation was positive for the 355nm

Y
1

pulse, and negative for the 1064 pulse.
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Figure 6 .8. Time shift in the first (355 nm) channel versus amplitude for two successive
sets of measurements. Over the 11:1 dynamic range, the receiver time walk was -64 psec.
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Figure 6.9. Two successive time walk calibrations with optical pulsar for 1064 nm detec-
tor. Over the 11:1 dynamic range of the receiver the time walk was 65 psec.
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The stability of the optical receiver channel was measured by operating the ranging

system repetitively in the reference mode. Since the optical path delays are fixed in this

configuration, any measured changes in the pulse separation time were caused by changes

Y

	

	 In the receiver system delays. Several sets of representative data from these tests are

shown in Figure 6 . 10, where the measured reference delay was plotted versus the time-

of-day when the data set was taken. The error bars around the data points are plus and

minus one standard deviation of the plotted sample mean value. Several of the data sets

show 25 psec changes in the pulse separation time over 40 minute time intervals. During
a

other periods, the data shows much smaller drift rates. ^.ince the waveform digitizer drift	 r
y

was much smaller over this time period, the delay shifts measured were due to changes in

the detector signal delays. These changes could have been caused either by slow voltage

drifts in the detector supplies, or by temperature changes in the laboratory.

The rms fluctuations in the photomultiplier delays were calculated from measured values

of the system timing jitter. For these tests, the laser diode puller also was used as the optical

source. In Chapter 5, the total timing jitter of a measurement was shown to be the sum

of the jitters of both receiver channels plus that contributed by the digitizer itself. The

derivation showed that if the jitters of both receiver channels were equal, and that of the

digitizer was known, then the photomultiplier jitter could be calculated from the meas-

ured system jitter. For these calculations, the system jitter must be measured as a func-

tion of photoelectron level in each detector. Also, the width of the optical test pulse

must be known, so that the jitter of an ideal detector can be calculated.

For the calculatio ps used for this measurement, however, the equivalent photoelec-

LC

	

	 tron number derived in Chapter 5 was not calculated for each individual measurement.

Instead the average photoelectron number for each channel was computed for each data

set, and the equivalent photoelectron number was computed from this average. This

approximate calculation is accurate for signal level fluctuations which are small relative

107
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to the mean signal value. Since the measured average signal levels extended as low as 4 photo-

electrons, the approximation was not as accurate for the low level measurements. However,

it was adequate for the majority of the data points, which were above the 10 photoelectron

level.

.A plot of the measured signal-dependent timing variance versus the average equivalent

photoelectron number is shown in Figure 6.11. Some of the scatter in the data points for the

lowest signals is due to the approximation mentioned above. The standard deviation of pho-

tomultiplier timing jitter was calculated from this curve to be 100psec at the single, photo-

electron level. The linear decrease of the jitter values with the equivalent photoelectron in the

figure verifies the system timing jitter formulas derived in Chapter 5.

The magnitude of the single photoelectron detector time jitter is approximately 2.5

times larger than earlier measurements (6.11 for static crossed-field detectors. The most

likely cause of this increase also was the suboptimum magnetic-field bias on the detectors.

This condition would allow the electrons emerging from the photocathode to follow more

widely separated trajectories for each pulse. These then would broaden the detector im-

pulse response and cause an increase in timing jitter above the detectors nominal values.

The rms timing jitter for the dispersion measurement can be computed by using the

formulas developed in Chapter 5 with the computed value for Var(Tp) and the measured val-

ues for );'Ar(Td ) and Vai(TeM ). For optical signals centered in the receiver's dynamic range,

Q = 10. The single measurement rms time jitter computed by using (5.14) and (5.18) for

this signal level is 36 psec. For averaging 200 measurements, the rms jitter of the average is

-	 reduced to 2.6 psec.

6.4 Horizontal Path Test Results

The prototype system was tested over the three horizontal paths listed in Chapter 4.

These tests were performed in arder to verify the system operation and to assess the magni-

tude of the system biases. For these tests, the reference and the atmospheric path 	
t
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measurement sets were taken in close succession. The theory developed in Chapter 5 shows

that the difference between the average measured pulse separation times was the sum of the

atmospheric path dispersion and changes in the instrumentation delays (instrumentation

biases).

In order to estimate the instrumentation biases, measurements of the atmospheric pres-

sure, temperature and relative humidity were made at the path endpoint nearest to the sys-

tem's periscope mirror during the ranging measurements. When necessary, the pressure read-

ing was extrapolated upward or downward by using a pressure lapse rate of -0.12 mbar/m, so

that it would correspond to the pressure at the midpoint of the slant path. These meteoro-

logical values then were substituted into the group refractivity formula given in Chapter 2..

The resulting values were used with the measured 532nm path delay to predict the differen-

tial dispersive delay. The formulas used were

L = cT2 [ I - rg2(0)1

and

AT31 a (L/C) Ar- 1(0),

where T2 is the measured 532nm delay, and rgi (0) is the endpoint group refractivity at wave-

length i.

Over the horizontal paths used for the tests, systematic errors in the meteorological

measurements contributed only a s....a11 error to the dispersion prediction. A typical temper-

ature error of 1 °C results in an error of 1 part in 300 of the dispersive delay. Over the long-

est path used, this error causes a dispersive delay error of slightly less than 2 psec. A worst-

case barometric pressure & roi -if 2 mbar causes a dispersive delay error of approximately 1

part in 500. An error of 50% in relative humidity causes a dispersion error of I part in 1400.

Since this error was w, small, a constant value of 50% relative humidity was assumed in the

calculations. Therefore, meteorological sensor errors would have been significant only if a

more accurate instrument was being tested or much longer test paths were used.



Table 6.2
Measured Instrument Performance Over the Rooftop Calibration Path. The mean difference
and instrument bias values are plus and minus one standard deviation of the mean difference

measurement, and the horizontal bars separate measurement sets made on different
days. The larger bias values on the first and last days are believed to be caused by

misplaced optical beam positioning on the 1064nm detector assembly.

Time of Day Mean Ref. Mean Path Mean Diff. Pred. Diff. Bias
(Hrs:Min) (psec) (psec) (psec) (psec) (psec)

9:44 2068 2661 6:k 5 24 -18:t 5

10:12 2065 2072 -7:t 6 24 -31 t 6

13:40 2071 2049 22 t 5 23 -1 t 5

13:55 2076 2057 19:t 6 23 -4 * 6

14:20 2049 2012 37:t 5 23 11 t 5

9:00 2035 2028 7 t 6 24 -17 t 6

9:10 2026 2033 -7 t 5 24 -31 t 5

9:35 2036 2027 9 t 6 24 -15 t 6

9:45 2019 2040 -21 t 6 24 -45 t 6

Test results for the shortest calibration path are given in Table 6.2. The results show

the instrument readings were biased by as much as -45 psec relative to the dispersion predicted

from endpoint meteorological measurements. However, the values for the second day of the

data set showed smaller instrument biases of up to 11 psec. The optical spot position on the

1064nm detector had bee,, adjusted between these two data sets.

Similar results for the short atmospheric path are shown in Table 6.3. Here values xt
for the first day also contained large biases, while subsequent biases were much smaller.

The optical beam position in the receiver assembly also had been adjusted between these

two data sets. The difference between the bias values suggests that the delay in the sys-

tern's photomultipliers is sensitive to the optical s;:c ►t position. This increased sensitivity

probably was caused by the suboptimum magnetic field conditions in the detectors which

were mentioned earlier.

I
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Table 6.3
Measured Instrument Performance Over the Short Atmospheric Path. The mean difference

and instrument bias values are plus and minus one standard deviation of the mean
difference measurement, and the horizontal bars separate measurement sets made on two

different days. Tile large bias values on the first day are believed to be caused by misplaced

	

optical beam positioning oil 	 1064 m detector assembly.

Time of Day	 Mean Ref.	 Mean Path	 Mean Diff.	 Pred. Diff.	 Bias
(Hrs;Min)	 (psec)	 (psec)	 (psec)	 (psec)

11:01 2015 1950 65 t 6 112 -47 t 6

11;12 2019 1951 68 t 6 112 -44 t 6

11;40 2007 1977 30 t 7 112 -82 t 7

11:50 2004 1974 30 t 7 112 -82 t 7

15:30 2059 1961 98 t 5 113 -15 t 5

15:40 2042 1946 96 t 5 113 -17 t 5

16:20 2031 1917 113 t 5 113 0 t 5

16;29 2029 19,'4 105 t 5 113 -8 t 5

The reference and slant path data taken on a subsequent day for the short atmospheric

path is plotted versus time-of-day in Figure 6.12. The reference values show good instrument

stability until near the end of the measurement period. Just before the data values started in-

creasing, the building air conditioning was turned off. Therefore the ensuing rise in room

temperature probably was responsible for the change.

The path timing data shows a nearly cyclical change in the differential delay values. The

dispersion value measured half way through the data set was 110psec, while the value predicted

from endpoint measurements was 116 psec. Therefore during this time period the instrument

was nearly unbiased.

The changes in the measured tower delay values near the end of the day probably

were caused by changes in the temperature lapse rate near dusk. These change the atmos-

pheric beam curvature as was discussed in Chapter 3. In turn, this causes the position of

the target corner reflector image on the detector photocathode to move. Since the
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photomuitipiier delay was found to be sensitive to the optical spot position, this would re-

suit in changes in the receiver delay.

Measurements of the dispersive delay over the long atmospheric path are summarized

in Table 6.4. These measurements were made using an earlier computer program which

timed to the 50% risetime points rather than to the peaks of the pulses. During the earlier

system development stage, this detection strategy performed more accurately than peak

detection. Subsequent development work improved the peak detection accuracy to be-

yond the 50"C risetime level. Unfortunately, in the interim period, the retroreflector

mounted on the water tower was stolen, Therefore, the data given will have to stand as

the best data available for this path.

Tile measurements show that the values of the instrument biases over this path were

roughly equal to the average bias magnitude for the outer paths, Therefore, to within the

measurement accuracy, the observed system bias levels did not depend on the path length.

This finding gives further support to the hypothesis that the bias errors observed were

caused by additive receiver timing biases.

Table 6.4
Measured Instrument Performance Over the Long Atmospheric Path. The mean difference

and instrum, , nt bias values are plus and minus one standard deviation of the mean difference
measurement, and the horizontal bars separate measurement sets made on different days.
Tito biases in the values are believed to be caused by misplaced optical beam positioning

on the 1064nm detector assembly, These values were measured earlier in the system
development and are for 50 risetime detection timing.

Time of Day Mean lief. Mean Path Mean Diff. Pred. Diff. Bias
(Hrs:Min) (psec) (psec) (psec) (psec) (psec)

^ +V 15:45 2 5 63 1983 5 80	 4 5 70 t 2 10	 4

17;30 2462 1874 588 t 6 600 t 2 —12 t 6

15;35 2105 1562 543 t 11 582	 2 —39 t It

15;50 2101 1539 562 t 9 582 $ 2 —20 19
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CHAPTER 7

DISCUSSION AND CONCLUSIONS

s

	

	 In this dissertation, a pulsed multiwavelength system for measuring atmospheric

delay has been described, and its performance limits have been calculated. A proto-

type system also was constructed and its performance was measured over short hori-

zontal paths. These tests were used to quantify the theory of instrument performance

and to investigate the current technological limits in measuring atmospheric delay with

such a system.

7.1 Summary and Conclusions

The physical principles underlying the refraction of gases were reviewed first. The

resulting Lorentz—Lorenz equation expressed the functional relationship between the re-

fractivity and the gas density. The derivation also showed that the electromagnetic wave

incident into the gas was extinguished inside it and was replaced by a wave traveling with

a phase velocity c/n. These results then were extended to review the refractive properties of

mixtures. The resulting equations were evaluated with measured densities and refractiv-

ities of the gases which compose air in order to compute its refractive index. Finally,

this equation was used to derive the formula for the group refractive index of air. The

result was accurate to a few parts in 10 9 , which is more than sufficient for multiwave-

length ranging systems.

The measurement theories for single and multiple wavelength ranging systems operating

over horizontal paths were derived next. The performance of both single and multicolor

systems was shown to be limited by both path curvature and atmospheric turbulence.

The path curvature eaors were shown to be bias errors, and increase with the cube of the

target distance. Turbulence was shown to cause random fluctuations in the measured

single color range, and in the atmospheric correction measured by multicolor systems.w,

Its rms level was shown to increase with the square—root of the target distance.
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The dominant error source in single wavelength systems was shown to be the error in esti-

mating the integrated path air densities. Path curvature was shown to limit performance

only over paths with lo ,.-.g lengths and with large temperature lapse rates.

Optical three color systems were shown to be capable of measuring both the wet and

the dry atmospheric delay. However, they also were shown to require the most accurate dif-

ferential path length measurements. For the wavelengths of the prototype system, the re-

quired differential path length accuracy was shown to be 240 times the single color ranging

accuracy. Ranging with two colors was shown to be sufficient for measuring the dry part of

the atmospheric delay, but it requires the integrated path water vapor to be estimated by an

endpoint measurement. Although this technique was shown to be susceptible to water vapor

estimation errors, it requires less accurate differential path measurements (7.5 times the single

color,accuracy) than the three-color system. The atmospheric turbulence was shown to cause

fluctuations in the refractive correction in multicolor systems, since the spatially separated

beams of each color can traverse regions of independent turbulence.

A prototype pulsed multicolor ranging system was constructed as part of this research.

The transmitter was a modelocked ND:YAG laser, and was equipped with a frequency

doubler and tripler. Since only the 355 and 1064nm output pulses were used for measur-

ing the atmospheric dispersion, the system used the two-color technique. The dispersive

delay was measured by using two static crossed-field photomultipliers connected to a

waveform digitizer. The path length at 532nm was measured by a photodiode, a third

static-crossed field detector, and a time-interval-unit. The data from the digitizer and the

time-interval-unit were collected and processed by a minicomputer connected to the re-

ceiver electronics. Special calibration and timing programs were developed and used to

compensate for the nonuniformities in the digitizer sweep-speed and amplitude response.

Next, the ideal receiver timing accuracy for a single laser firing was derived. The

rms timing accuracy was shown to be directly proporticnal to the laser pulse width and
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inversely proportional to the square root of the equivalent received photoelectron numbs

This limit and those imposed by the atmosphere itself are the fundamental ones when meaty

uring the atmospheric delay with pulsed multicolor ranging systems.

The additional timing biases and jitters from the photomultipliers and external tim-

ing equipment of the prototype system were shown to increase the timing errors above

the theoretical limit. These single measurement results then were extended for observa-

tion sets which were the average of many single measurements. Subsequently, the accu-

racy of estimating the atmospheric delay from the faiean difference between the reference

and atmospheric path delay data sets was calculated. This measurement technique was

used in the prototype system. The results showed that the ems jitter of the mean delay

estimate was inversely proportional to the square root of the number of data points

averaged. However, the measurement biases were not reduced by averaging. Therefore,

identification and reduction of the biases was the most important part of the system

calibration.

Link calculations showed that the maximum range of the prototype system was limited

to 25 km by the atmospheric and minor transmission losses in the 355 nm channel. Further

calculations gave typical detection and false alarm probabilities of the prototype system.

The finite probability of missing a measurement was shown to limit the rate at which

measurements can be made under weak signal or heavily turbulent conditions.

Performance measurements of the prototype system were presented last. They

showed that the photomultiplier jitter was 100psec at the single photoelectron level,

which was three times larger than expected. Suboptimum magnetic—field conditions

within the detectors were postulated as the most likely cause of this effect. The theo-

retical model for the ;.;.stem's timing jitter was confirmed by making measurements at

several photoelectron levels. The mean photomultiplier signal delay also was found to be

sensitive to the optic ,l spot position on the photocathode. This was found to cause bias

errors as large as 80 p; ^ ec in the dispersion measurements.
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When the optical spot position was more accurately controlled, the system bias errors

reduced to the 10 to IS psec range. These biases cause atmospheric delay estimation

errors at the 2 em level in the prototype system. Correction of the detector prob-

lem should permit reduction of the bias errors to tS psec, which is the residual bias level of

the waveform digitizer. Such errors would permit the atmospheric correction to be made

at slightly better than the 1 cm level.

7.2 Suggestions for Future Work

Several topics in both the theoretical and experimental areas should be investigated

further. The theory of horizontal path optical ranging should be extended to include both

diffraction and multipath effects. Multipath effects are commonly observed when viewing

images through heavy turbulence. In general, the lengths of the multiple paths will not be

equal, and this will cause further degradation of ranging accuracy.

The theory of the instrument performance and the experimental work presented here

were concentrated on the horizontal path ranging performance. Once the prototype system

is sufficiently acc ,drate, it should be used to verify the ranging theory given in Chapter 3. This

could be done by making single color ranging measurements over various path lengths, and

under different temperature lapse rat^,s and levels of atmospheric turbulence. Simultaneous

measurements of differential delay, pulse amplitude strAstics, and angle—of—arrival should al-

low the atmospheric delay, the turbulence strenbths, and the changes in path curvature to be

calculated. Comparison between changes in these values with the measured range should

permit verification of the ranging theory.

Additionally, the theory describing the prototype system's performance should be ex-

tended to include an exact calculation of the jointly-distributed detection probabilities in

the dispersion measurement channel. Such an extension also should include the effects of

the pulse—to—pubes energy fluctuations at each transmitter wavelength. Since the shorter
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wavelength pulses are produced from the 1064nm pulse via nonlinear processes, the intensity

statistics of the different wavelength transmitter pulses should be partially corre'ated.

Several design changes also should be made in the prototype system. The detector

magnetic-1,1as problem should be corrected. This would decrease both the timing jitter

and the bias contributed by the detectors to the dispersion measurement. Also, it should

substantially decrease the photomultiplier's sensitivity to optical spot positioning. Rede-

signing the receiver optics to permit more frequent monitoring of the alignment between

the reference and return optical paths should further reduce the magnitude of the re-

ceiver bias. Replacing the aluminized mirrors with dielectrically coated ones which are

optimized for 355 nm also should enhance the system's maximum range.

Finally, the optical magnification in the receiver should be reduced. A lower magni-

fication will reduce the optical ?pot movement on the photomultipliers caused by changes

in C a apparent target position. This will minimize changes in the detector delay caused

by changes in atmospheric bending or by actual target motions.
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