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~BSTRACT

An analysis of tooth profile changes in the transverse plane of
circular-cut, spiral-bevel crown gears is presented. The analysis assumes a
straight-line profile in the midtransverse plane. The profile variation
along the centerline is determined by using expressicns for the variation of
the spiral angle along the tooth centerline, together with the profile
description at the midtransverse plane. It is shown that the tooth surface
is a hyperboloid and that significant variations in the pressure angle are
possible.

INTRODUCTION

This paper presents an analysis of tooth profile changes, heel to toe;
of circular-cut, spiral-bevel crown gears. These changes are examined in
the transverse plane of the gear.

Recently, there has been increased interest in determining the effects
of slight profile changes on the kinematics, noise, stress analysis, wear,
and life of spiral-bevel gears. This interest has been stimulated by a
desire to improve operating and maintenance procedures in high-performance
transmissions of helicopters and other aircraft. References [1~6]1 are
examples of recent approaches taken to develop a broader understanding of
the geometrical characteristics of spiral-bevel and hypoid gears. It is
believed that a quantitative understanding of the geometrical character-
istics is fundamental to analyses of the above-mentined physical phenomena
of these gears.

Spiral-bevel gears are used in high-performance transmissions because
their curved teeth provide smoother and quieter operation than straight-bevel
gear teeth, Also, the curved teeth provide greater bending resistance.
Figure 1 shows a spiral-bevel gear and its pinion.

*Member ASME.
Inumbers in brackets refer to references listed at the end of the paper.



These gears are called "spiral“-bevel gears since the theoretical
centerline of the gear tooth is a logarithmic spiral [7]. A logarithmic
spiral has the advantage of providing equal angles between Lthe tooth
centerline and radial lines, at all points along the centerline. This in
turn provides uniform geometical characteristics of the tooth profile in the
transverse planes of the gear, that is, the planes normal to the radial
pitch lines of the gear. However, the disadvantages of logarithmic spiral
teeth are that they are difficult to fabricate and the tooth surface itself
is often considered to be too "flat" to incorporate the advantages of curved
teeth [8]. Therefore, most gear manufacturers have been cutting
spiral-bevel gears with circular cut*ers.

The advantages of circular cutters are that they are relatively easy to
use in manufacturing processes and that, through varying the cutter radius
and the position of the cutter center, a variety of toothforms can be
produced. Also, for a carefully chosen cutter setting and cutter radius a
circular cut can very nearly approximate a logarithmic spiral [7]. The
disadvantage of circular cutters is that the uniform tooth profile in the
transverse plane is lost, leading to distortions along the centerline. It
is the objective of this paper to investigate these distortions,

The analysis of the paper is performed on crown gears with straight
profiles in the midtransverse plane. A crown gear (sometimes called a crown
rack) is a flat gear and is thus analogous to a rack for spur gears. Many
spiral-bevel gears have apex angles that are nearly 90° and are thus
approximately crown gears (fig. 1). Also, the analysis is developed in the
transverse planes since, as mentioned previously, these planes are normal to
the radial pitch lines of the gear. The transverse planes are thus the
planes of the transmitted force vector from the pinion to the gear,
Moreover, the transverse planes are perpendicular to both the pitch and
axial planes of the gear and they are tangent to the theoretical "bevel gear
sphere" [9] with center at the gear apex.

SYMBOLS
C cutter center
H horizontal cutter setting
k cotangent of pressure angle
N radial unit vector
Ng transverse unit vector
P typical point on gear centerline
Pm midpoint on tooth centerline
p position vector to typical point on curve
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N
o

0 gear center

Re cutter radius

Ry inside radial distance

Rm mean radia! distance

Ro outside radial distance

r radial coordinate from O

P radial coordinate from C

to transverse tooth thickness

v vertical cutter setting

X,Y,2 coordinate axes with origin at 0 and with X-Y plane coincident
with pitch plane

?,?,? coordinate axes with origin at C and with X~Y plane coincident
with pitch plane

XsY,2 distance relative to X,Y,Z coordinate system

2,92 distance relative to X,¥,7 coordinate system

Y angle OPC in fig. 5

e pressure angle in transverse plane

P radius of curvature

) transverse angle

m miatransverse angle

b spiral angle

¥m midspiral angle

Ay spiral-angle change (¥ - ¥p)

PRELIMINARY CONSIDERATIONS
Configuration

Figure 2 depicts a top view of some of the geometrical features of a
circular-cut crown gear, which will be useful in the following analysis.
Specifically, 0 is the gear center or "gear apex" and C is the circular
cutter center with a cutter radius Re in the pitch (X-Y) plane. The
spiral angle ¢ is the angle between a radial line through 0 and the



tooth centerline. The midspiral angle wp, shown in figure 2, is the
angle between the tooth centerline and the radial line passing through the
midpoint of the tooth centerline (§h$ -axis). Finally, figure 2 has two
sets of coordinate axes X,Y,Z and X,Y,Z with origins at 0 and C,
respectively. The coordinates are then related by the simple expressions

R s x = H, §ay-V, 2wz (1)

where H and V are the horizontal and vertical cutter center settings.
Spiral Angles
The spiral angle ¢ varies along the centerline of the tooth. For
example, figure 3 shows a series of radial lines intersecting the tooth

centerline, It is easily seen that the spiral angles are all distinct; that
is,

by h oy RN kg kY, (2)

Figure 3 also shows transverse lines (edge views of transverse planes)
intersecting the tooth centerline and forming “"transverse angles" o,

which are complements of the spiral angles. The transverse angles are also
distinct; that is,

3 # ) ¥ i # °3 k9, (3)

Interestingly, if the tooth centerline is a logarithmic spiral, the spiral
angles are all equal; that is,

PR ! (4)

Similarly, the transverse angles are also all equal for a logarithmic spiral
tooth centerline; that is,

@1"‘925?']]”‘?3“‘?4 (5)

Logarithmic Spiral and Circular Arc

The property described by equations (4) and (5) is an attractive
feature of logarithmic spiral tooth centerlines. Indeed, for such a
centerline the tooth profiles, obtained by the intersection of the tooth
surface and the transverse planes, are all similar.

A logarithmic spiral has an equation of the form

ma
r = Rme (6)



where r and 6 are the radial and transverse (polar) coordinates of a
typical point P on the curve. For a logarithmic spiral tooth centerline,
Rm 1s the distance from 0 to Py, the midpoint on the tooth centerline,
and m is the cotangent of the spiral angle. That {s,

m e cot ¢ (7)

(Eq. (7) follows from eq. (6) by noting that dr/dé = mr and that when
0 = 0 the slope is tan v = tan vy = r do/dr.)

Buckingham [7] has shown that there is very little difference between a
logarithmic spiral tooth centerline and a circular arc if the radius R¢ of
the circular arc is the same as the radius of curvature at the midpoint Py
of the logarithmic spiral. It is easily seen (appendix A) that the radius
of curvature of a logarithmic spiral of the form of equation (6) is
2)1/2

o= r(l +m = r/sin v (8)

where the second equality follows from using equation (7). Hence, a nearly
coincident circle is obtained by letting R be

Re = Ryfsin v, (9)

From figure 2 the horizontal and vertical cutter settings are then

Hea Rm - RC sin \Pm = 0 (10)
and
V=R, cosy =R cotv (11)

For a typical midspiral angle of 30°, equations (9) and (10) show that
the cutter radius would be twice the mean gear radius and that the cutter
center would be on the Y-axis. This is sometimes considered to be
impractical for fabrication [7]. Moreover, the tooth shape is often deemed
to be "too flat" g&]. Nevertheless, for a gear with a mean radius of
177.8 mm (7.0 in.) Buckingham has shown (see also eq. (14) below) that the
difference in spiral angles between the circular arc and itie logarithmic
spiral tooth centerline at the heel and toe is less than 1/2°. A computer
plot comparing a circular arc with a logarithmic spiral tooth centerline for
a more realistic cutter setting and radius is shown in figure 4, In this
figure the mean radius Ry is again 177.8 mm (7.0 in.) and the midspiral
angle is 30, but the cuPter radius R, is reduced to 152.4 mm (6.0 in.).
Equations (10) and (11) then give the horizontal and vertical cutter
settings to be H = 101.6 mm (4.0 in.) and V = 132,98 mm (33 in.) In this
case, the spiral angles differ by approximately 6° at the heel and toe.



Variation of Spiral Angle Along Circular-Cut Tooth Centerline

It 1s helpful to develop an expression for the change in the spiral
angle along a circular-arc tooth centerline., Such an expression is easily
obtained from figure 5, which shows an enlarged (but not to scale) view of
the circular-arc tooth. Then, using the law of cosines with triangle OPC
leads immediately to the expression

(00)% = ()% + (TP)? - 2(TF)(TP)cos v (12)

By recognizing that cos y = sin ¢, (UU)2 o HE + Vz, (UP)E o) ra, and

(CF)Z a af, equation (12) can be rewritten in the form

2 2 2 2 .

H™> + V5 = pr™ + RC - Zch sin vy

or as

sin v = (% + RE -8 - vE)jarR (13)

Finally, by noting in figure 5 that H = Ry - Re sin ¢y and V = R cos %

(eqs. (10) and (11)), equation (13) becomas? " ¢ .

siny = (r2 = RS + 2R R sin v )/2rR (14)
m me m ¢

ANALYSIS

Determination of Effect of Spiral Angle Changes on Traverse
Tooth Profile

Consider again the change in the transverse angle ¢ as shown in
figure 3 and recorded by equation (3). These changes can be simulated by
cutting a circle with radius Ry by vertical lines at varying dixtances x
from the origin, as shown in f?gure 6. (Alternatively, fig. 6 may be viewed
as representing transverse cutting planes passing through a surface of
revolution.) Then it is immediately seen that

X = Rc cos ¢ = RC sin ¢ (15)

This relatively simple result is an effective aigorithm for studying tooth
profiles in the transverse plane; that is, the transverse tooth profile for
any spiral angle ¢ can be obtained by passing a cutting plane through

the circular-cut tooth surface of revolution at a distance x from the cutter
axis, where x is given by equation (15).

¢This expression is identical to that recorded by Baxter [9].
6



Determination of Form of Surface of Revolution for Straight-
Line Profile in Transverse Plane

If a crown gear has a straight-line profile in the transverse plane, it
is analogous to the involute rack of spur gears. Such a gear is sometimes
called a "crown rack" [7]. Consider figure 7, which shows the pitch plane
of a crown gear together with a typical tooth centerline and the coordinate
axes. Imagine a transverse plane cutting the tooth surface and passing
through the midpoint of the tooth centerline as shown. Then, if the crown
gear is to simulate a crown rack at its midpoint, the tooth profile in the
midtransverse plane might appear as shown in figure 8.

The equations of the left and right sides of the tooth surface in this
midtransverse plane are then of the form

z=k(y + t0/2) (16)
and
z = —k(y - ty/2) (17)

where ty is the transverse tooth thickness in the pitch plane and k is the
cotangent of the pressure angle 6; that is,

k = cot e (18)

The equation of the tooth surface of revolution generated by the
circular cutter can be expressed in the form

2 = f(F) (19)

were ¥, the radial distance from the cutter center C, is

v

The equation of the midtransverse cuttinyg plane as shown in figure 7 is
simply

X = RC sin Y (21)

wWhen X has the value R sin vy, f(¥) as determined by equations (20)

and (21) has the form of equaTions (16) or (17) for a straight-line profile
in the midtransverse plane. Substituting from equation (21) into (20) and
then into (19) and solving for § lead to

~ ~2 2 .2 1/2
y = -(r° - RC sin wm) (22)




i

where the negative root is taken since ¥ is negative (fig, 7). Hence, from
equations (1) and (16) to (19), f(F) takes the form

F(F) = [V + (tg/2) - (% - RZ siny )1/2cot o (23)
or
F(7) = [V + (ty/2) * (p Rg sinzwm)lfz)cot 0 (24)

where equation (23) corresponds to the left or "outside" tooth surface and
equation (24) corresponds to the right or "inside" tooth surface. It is
easily shown that these surfaces of revolution are hyperboloids (appendix B).

APPLICATION - NUMERICAL RESULTS
Approximate Analysis

In equations (23) and (24), if X = R s1n v in ¥, then f(F)
becomes [V + (tg/2) + §lcot o or [~V + (t /z g]cot 8 depending on
whether f(%) describes an "outside" or "1nside“ tooth surface. As expected,
these expressions match those of the straight-line profiles of equations
(16) and (173 (These are, of course, the tooth prof11es in the midtrans-
verse plane If, however, in equat1ons (23) and (24), X = R¢ sin v,

that is, if v # ¥y, the transverse tooth profiles are no, longer

straight but 1nstead are described by the expressions

2. 1/2

2 2 .
= [V + (t0/2) - (Ri sin“y + ?2 - R, sin wm) Jcot o (25)
and
z = [+ (tg/2) + (RE ninfy + 92 - R% sin%y )1/%3cot o (26)

From figure 4 and from an examination of equation (14) it is evident
that there is relatively little numerical difference between the spiral
angle ¢ and the midspiral angle vp. Hence, by letting ay be
the difference ¢ - yp, it is reasonab]e to make approximations in
equgtions (25) and (26) by neglecting powers of aAy. By noting that
sin®y - sin‘yy = 1/2(cos 2¢p - coOS ¢) = ay_sin 2y, by using the
binomial expansion, and by recalling that ¥ is negative, equations (25) and
(26) can be expressed as

z= [V+ (ty/2) + (R /y)A¢ sin v, cos y_Jcot o (27)



and 1

2o [~V + (t0/2) -y - (R2/y)A¢ sin by, COS ¥, ]cot 0 (28)

Equations (27) and (28) when used in conjunction with equations (16) and :
(17) are a measure of the transverse tooth profile change in terms; of the
spiral angle change ay along the tooth  :nterline,

Exact Analysis

Equations (25) and (26) can also be used to obtain an exact or
numerical analysis of the transverse tooth profile change along the
centerline. That is, by using equation (l3§ or (14% the variation of z with
y (transverse distance) and with r (radial distance) is deteranned if the
cutter settings and cutter radius dare known,

Such numerical calculations were performed for a crown gear with a
cutter radius Re of 152.4 mm (6.0 in.), horizontal and yertical cutter
settings H and V of 101.6 mm (4.0 in.) and 131.98 (3 ~/3 in.), a midspiral
angle yp of 30°, and a pressure angle 6y at the midtransverse
plane of 20 Also, the inner and outer gear radii were taken as 162.4 and
203.2 mm (6. 0 and 8.0 in,), respectively. (The data are also the same as
those used in the gear depicted in fig. 4.)

These calculations were performed for the left or “outside" tooth
surface. The results are shown in figures 9 to 12, where the pressure angle
is plotted as a function of the radial distance r, the vertical coordinate z,
and the *ransverse coordinate y.

CONCLUSIONS

Perhaps the most interesting of the results are the curves showing the
variation of the pressure ang1e along the radius for different elevations in
the tooth profile. Changes in the pressure angle can, of course, affect the
stress distribution on the surface and on the rest of the tooth, as well as
the kinematics and possibly the conjugate action. Moreover, it appears that
these effects are likely to be enhanced in noncrown or conical gears.

The results also show (egs. (25) and (26)) that the transverse tooth
profile will not be straight except in the midtransverse plane. This could
also affect the stress distribution and surface kinematics.

Finally, the procedure outlined in equations (16) to (23) for
determining the cutter profile can be used for any desired tooth profile
shape. Alsu, the effect of the spiral-angle change on such tooth shapes in
the transverse plane can be determined by following the procedure cutlined
in equations (27) and (28).



APPENDIX A
RADIUS OF CURVATURE OF A LOGARITHMIC SPIRA.

The radius of curvature of a curve can be expressed in the form [10]

p =m ldglde‘i/a(dglda) X (dZE/doz) (Al)

where p is the position vector to a typical point on the curve and ¢ s
a parameter defining the locus of the points on the curve. Fur the plane
tooth centerline in the form of the logarithmic spiral of equation (7), P

can be expressed as

porg =Re™p, (A2)

where . 1s a radial unit vector. If ps is a transverse unit vector,
it is easily seen that [10]

dnr/dr = Ny and dnelde = -0,

Then, by substituting from equation {(AZ) into (Al) and using equation {(A3),
p becomes

o = [r + (dr/de)213/8 1 2(dr/de)? + v - rd®ride?] (A4)

Finally, by letting r be Rpye™ and by simplifying, e becomes

o = r(1 + m?)2 (AS)

10



APPENDIX B
HYPERBOLOID -~ A SURFACE OF REVOLUTION
A hyperboloid is a "ru:ad" surface of revolution [11]. (That is, it
%an be developed by straight-line elements.) The equation of a hyperboloid
S

22 - rz -1 or 2 *(rz - 1)1/2 (81)

where z 1s the axial coordinate and r 1s the radial coordinate.

Equations (23) and (24) can be put into the form of equation (Bl) by
the following substitution: Let

~\
£ o r/RC sin Y

kq @ [V *+ (ty/2z)]eot o

Ky = [-v + (t0/2)]cot 9
> (B2)

22 = (z - Kz)/‘

Then, by substituting the parameters defined by equation (B2), equations
(23) and (24) take the form

zl - _(52 - 1)1/2 (83)
and

11
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Figure 1. - Spiral-bevel gear and pinion,
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Figure 2. - Top view of circular-cut crown gear with centerline of typical tooth
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