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~ Abstract

In this paper the elasticity problem for a thick plate with a circular
hole is formulated in a systematic fashion by using the z-component of
the Galerkin vector and that of Muki's harmonic vector function. The
problem was originally solved byAlblas [1]. The reasons for reconsidering
it are to develop a technique which may be used in solving the elasticity
problem for a multilayered plate and to verify and extend the results given
by Alblas. As in [1] the problem is reduced to an infinite system of
algebraic equations which is solved by the method of reduction. Various
stress components are tabulated as functions of a/h, z/h, r/a, and v,
-a and 2h being the radius of the hole and the plate thickness and v the
Poisson's ratio. Among the additonal results of particular interest one
may mention the significant effect of the Poisson's ratio on the behavior
and the magnitude of the stresses.

1. Introduction

In this paper the three-dimensional elasticity problem of a thick
plate containing a circular hole and subjected to unidirectional loading
away from the hole region is reconsidered. The problem was originally
solved by Alblas for stretching as well as bending of the plate [1]. Alblas
obtained the elasticity solution of the problem by formu]afing it in terms
of three disp1acemént potentials and by reducing it to an infinite system
of linear algebraic equations. Bas%ca]]y this system of equations arises
from the expansion of the boundary conditions on the hole surface into
series of complex eigenfunctions. The infinite System was then solved
by the method of reduction and the results were compared with varous existing.
‘approximate solutions.. _

The main reason for reconsidering the problem in this paper is to
develop a technique for thick plates which may be used in a straight-
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forward manner for So]ving the elasticity prob]em‘of a multilayered plate
containing a circular hole. The practical .importance of the latter
problem 1ies in the fact that under unidirectional compressive loadingfof
the layered medium the transverse normal stress dzz on the interface is-
tensile around the hole where there is a stress concentration in Tge aNd,
in fact, has a (weak) power singularity at the hole boundary which greatly
enhances the possibility of delamination failure. In this study the thick
_ plate problem is formulated in a systematic manner by using the z-component
of the Galerkin vector and that of a harmonic vector function introduced
by Muki [2]. By using a complex eigenfunction expansion for the tractions
on the hole boundary'ihis formulation also leads to an infinite system of
algebraic equations. The z-component of Muki's vector function turns out
to be identical to the displacement potential A used by'A1b1as, the z-
component of the Galerkin vector is biharmonic, and it appears that the
potentia1s A, Bl, and 82 of [1] constitute a special case of the functions
¢ and Z used in this paper. In fact the characteristic equation giving the
eigenvalues obtained in this paper is identical to that found in [1].

In the numerical results presented in [1] seven eigenvalues were
computed and in the series expansion at most seven terms were considered.
Thus, a secondary reason for réconsiderihg the problem is to verify and to
complement the results given in [1] by using greater number of terms in the
series and by providing additional results. For example, in [1] the results
are given for v=0.25 only whereas in the perturbation problem the Poisson's
ratio turns out to have a very significant effect on the nature as well as
on the magnitude of the stresses. ' o
' The problem of thick plate containing a circular hole has recently
. been studied aiso by Aguf and Vasil ev [3] under general axisymmetric

'boundany conditions on the plate surfaces. In [3] even though the general
problem was also reduced to an infinite system of algebraic equations, the
results given in the paper for a plate loaded symmetrically with respect to
midplane of the plate were obtained essentially by a tWo-étep successive
- approximations, each step involving the solution of a somewhat standard
axisymmetric contact problem. In literature there are also a number of
approximate solutions of the problem reviews of which may be found in [1-3]



(see, for example [4]).

2. Formulation and Solution
Consider an infinite plate of thickness 2h subjected to unidirectional"
stress .. =o_ at X = + @ (Figure 1).. In cylindrical coordinates the

XX 0
stress state in the plate without a hole may be expressed as

9% : :
0g T 7?-(1 - cos 28) o,, =0
o -—TSinZS s, ©o..=0 s 0., =0 . - '

9, L
Opp = 7 (1 +cos28) , o

roé rz ¥4

To solve the problem of a plate having é traction-freelcircular hole 6f
_radius a the perturbation solution of the plate obtained by usfng the ..
following boundary conditions must be added to that given by (1)

% %
- > (1 + cos 20) , Ure(a’e’z) = > sin 26

(2a;d)

9.e(2,8,2)

The superposition of e-independent solutions given by (1) and that obtained
from (2) gives the axisymmetric solution of a thick plate containing a
traction-free circular hole and subjected to a uniform radial stress

Opp = 0 /2 at r = », This solution is known to be independenﬁ'of z and is
given by [1] ' ‘ '
g g 2 .
a __0y;_2 a __o a a _ :
S =7 (-2 o=z (¥ » o0
v (3)
. =0 d =0 @ =0 (asr<= , |z|<h , 0f6527)
rz ’ 8z ] 22 L ’ -t 3 UL]

Thus, the problem under consideration is reduced to a perturbat1on problem
having the following boundary conditions:
' o, o
o?r(a,e,z) = - 7;-905 2 oee(a,e,z) = Tg-sin 20 ,
(4a-d)

b b . :
(0pps0pga0py) 0

The complete solution of the problem of a unidirectionally loaded thick

b = . ®
qrz(a,e, z2) =0 as r -+ o



plate with a traction-free circular hole may then be expressed as

0;5(r.8,2) = q?,j (r) + o?j(r,e,Z) +o55(6) L (1. =1,8,2), (5)

where, referring to (1)

o g
¢ =9 v c =.9
Urr(e) > COS 28, og, (8) 5> COS 26, o
. (6)
c = - 0 3 c T = c = c =
%rg > sin2e , o, =0, oz 0

The geometry of the medium and the boundary conditions suggest that
‘the stress state Ao?j(r,e,z) » . (i, = r,8, z) for the perturbation
problem will have the following form: '

b _ b '

Opp = rrr(r,z) cos 26, Og, = ree(r,z) cos 20 .

ob =1 __(r,z) sin 26 ob =1 __(r,z) cos 26 (7a=f)
ro re* ? ’ rz rz''? ’

ob =1, (r,z) sin 2o ob =z1__(r,z) cos 26
6z ez' ? i zz 2z ‘

Let Z(r,8,z) and y(r,0,z) respectively be the z-component of the Galerkin
vector and that of the harmonic vector function introduced by Muki [2].
The functions Z and y satisfy the following differential equations:

v2y2Z = 0 : (8)
2, = 2 - 32 ) 32 32 ' (9)
V=0 , Vg tanrt e Tz
The form of the stress state as given by (7).and the relationship between

the stresses and the functions Z and y imply that these functions may be
expressed as [2]_ :

2(r,8,2) Zr,z) cos 26 " (10)

w(r,e,z) = wl(r,z) sin 20 , (11)

From (8-11) it follows that



v292Z. =0 |, - - (12)

2251 .
2 2
Co2s = 2 .82 , 3 _ 4 3% . :
Voh =0 o BEismtarowmtaE - ‘ A (13)

The functions Z; and ¢, defined by (10) and (11) satisfy the following
symmetry relations: : : :

i(r2) = - 2u(r-2) , wy(rz) =yylr-z) . (14a,b)

Let us now assume that Z1 and wl are given by

¥,(r,z) =

-8

f (r) cos gz ' | | (15)
Zl(r,z) = ? gn(r) sin @z + ? hn(r) Z Cos apZ. _ (16)

Substituting from (15) and (16) into (13) and (12) we obtain

f (r) = ALK (8 r) + A:IZ(Bkr) . | | (17)

gn(r) = BnKz(anr) + Dnaans(anr)
| - (18)
* * »
+ Bnlz(anr‘) + Dnanrla(anr) .
. * o v
hn(r‘) = CnKz(anr) + CnIZ(anr‘) . (19)
From (15-19) and the regularity conditions (4d) atr = « it follows that
* * ; % * .
Ak =0, Bk = 0, Dk = 0, Ck =0, (k=1,2, ...) (20)

Also, it can be shown that the boundary: condition agz(r,e,ih) =.0 or
Trz(r,ih) = 0 may be expressed in the following form:

CFu(Bya Cpa Dp) Far) # DFs(r) =0, (asre=) (21)
where Fy, F,, and Fyare known functions. Thus for (2]) to be valid for all

r in (a,») one must have



n
By considering (20) and (22b) the functions y; and Z; may be expressed

Fi(Bys €2 D) =0 » D=0 . : - (zza,b)

as

vi(r,z) = % Ak K2 (Bkr) cos Bz : (23)
k=1 , _ ~ :

Z,(r,z) =n§][8n Ko (anr) sin @z +Co Ko (unr)z cos anz]. (24)

-The three sets of constants An’ Bn, and Cn, (n = 1,2,.(.;)-énd the
"eigenvalues" @ and Bn’ (n=1,2, ...) may be obtained from the boundary
conditions at r = a.and z £+ h. Referring to (7) the conditions at

z = + h may be expressed as

rzz(r, +h)=0 -, T;z(r’ £+h)=0, rez(r, * h) = 0, (a<r<e) .(25)
In terms of the functions Z and ¢ the stresses in the plate are given -

by b

. 32 3
-yt g2y

ro T ¥ 383z 'r " or

CRE RS R N L
oD, = (a2 - 2,

olr)-z ) a—ar' [(]'V)Vz_ B %ZZI'JZ -}" 3%232 ’

o+ L - 3 - 3

Now by substituting from (7), (10), (11), (23) and (24) into (26d-f) we

obtain
rzz(r,z) = ?’a% Ka(a r){(a, cos a z)B - [(1-2v) cos oz

+ .
.z sin qnz]Cn} R

trz(r,z) =n§] @ Ké(a r){.(an sin anz)Bn + (2v sin o,z (27a-c)
2 @ : .
+ oz cos anz)Cn} - F-k§1AkBkK2(Bkr) sin Bz -,



S|

nzl @ Kz(anr)[(an sin anz)§n + (2v sin @,z

tez(r9z) = -
+ az cos a,z)C ] + k§1 A By Ko (Br) sin gz

From (25) and (27) it then follows that
singh=0 , g =wkh | - (28)

(ay cos ayh)B, - [(1-2v) cos agh +ah sinaghlc =0,

. . : _ (29a,b)
(cn sin qnh)Bn,+ [2v sin ah + anh cos anh]cn =0

For a non zero solution the determinant of the coefficients in (29) must

vanish giving the following characteristic equation for @

22 +sin2a =0 o, A =oh , (n=1,2,..0) . (30
From (30) it is seen that if A is a root Ay ih, and -ih are also roots,
Therefore, it is sufficient to determine the roots of (30) in the first

quadrant of the A plané only. Also, from (29) we have

n A

B = ( "i“ ttan ARG . o (31)

Let us now define the following dimensionless quantities:

Ac = Adlaha)) , Ch o= C /(ahos)
| (32)

s=z/Mh , p=r/fa , t=a/h

The stress coefficients T4 defined by (7) and generated by the functions
‘Zy and y; may then be expressed as follows:

T (P ,S)

22 e £ ¢ a3
= Re nzl C [Anth(Anpt)(tan Ay €OS A s-s sin xns)]



TY‘Z(D’S) _ . .| g_ %
s = Re'ni:] C, [AntKl(Anpt) + 0 Kz()\npt)_]

M, sinoags + A2 tan A, sin an + a2s cos A s]

-2 b A' kw Kz(kwpt) sin kns ,
Tez(p,S) 2 © ' . )
E— = -2 (R, nil C, K?_(Anpt)[)\n sin A s (1 +a, tan An)

#2A2s cos As]} - £ A, kn[kwtK;(kmpt)
n n k=1 k

+ -§- Kp(kmpt)] sin kas

Tee(p’s) _ o ' 2
T = Re nE] Cl"l {-ZVln t Kz(lnpt) coS AnS

g-x sin A s[A Ki(xpt) toT Kz(’\ pt)]

- 7 Ka(Apt) Ags sin Ajs + [2-2v + A, tan An]*
*r L os as (AKi(aot) + 2 Ko(rpt)) +
+ Py Kz()\npt) cos XnS]} :

+ F Ak cos kws [ K2 (kmpt) t 2 4 Kl(kwpt)] R
k=1

5 = R, nzl C, {-2va2 Ka(Aot) cos As

31
+ [A2t Ko(n, pt) +-— Kilapt) + ¢ 6 Ko ot)1”*

* N
[A, s sin A;s - cos As (2-2v + 2, tan A1}



- % A cos kns[—]z?— Ko (kmpt) + 4 krm Ky(kmpt)]
toleas) e 4 3 .
e % [Re n§1 Cn {(BT Kzl(lnprt) + AnKl(Anpt))

[cos XS (2-2v + Ay tan An) - A, s sin xns]}]

-fF AL cos krs [2k2n2 t Ko (kmpt) + 6_|;_1_r_ Ky (kmpt)
k=1 S L
+ o Kplknot) - k2a2t Kpkmot)] . - (33a-f)

From tha characteristic equations it is seen that the problem has zero
eigenvalues in B, = 0 and A, = 0. Therefore, for completenesé some particular
solutions must be added to Z, and y; to account for the zero eigenvalues.

Let these solutions be of the following form: ‘

[+]

v, (rsz) = f(r) + g, (r)h(2z) + m(2) , . (34)

21(r,2) = fi(r) + gu(rihg(z) + m*(Z).". (35)

Solutions of the form (34) and (35) satisfying the differential equations
(12) and (13) may be expressed as :

fo(r) = ajr2 + a°2/r2 ,

alr) = /2
: Zb; ) 2b; 2
= Ao °
mo(z) = b® + b2z (36a-d)
1 2‘
f*(r) =Ey t %&‘ + E3?‘2‘ + Eyrt



_g*(r) = Gz/rz >

2F 2F

he(z) = Hy + Hpz + Hgz2 + Hyz3 + —> 2% + ——

5
36, 56, - °

m.(z) = F; + Fpz + F322 + Fu23 . | | ~ (37a-d)

It may now be shown that imposing the boundary conditions (25), the regularfty
conditions at r = =, and the symmetry conditions with respect to the z = 0
plane, and requiring that the resulting stress state be non zero, (36) and
(37) substituted into (34) and (35) give |

¥(r.2) = -36(% + %) . ()
Z3(r,2) = E(2-v) Eé+ E 1.z | (39)

where E and F are arbitrary constants. Defining the dimensionless constants

El= E F|= F
GoaZ ’ goa® : (40)

the stress state gengrated by the functions w; and Zi may.be expressed as

‘?r(°’s) 6F '

2

Oo

T50(P>5) _6F' 18E'vs2

Oo F ptt ?
(41a-f)
To (p’s) +.
B Sewdebe
° = 1° =¢° =0

We now note that the stress expressions given by (33) correspond to
nonzero eigenvalues g and Aﬁ, (n=1,2, ...) and the complete solution

10



" for the perturbation problem is obtained by adding (41) to (33). Thus, for
the perturbation problem the boundary cond1t1ons at r=a given by (4a- c)
may be expressed as

(125 + <3, a, s)=-i;- :

Trr
Tra(]’s) + T;e(]ss) = "zi s ‘ (423-C)
=0

TY‘Z(]’S) + T;Z(] 95) -

Substituting now from (33) and (41) into (42) and expanding both sides of
(42a) and (42b) into Fourier series in cos wks and (42c) into sin wks,

we obtain the fo]10w1ng 1nf1n1te system of a]gebra1c equations for the
unknown constants An C Eand F :

chg + Renf]_dgn cr;=(-1)j”p7;2%zz' ;T2 ) (43)

eJAJ + Re n§1 fJn cr: = (-1)31] 527;,2%’525' ',‘.(j=1,2, ..2) (44)

aA + Renil an c, - 0 L Ge2, L) | (45.)‘ |

Re n§1 d, C, - 12F + 1‘.2'EI(]+\) + %}) =" 1, | (46) -

Re n§1 £, G - 12F' +6E (T + 29 =1 . . ‘(47)»
where ‘

3 = - aiky(nit) (31,2, ),

b = = [a Ky (At) + 2K (A ) Iy (2 + A2 tan A + A28 ) ,

| (j,n =1,2,3, ...) .,
Yip = (-1 (i;n_ z.““ ime““) G = 1,23, ) e

11



. coSs A 3in A cosA sin A
5. = (<137 [- L+ - ]
jn A - dm (xn- jm)e A + J'n' (A +Jn)-'- ’

(j,n = ],2, eed)

Cj = -4iji(njt) --%% Kz(ﬂjt) ’ j‘]az’ -'-) )

~ 6
djn = sjn{-kaﬁﬁKz(Ant) - (2-?v + A, tan An)[E-KZ.(Ant)

+ 3 Ki(At) + A2tKo (2 t)]}

2
o+ xn%n[t Ka(A t) + 3AnK1(Ant) + AntKo(Ant)] .

(n=1,2, ...5 3§=0,1.2, ...) ,

o ors | 3 : '
fjn = -2{ejn(2-2v + A, tan An)[-t- K,_(;\nt) + anl(xnt)]
n Jn[t KZ(A t) + A Kl(x t)]} [ (n=132’ o3 j=0,1929 --)
=9 Sin A, s  (n=1,2, ...) ,
€on ~ X '
n
. sin A sin A
= (-1)9 n n i =
Ejn ( 1) (A-j‘n’ + )\+j1r) ’ (Js" 1,2, ...) s
. n n .
cos xn sin An , _
¢°n=-2 X +2T s (n=1,2, ...) s
n n
. cos A sin A cos A sin A\,
0 = (-1 [ - : - ]
in xn-Jn (A -Jﬂz A +J'n' (A +Jn72 ’

(j,n=1,2, ee)

ej_= -2j2n2tKo(mjt) - 6jnKy(wjt)
+ Ko(nit)(n2i2t - 2B) , (§=1,2,...) . (48)

12



The infinite system (43-47) hay be solved by the "method of reduction",
that is by truncating the series at the Nth term and by considering only
the first N unknowns in AJ and C " Note that the coefficients A' E', and
F' are real and C. are complex, (J 1,2, ...). Thus, truncated at the Nth
term equations (43-47) provide 3N + 2 equat1ons to determlne Ay, . AN s
E F and the real and imaginary parts of Cl, ces CN After determ1n1ng
these constants the stress state in the plate containing a stress-free
circular hole and subjected to unidirectional tension at x = +~ may be.
obtained from (5). Note that the stress coeff1c1ents T, ij? (i,j=r,0,2)
which appear in (7) are the sum of T.. and T g1ven by (33) and (41).

LN
The solution and the results given in th1s paper are for a particular
loading, i.e., o, =0, at x = +o, However, it is clear that the method

XX
is applicable to any loading condition for which the problem can be

reduced to a perturbation prob]em with the tractions on the hole surface
being the only external loads and for which these tractions can be’
expressed in terms of Fourier series in 6. ’

3. Results and Discussion

As indicated befbre; the solution of the problem under consideration
is given in [1]. The main reason for reconsidering the problem is there-
fore to develop a technique which can be used in the formulation of multi-
layered plate problems by following a somewhat more systematic approach.
A secondary purpose of the present study is by taking advantage of the
relative improvement in the comphtatibna] capabi]itieslsince the publi-
cation of [1], to'verify and complement the results given in [1]. Thus,
instead of seven roots of the characteristic equation -in the first
quadrant considered in [1] twenty roots have been calculated and corre-
sponding higher number of terms have been taken into account in solving
the related infinite system of algebraic equations (43-47). Even though
it is very difficult to prove the regularity of the infinite system
(43-47) theoretically, for the relative dimensions considered the con-.
vergence seems to be extremely good. Even the results given in [1] which
are based on only seven eigenvalues do not significantly differ from those
calculated from twenty eigenvalues. The results given in Tables 1-9

13



comp]emeht those presented in [1] in the sense that they contain the
in&estigation of the influence of the Poisson's ratio which appears to

be quite significant, the variation of the stress components other than
Te0 and 9,y and the variation of the stress components in radial dfrection.
To show the trends of the distribution of various stresses some results
are also given in Figures 2-7. It is important to note that in order to
conform to the presentation given in [1] the stresses presented in the
tables and_in the figures are defined by (see (5))

O'!'. = 0? + U?- 'y (i,j = r,e,Z) 3 (49)

ij ij iJ

To obtain thé complete solution these stresses must be added to the
axisymmetric stress state c?j given by (3).
From (43-47) it may be shown that for v=0

=0, € =0, (j=1,2, ...) , E'=-g, F =-p (50)

AJ‘ J

which, substituted through (41), (33) and (7) into (5), reduces to the
following plane stress solution:

% . a2, % 3a* _ 4a2,
opp = 2{1-12) + 51 f_r‘*—'_rz') cos 28,

O, 2 Oy ., L
s90 "7 (145 -7 1+ ) cos 28,
(51a-f)

9o Ja% | 2a2, _.
0"',e .-7‘(]-?4—4‘72-)51"29 ’

022 = Oz = %9z = 0

From a practical viewpoint pekhaps the most important results are
those given in Téb]e 1 and partially displayed in Figures 2 and 3,
namely the variation of the hoop stress Tgg ON the surface of the circular
hole. From (51) it may be observed that the "stress concentration factor"
(cee)max/o° for the plane problem has a value of 3 and is independent
of the Poisson's ratio and the coordinate z. On the other hand Table 1 and

14



Figures 2 and 3 show that the stress concentration factor may vary with
the location z/h, the Poisson's ratio v, and the radius-to-thickness
ratio a/h quite considerably. The stress concentration factor is maximum
for z=0 and is greater than the corresponding value for the plane problem.
The table and Figure-3 show that oée at z=0 increaSes with increasing
values of v, and approaches the plane stress and plane strain values
(i.e., oée = 20,) as a/h approaches infinity and zero, respectively,.
becoming a maximum for some value of a/h between 0.5 and 1. For v=0.5
this maximum may be as much as 15% greater than the corresponding plane
stress value. '
Table 2 and Figures 4 and 5 show the calculated results for
(-oZZ/oo cos 26). From Table 2 and Figure 4 it may be observed that for |
a fixed value of v (-ozz/co cos 28) increases with the decreasing ratio.
a/h and in limit as (a/h) - 0, away from the plane boundaries z=xh, it
approaches the expected plane strain value of 2v. Also, for (a/h) + =
9, approaches zero which is the expected plane stress result. Figure 2
implies that '

3 _ ' ,
% ozz(r,e,h) =0 . | (52)

That this is indeed the case may be seen by considering the third stress
equilibrium equation o '

O’ZZ g

90 .Ted ) ' :
rz , 1 8z rz _
v Ty s T ez ¢ 0 ‘ (53)
'and}by observing that at z=h
OFZ (Y‘,e,h) =0 ’ UBZ (T‘,e,h) =0 a ‘ (54)
or - ' 7
2 5 (r,e,h) =0 2 5 (r,e,h) =0 | (55)
- dr rz (A ’ 36 6z 3T oo _

Similarly, symmetry considerations_require that

15



2o, (re,0=0 |, (56)
which may also be observed form Figure 4. From Figure:5 it may be observed
that again as (a/h)-» = oéz approaches zero, the expected plane stress
solution, and for (a/h) - 0O ('°zz/°° cos 268) -+ 2v which is the plane
-strain solution. As v and a/h vary in the intervals [0.5,0] and (0,x)

- respectively, unlike Tae the axial stre;s 9, varies between the corre-
sponding plane strain and plane stress values.

The distribution of the shear stress Oy, ON the surface of the hole

'is given in Table 3 and Figure 6. Again, it may be noted that the limiting
cases of plane streﬁs and plane strain solutions are recovered as (a/h) + =
and (a/h) -~ 0, o,, 90€s through a maximum in 0.5<(a/h)<1 and for (z/h) = 0.8
and increases with increasing v. ,

Tables 4-9. show the spatial distribution of the stresses for a=h and
v=0.25. It méy be seen that as r - = the stresses given in these tables
added to o2, given by (3) approach the homogeneous solution (1). The

1

variation Taq and o%z with r/a is also shown in Figure 7.

The first twenty roots of the characteristic equation (30) are
given in Table 10. They seem to agree with the first seven roots

calculated by Alblas in nearly all signifiéaht digits.
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TABLE 1 -

1

Distribution of the normalized hoop stress E;Uc_?s'z—e at the hole boundary r=a.
NJh | ~ -
Z 0.5 1.0 .5 2.0 3.0 4.0 5.0
0. 2.039 2.048 | 2.041 2.033 | 2.021 2.014 | 2.010
0.25 2.039 2.045 | 2.037 2.029 | 2.018 | 2.012 | 2.008
w | 0.50 2.036 | 2.031 2.022 2.015 | 2.008 | 2.005 | 2.004
S| 0.75 2.010 1.991 1.987 - | 1.987 | 1.991 1.994 | 1.995
| 0.90 1.942 1.934 | 1.947 1.950 /| 1.975 | 1.983 | 1.988
1.0 1.809 1.864 .| 1.904 1.931 1.960 | 1.975 | 1.982
0. 2.082 2.100 | 2.083 2.064 | 2.039 | 2.026 | 2.018
0.25 2.082 | 2.093 | 2.075 2.057 | 2.034 | 2.022 | 2.015
w [ 0.50 2.077 2.066 | 2.045 2.032 | 2.017 | 2.0 2.007
S ! 0.75 2.028 1.989 | 1.980 1.980 | 1.986 | 1.990 | 1.992
> 0.90 1.901 1.886 | 1.908 1.929 | 1.957 | 1.972 | .1.980
1.0 1.665 1.762 | 1.834 1.881 1.932 | 1.957 | 1.970
0. 2.140 2:167 | 2.135 2.103 | 2.062 | 2.040 | 2.028
0.25 2.140 2.156 |-.2.122 2.091 2.054 | 2.035. | 2.024
‘v | 0.50 2.133 2.112 | 2.076 | 2.052 | 2.028 | 2.017 | 2.011
S| 0.75 2.055 1.991 1.975 1.974 | 1.980 | 1.986 | 1.990
>l o0.90 1.860 1.834 | 1.867 1.898 | 1.939 | 1.960 | 1.972
1.0 1.507 1.651 1.759 1.829 | 1.903 | 1.939 | 1.958
0. 2.254 2.299 | 2.235 2.175 | 2.102 | 2.065 | 2.045
0.25 2.255 2.279 | 2.212 '2.155 | 2.089 | 2.056 | 2.038
o | 0.50 2.244 2.202 | 2.135 2.091 2.048 | 2.029 | 2.019
S| 0.75 | 2.116 2.001 1.970 1.966 | 1.973 | 1.981 1.986
21 0.90 1.799 1.749 | 1.799 1.848 | 1.909 | 1.941 1.959
1.0 1.242 1.464 | 1.635 1.743 | 1.857 | 1.910 | 1.938
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Distribution of the normalized axial stress "°zz/°° cos 26 at the hole boundary r=a-

TABLE 2

Nn| 0.5 1.0 | 1.5 2.0 | 3.0 | 40 | 5.0
’h
0. 0.258 | 0.163 | 0.102 | 0.067 | 0.034 |0.020 | 0.013
0.25 |0.248 | 0.152 | 0.094 | 0.061 | 0.031 | 0.018 | 0.012
w | 0.50 |0.216 | 0.119 | 0.070 | 0.044 | 0.022 | 0.013 | 0,008 °
S| 0.75 |0.135 | 0.059 | .0.031 | 0.019 | 0.009 |.0.005 | 0.003
1 o0.90 |o0.048 | 0.096 | 0.007 | 0.004 | 0.002 | 0.001 .| 0.001
1.0 |o. 0. 0. 0. | o 0. 0.
0. |0.432 | 0.268 | 0.165 | 0.107 | 0.054 | 0.032 | 0.021
. 0.25 |0.416 | 0.250 | 0.152 | 0.098 | 0.049 | 0.029 | 0.019
w | 0.50 [0.359 | 0.195 | 0.172 | 0.071 | 0.035 | 0.020 | 0.013
S| 0.75 [0.223 | 0.096 | 0.050 | 0.030 | 0.014 | 0.008 | 0.005
| 0.90 |0.079 | 0.026 | 0.012 | 0.006 | 0.003 | 0.001 | 0.001
1.0 0. 0. 0. 0. 0. 0. " |o..
0. 0.613 | 0.374 | 0.226 | 0.145 | 0.072 | 0.042 | 0.028
0.25 |0.589 { 0.349 | 0.208 | 0.133 | 0.065 | 0.038 | 0.025
w' | 0.50 |[0.507 | 0.270 | 0.153 | 0.096 | 0.046 | 0.027 | 0.017
S| o0.75 [0.312 | 0.132 | 0.068 | 0.040 | 0.018 | 0.010 | 0.006
| o0.90 {0.109 | 0.035 | 0.016 | 0.008 | 0.003 | 0.002 | 0.001
1.0 |o. 0. | o. 0. 0. =~ |o. 0.
0. 0.902 | 0.539 | 0.317 | 0.200 | 0.097 | 0.056 | 0.036
0.25 |0.866 | 0.502 | 0.291 | 0.182 | 0.088 | 0.051 | 0.033
S| 0.5 {0.742 | 0.38 | 0.214 | 0.131 | 0.062 | 0.035 | 0.023
T 1! o0.75 |o0.451 | 0.187 | 0.094 | 0.054 | 0.024 | 0.013 | 0.009
0.90 |0.155 | 0.049-| 0.021 | 0.011 | 0.004 | 0.002 | 0.001
1.0 {o. 0. | o 0. 0. 0. 0.
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TABLE 3

Distf‘ibution of the normalizeéd shear stress '°ez/°° sin 26 z;\t‘the hole boundary r=a

° a/_h 0.5 1.0 1.5 2.0 3.0 4.0 | 5.0
0. 0. 0. R 0. 0. 0. 0.
, 0.25 | 0.023 0.030 | 0.024 0.019 | 0.011 | 0.007 | 0.005
2| 0.50 | 0.052 0.059 | 0.046 | ©0.034 | 0.020 .|[0.013 | 0.009
‘@ 0.75 | 0.092 0.079 | 0.057 0.041 | 0.023 |0.014 | 0.010
'0.90 | 0.095 ‘| 0.065 | 0.043 0.030 | 0.016 | 0.010 | 0.007
1.0 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0.25 | 0.042 | 0.051 | 0.041 0.031 | 0.018 | 0.012 | 0.008
w | 0.50 | 0.093 | 0.101 0.077 0.057 | 0.032 | 0.021 | 0.014
S | 0.75 | 0.161 0.134 | 0.094 0.066 | 0.037 | 0.023 | 0.016
> | 0.90 | 0.164 0.108 | 0.071 0.048 | 0.026 | 0.016 | 0.011
1.0 0. 0. 0. 0. 0. - 0. 0.
0. 0. 0. 0. 0. 0. | oO. 0.
0.25 | 0.063 0.075 | 0.058 0.043 | 0.025 | 0.016 | 0.011
w9 | 0.50 | 0.740 0.146 | 0.109 0.078 | "0.044 | 0.028 | 0.019
s | 0.75. | 0.237 0.192 | 0.131 0.091 | 0.050 | 0.031 | 0.021
> ! 0.90 | 0.238 9.154 | 0.098 | 0.066 | 0.035 | 0.021 0.014
1.0 | 0. 0. 0. 0. 0. - 0. 0.
0. 0. 0. 0. | o 0. 0. 0.
0.25 | 0.100 0.115 | 0.086 0.062 | 0.034 | 0.021 | 0.014
g | 0.50 | o0.221 0.222 | 0.159 0.112 | 0.061 | 0.038 [ 0.025
< | 0.75 |0.368 | 0.287 | 0.190 0.129 | .0.068. | 0.041 | 0.028
> | 0.90 | 0.362 0.227 | 0.141 0.093 | 0.048 | 0.029 | 0.019
1.0 0 | o. 0. 0. 0.. 0. 0.
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TABLE

4 |
Variation of -o,./0s cos 20 with r/a, (¥ =1 , v =10.25)
. r/a _ - N _ . ' P : L
z/p 1.0 | 1.26 | 1.5 | 1.75 | “2.0 | 2.5 | 3.0 | 4.0 | 5.0
0. |0.268| 0.103 [0.032 | 0.004 |-0.005 |-0.005 |-0.002 | 0. | 0.
0.25 | 0.250 | 0.092 {0.027 | 0.003 |-0.005 |-0.005 |-0.002 | 0. | O.
0.50 |0.195| 0.062 |0.015 | 0.  [-0.004 {-0.003 [-0.001 | 0. | o.
0.75 | 0.096 | 0.021 |0.003 {-0.001 |-0.002 |-0.001 | O. 0. | o.
0.90 | 0.026 | 0.004 [0, 0. 0. 0. 0. 0. | o.
1.0 |o. 0. |o. 0. 0. 0. 0. 0. | o.
TABLE 5
Variation of -0l /oo cos 26 with = (In =1 v =0.25)
~\Ja | ' - '
Z, 1.0 | 1.25 | 1.5 | 1.75 [ 2.0 | 2.5 | 3.0 | 4.0 5.0
0. |2.100 | 1.176 |0.836 | 0.686 |0.611 | 0.547 | 0.523 | 0.507| 0.503
0.25 | 2.093 | 1.170 |0.831 | 0.682 {0.608 | 0.545 | 0.522 | 0.507| 0.503
0.50 |2.066 | 1.146 [0.811 | 0.667 |0.598 | 0.540 | 0.519 | 0.506| 0.503
0.75 | 1.989 | 1.084 |0.767 | 0.637 [0.577 | 0.530 | 0.515 | 0.505| 0.502
0.90 |1.886 | 1.009 [0.721 | 0.608 [0.559 | 0.523 | 0.511 | 0.504| 0.501
1.0 {1.762 [ 0.933 [0.678 | 0.584 |0.544 | 0.517 | 0.508 | 0.503| 0.501
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TABLE 6

Variation of ol /oo cos 26 with r/a , (¥ =1 , v =10.25)
a | I,

z, ' 1.0 1.25 1.5 1.75 | 2.0 2.5 3.0 4.0 5.0
0. 0. -0.178{-0.104| 0.001 {0.093 0.222 | 0.301 | 0.383 0.424
0.25 | 0. -0.176 |-0.101| 0.003 | 0.094 0.222 | 0.300 | 0.383] 0.423
0.50 .0. -0.1701]-0.093| 0.009 | 0.098 0.222 | 0.299 | 0.382| 0.423
0.75 | O. -0.158.]-0.082:| 0.015 { 0.099 0.219 | 0.296 | 0.381] 0.423
0.90 | O. -0.149 |-0.080| 0.013 {0.094 0.214 | 0.292 | 0.379{ 0.422
1.0 0. -0.147 |-0.085| 0.005 | 0.087 0.209 { 0.289 | 0.378| 0.422

TABLE 7
. Variation ofore/oo sin 26 with r/a , (a/h =1 v_f_0.25)

ANy :

Z/Jl a 1.0 1.25 1.5 1.75 2.0 2.5 3.0 4.0 | 5.0
0. 0. -0.519 {-0.637 | -0.654!-0.645 | -0.613| -0.587 | -0.555{ -0.537
0.25 | 0. -0.519'-0.638 | -0.655}-0.646 | -0.615} -0.588 | -0.555| -0.537
-0.50 | 0. -0.518 |-0.641 | -0.660}-0.651 -0.619} -0.591|-0.556{-0.537
0.75 | 0. -9.531|-0.658 | -0.676(-0.664 | -0.626 | -0.595 | -0.557( -0.538
0.90 | o. -0.563 |-0.685 | -0.696|-0.678 | -0.633| -0.599 | -0.558| -0.538
1.0 1 0. -0.6101}-0.716 | -0.716|-0.691 -0.'639 -0.602 | -0.559( -0.539
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TABLE 8
Variation of <o _ /oo cos 26 with r/a, (¥ =1 , v =0.25)

n lal 1.0 1.25 | 1.5 | 1.75 | 2.0 2.5 3.0 | 4.0 | 5.
0. lo. Jo. 0. 0. |o. 0. |o. 0. |o.
0.25 | o. 0.011 | 0.014 | 0.012{ 0.009 | 0.004 | 0.001 | O. 0.
0.50 | 0. 0.022 | 0.026 | 0.021| 0.015 | 0.006 | 0.002 | O. 0.
0.75 | 0. 0.029 | 0.028 | 0.020{ 0.013 | 0.005 | 0.001 { O. 0.
0.90 | O. 0.021 | 0.017 | 0.017| 0.007 | 0.002 | 0.001 { O. 0.
1.0 |o0.7 |o. 0. 0. 0. 0. 0. 0. 0.

TABLE 9
Variation of -0, /oo sin 20 withr/a, (¥ph =1 , v =0.25)
3NJa | 1.0 125 | 1.5 1.75 | 2.0 | 2.5 3.0 |4.0 |5,
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0.25 |0.051 | 0.033 |0.019 {0.010 |0.006 ‘| 0.001 | O. 0. 0.
0.50 |0.101{ 0.058 |0.032 [0.017 |{0.009 | 0.002 | 0. 0. 0.
0.75 10.134{0.059 |0.028 |0.014 {0.007 | 0.002 | 0. 0. 0.
0.90 |0.108 | 0.033 | 0.015}0.007 |0.003 | 0.001 | 0. 0. 0
1.0 |o. 0. 0. 0. 0. 0. 0. 0. 0.
. A B

23




The first 20 roots of the characteristic equation 2%6_+ sin ZAn

TABLE 10

n . Re (An) Im (An)
1 2.106196115 1.124364306
2 5.356268699 1.551574373
3 8.536682427 1.775543674
4 11.69917761 1.929404497
5 14.85405991 2.046852462
6  18.00493301  2.141890794

_ 7 21.15341336 2.221722915
8 24.30034206 2.290552287
9 27.44620289 2.351048230

10 30.59129510 2.405012569

11 33.73581432 2.453719208

12 36.87989417 2.498102205

13 40.02362922 2.538866866

14 43.16708835 2.576558851

15  46.31032301 2.611608995

16 . 49.45337245 2.644363429

17 52.59626714 2.675104424

18  55.73903115 2.704065198

19 58.88168372 2.731440658

20 62.02424045 2.757395360
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Figure 1.  Geometry of a thic'k plate containing a circular hole.
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