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ABSTRACT

- The elasticity problem for a long hollow circular cylinder contain-
ing an axisymmetric circumferential crack subjected to general nonaxisym-
metric external loads is considered. The problem is formulated in terms
of a system of singular integral equations with the Fourier coefficients
of the derivative of the crack surface displacement as density functions.
The stress intensity factors and the crack opening displacement are cal-
culated for a cylinder under uniform tension, bending by end couples, and
self-equilibrating residual stresses.

1. Introduction

The elasticity problem for a cylindrical structure such as a pressure
vessel or a pipe which contains a part-through surface crack appears to be
analytically intractable. Such problems are generally treated either
numerically by using the technique of the finite elements [1,2] or the
boundafy integral equations [3], or, in relatively thin-walled cylinders,
approximately by using the 1ine spring model in conjunction with the shell
theory [4,5]. The limiting cases of some of these problems can also be
solved analytically which provide very useful results, for example, regard-
ing the bounds of stress intensity factors. The plane strain problem of
a hollow cylinder containing a crack in a radial plane which constitutes
the Iimiting,case of a cylinder with an axial part-through crack is one
such problem. Another prob]em is that of a long thick-walled cylinder
which contains an axisymmetric radial crack. - In this paper the latter

(*) This wd‘k was supported by NSF under the Grant CME-78- 09737, by
NASA-Langley under the Grant NGR 39-007- 011 and by DoT under the
contract DOT-RC-82007.
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problem is cons1dered ‘for arbitrary nonax1symmetr1c loading conditions.
The related problem for an elastic solid cylinder containing a penny-
'shapedcnack1scons1dered1n [6-8], and that for a hollow cy11nder under
axisymmetric loading conditions in [9].

2. Formulation of the Problem

The problem under consideration is described in Fig. 1. The external
loads may be decomposed in such a way that the problem may be expressed
as the superposition of a problem which is symmetric and that which is
anti-symmetric with respect to the z=0 plane. In this paper, only the
symmetric. problem is treated. Clearly, it is sufficient to consider one
half (e.g., z>0) of the medium only. Furthermore, for the given external
 loads the quasistatic problem for the cylinder without the crack is
assumed to have been solved. Thus, the information regarding the stress
intensity factors may be obtained -by considering the perturbation prob-
lem in which the crack surface tractions are the only external loads.
Following are then the boundafy and_cohtinuity conditions of the problem:

crr(ase,Z) = TPZ(a’Q’Z) =,%re(a,e,z) 0, 0<e<2m, O<z<w , (1)

Opyp(b58,2) =.rrz(b,é,z) = rre(b,q,z) =.0, 0<8<2m, Qgpﬁgn, - (2)
rzr(r,Q,O) = r;e(f,e,p) = 0% a<r<b, - 0<p<2w , . . . (3)
GZZ(P;G,O)'= p(r,é) ;-c<r<ﬂ R O$p§?n . | (4a)
uz(r,e,O) ; 0, a5f<c, d<r5§, 0<e<27m , '- - - .(4b)

where the dimensions of the cylinder and the crack are given in Fig. 1

and p(r,e) is a known function. Also, the stresses must vanish as z-e.
Referring to [10], [11], and [8] the solution of the problem may

be expressed in terms of a system of five harmonic functions as follows:
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The harmonic‘function ¢ is associated with the formulation of the -
problem for an infinite elastic space for which z=0 is.a plane of symmetry
[10]. The functions Bo, B], 82 and y are equivalent to Papkovich-Neuber
potentials in cylindrical coordinates [11,8]. With an important application
of the bending of the cylinder in mind, if we restrict the considerations
to external loads which are symmetric in e, that is, 1f p(r,6) = p(r,-8),
then the functions p and ¢ may be expressed as

p(r,e) = 5 on(r) cOs ne ,' ‘ - ' (18)
. 0 , '

(r,6,2) = I cos ne [ Aﬁ(a)dn(ar)ae'“z de, (19)
‘ o ‘
o .

where the functions An’ (n=0,1,...) are unknown and

oo(r) = %-I p(r, e)de, o, (r) J p(r 8)cos neds, (n=1,2,...) .

0. 0

- (20)

For the symmetric 1dading under consideration from (5)-(17) it may .
be seen that B and B] are even and leand y are odd in e. Taking also
into account the symmetry with respect to the z=0 plane, these harmonlc
funct1ons may be written in the following form
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By = £ cos[(m1)e] 2 [ [y, (s)1,(sr) + Con($)K 4 (sP) Tcos(sz)ds,

- n=0 o
(21)
B, ;~n§o s{n[(nﬂ)e] %[ '[Ch‘,(s)In”(sr)*r_cz,,(s)K,,ﬂ_(sr)]f:OS(,SIZ)ds ,

o]

(22)

- 2 o ' K .
B, nzo cos(ne) ;—L [Car(s)In(sr)+c4n(s)Kn(sr)]cos(sz)ds , (23)

P = ;0 sin(ne) %-I [C5n(s)In(sr)+csés)Kﬂbﬁﬂcos(sz)ds . (28)
n= o .

where I, and Kn are modified Bessel functions and the functions Cin’
(i=1,...,63 n=0,1,...) are as yet unknown. .

From the formulation of the problem as stated, it may be verified that
 the conditions (3) are -identically satisfied. The seven sets of unknown |
functions Ap, Cqps...s Cgpos n=0,1,... are then obtained from the seven
conditions (1), (2), and (4) by observing that these conditions are in the:
form of sine or cosine series, and hence, by writing the coefficients of
sin ne or cos ne equal to zero for each n. Thus, for each n the homogeneous
conditions (1) and (2) are used to eliminate six of the unknowns and the
mixed boundary condition (4) is used to determine the remaining unknown
function. The integral equation of the problem may be obtained directly
by expressing E ‘ -

uz(r,e,O) =3 ¢h(r)cos ne, -a<r<b, 0<p<2m, B ~ (25)
. o ,
where from (4b) it follows that

¢ﬁ(r) = 0, agr<c, d<r<b,. (n=0,1,...) _ . : (26)



From (7), (19) and (21)-(26) it foliowﬁ that
d . |
Al) = 7 [¢n~(t)dn(af)tdt. | I )

T-v
c

, By using the conditions (1) and (2), the unknown functions Copee--»
:Csﬁ may be obtained in terms of o in the following form:

_ . d _ |
cin(s) = - T%C .%] mij(s)f t¢n(t)Gj(s,t)dt, (i=1,...,6; n=0,1,.i;)
J= c . (28) .

where the functions my 5 and Gj, (i,j=1;...,6) are given in Appendix A.
Finally, from (4a) and (18), it follows that

<]

1B [ (a2t (0)d, (or) a%e™ da

+2s 1--%1 CinlsIy(ras)ds.= ay(r), (1=0,1,...) (29)

where
Ny = 2vI (sr) + sr ;n+](sr); N,

-2v kn(sr) + sr Kn+1(sf),

N3 =5 In(sr),‘N4 =5 Kn(sr) . - - (30)

- Substituting now from (27) into (29), through an asymptotic analysis
separating the singular part of the kernel, and by integrating by parts

we obtain
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where the kernels L1 and L, are given by

5 )2
Ll(t,l") = - %21? Tog [ tt-: ]+ f {at[n J (at)s ,n=1 (at)
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Sl g
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Ve
+ (fl)n sin(er))]}de . ' - (R)
Lz(t,r)_= ;-J b z m; (s)N (s, r)v (s, t)s ds. _ (33)
! i=1 j=

(o]

The function Su (z) which appears in (29) is the Lommel's function
. [12,13], and C(x) and S(x) are the Fresnel integrals defined by [14]

2
x2 ,

2 |
[ estar,spo-L] site . (34)
/E;O/E /2_‘"0 /1_:- )

C(x) =

The funct1ons v (s, t) appear1ng in (33) are given 1n Append1x B. . A conven-
ient numerical techn1que for the evaluation of Lommel's funct1ons of real
and imaginary arguments.1s described in Append1ces_c and B.
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The infinite integrals which appéar‘in (32) converge rather sTowly for
nearly all values of r ahd't. The reason fOr'fhis is that, considered
term by term, all integra1s'in (32) -are divergent. However, it can be
shown that thg'asymptotiC-behavior of- the terms for large values of o is
jdentical but opposite in sign to the trigonometric terms in the integrand
and the sum leads to a convergent integral. The realted asymptotic analy- -
sis and the numerical eva]uatidﬁ of these integrals are described in Appen-

dix D.

3. The Stress Intensity Factors

The Mode I stress intensity factors along the crack bordérs r=c¢ and
r=d are defined by

(e) = Tin AT o (ri00) 5 - (3)
r+c - o L

k(d) = Tin /Z(r=dT o,,(r.6,0) , I (36)
r-d . o

and, in terms of the crack surface displacement, may be expréssed as

k(c) = ] T1im ¥Y2(r- c) 3 z(r 0 0)
r-c
= H_ Tim /2{r-c) T ¢! (r) cos ne- ) (37)
]"V r_)c. R o n ) ’ ’
k(d) = - ———-11m v2(d-r) 37 Yy (r,o, 0)
= TE—-hm v2({d-r) z 6 (r)cos ne ... (38)

r-d

The formulation given in the previous section is valid provided the
external load p(r,8) is such that the crack surface displacement u (r,e 0)
is positive everywhere in (c<r<d, _0<8<27).-—In-this case, the stress inten-
sity factors k(c) and k(d) would be positive for all values of o.

-8- .



4, The Embedded Crack

Referring to Fig. 1, if c>a and d<b the crack is embedded and the crack
surface displacement is zero at r=c and r=d. From (25) it then follows
that ¢n(c) =0 = ¢n(d), the integrated terms on the left-hand side of the
integral equation (31) vanish and the integral equations must be solved
under the following conditions (see (26):

d : '

] ¢ (t)dt =0, n=0,1,... (39)

c

The solution of the singular integral equation (31) is of the form
60 (t) = £ () (t-c)(d-t)]F , c<t<d, (40)

where fn(t) is a bounded function. After normalizing the interval (c,d) by
defining
- _ d+ : . A4
O TRL SEIIRL ACELAS) o

The functions Fn(r), n=0,1,... may be obtained from (31) by using a Gauss-
Chebyshev type quadrature formula [15].

5. The Edge Cracks

If the crack is a surface or an edge crack, then the crack surface
displacement will be zero only at one tip and consequently the conditions
(39) will no longer be valid. In this case (the Fourier coefficients of)
the crack opening diéplacement on the cylinder surface may be expressed as

d
a=c<debs o) =0, g(c)=-[ g (that, (42)
c
d _
a<c<ed=b (c) =0, ¢, = [ ga(t)t, - (43)
c



_for the inner and the outer edgecracks, respectively. For these crack
configurations, even fhough the integral equation (31) is still valid, the
integrated terms on the left-hand side are not zero and by using (42)
and (43), (31) may be expressed as

1ot st .
[did & - @ 5+ Lt = L
c

+ Ly(t,r)-Ly(s,r) b (£t = 12X 6 (r), cered, n=0,1,...  (44)

where s = ¢ = a<d<b for the internal edge crack and s = d = b>c>a for
the external edge crack. . '

For the edge cracks even though the. kernel Lz(t,r) contains addi-
tional singular terms (in the form of generalized Cauchy singularities)
which become unbounded as t and r go to the end point s simu]taneoué]y, as
seen from (44) for (t,r) - s the entire kernel in (44) vanishes. As
shown in [16], the consequence of this is that the derivative of the
crack surface displacement at r=s (i.e., on the cylinder surface) is
bounded. This point is rather important in the numerical solution of
the integral equation. For the embedded crack, in the Gaussian integration,
referring to (41) the unknowns and the collocation points are Fn(Ti) and
Py respectively where

t; = cos(m %5}9 L i=1,....m (45)
_ 2j-1y,  _ ‘
pj = COS(TI' 2m_2) .3 J = T,...,m-] . (46)

The additional equation to solve for m unknowns Fn(Ti)’ (i=1,...,m) is
provided by (39). However, in the edge crack problem (39) is not valid
and consequently there are only m-1 algebraic equations. In this case
sincé'the column in the coefficient matrix obtained from (44) which cor-
| responds to t=s, f.e., =1 or t=-1, is identica]]y}zero,'the system of
algebraic equations involve m-1 unknowns only and hence gives a unique
solution. |

-10-



After obtaining ¢; the stress intensity-factor at the crack tip may
again be obtained by using (37) or (38). In the edge crack problem

another quantity of some interest is the crack opening displacement at'the".

cylinder surface which, referring to (25), (42), and (43), may be
obtained from o

d
6 ='u,(2,0,40) - u,(a,0,-0) = -2% cos o [ g (t)et ,  (46)
_ ) . 0 n. )
b
§ = uy(6.:6,40) = U, (b,0,-0) = 25 cos ne [ g1(t)dt . (a7)
. [o] . ’
’ c
6. Results

The numerical results given in this section are obtained for three
different loading conditions, namely the uniform axial stress, the bending
of the cylinder by end couples, and the self-equilibrating residual stress.
For these three loading conditions the crack surface tractions in -the per-
turbation problem are respectively given by (see (4a) and (18))

- | .
p(ri8) = oo(r) = -0, = = —pr—=uy » . (48)
p(rs0) = o(r)cose = -o;(Dcose » oy =~y (49)
p(r,e) = og(r) = -o, [ATAURLIE) 43 - (50)

where P, is the axial force, M is the bending moment, and o is the mag-
nitude of the compressive stress on the surfaces of the cylinder. In

the residual stress prob]em the axial stress oz(r,e,o) is assumed to be
independent of e, parabolic in r, compressive on and near the surfaces,
tensile in the interior region of the cylinder wall, and statically self-
equilibrating. Unless otherwise stated, in all examples the Poisson's
ratio is assumed to be 0.3.

-11-



For a ring-shaped crack in an infiﬁite solid (i.e.; for a=0, b=«)
the calculated stress intensity factors are shown in Figure 2, Here A
is the uniform crack surface pressure, for n=1-the crack surface traction

is defined by
p(r,8) = o](r)cose = ;c]’(g)cose s - (51)

and L
= k(s,8) = k' (s)n on( ) cos ne , (n=0,1) (52)

is the stress intensity factor along the crack edges s=c and s=d. - Note
that as c/d approaches 1 and 0, respectively, the plane strain and the
penny-shaped crack results are recovered. :

For ho]]owicy]inders under tension or bending the resu]ts‘are given
in Tables 1-17. ' Tables 1-3 show the stress intensity factors for a sym-
metrically located imbedded crack (i.e., for b-d = c-a, Figure 1). Here
the horma]izing stresses o and oy are defined by (48) and (49). As
(a/b) -~ 1 the curvature effect disappears and the stress intensity factors
approach those obtained from the plane strain éolution'of a strip contain-
ing a center crack. '

Tables 4-15.show the stress 1ntens1ty factors and the crack opening
displacements for an internal or an external surface crack. -Here £
is the total crack depth (£ = d-a for ¢ = a and £ = b-c for d=b), h =
b-a is'the.wa11 thickness (Figure 1), and the crack opening displacement
§ is defined by (46) and (47). For a very small crack depth (i.e., for
£/h = 0.01) the effect of a/b on k is shown in Figure 3. In this case
the stress intensity factors for a half plane, for a strip and for a
solid cylinder are practically the same (i.e., k/aov"'é 1.121). It is
seen that for the internal edge crack as a/b approaches 0 and 1_k/co%Z
‘approaches respectively 2/x and 1.121 which are -the values for a penny-
shaped crack and for a strip. For the external edge crack, on the other
hand the influence of a/b on k is hardly not1ceab]e. |

The Timiting values of k and § for (a/b) -+ 1 shown in the tables
are obtained from the plane strain solution of a strip containing an

-12-



edge crack. The stress intehsity~factor for an internal edge crack seems
to be a monotonously increasing function of a/b for all crack depths. On
the other hand, for an externa] edge crack k always seems to go through

a m1n1mum as a/b goes from 0 to 1. . :

For one crack-cy11nder geometry, namely for a=c<d<b, (a/b) = 0.5 and
(£/h) = 0.3 the effect of Poisson's ratio on k and § is shown in Tables
16 and 17. It may be seen that both k and & ihcrease'monotonously'but
very slightly with incréasing Poisson's ratio.-

For the residual stress problem the crack geometry and the stress
profile are shown in Figure 4. It is clear that if the crack is suffi-
ciently shallow so that it lies in the'compressive zones near the surfaces,
then the crack surfaces would remain closed and k would be zero. In the
example under consideration by letting T (r ) =0 (i =1,2) in (50) we
find

ry-a ry-a : : '
-E——' 0.211 ’ —b—_a— = 0.789 : (53)

whgre ry<rer, is the tensile region. If o defines the crack tip as shown
in Figure 4, for r Rl in the inner edge crack and for r o<T? in the outer
edge crack case the crack tip will be in the tensile zone of the cylinder
and k will be positive. However, in this case the crack surfaces will
still be partially closed and, hence, the problem is a crack-contact prob-
lem with the depth e of the contact zone being an unknown constant. The
physical condition which accounts for this unknown is the smooth closure
condition of the crack surfaces at r=ate or r=b-¢. "Thus, the problem may
now be treated as an embedded crack problem with the crack surface trac-
tion p as given by (50) and c=ate, d=rg, (r >r1) for inner edge crack, and
c=r,s (r <r2), d=b-¢ for outer edge crack case. In each case, the smooth
c]osure condition to account for the unknown constant e may then be
expressed as

k(ate) =0 , 'k(b-e) =0 . - (s

For two cylinders with thickhe;s_ratibs-a/b = 0.7 and 0.9, Figure 5
shows the stress intensity factor k(r;). Note that k is positive for

-13-



r<r, <b in the inner edge crack case and for a<r o2 in. the outer edge
. crack case where r and r, are given by (53). Also note that initially as
the crack length £ increases (F1gure 4) k increases, goes through a maxi- .
mum and tends to zero as the crack traverses the entire cylinder wall.
Similar results have been observed for flat plates [18]..

For a/b = 0.9 the length ¢ of the contact region 1sshown in
Figure 6. For example, in the case of the internal edge crack e=£,
that is the crack is fu11y closed for £<r]-a where (r -a)/(b- a)-- 0.211.
For £>r]-a, € decreases monotonous]y and tends to zero (asymptot1ca11y)
as £ -+ b-a.
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Table 1. Stress intensity factors for a symmetric embedded
: .crack in a thick-walled cylinder subjected to axial
tension and pure bending. ((d-c)/(b-a)=0.1, o4 =
Po/Cn(52-32) 1, oq=aMb/[n{b%-a"11)-

2 |d<] ¢ | XEL|X k(e K
b ‘b‘ b %y > % > a1y-3t cose ;;ngz-cose
0.1/0.09 |0.505 | 1.028 | 0.989 | 0.538 0.562
0.2(0.08 [0.56 | 1.024 | 0.991| 0.590 10.612
0.3/0.07 |0.615 | 1.020 | 0.994| 0.643 0.662
0.4{0.06 [0.67 | 1.017 | 0.996| 0.695 0.7
0.5/0.05 {0.725 | 1.014 | 0.998| 0.747 - .| ~ 0.761
0.6/0.04 |0.78 | 1.012 | 1.000| 0.799 0.810
0.7{0.03 |0.835 | 1.010 | 1.002| 0.851 0.859
0.8/0.02 |0.89. [ 1.009 | 1.003| 0.903 | 0.908
0.9{0.01 |0.945 | 1.007 | 1.005{ 0.954 ©0.957
+1.0| »0 |1 |+1.006 |+1.006| -1.006 +1.006

Table 2. Stress intensity factors for a symmetric embedded
crack in a thick-walled cylinder subjected to axial
tension and pure bending. ((d-c)/(b-a)=0.5, og=
Pw/[m(b2-a2)], o1=4Mb/[=(b*-a")]).

ca | d-c c |-klc) | kid) |___k(c) k(d)
_B- b b oo\[‘i_é—c- 9 3 c“]—di_f: coso °]Jd'§LC°56
0.1/0.45}0.325| 1.383| 1.1177| 0.506 0.671
0.2]0.40|0.40 | 1.330| 1.124| 0.593 0.733
0.3[0.35{0.475| 1.294| 1.131{ 0.677 0.795
0.4]0.30]0.55 | 1.268| 1.139] 0.758 0.856
0.5{0.25{0.625{ 1.247| 1.147| . 0.836 0.914
0.6 [0.20|0.70 | 1.231] 1.155 0.911 0.971
0.7]0.15{0.775| 1.217| 1.162 0.984 | = 1.026
0.8/0.10{0.85 | 1.206| 1.170| 1.054 | 1.080
0.9]0.05|0.925 | 1.196| 1.178| 1.121 1.133
+1.0] 0 | +1 |+1.187[+1.187 | +1.187 +1.187
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Table 3. Stress intensity factors for a symmetric embedded
crack in a thick-walled cylinder subjected to axial
tension. ((d-c)/(b-a)=0.9, oo=Pa/[n(b“-a“)]).

a d-c - C k(C) k{d)
b b b | 'codz-"— oo-di-";
0.1 0.81 0.145 3.740 2.412
0.2 0.72 0.24 3.300 2.404
0.3 0.63 | 0.335 3.081 2.410
0.4 0.54 | .0.43 2.945 | 2.422
0.5 0.45 | 0.525 2.850 2.437
0.6 0.36 0.62 2.778 2.456
0.7 0.27 0.715 2.720 2.479
0.8 1 0.18 0.81 2.671 2.506
0.9 0.09 0.905 2.627  2.536
51.0 50 51 52.585 +2.585

Table4 . Stress intensity factors and crack opening displace-
ments for an internal edge crack in a thick-walled.
cylinder subjected to axial tension and pure bending.
(2/h=0.1, h=b-a, ao=Pw/[n(b2-a2)], c]=4Mb/[n(b“-a“)]).

a k(d) | k(d) p_ slc) . &(c)
B og”% 61/F COS8 I=v ho, T-v hocose
1 . .
0 -| 0.637 .| 0.042 0.128 0
0.1 0.842 0.123 - ©0.212 - 0.021
0.2 0.940 0.225 0.244 0.050
0.3 | 1.000 0.334 0.261 '0.080
0.4 | 1.042 0.447 - 0.272 0.111
0.5 1.073 ' 0.563 0.281 0.142
0.6 1.097 0.680 0.287 0.174
0.7 1.119 0.800 0.292 0.206
0.8 1.138 - 0.922 0.297 0.239
0.9 1.158 1.048 0.302 0.273
+1.0 | +1.189 >1.189 +0.310 +0.310
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Table 5. Stresé ihtensity'factors and crack opening displace-
' ments for an external edge crack in a thick-walled
cylinder subjected to axial tension and pure bending.

(2/h=0.1, h=b-a, o =Pu/[n(b2-a%)], oy=aMb/[r(b*-a*)]).
a k(<) k(<) 5(d) 5(d)__
b a7% 91/z €0s8 | T-v h g, T%C'ﬁc] cose
0 1.181 1.166 0.302 | . 0.308
0.1 1.176 1.159 . 0.302 0.306
0.2 1.172 1.153 0.302 0.304
0.3 | 1.170 1,149 0.302 0.303
0.4 1.168 1.147 | . 0.302 0.302
0.5 | 1.167 1.147 0.302 0.301
0.6 | 1.167 1.149 ~0.303 0.301
0.7 | 1.168 1.152 0.303 0.302.

0.8 | 1.169 1.188 0.304 0.303
0.9 | 1.173 1.166 0.306 0.305
+1:.0 | +1.189 +1,189 +0.310 +0.310

Table 6. Stress intensity factors and crack opening displace-
ments for an internal edge crack in a thick-walled
cylinder subjected to axial tension and pure bending.
(2/h=0.2, h=b-a, co=P¢/[n(b2-a2)], o]=4Mb/[n(b“-a“)]).

R K(d] k(d]_ T O) W __s(c]
b Tov% g1/% COs8 I=-v h g, T-v }To'-I cos
0 0.644 0.085 0.258 0
0.1 0.775 0.153 0.373 0.036
0.2 0.869 0.241 S 0.441 | 0.089
0.3 0.942 0.342 0.488 0.148
0.4 1.003 0.452 0.524 0.212
0.5 1.055 0.571 0.555 - '0.280
0.6 1.104 0.699 0.582 0.353
0.7 | 1.150 0.833 ~ 0.608 0.429
0.8 1.198 0.978 0.635 0.511
0.9 1.263 |  1.139 0.666 0.602
+1.0 | +1.367 +1.367 +0.732 50.732



- ‘Table 7. Stress intensity factors and crack opening displace-
- ments for an external edge crack in a thick-walled
cylinder subjected to axial tension and pure bending.
(2/h=0.2, h=b-a, co=Pm/[n(b2-a2)], o]=4Mb/[w(b“-a“)i);

0 1.260 1.314 . 1 0.625 . 0.705
0.1 | 1.244 1.279 0.622 0.685
0.2 | 1.235 © 1.253 ©0.623 0.669
0.3 | 1.231 1.234 0.626 0.658
0.4 | 1.230 1.222 . | 0.630  0.651
0.5 1.232 1.217 0.635 ~0.647
0.6 | 1.238 1.218 | 0.643 0.648
0.7 | 1.247 1.226 | = 0.652 0.652
0.8 | 1.261 1.243 0.663 0.661
0.9 | 1.285. 1.274 ~ 0.680 0.677

51.0 | +1.367 | . +1.367 +0.732 +0.732

Table 8. Stress intensity factors and crack opening displace-
ments for an internal edge crack in a thick-walled
cylinder subjected to axial tension and pure bending.
(2/h=0.3, h=b-a, 00=Pm/[w(b2-az)]: U]=4Mb/[n(b“-a“)])...

a k(d) ~ k(d) u_ 3(c) u s(c)
b AV ay/% €OS8 T-v h o, T-v ho, cose
o | o0.651 | 0.127 - 0.3%0 . | 0
0.1 0.753 |  0.188 © 0.526 0.050
0.2 0.840 0.266 0.626 0.123
0.3 0.918 |  0.359 0.707 0.210
0.4 | 0.991 0.466 10.776 0.308
0.5 1.060 . 0.587 0.841 0.419
0.6 1.130 0.724 0.906 0.543
0.7 . 1.203 0.876 0.973 0.681
0.8 1.286 1.053 1.050 0.841
0.9 | 1.392 1.267 1.150 . 1.038
+1.0 | +1.660 +1.660 s1.410 »1.410




Table 9 .

Stress intensity factors_énd crack opehing displace-
. ments for an external edge crack in a thick-walled

cylinder subjected to axial tension and pure bendigis

| ~ (2/h=0.3, h=b-a, co=Pa/[w(b2-az)], 01=4Mb/[w(b“-a

a kic) k(c] w_s(d) = 5(d)_

5 o5/ a1/% COS6 T-v h % -V Fo-l cose

0 1.388 1.592 0.987 1.307

0.1 1.350 1.450 ~0.976 1.225

0.2 1.328 1.431 - 0.975 1.165

0.3 1.316 1.381 0.983 1.122

0.4 1.313 | . 1.347 0.996 1.093

0.5 1.317 1.327 1.015 1.078

0.6 1.329 1.323 1.040 -1.077

0.7 1.350 1.334 1.073 1.089

0.8 | 1.384 1.365 1.117 ~1.120

0.9 1.442 1.428 1.185 . 1.181
+1.0 | ~+1.660 +1.660 »1.410 ~1.410

Table 10. Stress intensity factors and crack opening displace-
ments for an internal edge crack in a thick-walled
cylinder subjected to axial tension and pure bending.
(2/h=0.4, h=b-a, o, =Pu/[n(b2-a2)], oy=4Mb/[n(b"*-a%)]).

a k(d) _kid) u_8(c) w __8{c)
'b oo,/'gj' cl/fcose T-v h % T-v hc-l cos8
0 '0.665 0.171 0.531 0
0.1 | 0.754 0.226 0.686 0.062"
0.2 0.838 10.296 0.817 . 0.155
0.3° 0.920 0.383 0.935 0.269
0.4 1.001 10.487 " 1.046 0.404
0.5 1.085 0.611 1.158 0.563
0.6 1,174 0.757 - 1.277 0.752
0.7 1.275 0.928 1.412 0.973
0.8 1.397 1.141 1.580 1.254
0.9 1.568 1.426 1.821 1.638
1.0 | +2.112 22.112 +2.614 +2.614




Table 11. Stress intensity factors and crack opening displace-
ments for an external edge crack in a thick-walled
cylinder subjected to axial tension and pure bending.
(2/h=0.4, h=b-a, ao=P,([n(b7--a2)], a]=4Mb/[n(b‘*-a‘*)i).

" RG] k(T ) 5(d]
B 0'0/2_, 01/2% cosé T-v h 9 -v ho-l coséo

0 1.593 2.077 1.422 2.337
0.1 1.513 1.865. 1.388 2.078
0.2 1.465 1.715 1.381 11.899
0.3 1.437 1.606 1.392 1.774

0.4 1.425 1.531 1.419 1.692°
0.5 1.427 1.486 1.459 1.646

0.6 1.443 1.467 1.516 1.633
0.7 1.475 1.476 1.594 1.658
0.8 1.533 1.520 1.706 1.730
0.9 1.641 - 1.626 1.891 1.890
1.0 | +2.112 +2.112 +2.614 +2.614

Table 72 Stress intensity factors and crack opening displace-
ments for an internal edge crack in a thick-walled
cylinder subjected to axial tension and pure bending.
(2/h=0. 5, h=b-a, G°=Pm/['ﬂ’(b2‘az)], o]=4Mb/[n(b‘*-a“)]).

0 0.691 0.217 0.689 0
0.1 0.775 0.267 0.864 0.074
0.2 0.859 0.333 1.029 0.187
0.3 0.945 0.415 1.189 0.329
0.4 1.035 0.517 1.351 0.503
0.5 1.131 0.643 1.523 0.718
0.6 1.239 0.799 1.718 0.985
0.7 1.366 0.989 1.954 1.318
0.8 1.529 1.243 2.267 1.775
0.9 1.779 1.612 2.765 2.472

+1.0 +2.826 +2.826 +4.950 +4.950
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Table 13. Stress intensity factors and crack opening displace-
- ments for an external edge crack in a thick-walled
cylinder subjected to axial tension and pure bending.
(2/h=0.5, h=b-a, o°=Pm/[n(b2-a2)], 01-4Mb/[n(b“-a“)]).

% e aﬂ/f a-l',ljx(’,‘cgse 'l‘-xv g(g()" T‘-l-_v Ev-lacgse '
0 1.922 2.929 1.989 4.291
0.1 1.762 | 2.468 1.901 | 3.548
0.2 1.667 2.163 11.873 3.076
0.3 1.610 |  1.946 1.884 2.753
0.4 | 1.580 1.780 1.924 2.546
0.5 1.572 1.707 1.994 2,426
0.6 1.586 1.660 2.097 2.382
0.7 1.627 1.658 12.248 2.417
0.8 1.709 .72 | - 2.478 2.558
0.9 | 1.878 1.867 2.888 - 2.904 -
+1.0 | +2.826 +2.826 24950 +4,950

Table 14. Stress intensity factors and crack opening displace-
- ments for an internal edge crack in a thick-walled
cylinder subjected to axial tension and pure bending.
(2/h=0.6, h=b-a, o =P=/[n(b2-a2)], o7=4Mb/[x(b%-a*)]).

a | KAl | K@ [ w 8] | w3
Y ToVT g1/% COS8 f=v h g, T=-v hc1 cos8
0 0.736 0.265 |  0.877 0
0.1 | o0.820 0.314 1.077 0.087
0.2 | 0.908 0.378 1.283 0.222
0.3 | 1.000 . 0.459 1.493 0.393
0.4 | 1.099 0.561 1.716 0.611
0.5 | 1.208 0.691 1.966 | 0.890
0.6 | 1.333 0.856 2.261 1.253
0.7 1.488 |  1.066 . | . 2.636 1.729
0.8 { 1.688 1.359 ° 3.166 o 2.431
0.9 2.025 1.824 4.091 . 3.623

+1.0 | -+4.035 +4.035 +9.965 +9.965




Table 15. Stress intensity factors and crack opening displace-
ments for an external edge crack in a thick-walled
cylinder subjected to axial tension and pure bending,
(2/h=0.6, h=hb-a, o =Pu/[w(b2-a2)], oy=4Mb/[n(b*-a*)]).

Ec_L_k(sz__u_gJﬂz_«sﬂ_
[s)

% oo/r '01/% €08 1-v h o -V hc-l cosé
0 2.478 4,579 | 2.798 8.542
0.1 2.159 3.527 2.589 6.365
0.2 1.977 2.880 2.510. : 5.095
0.3 | 1.866 |  2.460 2.506 4,307
0.4 1.802 2.194  2.557 3.833
0.5 1.773 2.021 2.661 . 3,550
0.6 1.776 1.923 2.826 - 3.424
0.7 1.818 1.895 - 3.080 3.455
0.8 1.918 | 1.949 3.491 3.692
0.9 2.153 |  2.155 4.289 . 4.354
+1.0 +4.035 (- ~+4.035 +9.965 ~ +9.965
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Table 16.

The effect of Poisson's ratio on stress intensity
factors and s(c) when loading is uniform tension

. v=0 v=0.1 | v=0.2 | v=0.3 | v=0.4 | v=0.5
k(d)
oL | 1.048 | 1.051 | 1.055 | 1.060 | 1.067 | 1.076
-3l 1o814 |o0.821 |0.831 |o0.841 |o0.854 [ 0.870
o .

Table 17.  The effect of Poisson's ratio on stress intensity

factors and §(c) when loadin
(a/b=0.5, 2/h=0.3, o]=4Mb/[n

is pure bending
?b“-a )1, h=b-a).

vs0 | v=0i1 | v=0.2 | v=0.3 | v=0.4 | v=0.5

K(d , . ,

T coRe 0.574 | 0.577 | 0.58 | 0.587 | 0.594 | 0.602

o=l 10305 | 0,402 | 0.410 [o0.419 | 0.430 | 0.443
% _ |
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APPENDIX A

~ The functions_! C (s) which appear in (28) (m (s)) = M(s) F-]('s)
F(s) = (fu(s)), (1,3) = 1,...56. The coeff1c1ents f j of the matrix F are

Fiq = vs I (sr) - (2-2vm) T 4 (sv) (A-1)
fip = -[rs K (sr) + (2- 2v+n) Kn.,.](sr)] (A-2)
T S s S Y € )
B (sr) - s Kl O (a-e)

CFi5 = - Iplsr) o e
fe=-DK(s),i=12 . (A-6)

for i =1, r=aand for i =2, r =b.

fo= = 00 (agun) 1 (sr) + (2-2vin)s To(sr) (A7)
fip = = B (4 gum) , (sr) - (2-2vin)s K (sr)  (A-8)
fi3= B I(sr) + 3 (0=1) I(sv) (A-9)
fip= -3k .1(sr) + 5 (n-1) Kn(sr) (A-10)
fis = - (B (n-1)4s2)1 (s7) + B2 1 (sv) (A-11)
fi6 = - (B3 (n=1)4s2)K,(sv) - %;S- Ko7 (s7) (A-12)
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for i = 3,4; when i = 3, r = a and when i = 4, r=b.

iy = (3-2v)s In(sf)i- ;}ﬂ;ll (4-dvtn) + rsZ]Lp, (s1)
S | - (A-13) .

fip = = ((3-2)s K (sr) + [{EELL (4-g4yn) + rs2]K ,;(sr))

| | | (A-14)
fig = - {[ﬂ%'_;l)- + s?]in(srf)’ - % I_n+1(sr)} | (A-‘IS)'
fig = - {[M%E-D- + sz]Kn(sr) + -?,- Kn+1_(sr).} (A-16)
fip = 20 {0 (sr) +5 1 o(s1)] (A7)
Fo = 0=l (5p) - s K ,q(sm)] (A-18)

" for i = 5,65 when i = 5, r = a and when i = 6, r=b.

| The terms Gj(s,t) in (28) are obtained by evaluating fhe.Besse1
integrals which result from the substitution of (27) into equa-
tions(8),(]1),(]2),(]4)anq(21)-(24). These definite Bessel
fntegra]s are evaluated by'differentiating a related integral

given in [17], that is, by using

[T (s2402)71y (20)d,(ta)da = (1)L (as)K (ts)
0 ‘
a>0,Res>0,a<t <o,

Re u'- 2n+l > Re v >'-n-1 s N = integer. (A-19)
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- Taking the derivative with respect to s on both sides, the

integral becomes, -

2

o n ’
f “v-u+2n+1(Sz+a2)-2Ju(aa)Jv(ta)da = ifll- “{(v-pt2n) *

¢}

v-u+2n-2 ; v-u+2n-1 BT ofe
* S _Iu(as)KV(ts) + s [a Iu+1(sa) f S.Iu(Sa)]*
. ' v-pu+2n-1 v
* Kv(ts) +s | Iu(as)Eg Kv(st) -t Kv+](st)]}

a>0,Res>0,ac<tc<o, ' : (A420)

Re u-2n+4'>Re v > =n-1
Thus, the terms'Gj(s,t) (j=1,6) are expressed as:

G](s,t) = Kn(st){gﬂigill In(as) + (4+3n)s In+1(as)

+s2a In+2(a§)}.- t Kh+](st) {%f-In(§s) + 52 1 4q(as)}

| | | - (A-21)
6y(s5t) = 1, (st) 2T ¢ (bs) - (4+3n)s K ,q(bs) -
+s2b K ,(bs)+t Ia;](st) f%f-Kn(bS) - §2Kn+](5§)}
| | | o (a-22)
Gyls,t) = T {Kn(st)[é(ﬂgb—”')- I (as) + .S(2v+3n+1)Iﬁ+1 (as)
+ s2a Inep(as)] -t l<n+1(st)[5(-2;u‘ I (as) + Séln+1(a5)]}

(A-23)
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Gy(sst) = {In(st)[-z—m;%m ¥, (bs) - s(2v+3n+] ):K,-,J,i(bS) |

+52 K o(bs)] + ¢ I (st)[EBLL g (bs) - 52K . (bs)]}

(A-24) -

65(s,t) = K (st)(-r2UUOR) o (ne1)s2]1 (s2)
+ [5 (-n2ean2(v#1))-5%lTy,q (s2) + 521, 45 (s2)

-t K (st) -0 ws2ls 1 (as) + 1 1(as))  (A-25)

Bg(s,t) = I (st) ({209 & p(pi1)s21K (bs)

+ E% (n2-3n-2(v+15) + s3b]K .1 (bs) + sZKn+2(bsj}

6 1 (st)-[5) + 5236 K (bs) - S2 K ,.(bs)}  (A-26)
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APPENDIX B

The functions vj(s,t) which appear in (30)

vi= vy Q for §=1,3,5 , K=1,.2 (8-1)

Vj = -YjK QK+2 for j =2,4,6 , K ='1’2 .. (B'Z)
For example,

V1 = vl

Vo = Y2183 * vl

V3 = 310y *+ vl s ete.

2n(n+1) “
= & 1 In(as) + (4+3n)s Ip,q(as) + s%a Ipp(as)  (B-3)

m

Yip = %f—In(as)l+'szln+](aS) (B-4)

vpy = BB ¢ (bs) - (4+3n)s K ,1(bs) + 52 K ,(bs)  (B-5)

Yop = DE§, Kn(bS) - San-{-] (bs) a . - (B-6)

vy = 1 [-zlﬂ%-(ﬁﬂ I (as) + s(2v43n+1)1, ,q(as) + s2a I ,(as)]
| (B-7)

Y = 7 [i(:il I,(as) + s21 ., (as)] (B-8)

2(n-1) (vt ~
vgp = & (O=LLO) ¢ ()~ s(2vBn41)K L (bs) + 25 K, (bs)]

(B-9)
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b L K (bs) .-\sanﬂ(bs)].' | (8-10)

Y42 ©
vgy = -2 4 p(na1)s2]1 (sa) + [S (-n2samiz(v#1))
-’s3a]in;1(sa) + sZIh+z(sa) S (B-11)
Ysz = ['_‘_(ﬂ.zll + 52]5 I (as) + n+.| (as) | . .' (B"]Z)
vey = -[2"("'%}("*"1 . 2.(n+1)sz]Kn(bs)' + I8 (n2-3n-2(v+1)).
4+ s3b]Kn+1(bs) +'52Kn+2(bs) | | (B-13)
Yep = ;[ﬂ£%511-+ s2]s Kn(bs)‘- %;-Kn+](bs)r - .-‘ (B-14)

The terms in (B-1) and (B-2) denoted by Qy are defined as,

 01(s,t) = -.é-[nt Kn(st)so,n_1(ist) - it Kn_1(st)S];n(ist)]
- | (B-15)
Qy(s,t) = g, [(n#2)t Ko ,q(st)Sq (ist) - it K (st)S, .q(ist)]

(B-16)
Q3(s,t) = = 3 [nt 1,(st)Sy _1(ist) + it I (st)s; (ist)]
| (8-17)

Q(s,t) = = g [(n2)t Tq(st)S; | (st) + it T (st)s, o (ist)].
| (B-18)
The Lommel functions of imaginary argument which are encountered

in QK are not in a fonn which is conven1ent for numerical
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computation, but with the aid of certain identities involving

. the Struve function ‘QK may be expreSSed Jin

terms of real functions with real arguments. The terms QK'

K=1,...,4 for five harmonics n=0,...,4 are given below.

n=0
Q(s,t) = Ky (st)

LICURE JHCORESRES
Q3(s,t) = £ I;(st)
Qy(s.t) = - 25 1(st) + £ 1 (st)
o B
let:. uo(z)_=zf @ 2P (I-pz)-:-l/2 dp
R .
uy(z) = f e™2P (1-p2)72 dp
: 1T y
uy(z) = 22 f e 2P (1-p2)72 dp,
0

then for n=1:
Qq(s5t) = & [k, (sthuy(st) + K (sthup(st)]

Qy(s:t) = g7 [3Ky(sthuy (st) + K;(sthuy(st)]
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- (B-20)

- (B-21)

(B-22)'

(B-23)

(B-24)

(B-25)

- (B-26)

(B-27)



Q3(sst) = £ [ (sthuy(st) - I;(stduy(st)] . (8-28)

Q(s,t) = 2k (31, (sthuy (st) - Iy(sthuy(s8)] (8-29)
n=2
Qls.t) = 5% Kz(st) Si0 - g (8-30)
Qz(s,t) =%0- W]K3(st) + 3 [st - 5+ ropyeiky(st)
| | (8-31)
Qglsit) = - Fr (st + £ 10 - -éyz]ll(st) (5-32)
Qqls>t) = TE [1 - roapzllylst) + 3 [st - &+ Bhaln (st)
| (B-33)

n=3
Qq(s.t) = & tkylst)[Bu (st) - & uqlst)] + Ky(st)Buy(st)- & uy(st)]y
| | (8-34)

Q(s,t) = -—z {K4(st)[ uz(st) - 15 u](st)]

o+ K3(st)[st -15 u (st) + =2 ]20 u](st) _(12_%2_ uz(st)]} (B-35)

0y(5.8) = £ 15(5)13 uglst) = & vy (st)]

- Ly(st)[3uy(st) - 55 uy(st)]) _ (B-36)

Q(s,t) = <F {14(st)[§—2- uz(st) - 15u;(st)]

+ Ty(st) [-st+15u(st) - G uy(st) + 20, uy(st)]} (8-37)



n=4

Oy (s8) = [ & + Elk(st) - £ - 78y
%Ksm) |  (8-3)
Qz(s’t)‘ U (st)z éi?ﬂl%(st) .*_EtT[St'%
- EEen ew
0y(s, t)-“t[ st egella(st) + £ 01 - i
1;—2%—::]13(51:)- L . (B-40)
ay(s.t) = FE 11 - 57 + Tserls(st)
+ 57 [st - 53+ roffw - (aysilalst) (B-41)
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'APPENDIX C

" Evaluation of Lommel's Functions

In the problem considered, Lommel's. functions Sﬁ v arise from the
jndefinite integrals of the form

(z)
(c-1)

[ #9,(2)dz = w11z 3 (2)s ,

-1,v-1(2) = 2 9 4(2)S

s, () = 27 - Ll ()22 (3202 g

(C-2)

Referring to [12] it can be shown that the Lommel's functions of real
argument may be expressed as ' '

n=0 s (z2)=1 o o - (c-3)

ey |
S So,0(2) = [ (o) e 0 (c-4)

n= 0 o ] :

l S1.1(2) = 2 I (1+t2)y&ef2t-dt . (c-5)

b} o ) .

-1

n=2 { SOQ](Z)‘= z » .- (c-s )
’ }51’2(;)'= 1+ 4272 | (c-7)
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(So,2(d) = 227 8y () = 5 (2) (c-8)

n=3 < _ -2 ' -1

1 Sq,3(2) = 4+ (2827°-3)8; 4(2)-122" s ((2)

| (C-9)

(Sop@) =2 e (c-10)
n=4 < . - ‘

l S,4(2) = 1+ 16272 + 19227 (c-11)

So,4(2) = 827 +(4827-8271)s; ((2)+(1-24272)5 (2)

n=5 - : . (C-12)

S,,5(2) = ~4+3202724(19202"%-3602"2+5)s, (2)

+ (602']-9602'3)50’0(2) B (C-13)

The details for evaluating Su N asymptotically for small and large argu-
ments may be found in [19].
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APPENDIX D
Evaluation of the Integral in (32)

‘As noted in Section 2, to evaluate the integral in (32) it is neces-
sary to analyze the integrand asymptotically. By using- the asymptotic
expansions for J (z) S (z), S(x), and C(x) as given by [12 14] and by
evaluating the 1ntegra1 1n A<a<w asymptotically, (32) may be expressed as

a1 e (e 1
L](tsr) = T'z? 109 [ t«'_r ] - ;‘.' [ W

os A(t-r n sin A(t+ e :
- gos Altor)  (qyn sin AC 2L 3 + | tatlndy (at)S, g (at)

04

- g (at)Sy (at) 19y (ar)- —L= [CO/AD) (sin(ar)+(-1)cos(ar)

ra

- S(/Ef)(cos(ar)+(-i)"sin(ar))]}da + [AyHAy*AL], n=0,1,...
(D-1)
where A is a "large" number and Ay, A,, and A5 are given by
n 't I ‘ h T
A= L) Ci(A(t-r) + (-1)"F - Si(A(t+r))]

$ [ nz 1 t:lr (4"2 ']I%§4n2-9) ( ] )]

[cos A(t-r + (- ])n sin A§t+r) (t-r) sin A(t-r

e (=)0 (tzr)- cos Mer) o (1) ¢ (a(t-r))

- (0" PR 2 siaqeen 1 + gt (- D

oy SInALE) o gyn cos AltR) (¢ e ()
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- (-DM(t+r) [F - SE(A(t+r)) 103 - (0-2)

= 1ty (4n2-1)(4n2-9) -2
Ay =7 ) (L= 17—

_ (4(n-152-1)§gén-1)2-9)-64n2 t-2] [ sin A(t-r)

- (E-r)Ci(A(t-r)) - (<1)" SOSALERT) o )y (z

- si(aesr)))] + H0DET 6T fgi(aeor))

DM G - si(Ae))) T+ B T e (Ager))

+ (<1)ME - si(A(pr)))] + UnZ(En-1)21) (-1,

A(SAT)  (erici(aen)) + (1) Cos Al

(-1 (6r) (- STAGH)D)  0-3)

A

R O o P S

' . | oy 3
SN - SHAGH)] - CHA)T - b
«[- 512_%12;31;+ (ter)CH(ACEr)) + (1) €8 2 t+r) |

- (0" (&) (F - STAGH))] . n=0,1,2,..., . (D-4)

" The definite integral in (D-1) is evaluated by using Gauss-Legendre
quadrature with the upper limit A = 200.
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Fig. 1 Geometry of a thick-walled cylinder cdntaim‘ng :
an axisymmetric circumferential crack. o
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0 0.5
c/d
Stresé intensity factors for concentric ring

Fig. 2
- shaped cracks in an infinite medium subjected

to axial extension (n=0) and pure bending (n=1).



/External Edge Crack

;:mw I‘l2|

\Internal' Edge Crack

2
/ -
+ =0.0!
o8 o —
— 2/ . _ |
0.6 1 1 1 i l : i 1 L | : o
o 0.5 - 10
a/b

Fig. 3 Stress intensity factors for edge cracks in a
thick-walled cylinder subjected to axial tension.
- - 2/h=0.01. .
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e e e — —— — —

Fig. 4 Geometry of edge cracks in a cylinder a]'l sub-
Jjected to residual stresses
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Crack a/b=0.7 Crack a/b=0.9

a/b =09y 2 ab=07 —|

Fig.5

05 1.0
ro-a .
b-a

'Stress intensity factors for edge cracks in a hoﬂow
c_}//t])1nd8r7sub.]ected to residual- -stresses. a/b = 0.9,
a7b = !
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0.201— g | \ c= 2
€= v €-
/ \
| s
€ y \
b-a Internal External \
Edge Crack Edge Crack

0.10

Fig. 6

ro -a

b-a

Crack contact length ¢ for a hollow cylinder under
residual stresses with either internal or external
circumferential edge crack. a/b = 0.9.
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