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FOREWORD

This report describes a portion of the results obtained an

NASA Grant NSG'3044. This work was done under subcontract to the

University of Illinois, Urbana, with Prof. S.S. Wang as the Principal

Investigator. The prime grantee was the Massachusetts Institute of

Technology, with Prof. F.J. McGarry as the Principal Investigator

and Dr. J.F. Mandell as a major participart.. The NASA - LeRC Project

Manager was Dr. C. C. Chami$.

Efforts in this project are primarily directed towards the de-

velopment for finite element analyses for the study of flaw growth and

fracture of fiber composites. This re port presents exact solutions for

edge delaminations in angle-ply composites.
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ABSTRACT

Edge delamination has caused severe concern in the design and

analysis of advanced composite materials and structures. Due to its
S	 11

complex nature, very°limited knowledge for the problem is currently

tQ	 ^	 n

available. It involves not only geometric and material discontinuities
r	 ^^

but alac inherently coupled mode I, II and III fracture in the layered

anisotropic system. Based on complex-variable stress potentials in
x.,

the anisotropic elasticity theory and eigenfunction expansion, exact

orders of the crack-tip stress singulaVity and complete field solutions

are obtained. Results are given for edge-delaminated composites

subjected to uniform axial extension for illustrative purposes. 	 ?

Effects of geometric, lamination, and crack variables are determined.
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1. INTRODUCTION

Edge delamination is frequently encountered in angle-ply compo-

site laminates.	 It is due to high stress concentrations at geometric

boundaries and the inhere"ntly weak intarlaminar strength along the ply

interface.	 The problem posed by edge delamination is of great theoreti-

cal interest.	 It also is of aigr4ficant technical importance 
in determining

the structural integrity and damage tolerance of advanced fiber-rain-

forced composites and their applications to advanred engineeriAg

structures and components. 	 The presence and growth of delamination

cracks frou geometric boundaries of composite laminates may lead to

severe reliability and safety problems of fiber composite materials

and structures such as the reduction of structural stiffness, the

exposure of the interior to adverse environmental attack, and the

disintegration of the material., which may cause the final failure.

Thus, understanding the basic nature of edge delamination is of

critical importance in damage characterization and accurate assessment

of flaw criticality and structural integrity of advanced composites.

The edge delamination problem is very complex in nature and

extremely difficult to solve. It involves geometric and materials

discontinuities, i.e., free edges, interlaminar cracks and variation of

ply properties in the transverse direction. It also involves inher-

ently coupled mode 1, 11 and III fracture in the anisotropic layered

material system such as angle-ply composite laminates. Edge de-

lamination is basically a fracture problem involving an interfacial

I
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crack between two highly anisotropic fiber-composite laminae

under general loading conditions. The problem of an interfacial crack

between two dissimilar isotropic materials has received much atten-

tion recently, for example, Refs. (1-12). But the study of a de-

lamination between strongly anisotropic fiber composite layers,

especially in finite-dimensional l,aminites under general loading,

has been very limited, to the author' s knowledge. In this paper, a

rigorous investigation of the basic nature of the coupled opening,

sliding and antiplane shearing fracture behavior of edge delamination

is presented for composite laminates under uniform axial extension.

Basic formulation of the problem based on the theory of anisotropic

elasticity and eigenfunction expansion is given in the next section.

General solutions and associated stress singularities for the edge

delamination are derived in Section 3. Fracture parameters such as

mixed-mode stress intensity factors KI, KII and KIII as well as the

energy release rate G are defined and determined in Section 4. Num-

erical results for edge delaminated composite laminates subjected

to uniform axial, loading are shown in Section 5 to illustrate the

fundamental Behavior of edge delamination cracks. Effects of geo-

metric, 'lamination and crack variables are studied in detail.

I`
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2. FORMULATION

Formulation of the delamination problem is based on the theory

of anisotropic elasticity for nonhomogeneous solids. Wall known

Lekhnitskii's stress functions (131 are introduced to establish

governing partial differential equations for field variables. An

eigenfunction expansion method is employed for determining the stress

singularity at the delamination crack tip. The boundary collocation

technique is then used to evaluate the complete solut4on for finite

d4mensional composite laminates,

2.1 Assumptions and Delamination Model

Consider a composite Laminate (Fig. 1) composed of unidirec-

tional fiber-reinforced plies of uniform thicknesses, hV h 
2)s 

so.h n.

Par simplicity but without loss of generality, we restrict ourself to

the /*axes of symmetric, angle--ply composite laminates with fiber

orientations (0 1/0 2 /..../8 2 /0 1 ). Ply thicknesses are also assumed to

be symmetric with respect to the x-z plane, i.e., h i = hn, h2 = hn-1,

The composite has a finite width 2b and is subjected to a uniform

axial extension, e ) where e constant, along the z-axis, The composite.

laminate is sufficiently long Chat, in the region far away from the

ends, end effects are negligible by virtue of the Saint Venant

principle. Consequently, stresses in the laminate are independent of

the z-axis. The case in which stresses and displacements are independ-

ent of z corresponds to the well known generalized plane deformation

(13). Edge delamination occurs in the form of a crack along the

interface of dissimilar plies with fiber orientations, 0  and 0k+l`

r
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Perfect bonding is assumed in the composite everywhere except the

region of delamination.

2.2 basic Equations

For each individual lamina, the constitutive equations in the

structural coordinates x-y-z may be expressed- by the generalized Hookers

law in the contracted notation as

C  • 5
1i a1	 (its	 1p2s .... 6)	 (1)

where Le i and aJ are strain and stress tensors, and S i,, the compliance

tensors, respectively. The strain -displacement relationships are given

by

el . ex M Up 
X0	

e2 • C  . v ty ,	 (2a-b)

e3 • e z = w, Z ,	 e4 .. Yyz a W
t  

+ v, Z t	 (2c-d)

e5 . Yxz « W' x 
+ U, zo 

e6 . Yxy " u 'y + 
V -# X 0 	 (2e-f)

where the subscript after comma denotes the partial differentiation with

respect to the variable, Under these assumptions, there remain three

compatability relations:

3a)extyy + eyoI Yxy9xy,

(-Yxz ty + Yyztx),y	 p t	 (3b)

(-Yyz px + Yxz ,y ) tx 0.	 (30

For a symmetrical angle-ply composite laminate subjected to uniform axial

strain e, it can be shown easily that

4
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since the relative angle of rotation for the symmetric composite lamin-

ate about z-axis vanishes.

Easel, on the definition of tht ,problem, i.e., t z 	 constant,

a  in Eq 1 can be expressed in terms of other stress o,,omponents by,

a  . (e - S 3 aj)/S33 	(j . 1'2'4'5'6)'	 (S)

Thus, the generalized Hooke's law may be modified to have the following

form:

^i	
Si^ a^ 

+ ei	 (=,i	 1, 2 t4 ► 5,0,	 (6a)

where

S	 S	 S	 S	 /S	 ,ii	 ij	 3i 3j	 33 e	 ^* eS	 /S	 (i,	 3).
i	 i3	 33

(6b)

It can be seen from Eq 6 that e 
	 has the role of initial strains in the

laminate.	 For the current stress formulation, it may be more convenient

to introduce the initial stress a do such that

C  = S ij (ai - ajo ), (,j	 = 1,2,4)56) ' (7)

where a io	 - Sij ej .	 It is possible to decompose the complete solutions

into two parts, i.e,,

or . a(h) + a (p) (8a)

ci	

c (h) +
	 (p) (8b)

a

where
C(h)	 s	 a (h)	 and Mc (p )	 S	 (a (p)_ a	 )

j
ji(9a-b)

iii	 J i	 ij	 i	 o
it

5
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3• GENERAL SOLUTIONS AND ASSOCIATED STRESS SINCUL41TIE5 FOR DRLAMINATION

3.1 Solutions for o (
ih) and u(h)

Introducing tha•atress functions F(x,y) and Y(x,y) which satisfy

equations of equilibrium identically and following'he procedure by

Lekhnitakia. [13], we obtain a pair of coupled partial differential

equations ,as follows;

	L 4F + L 3 T 0,	 (10a)

	

L 3 F + L2T 01	 (10b)

where L 2 , L3 and L4 are lints. difierential operators of the second,

third and fourth order, respectively, defined by

LZ . S44 -T - A -a	 + S55 87 ,	 (10c)

'3 ' —s24 a * (S25 + 546) ax
—
	(S14 + S 56 ) axayr

	+ 515 By '	 0-0d)

..	 4
L4 ' S 2 3-X  '  

xs26 Way + (2i12 + S66) 
ax4ay.

	a4 	 a4

	

w 
D	 -

	

- 2s16 axay + S11 ay	
(10e)

Lekhnitskii [131 has shown that the general solution for Eqs 10a-10b may

be expressed as

6	 6
F(Zk)	 E FCC k),	 T (Zk	 k,

)	 nkFk(zk) ► 	 (lla-b)
k-1	 "1



K	 '

I^

where zk as x + uky the prime (') denotes differentiation of the function

P  with respect to its argument; and u k are the roots of the algebraic

characteristic equation

A,4(11)Z2(u) 	 02(11) v, O "	 (12a)

and

n 
	 W sot 3 (u k)/i2(1, k) = "Zk{uk)/Z3(14k), (12b)

with

22 (11) " S5 5u2 - 2545{1 
+ '44

(13a)

i3 (U} " 51503 - (S1G+ S 56 )px + {525} 546)0 - &2G
(13b)

{µ) ,^ Sllp 4 ., 25 160 3 + {2S 12+ S b6)u' - 25260 + 522 , (13c)

Introducing the following form for the function Fk(zk)

pk(Zk) 0 
Ck2 +2

/[ (S  + 2) (b + ].) ] , ( .4)

where C 	 and 6 are arbitrary complex constants to be determined later,

we can obtain the stress and displacement expressions as follows

3
Cy
	 + Gk+3 p k k]'kI1[Ckuk2k

(15a)

3
Cy yh) ,.	 NO 	 + ^k+3 k^kE I

(15b)

3	 _
IV 	 + Ck+3 '^k k 'k-ltCOOk

(15c)

rtxz
(h) 	

3

OOk 
+ Ck+3 O k '^k Zlt)'

kIl jCk
(15d)

7
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xy 0 -E Eo pkZk + Ck+3 pk zk

and
3	 _

U(h)
	

3 (CkpkZ6 1 + Ck+3 Pk xk+1 Ms + 1)	 (l6a)
k•1

3	 A

v (^' ) - z ICkgkzk 1 + Ck+3 q  k+ll / 0 + 1)	 (16b)
k»1

w(h)	
3

 kZ ( Cktkzk ^' + Ck+3 tk 
---4+1

	

10 + 1)	 (16c)

where

p M S ►^ 2 + S	 3 n + 8 n U	 S U	 (16d)
k	 11 k	 12 - 14"k	 15 k k	 16 k

- "s	 lu	 ngk a S12uk * S221uk 	 24n k k + S _25 k - 
s 91K 	 (16e)

^

tk S14uk + S24 /ok - S44nkl k + s45nk 54` 	 (16f)

The constant, a t in Eqs 15 and 16 may be chosen that the stresses

And displacements a
(h)	 (h)

and u	 satisfy interface continuity and

homogeneous boundary conditions. Taking complex conjugate of Eqs 15

and 16, their forms are invariant; thus, d appears as a set of complex

conjugates, which enables to make Eqs 15 and 16 real functions by super-

position. yurthermare, finiteness of displacements at the origin re-

requires that Re[S) > -1, where Re represents the real part of 6.

3.2 Solutions for o(p) and uip)

Since 
aie 

and ei in Eqs 6 and 7 are constant, we may choose a(p)

in Eq 9 as constants so that they satisfy the equations of equilibrium

8
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and compatibility conditions identically. for each individuai lamina,

let Cr (p) take the Following form:

3	 ,.,xp ) , 
oxo + z (d02+ dk k)	 {l7a)

k^1R

4p	
3

'?(	 yo + k l(k + d	 (17b)k) ► 

3

yz ) tyro  kEl (dknk + 0 n}	 (17c)y

3	 _ _

rxz) 0CxEa + kZ (dkn0k + Wk nk uk)	 (17d)

3
Txp) FA Tx o	 7 (dO

k
 + dk Pk) .	

(174)
Y	 Y r kM 1

Substiuting 8qs 17a-17e into Eq 9b and integrating the strain -displace-

ment relations, we obtain

3
U (p ) 

	Z (dkpkzk + d  Pk zk) - w 3y + W 2z + uo	 (18a)
L"I

4'P)	
3 	 _

v	 k1 (
dkgkzk + d  qk Zk) + w 3^t w lz + v 0	 (18b)

W (P) „ 
3

w	
k l 

(dk tkzk + dk tk zk) - w 2x + w ly + Oz + Vol(lSC)
A

where uo, vo , wo and wi are related to rigid -body displacements and rota-

tions. The complex constants d  are required to sat isfy the near-field

traction boundary conditions and continuity conditions along the ply

interface.

9
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,3.3 Delamination Orack-Tip Stress sinaularit

Consider u delaminatton between two plies, any the kth and (k+l)th

ply, In a composite subjacted to general loading as shown in Fig. 2.

Assuming that interlaminar crack surfaces are free from traction, we

introduce the following boundary conditions for the eigen stresses

a (h)

chi). T (I) a 'cry) W 0	 (1 - k,,	 i - k+l, (19)
yz

The superscript h is dropped in the expression for convenience.

Continuity conditions for displacements and interlaminar stresses

along the interface, ^ * Or

(a (k) IT (k) IT (k)), " (a (k+l) IT (k+1) IT (k+l)) (20a)
Y	 YZ	 XY	 Y	 Yz	 xY

(u(k)IV(k)Ow(k), „ (u(k+l)IV(k+l)PW(k+l)). (20b)

Substituting Eqs 15 and 16 into 19 and 20, we obtain the following

twelve linear algebraic equations in 
Cm(k) and Cm*i)t

3	 inS	 (k)	 (k)	 -i^td	 (k) r-(k)
Z (a	 Cm	

rim	
+ e	

Cm
rim } *^ 01	 (J-11213) (21a)

+3Mal

^ilyd	 (k+l) (k+l)	 ittd (k+l) ~(k+l)
Cm	

rim	
+ e	

Cm{e	 ) _ 0	
(j

•1r2 ► S) xrjm
(21b) 

+3
mol

3 { c (k) r 	 ) + C (k) r(k) , .:	 3 (c(k+l)I'(k+1) + C(k+l) -(k+1))
mil	 m	 rm	 k+3	 rm	 m1	 m	 rm.	 m+5	 rm

(k)	 (k)	 (k)	 (k)	 (k)	 (k)	 (k)	 (k)	 (k)where r (k " 1 ►, r (k * nm	 ' r3m ' F1 m 	 ' rim 
r p

m 	 ' r5m ' q	 and

r (k)^ t (k) .	 Solving Eqs 21c for C (k) and substituting the resulting
6m	 m	 m

^i

10
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expressions into Eqs 21a, we get'

1 (C(k+l) z [ain6a
mnr(k) + e_""a(rn+3)n r^m)]} 0.	 (21d)

not	 m=l

Equations 21b and 21d consist of a system of six linear homogeneous

algebraic equations. For nontri,val solutions of C (k+l) , the determinant

of coefficients of the algebraic equations must vanish. This leads to a

characteristic equation of the following form:

(ei2ly d_ 
1 ) 3 ' A (a )) 

. 0,	 (22)

where JA(S)J; is a 3 by 3 determinant involving 6 in a transcendental form

a	 (k)	 (k)	 (1s±1)	 (k+1)	 -> um ^ nm and um	, TIM 	 o	
adjacentand material constants	 the ^d

layers. Details of A(6) may be found in Ref. [14]. The general form of

6, which are the a genvalues of the problem:, may be written as

6n . n,	 or 6n - (n - 2) t i	 (n^0,1 2,...),	 (23)

where y is a constant related to elastic constants of adjacent plies.

Thus, for each 8  
we have the eigenfuncti.ons of the form Eqs 15 and 16

whose coefficients may be determined from the remote boundary conditions

other than Eq 19 It is important to note that the do bounded by

0 > Re[6n] > -1
	

(24)

characterize the inherent stress singularities of the delamination crack

stresses in a composite laminate.

For cross-ply composite laminates, the differential, operator L3

vanishes identically. Thus, F(Z) and T(Z) are uncoupled, and the form

11
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of Eq 23 can be simplified and expressed explicitly as
i

n . n t, 	or

L
a

	

an " .,(n -» 2)	 2ir ;,n( (b + (b2 - 4a2 )T] / (2a) } r	 (25)
i

where a and b are related to material constants S (k) S(j	 (k^ij
--(k)	 (k+l) —(k+l)
ui and ui 	 ► pi,	 shown In Appendix 1. In a limiting case of k

isotropic materials, it can be shown that 6  have the Form,
,r

6n . Cn .. 2) is 2n Rn( [G (k) + G(k+') (
3 - 4v (k) )

I[G (k+l) + G (k) (3 - 4v (" ) )]),	 (26)

where G and v denote the shear modulus and Poisson's ratio, respectively.

The ei.genvalues of gq 26 were first obtained by William [l] and later by

Zak, at al. [2] for interfacial cracks in isotropic media.

{
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4. DMAMINATION STRESS;'-rNTENSI'rY FACTORS AND ENERGY RELEASE RATES

The eigenfunctions and the unknown constants for a (h) and a (p) in

Eqs 15 and 17 are determined by imposing appropriate (materials and

geometric) symmetry and traction boundary conditions, which will be

discussed later. Uence, complete stresses and displacements a (a) and

U(0 in the a-th lamina can be fully established. Neglecting the

higher-order terms, we note that the typical structure of near-field

crack tip stresses can be shown to have the following form:

a	 [f (01) 
ki
	 g (a) 

kJ	 (27)
J*l k 1

where fk and & (a ) are related to the material constants, geometry,

and boundary conditions; d 1 are eigenvalues bounded by

-1 < Re[S 1 0 to insure the positive definiteness of strain energy

of the elastic body, It is clear that the eigenval.ues which satisfy

Eq 24 Lead to asymptotic near field stresses. For the convenience of

further development, the stress a(a) around the crack rip may be re-

written as

rt a)	 Z o (' ) (x, y; d^) + 0 (non-singular, W,gher-order terms),
j'1

(28)

where a () is the J-th singular component of the stress a (a) cor-
ij

responding to the eigenval.ue 6 1 which meats E . 24.

In the context of mechanics of .fracture, it is possible to define

the so-called stress intensity factors for the delamination in a manner

analogous to that given in Refs [4, 5 1 by considering the interlami.nar

stresses ahead of the crack tip along the interface, i.e.,

13
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n

	

KI - 
lim ^ 1 

7 x 'Ja2^ (x1 0,6 ) ► 	 (29a)

. 
n

	

K 1 moo+ I 
^ x_% 6j (x,0, 6 i ) t	 (29b)

^1
n

Klxl lim
	 ^ x-'J 	 (xt 0,a >	 (29c)

where the superscript a is omitted, because tracti.pns, a2 , a4 and a6,

are continuous across the interface.

While the stress intensity factors K1 , :KII and KI11 describe the

details of the delaminat .on crack-tip field, the strain energy release

rate G is also of significant interest, since this is a quantity

physically measurable in experiments and mathematically well defined.

The fracture energy release rate in a delam,inat,ed composite may be

evaluated by using Irwin's virtual crack extension expression [15],

G GI + Git 
+ Glxx

as
Lim 1 (a (r,0) [ v (k) (80-r,7) - v (k+1) (Ssar,T,r)]

6a+0 gas f 0 y

+ TXy (r,d) [ u (k) (SO-v* , 10 - u (k+l) ( s _r.-^r) J

+ T yZ (r,0) [w (k) (60-r oO - w(k+l) (60-r,-7r ) ])dr ,	 (30)

where polar coordinates (r,o) are used for the convenience of computa-

tion. The interlaminar stresses, a y,, 'cxy , and 
ryz 

An Eq 30, may be

obtained from the crack-tip stress field equatioas such as Eq 27. The

corresponding displacements are also those of the crack-tip field

equations obtained , in the previous sei4tion.
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S. NUM RICAL LWIPLES AND DISCUMON

the formulation and analysis for the problem outlined in previous

sections have been programmed into a solution scheme suitable for

numerical computation. For the purpose of illustrating the fundamental

behavior of the delamination fracture in composite laminates, graphite-

epoxy systems with symmetric,	 fiber orientation containing

edge delamination cracks along the 0 and -0 ply interface are studied.

The particular material system and ply orientations are selected here

because they have been previously Investigated 
in 

some detail.

The composite laminate is subjected to a uniform axial extension, and

has at geometry shown in Fig. 1 with a width-to-thickness ratio 2b/2W

and uniform ply thickness hi. DelaminatIon cracks of length ki are

assumed to emanate from the edges of the composite. Lamina ptaparties

typical of high •modulus unidirectional graphite-apoxy composite for

aircraft construction are used in the computation (Table 1). For com-

Ppsite laminates with the aforementioned laminate geometry and ply

orientations, several geometric and material symmetry conditions may

be introduced to simplify the formulation further. The problem, there-

fore, can be solved very conveniently and accurately,

5.1 Symmetry and Boundary Conditions, and Further Simplifications

The symmatric, ply orientations and geometry of the composite

laminate (Fig. 3) lead to the following conditions for displacements;



Ty- 5y 	 on 	 b-a,

au
3V ' By ' 'au ' 0
	 on y -h2 ,	 (31b)

where the origin of thecoordinates is moved to the left tip of the

delamination. The traction -free boundary conditions on edges And Lateral

surfaces of the composite laminate may be written as

CF x 's Txy 
OW 

Txz	
0	 on x „ -a,	 (310

cry Txy = Tyc . 0	 on y * hl .	 (31d)

Thus, only a quarter of the laminate cross section needs to be considered.

The boundary conditions, Eqs 3la-d_ ) contain arbitrariness of rigid body

displacements, which is a Characteristic of traction boundary value

problems.

Since the eigen solutions, a (h) , satisfy Eq 19 and interface con-

tinuity conditions Eq 20, we require that a (p) satisfy these conditions

also, To determine d (
k
4) uniquely for Eqs 17 and 18, we .further require

the particular solutions satisfy the following conditions:

U(P) • 0	 on x w b-a,	 (32a)

V (P) N 0	 on y A -h2 ,	 (32b)

W (P) . 0	 at (01010).	 (320

Substituting Eqs 17 and 18 into Eqs 19 ) 20 and 32 gives

u (c`)	 1 Cd(1)p(l) + d (l) p(1) l (b -- a),	 (a-1 ,2)
°	 k=1 k k
	 k	 k

(33a)

€

j
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OF POOR QUALIIY

(a) ,. 3	 (2) (2) (2)	 7' (2) —(2) —(2)
v	

"

4	
kldk ak u

k + dk "kUk
	

tt2,

w0
(a) * 00

W (a) W 00 0

3a) _Z
 Ed a) q a) + dka) 

q °t)]
1

and

Z [dka) + d% I
k-1

yo

3 (a)	 (a)	 (a)
nk	 + d kZ i [ dk " 4a)

nk
(a)

Tyzo'

[ d ((x) u (a) + d(a)
k	 k	 k

u (a) ^
k

^* T(a),xyo
k-1

Z
[d(')pkl) + dkl) ^)^ _	 [dk2)pk2) + dk2) pk2)],

k-1 k=l

3 [d (1 ) t(1 ) + dkl) t (l) ] °'	 3	 [d (2) t (2) + dk2)tk2)J,
k-1 k-1

3
kZ

(a )	 (a )	 (a)[d	 (q(qk 	 + Pk (a )u k	 )
(a)

+ dk
—(a )	 —(a) "'(a)(qk	 + Pk	 uk	 ))	 0.

(33b)

(33c)

(33d)

(33e)

(34a)

(34b)

(34c)

(34d)

(34e)

(34f)

Equations 34a-f gave ten linear algebraic equations for twelve real

unknowns for a(p) and uip) . Hence, we may set

,k	

7m [d(a)] W 0	 (35a)

to reduce the additional degrees of freedom. For symmetric angle- ply

laminates, it can be shown that Eq 34f is satisfied identically.
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Therefore, instead of using Eq 35a, it, may be required

duo) 	0.	 (35b)

Since the complete solutions for stresses and displacements must

satisfy the symmetry and remote boundary conditions, Eqs 3la-d, the

following relations can be established immediately to evaluate ash) and
U (h)

i
a(h) + a(p)	 0	 (1-1,5,6)	 on	 x +	 -a ,	 (36a)i	 1	 ^

v (h) + Cr P)	 0	 (iw2,4,6)	 on	 y	 hi,	 (36b)
and

au 	 8v(h)	 ^v (p)	 aw(h). aw(p)
aauu }. ay " r^	 ay.^.. + ax

	 0, ay	 ^y	 0	 on x	 b-a,

(36c)

h)	 (p) (h)	 (p)	 (h)	 (p)8v	 ^v	 au	 8u	 3w	 2w r
x 

ti 
+ ax	

° 0,._.,._... + Sac
	 •^	 Dy	

,R + 8y
	

,^ p,	 on	 y '"	 h2,

(36d)

By using the eigenfunctions derived previously and the boundary collocation

met'nod, the boundary conditions given in Eqs 36a-d can be matched con-

veniently in whe least-square same.	 Thus, the eigen solutions for

a(ih) and a (h) can be detitzral.ned, 	 Numerical, solutions for the problem

by using the collocation procedure are related to the truncation of

eigenfunctions and number of collocation stations. 	 Due to space
r

limitation, the detailed discussion of solution convergence and accura-

cy is reported elsehwere [16]. 	 The results presented in this section

L
are from collocation calculation, which has a maximum mismatch within

t'
one percent deviation from prescribed boundary conditions.
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' Stress Sin Merit fol De ami stion in 0 m oaites

Now consider a delamination lying between S and -0 plies (Fig. 1)

M 

	

	

in a graphite-epoxy composite with ply properyias given in 'fable 1. The

interface continuity and traction boundary cool tiono along crack sur-

faces lead to a standard eigenvalue problem for the homogeneous solution,

as discussed in Section 3.34 The eiger►values m obtained from the

transcendental equation provide basic structures of near-field stress

and displacement solutions for the delamination problem. The order of

stress singularity and the asymptotic nature of the crack tip stresses

depend on the values of am , which satisfy the constraint condition of

Eq 24. Thus, the eigenvalues corresponding to this restriction are of

fundamental importance in understanding the delamination failure be-

havior. For edge del,aminated (i0) s graphite-epoxy composites with

various fiber orientations, the eigenvalues d m , which satisfy the

aforementioned constraint condition, are found by the present e:gen

analysis and given in Table 2. The stress singularities for an inter"

face crack between two highly anisotropic laminae are observed to con-

tain a pair of complex conjugates, 61,2 • - 0.5iiy, and a constant,

8
3
 = -0.6. This situation is unique and different from that of an

interface crack between two isotropic O.r orthotropic media in the sense

that d 1 , 6 2 and 6 3 exist simultaneously in the present delamination

problem. In the degenerated cases such as i0 - 0° and 90 0 , the composite

laminates become unidirectional. The delamination is located in an

orthotropic material; the classical inverse square-root singularity

for crack-tip stresses is recovered fully. It is noted that the

19



present physi*al model and the eigenfunction analysis lead to an oscilla-

tory stress singularity, &a are the canes of interface cracks in iso-

tropic or orthotropic materials.

5.3 AsjmPtotic Stress Field wound Delamination

Complete solutions for delamination cracks in finite dimensional

composite laminates are obtainable by using the present Lekhn tskiiOs

complex stress potential formulation and eigenfunction expansion. With

the aid of the boundary collocation method, the asymptotic straos field

around a delamination may be expressed in a general form as

ey	 7 r fn 	
,k0.5+iy .a. n (k+3)' x0.5+i.Y 

j 
+ %_r k 7-0.5-iy

k^^.

E^ {k+3) Z
-4.5-i.Y ) 

+ (F	
-0.5^^0.5 + p^ 

(k+3) 
Z Q.5

)}

(J-1,2,.....,6),	 (37)

where Dik, Rik :$ and Fjk are known quantities satisfying the following

rel.ati.ons

AE	 ,	 D	 = E ,	 F M F	 ,
j k 	 J (k+3)	 J (k+3)	 j k 	 A	 J (k+3)

to insure a being real. More concisely, a can be written as

1

o f . r- 2 [Ai cos(y In r) + Bi sin(y In r) + 0	 _	 (39)

For illustrative purposes, the structures of near-field stresses aced

displacements ahead of a delamination (r,0) are given for a

(3g)

i

^t

j{

r
if

if
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(45*/-45°/-45°/45 ') graphite-epoxy laminrta with h1 . h2 * 1 in.,

a P 1 in. and 2b /h in 4 subjected to c 	 *	 as followst

C v (v, 0 )	 (0.04339cos(0.03434 In r)+0.39498m in(0.03434 Rn 
r)) r'015

Y

+ 0 (1) , (40a)	 i

-0.5
T	 (r,o) * 10.45347 cos(4.03434 to r)-0.04981$ n(0,03434 to r)) r

yz

+ 0(l), (40b)

Txy (r,0) w-0.002449	 >;-0.5 + 0(1) , (40c)

and

u (') (6 S-r, tt )	 (-0.29576cos (0.03434 Zn(60-r) )

^ + 0,01208sin(0.03434 2n(6 8- r))} (60-r0.s_)

0,003403 00-0 0,5 + 0 (1), (41a)

C
x (1) (68-r,ir) - {0.02888cosj0,03434 Zn(60-r))

+ 0.70682sin(0.03434 W60-01)(60-0 0.5

` + 0 (i), (41b)

I

w 	 {0.61564 cos[0.03434 stn(60 -r))
I

- 0.025155 sin(0.03434 Zn(60-x)1)(6$-
r)0.5

Y

+ 0.00160200-r)
0.5 + 0(l), (41c)

S'

where the components of stress are scaled by 106 x c2 , and the

r displacements by e z .	 It is noted that the elastic stresses near the

:	 k
 21
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delamination crack tip in a composite laminate possesses the well known

oscillatory behavior, and the displacement field also exhibits an

oscillatory nature with crack surfaces overlapping each other. As

firot pointed out by Malyrhev, et al.. (7) and later by England [5) and

grdogan ( S ) for interfacial cracks between dissimilar isotropic media, 	 I

the phenomenon of crack surface overlapping is confined to an extremely

small region and the interpenetration is not of significance in prac-

tical terms of fracture mechanics. howevi..r, for certain combinations

of material properties, ply orientations and loading conditions in

c^,,,xposite laminates, the crack surface contact region has been found to be

extremely large [16]. Thus the current model needs to be modified to

account for the crack surface closure and contact stresses f16). studies

on interface crack closure in dissimilar isotropic media were reported

recently by Comninou [17), Atkinson (181 and Achenback [11].

5.4 Delamination Crack Tip Stress Intensity Factors

Since the Irwin fracture criterion is local in nature and requires

precise knowledge of the local conditions at the delamination crack tip,

the stress intensity solutions are obviously of great significance.

According to the present fracture mechanics theory of composite delami-

nation, stress intensity factors, K IP KII and KIII , may be evaluated by

the rigorous analysis described in Section 4. The KI , KII and KIII

lead to detailed information of the stress and displacement fields in

the neighborhood of the delamination crack tip, and may relate to the

onset of delam nation extension upon reaching a critical level. The

+t

iF
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magnitudes of K  shown in the formulation depend on the delamination

length, ply orientations, laminate geometry, and loading -conditions.
i

Consider the (6/-9/-8 /8) graphite-epoxy composites with varioue
;i

fiber orientations subjected to uniform axial extension e Z . For illus-

trative purposes, we choose a composite with a width-to-thickness ratio

2b/(2h) equal'to 8, ply thickness hl • h2 l in., and delamination

length a - 1 in. The mixed mode KIP 
KII 

and KIZT are determined and

given in Table 3 for various (O s. It is observed that even though the

compos,4,te laminate is under the simplest loading condition, the delamina-

tion crack tip response is very complicated due tp the complex inter-

laminar stress distribution, the nonhomogeneity of the solid, the aniso-

tropic ply properties, and the unusual delamination configuration with

respect to the loading direction. The out-of-plane tearing mode stress

intensity factor KIII caused by interlaminar shear T yz is about one or

two orders of magnitude higher than K  and K IT in general in the lami-

nates studied. The opening mode stress intensity K  is also very Sig-

nificant due to the interlaminar normal stresses o y . The simultaneous

presence of KI , KIT and KIII in the delamination problem is unique to

angle-ply fiber composites, and is not observed in fracture problems

for bonded dissimilar isotropic media in general. The delamination be-

havior is inherently three dimensional in nature; for composites with

more general laminations, crack geometry and loading conditions, fully

three-dimensional stress and fracture analyses are essential for ob-

tain;tng complete information.

The influence of laminate geometric variables on the delamination

behavior is best illustrated by examining the changes of K I , KIT and

23



Kill with the relative thickness of upper and lower plies h1/h2 in a

(45 °/-45'/-45'/45') graphite-epoxy composite (with h 1 + h2 . W 2 in.)

Given the crack length, (a . 1 in,), laminate. dimensions (2b - 4 in.),

and the loading condition as previously, the dQlamination stress inten-

sities for various Ill /h2 I s are shown in Fig. 4, The crack tip tear-

ing and opening actresses TyZ and cag y have a maximum intensification as

the ply thicknesses h i become identical, i.e., h1/h2 a 1. The Kill

however, reaches a minimum due to the reduction of xxy. It should be

noted here that the Ki p KT1 and Kill 
depend on material, constants of

all plies as well  as the overall geometry. Therefore, the dependency

of K  on ply properties is not a simple matter of identifying them with

geometric variables t and they may not have the simple physical inter-

pretation as in the homogeneous case.

5.5 Strain EnerSX Release Rates for belamination

The equilibrium and stability of del.amination are commonly examined

from an energy rate point of view. The strain energy release rate G de-

fined in Eq 30 is a quantity characterizing the driving force for delam-

ination extension. The delamination-growth driving force carp be easily

determined after the establishment of the local asymptotic stress and

displacement fields. For the edge delamination problem in graphite-epoxy

composites considered here, the G value may be obtained in a general.

;form as

G - G1 + G11 + GIIT

d ^3
lim 2S ^ 	{Alcos(y Zn dS r)] + A2sin[Y in (SS r 

r ^ + A3}
s0+Q	 fo

SS 

^ 
ri	 Q .5

(^------)	 dr ,	 (4 2)r
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where Y	 ImP 1,	 Equation 42 has the form similar to the one derivedI
previously for an elastic-half space, proh",em by Willis (191,	 The sing"-

lar integration may be carried out by defining an anlytidal function

with the cut 0	 x4,65 

f(z)	 t z -	 S+iY
(43a)z

so that we have

60	 0158B	 cos(y kn(	 r	 dr	 1T60/(e_Y1T + ay" ) O 	(43b)r
0

0.5 68 - rr	
sin(Y An(-' r ')Idr	 2 Yltdoge-y" + eyv )•	 (43c)f r0

'taus, the total energy t6ldaS6 rate 
G can bee 	 immediately by

substituting Eq 0 into Eq 42, 	 Table 4 shows the change of G values with

ply orientations for the 	 graphite-epoxy composites with the

material properties in Table 1.

To study the basic nature of delamination extension in angle-ply

composites, strain energy release rates in the (45*/-45'/-45*/45")

graphite-epoxy with variou g crack lengths are examined. 	 Effects of

laminate width on ddlamination crack extension is also investigated.

The change of tote strain energy reltase rate G with delamination length
ri

a is given in Fig. 5 to illustrate tundamental characteristics of the

delamination, fracture. 	 For the composite laminates with varid'us 2b/2h's.

the G is observed to change with delamination length in a unique manner.

The maximum energy release rate or track extension driving force occurs

at a delamination length approximately equal to one or two ply thick-

nesses in the composite studied, depending on the (2b/2h) ra'tio.	 As

25



the delamination exceeds this characteristic dimension, G decreased

monotonically.

On the basis of fracture mechanics, several important Features

regarding delamination fracture are revealed fronl' the Figure. Assuming

that the material resistance to delamination growth remains constant

(i.e.; the failure criterion, G c constant, is used), we can iciedi-

ately conclude that there exists a critical delamination length asso-

ciated with the maximum G (fox example, a * 1 2h for the case b/h 8)

for each composite laminate; the word "critical" means the one that

experiences stable crack extension at the lowest load. at also indi-

cates that any interlaminar edge flaw a  inherently in the Composite,

which is lass than a* , will experience rapidly unstable growth as the

load or G reaches a critical. Level, " and is anticipated to be arrested

at a later stage. Any initial delamination greater than a * will ex-

perience a stable growth under monotonically arising loads; that is,

there exists an inherently built-in crack arrest mechanism for edge

delamination. These phenomena predicted by the G r d, curve have been

noted by several researchers conducting experimental and analytical

studies on the delamination fracture. The a* may be an important

quantity in the life prediction for delaminated composite materials

and structures subjected to static and cyclic loading.

The delamination strain energy release rate is also a function of

other geometric variables. For example, G is significantly affected

by the relative ply thickness h1 /h2' In a (4S 6 /-45°/-45 * /45°) graphite

epoxy with a geometry given before, the change of G with h I/h 2 is given

3

R
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in fig. 6, where maximum driving force occurs at hl . 112 indicating the

criticality of the relative ply thickness to delamination fracture in

composites.

It is noted here that, even though the near-field stresses possess

an oscillatory singularity and K  may not have the usual significance

attached to them as in the cohesive (homogeneous) case, the energy re-

lease rate G is well defined mathematically and physically, and should

be the quantity of major interest. The G and its components Gl , Gl,x and

Gill can be evaluated theoretically and experimentally to provide a

basic measure of the delamination fracture.
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6 . SUMMRY MIA CONCLUSIONS

An analytical method for studying delamination is presented in this

paper. Fundamental nature of edge delamination in advanced fiber composite

laminates is examined. Based on the theory of anisotropic elasticity,

the composite delamination problem is foftulated by using Lekhnitskii's

complex-variable stress potentials and an eigenfuncton expansion method.

Exact orders of the three-dimensional stress singularity in a delamina-

tion crack tip region are determined from the eigen analysis. With the

.aid of a boundary collocation technique, complete stress and di*placement

fields in a finite-dimensional., delaminated composite are fully determined.

Fracture mechanics parameters such as the mixed-mode stress intensity

factors and associated energy release rates for edge delamination are

calculated explicitly. Solutions are obtained for edge-delaminated

(8/-a/-6 /e ) .angle-ply composites under uniform axial extension. Effects
of delamination lengths, fiber orientations, lamination and geometric

variables are studied in detail.

Based on the information given in the previous sections, the follow-

ing conclusions may be drawn:

1. An analytical method based on the theory of anisotropic

elasticity is successfully developed to study edge de-

lamination in angle-ply composite laminates. Formulation.

of the problem is carried out by using Lekhni;^skii's complex

stress functions. Stress singularities for delamination between

highly anisotropic laminae are obtainable by using an eigen-

-function analysis. The order of delamination crack-tip

28

is
F



stress singularity is different from that of an interface

crack between dissimilar ,isotropic or orthotro pic media

by the simultaneous presence of three characteristlo

eigenvalues of -.0.5+iy , , -0.5-iy , , and -0.5.

3. Ue fracture mechanics concept may be extended to delamina-

tion problems in anisotropic composite laminates by properly

defining the interlaminar crack-tip stress intensity factors

such as Eqs 29a-c and strain energy release rates, For

angle-ply compoj ite laminates, KI, 
K 1 and KTII always

occur simultaneously for an edge delamination with 
KIII being

one or two orders of magnitude higher than the other two,

4. Complete stress and displacement fields in a delatminated

composite may be accurately determined by a combined eigen-»

function expansion and a boundary collocation method. The

asymptotic solutions are characterized by K  U-I,II,ZIZ)

and possess the well known oscillatory behavior. The crack

surface overlapping could be very Large in some composite

systems with certain combinations of fiber orientations, ply

stacking sequences, and loading conditions; modifications

[161 of the current model to include crack closure may be

needed for these cases.

S. The crack extension driving Force or strain energy release

rate for edge delamination in composite laminates can be ac-

curately determined by using Irwin's crack extension

concept. Delamination stability in composite laminates

29



under monotonically rising loads can he assessed for any

Inherent interlamnar flag relative to ,^. ► e critical, de-

lamination adze a* obtained in the current G a curve.
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TABU I

Material's Constants for Graphito/Epoxy Composite Lamina

EL - 20.0 x 106 psi

ET - 2,1 x 106 Pei

G 
LT 

G 
Lz 

G 
TZ 

0.85 x 106 psi

LT	 Lz	 TZ 0.21
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0 61 o2

0° - 0.5

15 0 - 0.5 1 0.000421

30 0 - 0.5 t 0.023991

45 0 - 0.5 1 0.034341

60 0 - 0.5 t 0.029421

75 0 - 0.5 - 0.01579

90° - 0.5

0.5

- 0.5

- 0.5

- 0.5

0.5

0.5

0.5

63

TABLE 2

Dominant Stress Singularities for nelamination in (0/-0/-0/0)
Graphite-Epoxy Composites
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TABLE 3

Stress Intensity Factors Ki* for Edge Uelaminatlon in {0/-0/-019)
Angle-Ply Graphite-Epoxy Gompooita t Subjected to Uniform Axial Strain

to KY Kxltt
K III tt

15 0 0.06645 0,01214 -4.5588

30 0 0.2330 0.03330 -3.6604

45 0 0.1347 0.01380 1.2968

60 0 0.02025 0.001360 -0,1775

75' 0.006268 -0.0002948 0.0818

*Ki (psi vqn—. ) are scaled by 106 e 
to w hl *^ h2 o 1 in. , b * 8 in.

ttFor the delamination crack in the first quadrant

M
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TABLE 4

'i

1

r

wr

jr
i
rt	

kk

K

p
i

Energy Release Rate G for Edge Del.amination in (e/-e1 -8/9) Angle- Fly
Graphite-,Epoxy Compositet Under Uniaxial Extension Ex

io	 G/106 e2 (psi-in.)

15°	 8.1076

30°	 4.0506

45"	 0.5740

60°	 0.0138

75°	 0.0036

to - hl w h2 1 in., b * 8 in.
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APPENDIX I

Materials Parameters for nelamination Crack-Tip gigenvaluas
in Cross-Ply Composite Laminate

n

	

- n	 or

1.

	

6 n = (n	
27r

Zn{ (b + (b2 - 4a2 )
2 (2a)

where

a - ..M(k)M(k+1) - M (k} M (k+^ } + M(k)M(k+1) + M(k) M(k+1)
1	 2	 2	 1	 3	 3	 3	 3

+ M(k) + M(4k+l)

b -2M(k)M2(k) + M2k)M2k) + M (k) M2k) - 2M
(k) M2k+1) _ 2M(k)M1(k+l)

- 2 M (
3
k )
 M(k+l) - 2M(k) M3k +l) - 

2M(k+l)M2k+l)

+ M (k+!) (k+l) + M (k+1) M (k+1)
3	 3	 3	 3

and

Mia) - 2 S2i }
((u2a} + u2a) ) - (112a) + u(a)) ) )

M2a } - 2 S
11 ) { 11 1 ` ) 11 2x) Ga za ) + u 

—(a )
)	 - Baia) 14 2x ) (], 1 a) + u 2a) ) } ^

M3 511 u 1	 u 2	 512

M(a )
4

S(a} S (a) - (' W)2 +
11	 22	 12 11

s (a}(u(a) u (a)
1	 2

+ 
u

(a) u(a))
1	 2

t

( 5 (a)	 ..	 S (a) (u (a)12	 2	 11	 1
+ ,(a)

2 (7(" ) +	 u (a)) 
J .1	 2
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