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FOREWORD

This report describes a portion of the results obtained on
NASA Grant NSG 3044. This work was done under subcontract to the
| University of Illinois, Urbana, with Prof, S.S. Wang as the Principal
Investigator. The prime grantee was the Massachusetts Institute of
Technology, with Prof. F.J. McGarry as the Principal Investigator
and Dr. J,F, Mandell as a major participant. The NASA -~ LeRC Project
Manager was Dr, C.C. Chamis.

Efforts in this project are primarily directed towards the de-
velopment for finite element analyses for the study of flaw growth and
fracture of fiber composites. This report presents exact solutions for

edge delaminations in angle-ply composites,
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ABSTRACT

Edge delamination has caused severe concern in the design and
analysis of advanced composite materials and structures. Due to its
complex nature, very limited kaowledge for the problem is currently
available.
but alsc inherently coupled mode I, II and III fracture in the layered
anisotropic system. Based on complex-variable stress potentials in
the anisotropic elasticity theory and eigenfunction expansion, exact
orders of the crack-tip stress singulayity and complete field solutions
are obtained. Results are given for edge~delaminated composites

subjected to uniform axial extension for illustrative purposes.

Effects of geometric, lamination, and crack variables are determined.
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It involves not only geometric and material discontinuities
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L. INTRODUCTION

|

Idge delamination is frequently encountered in angle-ply compo=-

site laminates. It is due to high stress concentrations at geometric

" boundaries and the inherently weak interlaminar strength along the ply

interface. The problem posed by edge delamination is of great theoreti-

cal interest. It also is of wsigrdficant technical importance in determining

the structural integrity and_damage tolerance of advanced fiber-rein-
forced composites and their Applications to agvaqmed engineerf&g
structures and components. The presence and growth of delamingtion
cracks fr&m geometric boundaries of composite laminates may lead to
severe reliability and safety problems of fiber composite materials
and structures such as the reduction of structural stiffness, the
exposure of the interior to adverse environmental attack, and the
disintegration of the material, which may cauge the final failure,
Thus, understanding the basic nature of edge delamination is of
critical importance in damage characterization and accurate assessment
of flaw criticality and structural integrity of advanced composites.
The edge delamination problem is very complex in nature and
extremely difficult to solve. It involwes geometric and materials
discontinuities, i.e., free edges, interlaminar cragks and variation bf
ply properties in the transverse direction. It also involves inher-
ently coupled mode I, II and III fracture in the anlsotropic layered
material system such as angle-ply composite laminates. Edge de~

lamination is basically a fracture problem involving an interfacial
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crack between two highly anisotropic fiber-composite laminae

under general loading conditions, The problem of an interfacial crack
bécween two dissimilar isotropic materials has received much atten-
tion recently, for example, Refs, [1-12]. But the study of a de-
lamination between Qtronsly anisotropic fiber composite layers,
especially in finite~dimensional laminates under general loading,
has been very limited, to the aucho:'s knowledge. 1In this paper, a
rigorous investigation of the basic.naturekof the coupled opening,
sliding and antiplane shearing fracture behavior of edge delamination
is presented for composite laminates under uniform axial extension.
Basic formulation of the problem based on the thenry of anisotropic
elasticity and eigenfunction expansion is given in the next section.
General solutions and aggociated stress singularities for the edge
delamination are derived in Section 3. Fracture parameters such as
mixed-mode stress intensity factors Kp» KII and KIII as well as the
energy release rafe G are defined and determined in Section 4. Num-
erical results for edge delaminated composite laminates subjected

to uniform axial loading are shown in Section 5 to illustrate the

i
i

fundamental behavior of edge delamination cracks. Effects of geo-

metric, lamination and crack variables are studied in detail.
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2, FORMULATION

Formulation of the delamination problem is based on the theory
of anisotropic elasticity for nonhomogeneous solids. Well known
Lekhnitskii's stress functions [13] are introduced to establish
governing partial differential equations for field variables. An‘
eigenfunction expansion method is employed for determining the stfésa
singularity at the delamination crack tip. The boundary collocation
technique is then used to evaluate the complece solut#bn for finite~

dimensional composite laminates. ﬁ

2.1 Assumptions and Delamination Model

Consider a composite laminate (Fig. 1) composed of unidirec~-
tional fiber-rasinforced plies of uniform thicknesses, hl’ hz,....hn.
For simplicity but without loss of generalihy, we restrict ourself to
the “ases of symmetric, angle-ply composite laminates with fiber
orientations (61/92/..../62/01). Ply thicknesses are also assumed to
be symmetgic with respect to the x-z plane, i.e., h1 - hn’ hz = hn-l’
«es» The composite has a finite width 2b and is subjected to a uniform
axial extension, @, where € = constant, along the z-axis, The composite
laminate is sufficiently long that, in the region far away from the
ends, end effects are negligible by virtue of the Saint Venant
principle. Consequently, stresses in the laminate are independent of
the z-axis. The case in which stresses andﬂdisplacements are independ-
ent of z corresponds to the well known generalized plane deformation
(13]. Edge delamination occurs in the form of a crack along the

interface of dissimilar plies with fiber orientatioms, ek and 9k+1'
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Perfect bonding is assumed in the composite everywhere except the

region of delamination.

2.2 Basic Equations

For each individual lamina, the constitutive equations in the
structural coordinates x-y-z may be expressed by the generalized Hooke's

law in the contracted notation as

si - Sij Oj (1'1 - 1,2,000-6) (1)

where Ey and oj are strain and stress tenaors,\and,sij, the compliance

tensors, respectively. The strain-displacement relationships are given

by
€) ™ € ™ Wy €y ™ ey - v,y, (2a=b)
€y ™ E, = Wy €, ™ sz = Wiy + V), (2¢=d)
e; = Yz " Wiy + Uy s € ™ ny - u,y + Vi (2e~f£)

where the subscript aftaer comma denotes the partial differentiation with
respect to the variable. Under these assumptions, there remain three

compatability relations:

‘ + - 3

eXpyy eYlm Yvaxy’ ( 8)
<-sz,y + sz’x)!y - 0.’ (ab)
('YYz,x + ¥xz,y)’x = 0. (3¢)

For a symmetrical angle-ply composite laminate subjected to uniform axial

strain e, it can be shown easily that .

¥
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Y = 0, (4)

X2y, - sz’x

since the relative angle of rotation for the symmetxic composite lamin-
ate about z-axis vanishes.
Based on the definition of the¢ problem, i,e., e, ™ @ = constant,

9, in Eq 1 can be expressed in terms of other stress <omponents by,

oz - (3 - SSJ GJ)/SSS (j - l)zials)ﬁ)‘ (5)

Thus, the generalized Hooke's law may be modified to have the following

form:
ei - Eij Gj + Bi (l,j - 1,2,4,5,6). (63)

where
Si4 " sij - 5313311533’ e, = asm/s33 (1,3 # 3). (6b)

It can be seen from Eq 6 that ey has the role of initial strains in the
laminate, For the current stress formulation, it may be more convenient

to introduce the initial stress Gjo such that

Ei - §ij(cj - GJO), (iyj " lp2,4)5,6)) (7)

where Oio ™ ‘§13 ej. It is possible to deccmpose the complete solutions

inte two parts, i.e,,

¢\ » aih) + °§p) ) (8a)
c, eih) + e§p) (8b)
where
eih) - 513 o§h) and aip) = §1j(g§p)' Ujo)' (9a-b)
5
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3. GENERAL SOLUTIONS AND ASSOCIATED STRESS SINGULARITIES FOR DELAMINATION

3.1 Solutions for aih) and uiti

Introducing the.stress functions F(x,y) and Y(x,y) which satisfy

equations of equilibrium identically and following ithe procedure by
Lekhnitskii [13], we obtain a pair of coupled partial differential

equations as follows:
LAF + LSY - 0, (10a)

LBF +'L2Y = 0, (10b)

where L L L3 and Lé are lines;» differential operators of the second,

third and fourth order, reapectively, defined by

L, = § 92 - 2§, 22 a2 (10c)
44y X% 45 3x3y T 55 e ! ¢

-~ 33 ™ ~ 33 "~ ~ 33
Ly = =Sy 537 + g5 + S4¢) 5xZay = 14 * Ss6) 5057

5 33 .
S15 3y7 (10d)

Ly = Sy 5% - 2526 "“3' + (28, + Sg6) Trr5y

g4 3%
- 28, xoyS T S Iy (10e)

Lekhnitskii [13] has shown that the general solution for Eqs 10a-10b may

be expressed as

6

F(2,) = F\ (2, ) ¥(z,) = n F'(Z,), 1la=b
) k§1 ) (z) = 1 e (11a-b)




where Zie ™ X R Uy; the prime (') denotes diffarentiation of the function

characteristic equation

2,000,0) = t3@) =0, (12a)
and %
M = R (U )/ G = =0, (1) /3 (), (12b) *
with i g
- - 2 - o ~ ;
~ 3 - L L] 2 ~ ~ ’ - Ed
Balh) = Sy = (Byuk Sgghu + (Sp5% Suev = Spu (13b)
- ~ k - ~ 3 ~‘ o 2 - -~ ~
%,00) = 5, ,u 25, n° + (25,4 SgeIu* = 25561 + 5,0 (13c)
Inhroducfms the following form for the function Fk(zk)
642
Fk(zk) = C.2y J1( + 2)(5 + 1)), (14)

where Ck and § are arbitrary complex constants to be determined later,

we can obtain the stress and displacement expressions as follows:

3
% " L O Y G Wy B
3
M 5 -
9y " ) [C2¢ * Crys Zels

k],

3
47) R § - =8
Tyz kgllck“kzk * Cras M Ao

3
(h) .
Tz ¥ [c

s = = =S
& LGP T Gty M M Bl

Fk with respect to its argument; and Wy are the roots of the algebraic

D

(15a)

(15b)

(15¢)

(15d)




(h) - - w 9] | (15e)
kglt"k“k * O M
and
4L = =3+
z [ckpk k + ck+3 Pk l]/(a + 1) (16!)
3
M) 25t - =i+l
v k}j (a2 + Cppy % & VG +1) (16b)
, 3
(h) 8+1 - =]
v ké‘l(ckckzk + Chpg b 5 MG+ 1) (16¢)
where
“S..u2 4+ 8§ §
P Spaip + 81p = Sy + Spgny = Spehy (16d)
G = Syghy F Spp/iy = Spuy/ly + Sy = Spg (16e)
= Sy + Spyluy = Symi  Sygny = Sy ¢ (166) .

The constant, ¢, in Eqs 15 and 16 may be chosen that the stresses

(h) (h)

and displacements o4 and us satisfy interface continuity and
tomogeneous boundary conditions. Taking complex ¢nnjugate of Eqs 15

and 16, their formé are 1nvarianc; thus, § appears as a set of complex
conjugates, which enables to make Eqs 15 and 16 real functiions by super-
position. Furthermore, finiteness of displacements at the origin re-
requires that Re[d8) » =1, where Re represents the real part of §.

(p)

3.2 Solutions for 51 (p)

and u

(p)

Since %o and ey in Eqs 6 and 7 are constant, we may choose oy

in Eq 9 as constants so that they satisfy the equations of equilibrium

i




SO W R T WL S g s g e ity

and compatibility conditions identically. For each individual lamina,

let oip) take the following form:

3 Vi
R (17a)
oy 4 % (4, +d,) " (17b)
y YO ey KK !
'r(p)-'c - %(dn +d ) (17¢)
yz yzo iy K ko xR
NUEE +§(d‘1+3-_“) (17d)
Xz Xod oy KMt ™ e Me Ml
K]

2P g - )

xy | oxyo  Ey e T dy B (17e)

Substiuting Eqs 17a=17e into Eq 9b and integrating the strain-displace-

ment relations, we obtain

3 |
TALEA hzl(dkpkzk +d Py Z) = ugy Fupz kug (18a)
v(‘m-%(a 2, +d, Q. Zy) WX =Wz +V (18b)

by ke T G e B TR T PR T Yo |
® . %(dtz +d, € 2,) ~wx+uwytéztw (18¢)
v T S T T S T e o 0!

where u_, v , W, and w, are related to rigid-body displacements and rota-
tions. The complex constants dk are required to satisfy the near-field
traction boundary conditions and continuity conditions along the ply

interface.



3.3 Delamination Crack-Tip Stresa Singularity

Conaider a delamination between two plies, say the kth and (k+l)th
ply, in a composite subjacted to general loading as shown in Fig. 2.
Assuming that interlaminar crack surfaces are frea from traction, we

introduce the following boundary conditions for the eigen stresses
(h),
LR

)W L) ) o L
gp et mry 0 (Wmk b m ek, b e, (19)

The superscript h is dropped in the expresslon for coavenience. i
Continuity conditions for displacements and interlaminar stresses

along the interface, ¢ = 0,

(k) . (k) <1<> w (o (M) (D) | ()
(o), 06 1 (01 w (o JFL) 5 ) o ety (20a)
(u(k).v(k),w(k)} - (u(k+l)yv<k+l),w(k+1)}. (20b)
Substituting Eqs 15 and 16 into 19 and 20, we obtain the following
twelve linear algebraic equations in Cék) and C£k+1):
3
ind , (k) (k) =ird (k) =(k) - | n
! (e Cp Ty * & Cpyy Typ } = (3=1,2,3) (21a)

™=l

z (e ~1nd (k+1) (k+1) + eiﬂé (k+1) (k+1)

“n Jm Cnt3 jm P=0  (3=1,2,3), (21b)

mw]

I m=l et T 7 L (G

- ‘(r-1,2,3,4,5,6), (21¢)
e 1001, 10 100 100,00 L0000 00 0 oy
é:)' e, Solving Eqs 2lc for Cék) and substituting the resulting

10
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expressions into Eqs 2la, we get

6 ; 3 - —
n-z-l(criml)mzl‘[eiﬂaamnrasr‘:) te m'“(nﬁ'li)ln P:&)” = 0. (21d)

Equations 21b and 21d consist of a system of six linear homogeneous

(k+1)

» , the determinant

algebrailc equations. For noantrival solutions of C
of coefficlents of the algebraic equations must vanish. This leads to a

characteristic equation of the following form:

12n6
e

( - 1)3|a@)| = o, (22)

where IA(G)L is a 3 by 3 determinant involving § in a transcendentzl form

ék+l)’ nék+ll of the adjacent

and material constants, uék), nék) and |
layers. Details of A(S) may be found in Ref. [14], The general form of

8§, which are the eigenvalues of the problem, may be written as

§, = m, or 8 = (n - %9 4y (n=0,1,2,...), (23)

where y 1s a constant related to elastic constants of adjacent plies.
Thus, for each Sn we have the eigenfunctions of the form Eqs 15 and 16
whose coefficients may be determined from the remote boundary conditions

other than Eq 19. It is important to note that the Sn beounded by
0 > Re[§,] > -1 (24)

characterize the inherent stress singularities of the delamination crack
stresses in a composite laminate.
For cross-ply composite laminates, the differential operator L3

vanishes identically. Thus, F(Z) and Y(Z) are uncoupled, and the form

11




of Eq 23 can be simplified and expressed explicitly as

Gn =, or

) 1
RN %i‘ an{[b + (b2 - 4a2)7)/(2a)}, (25)

where a and b are related to material constants §(k) §(k+1). ufk),

i3 ' i
- (k) (k+1) ~(k+l)
ui i ’ ui

and u shown in Appendix 1. In a limiting case of

isotropic materials, it can be shown that Gn have the form,

.= G- 3yt ant1e® + o) (3 L 4y (D))

where G and v denote the shear modulus and Poisson's ratio, respectively.
The eigenvalues of Eq 26 were first obtained by William [L] and later by

zak, at al, [2] for interfacial cracks in isotropic media.

12
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4, DELAMINATION STRESS INTENSTIY FACTORS AND ENERGY RELEASE RATES

The eigenfunctiﬁns and the unknown constants for aih) and oip) in
Eqs 15 and 17 are determined by imposing appropriate (materials and
geometric) symmetry and ;raction boundary conditions, which will be
discussed later. WHenge, complete stresses and displacements ﬁia) and
ui“) in the a=th laming can be fully established. Neglecting the

higher~order terms, we note that the typical structure of near-field

crack tip stresses can be shown to have the following form:

@ . % 3@ (@) 3
G = 5£1 L ik zk LT @n

g (@) (a)

where 11k and gijk are related to the material constants, geometry,

and boundary conditions; 63 are eigenvalues bounded by

-1 < Re[sj} 4 0 to insure the positive definiteness of strain energy
of the elastic body, It is clear that the elgenvalues which satisfy
Eq 24 lead to asymptotic near field stresses. For the convenience of

(a)

further development, the stress o, around the crack tip may be re~

written as

ci“) Z c

(x,y,aj) + 0(non-singular, h*ghez—order terms), |

(28)
(@)

where o(a) is the j-th singular component of the stress o, ° cor-

responding to the eigenvalue Sj which meets Eq} 24,

In the context of mechanics of fracture, it is possible to define
the so=called stress intensity factors for the delamination in a manner
analogous to that given in Refs. [4,6] by considering the interlaminar

stresses ahead of the crack tip along the interface, 1i.e.,

13
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Ky ii‘g* jglx@? % 10y, (x,O,Gj). (29a)
R
Kyp ™ i13+ le 21 % csj(x,o;ﬁj), (29b)
n .~63, ,
Kppp ™ i13+ jgl/if x o4j(x.0;63) | (29¢)

where the superscript o 1s omitt¢ed, because tractipns, Ty O and Tgo
are continuous across the interface. |

While the stress intensity factors KI’ KII and KIII describe the
details of the delamination crack-tip field, the strain energy release
rate G 1is also of significant interest, since this is a quantity
physically measurable in experiments and méthematically well defined,
The fracture energy release rate in a delaminated composite may be

evaluated by using Irwin's virtual crack extension expression [15],

G=G, +G,.+G

I II TII

. 6B
- 10 g [ o, (2,010 88or,1) - v 08z, m)
§8+0 o 7

+ 1 0,0 1w @aer,n) - o (55-r,-m))
+ 1, 0,00 6per,m) - v sp-r, - Dar (30)

where polar coordinates (r,$) are used for the convenience of computa-

tion. The interlaminar stresses, oy, T_.., and ryé in Eq 30, may be

obtained from the crack-tip stress field equatipns'such as Eq 27. The
corresponding displacements are also those of the crack-tip field

equations obtained in the previous sejition.

14
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5. NUMERICAL EXAMPLES AND DISCUSSION

The formulation and analysis for the problem outlined in previous
sections have been ppogfammed into a solution scheme sultable for
numerical qomputatidﬁ. For the purpose of illustrating the Fundamental
behavior of the delamination fracture in composite laminates, graphite-
apoxy systems with symmetrie (8/-8/-0/6) fiber ovientation containing
edge delamination cracks along the 8 and -0 ply intervface are studied,
The particular material system and ply orientatilons are selectad here

because they have been previously investigated in some detail.

The composite laminate is subjected to a uniform axial extension and
has a geometry shown in Fiz. L with a width-to~thickness ratio 2b/2W
and uniform ply thickness hi‘ Delamination cracks of length @ are

agsumed to emanate from the edges of the composite. Lamina properties

typical of high-modulus unidirectional graphite-epoxy composite for

alrvcraft construction are used in the computation (Table 1). For com-
posite laminates with the aforementioned laminate geometry and ply

orientations, several geometric and material symmetry conditions may

be introduced to simplify the formulation further. The problem, theve-

fore, can be solved very conveniently and accurataly.

5.1 Symmetry and Boundary Conditions, and Further Simplifications

The symmetric¢ ply orientations and gesmetry of the composite

laminate (Fig. 3) lead to the following conditions for displacements:
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du WY, on X = b-gq, (31a)
dy 9y 9x
dv o 3w _ du | -

where the origin of the coordinates is moved to the left tip of the
delamination. The traction-free boundary conditions on edges and lateral

surfaces of the composita laminate may be written as !
g_. =T w™mT =0 on x = =g, (31c)

Iy ™ Ty ™ Tyz = 0 ony = hy. (31d) }

Thus, only a quarter of the laminate cross section needs to be considered.
The bourdary conditions, Eqs 3la=d, contain arbitrariness of rigid body
displacements, which i1s a characteristic of traction sbundary value
problems.

Since the eigen solutions, aih), satisfy Eq 19 and interface con=-
tinuity conditions Eq 20, wae require that oip) gatisfy these conditions
also, To determine dﬁ“) uniquely for Eqs 17 and 18, we further require

the particular solutions satisfy the following conditions:

uP) 2 on x = b-g, (32a)
V(P) - () ony= —hz, ; (32b)
«®) ag at (0,0,00. (32¢)

Substituting Eqs 17 and 18 into Eqs 19, 20 and 32 gives

uém) ,_z [dé}) a) ., §§$) (1)](b Ca=l,2) (33a)
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é v kzltd(2> By @ 4 gD 52 Dy y, (33b)

f Wéa) =0, (33c)

wia) ~ o)éu) = (0 , (33d)

X k-l

i‘ and

f kzl[d(a) + d<“)] - -cég) (34a)

N RS IR

;; — — |

kzl[d(“) ;) dl(ca) “ls.a)] B S'c): (34c) |

Z [d(l) (1) + d(l) (1)1 . Z [dcz) <z> + d(z) éz)]’ (36d) %

: k=l k=1

; 3 ,

' ) [dlil)tls,l) + 'a'lgl) ‘E'lgl)] - Z [d(z) (2) + d(z) (2)] . (34e) ‘\

{ .
Z [dfa)(q(a) (a) (a)) + d(a)(q(a) + 7 (a) éa)>] -0, (34£) f

k=1

Equations 34a-f give ten linear algebraic equations for twelve real

unknowns for o§p> and uip). Hence, we may set

Im[dga)] =0 (35a)

to reduce the additional degrees of freedom. For symmetric angle-ply

laminates, it can be shown that Eq 34f is satisfied identically.

17



N T

i

ey oy

b HEIG

Therefore, instead of using Eq 35a, it may be required
af = o, (35b)

Since the complete solutions for stresses and displacements must
satisfy the symmetry and remote boundary conditions, Eqs 3la-d, the

following relations can be established immediately to evaluate aih) and
(h),
Lli H

oM + (P =0 (i=1,5,5) on x = -a, (36a)
oM aip) -0 (1=2,4,6)  on y = hy, (36b)
and
(h) (p) (h) (p) (h) r)
(36¢)
w0 gy ay - 0r on v = -hy
(36d)

By using the eigenfunctions derived previously and the boundary collocation
metnod, the boundary conditions given in Eqs 36a-~d can be matched con-
veniently in Jhe least—squarevsense. Thus, the eigen solutions for

cih) and uiﬁ) can be determinéd. Numerical solutions for the problem

by using the collocation procedure are related to the truncation of
eigenfunctions and number of collocation stations. Due to space
limitation, the detailed discussion of solution convergence and accura-

¢y 1s reported elsehwere [16]. The results presented in this section

are from collocation calculation, which has a maximum mismatch within

one percent deviation from prescribed boundary conditions.

18
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5.2 Stress Singu

Now consider a delsmination lying between & and =60 plies (Fig, 1)
in a graphite-epoxy composite with ply properiies given in Table 1, The
interface continuity and traction boundary corditions along crack sur-
faces lead to a standard eigenvalue problem for the homogquoua solution,
as discussed in Section 3.3. Tha eigenvalues 5m obtained fiom the
transcendental equation provide basic structures of near-field stress
and displacement solutions for the delamination problem. The order of
strass singularity and the asymptotic nature of the crack tip stresses
depend on the values of ém’ which satisfy the constraint condition of
Eq 24, Thus, the eigenvalues corresponding to thils restriction are of
fundamentsl importance in understanding the delamination failure be-
havior. TFor edge delaminated ('.‘:0)S graphite~epoxy compositaes with
various fiber orientations, the eigenvalues Gm, which gatisfy the
aforementioned constraint condition, are found by the present eigen
analysis and given in Table 2. The styess singularities for an inter-
face crack between two highly anisotropic laminae are observed to con-
tain a pair of complex conjugates, 61,2 = ~0,5tiy, and a constant,

§, = =0,5, This situation is unique and different from that of an

3
interface crack between two isotropic o> orthotropic media in the sense
that 61, 62 and 63 exist simultaneously in the present delamination
problem, In the degenerated cases such as %0 = 0° and 90°, the composite
laminates become unidirectional. The delamination is located in an

orthotropic material; the classical inverse square-root singularity

for crack-tip stresses is recovered fully. It is noted that the

19
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present physical model and the eigenfunction analysis lead to an oscilla~

tory stress singularity, as are the cases of interface cracks in iso~

tropic or orthotropic materials.

5.3 Asymptotic Str;!s Field Around Delamination

Complete solutions for delamination cracks in finite dimensional
composite laminates are obtainable by using the present Lekhnitskii's
complex stress potential formulation and eigenfunction expanaion. With
the aid of the boundary collocation method, the asymptotic stress field

around a delamination may be expressed in a general form as

3 : -0, 541! -
e = . g0SHY Lo YB S
I ey 3k Tk 3§ (k$3) Yk Tk
__:.0 L 5"‘1Y _o . 5 '_;.0 L} 5
+ Ej(k+3) Z )+(Fjk Zy + Fj(k+3) Z )}
' (j'l,z,.....,ﬁ), (37)

where Djk’ E&k’ and ij’nre known quantities satisfying the following
relaticns:

—

Py ® Byceas)’  Pycierd) ™ Bqie Fyic ™ Ty (s (38)

to insure ¢

Lo

being real. More concisely, oj can be written as

-1

Oj =y 2 [Ajcos(y fn x) + Bjsin(y n ) + Cj]. ) (39)

For illustrative purposes, the structures of near-field stresses and

displacements ahead of a delamination (r,0) are given for a

20
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(45°/~45°/=45°/45%) graphite~epoxy laminate with hy = hy =1 dn.,

@ = ) in, and 2b/h = 4 subjected to €, ¢ as follows:

0, (r,0) = [0.04339c08(0.03434 #n £)+0.3949884n(0.03434 tn 1)] g0+3

+0(1), (40m) *
_ . ‘005
Tyz(r»o) = [0,45347 cos(0.03434 n v)=0,049818in(0.03434 &n v)] x
+ 0(1), (40b)
) . -0.5
Tey(F10) ==0.,002449 x =~ + 0Q1) , (40c)

and
) (6g-r,m) = £-0,29576c08(0.03434 in(h-1)]
+ 0.0120854n[0.03434 %n(38=r)1} (58~r)0*>
- 0.003403(68-r)°"7 + 01, (41a)
v (§-r,m) = {0.02888c08[0.03434 2n(8R~r)]
+ 0.70682810(0.03434 4n(88-1)]} (68-r)0">

+ 0Q), | (41b)

o) (88-r,m) = (0.61564 cos[0.03434 An(éB-r)]
-~ 0.025155 sin[0.03434 &n(88-r)]}(68-r)0+3
+ 0.001602(88-1)2"2 + 0¢1), (41c)

where the components of stress are scaled by 108 x €0 and the

displacements by €, It iy noted that the elastic stresdes near the
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delamination crack tip in a composite laminate possesses the well known
oscillatory behavior, and the displacement field also exhibits an
oscillatory nature with crack surfaces overlapping each other. As

firet pointed out by Malyshev, et al. [7] and later by England (5] and
Erdogan [8] for interfacial cracks between dissimilar isotropic media,
the phenomenon of crack surface overlapping is confined to an extremely
small region and the interpenetration is not of significance in prac-
tical terms of fracture mechanics, Howev.r, for certain combinations

of material properties, ply orientations and loading conditions in
cirposite laminates, the crack surface contact region has been found to be
extremely large [16). Thus the current model needs to be modified to
account for the crack surface closure and contact stresses [16]. Studies
on interface crack closure in dissimilar isotropic media were reported

recently by Comninou [17], Atkinson [18] and Achenback [11].

5.4 Delamination Crack Tip Stress Intensity Factors

Since the Irwin fracture critgrion is local in nature and requires
precise knowledge of the local conditions at the delamination crack tip,
the stress intensity solutions are obviously of great significance.
Accoxding to the present fracture mechanics theory of composite delami-
nation, stress Intensity factors, KI’ KII and KIIIJ may be evaluated by
the rigorous analysis described in Section 4. The KI, KII and KIII
lead to detailed informhcion of the stress and displacement fields in
the nefghborhood of the delamination crack tip, and may relate to the

onset of delamination extension upon reaching a critical level. The
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magnitudes of Ki shown in the formulation depend on the delamination
length, ply orientations, laminate geometry, and loading-nondition%.

1y
Consider the (6/-8/-8/6) graphite-epoxy composites with various

fiber orientations subjected to uniform axial extension €, For 1illus-

trative purposes, we choose a composite with a width-to~thickness ratio
2b/(2h) equal to 8, ply thickness hl = h, = 1in., and delamination

length @ = 1 in. The mixed mode KI’ KII and KIII are determined and
given in Table 3 for various %Js. It is observed that even though the
composite laminate 1s under the simplest loading condition, the delamina-
tion crack tip response is very complicated due tp the complex inter-
laminar stress distribution, the nonhomogeneity of the solid, the aniso-
tropic ply propertiés, and the unusual delamination configuration with
respect to the loading direction. The out-of ~plane tearing mode stress
intensity factor KIII caused by interlaminar shear Tyz is about one or
two  orders of magnitude highexr than KI and KII in general in the lami-~
nates studied. The opening mode stress intensity KI is also very sig-
nificant due to the interlaminar normal stresses cy. The simultaneous
presence of KI, KII and KIII in the delamination problem is unique to
angle-ply fiber composites, and is not observed in fracture problems

for bonded dissimilar isotropic media in gemeral. The delamination be-

havior is inherently three dimensional in nature; for composites with

mo:é general laminations, crack geometry and loading conditions, fully

three~dimensional stress and fracture analyses are essential for ob-

taining complete information.
The influence of laminate geometric variables on the delamination

behavior is best illustrated by examining the changes of KI’ KII and

23




KIII with the relative thickness of upper and lower plies hllh2 in a

(45°/-45°/-45°/45%) graphite-epoxy composite (with hy +h, = W = 2 in,).
Given the crack 1ength,‘(d = 1 in,), laminate dimensions (Zb = 4 in.),
and the loading condition as previously, the delamination stress inten-
sities for various hllhz'a are shown in Fig. 4, The ecrack tip tear-

ing and opening stresses Tyz and °y have a maximum intensification as
the ply thicknesses h, become identical, i.e., h1/h2 = 1. The Ky,
however, raaches a minimum due to the reduction of Txy' It should be
noted here that the KI' KII and KIII depend on material constants of

all plies as wéll as the overall geometry. Therefore, the dependency

of Ki on ply properties 1s not a simple matter of identifying them with

geometric variables, and they may not have the simple physical inter=-

pretation as in the homogeneous case.

5.5 Strain Energy Release Rates for Delamination

The equilibrium and scabilicy‘of delamination are commonly examined
from an energy rate point of view. The strain energy release rate G de-
fined in Eq 30 is a quantity characterizing the driving force for delam-
ination extension. The delamination-growth driving force can be easily
determined after the establishment of the local asymptotic stress and
displacemeént f£ields. For the edge delamination problem in graphite-epoxy

composites considered here, the G value may be obtained in a general

form as

G=G,. +6G

pt Gy +6

IIT

as »
-1 1 88 ~ ryy S8 - ¢
séig EEE-IO {Alcos[y tn ~ )]+ Aysinfy En(ﬁk . )]+ AB}

0.5
=5 (42)
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where y = 1mt51]. Equition 42 has the form similar to the one derived

previously for an elastic-half space proh’em by Willis [19]. The singu~
lar integration may ba carried out by defining an anlytical function

with the cut 0 % x 5 68

o ap U.5Hly
£(z) = (2258 (43a)
80 tﬁat we lhiave
%8 88 = x,O*Sconly anEZE))ar = non/ o™ + T, (43b)
o r
SR - - -
Jo Cég';;lQ sin(y 2n(68 = L))dr = 2 yndB/ (e Ymo4 a'™). (43¢)

Thus, the total energy releasé rate G can be determined immediately by
substituting Eq 43 into Eq 42, Table 4 shows the change of G values with
ply orientationa for the (8/-0/-8/6) graphite~epoxy composites with the
matarial properxties in Table 1.

To study the basic nature of delamination extension in angle-ply
composites, strain energy release rates in the (45°/-45°/-45°/45°)
graphite-epoxy with various crack lengths are examined. Rffects of
laminate width on delamination crack extension is also investigated.

The change of total stratn energy relaase rate G with delamination length
@ 1s given in Fig, 5 to illustrate fundamental characteristics of the
delamination fracture. For the composite laminatas with varisus 2b/2h's,
the G is observed to change with delamination length in a unique manner.
The maximum energy release xate or crack extension driving force occurs
at a delamination length approximately equal to one or two ply thick-

nesges in the composite studied, depending on the (2b/2h) ratio. As
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the delamination axceeds this characteristic dimension, G decreases
monotonically.

On the basis of fracture mechanics, several important features
regarding delamination fracture are revealed from the Figure. Assuming
that the material resistance to delamination growth remains constant
(i.e.; the failure criterionm, G, = constant, is used), we can inmedi-
ately conclude that there exists a critical delamination length asso-
éiated with the maximum G (for example, a* # 2h for the case b/h - 8)
for each composite laminate; the word "critical' means the one tﬁﬁc
experiences stable crack extansion at the lowest load. It also indi-
cates that any interlaminar edge flaw a, inherently in the composite,

which is less than a*

, Will experience rapidly unstable growth as the
load or G reaches a critical level, and is anticipated to be arrested
at a later stage. Any initial delaminatiom gteater than a® will ex-
perience a stable growth under monotonically rising loads; that is,
there exists an inherently built-in crack arrest mechanism for edge
delamination. These phenomena predicted by the G ~ g curve have been
noted by several researchers conducting experimental and analytical
studies on the delamination fracture. The a* may be an important
quantity in the life prediction for delaminated composite materials
and structures subjected to static and cyclic loading.

The delamination strain energy release rate is also a function of
other geometric variables. For example, G is significantly affected
by the relative ply thickness h,/h,. In a (45°/~45°/~45°/45°) graphite-)

epoxy with a geometry given before, the change of G with hl/h2 is given
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in Fig. 6, where maximum driving force occurs at hl - hz indicating the
criticality of the relative ply thickness to delamination fracture in
composites.

It is noted here that, even though the near-field stresses possess
an oscillatory singularity and Ki may not have the usual significance
attached to them as in the cohesive (homogeneous) case, the energy re-
lease rate G is well defined mathematically and physically, and should
be the quantity of major interest., The G and its components GI’ GII and
G can be evaluated theoretically and experimentally to provide a

III
basic measure of the delamination fracture,
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6. SUMMARY AND CONCLUSIONS

An analytical method for studying delamination is presented in this
paper. Fundamental nature of edge delamination in advanced fiber composite
laminates is examined. Based on the theory of anisotropic elasticity,
the composite delamination problem is formulated by using Lekhnitskii's
complex-variable stress potentials and anvéiganfunccion expansion method.
Exact orders of the three-dimensional stress aingularity in a delamina-
tion crack tip region are determined from the eigen analysis. With the
ald of a boundary collocation technique, complete stress and di.placement
fields in a finite-dimensional, delaminated composite are fully determined.
Fracture mechanics parameters such as the mixed-mode stress intensity
factors and associated energy release rates for edge delamination are
calculated explicitly. Solutions are obtained for edge-delaminated
(8/-6/-6/9) angle-ply composites under uniform axial extension., Effects
of delamination lengths, fiber orientations, lamination and geomatric
variables are studied in detail.

Based on the information given in the previous sections, the follow=-
ing conclusions may be drawn:

1. An analytical method based on the theory of anisotropic

- elasticity 1is successfully developed to study edge de~-

lamination in angle-ply composite laminates. Formulation

of the problem is carried out by using Lekhni&skii's complex
stress functions. Stress singularities for délaminatiqn between
highly anisotropic laminae are obtainable by usi&g an éigen-

function analysis. The order of delamination crack-tip

- 28



3.

stress singularity is diffefenc from that of an interface
crack between dissimilar isotropic or orthotropic media

by the simultaneous presence of three characteristic
eiganvalues of -0.5+%y, -0.5-1y, and -0.5,

Tae fracture mechanics concept may be extended to delamina-
tion problems in anisotropic composite laminates by properly
defining the interlaminar crack-tip stress intensity factors
such as Eqs 29a~c and strain energy release rates. For
angle-ply composite laminates, KI' KII and KIII always

occur simultaneously for an edge delamination with KIII being
one or two orders of magnitude higher than the other two.
Complete stress and displacement fields in a delaminated
composite may be accurately determined by a combined eigen~
function expansion and a boundary collocation method. The
asymptotic solutions are characterized by Ki (i=1,II,III)
and possess the well known oscillatory behavior. The crack
surface overlapping could be very large in some composite
systems with certain combinations of fiber orientations, ply
stacking sequences, and loading conditions; modifications
[16] of the current model to include crack closure may be
needed for these cases.

The crack extension driving force or strain energy release
rate for edge delamination in composite laminates can be ac-
curately determined by using Irwin's crack extension

concept. Delamination stability in composite laminates

29
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under monotonically rising loads can be assessed for any
inherent interlaminar flaw relative to ..e critical de-

lamination size a® obtained in the current G - a curve,
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TABLE 1

Material's Constants for Graphite/Epoxy Composite Lamina

1
]

20.0 x 105 psi

=
|

2,1 x 10% psi

» - M ¢ 6
GLT GLz = GTz 0.85 % 10° psd

Vi ™V, =y = (0,2]

Lz Tz
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75°

1

0.5 % 0.015794 - 0.5

TABLE 2
Dominant Stress Singularities for Delamination in (6/-0/-8/6) ‘
Graphite~Epoxy Composites
¢ S1.2 83 ;
0° - 0.5 - 0.5
15° had 0!5 4 09006(921 - 005
30° - 0.5 £ 0.023991 - 0,5
45° - 0.5 £ 0.034341 - 0.5 |
60° - 0.5 £ 0.029424 -~ 0.5

90° = 0.5 - 0.5

|
)
.
! i
1 3
| \
i |
; 4
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TABLE 3

Stress Intensity Factors Ki for Edga Delamination in (8/~9/-0/0)
Angle-Ply Graphite-Epoxy Ccmpoaita Subjected to Uniform Axial Strain

ul a " g
15° 0.08645 0.,01214 ~4.,5588
30° 0.2330 0.,03330 ~3.6604
45° 0.1347 0.01380 ~1.2968
60° 0.02025 0.001360 ~0,1775
75° 0.006268 ~0.0002948 0.0818

*Ki (psi = Vin.) are scaled by 10° €,
*a-hlnhznxin.,b-am.

+*For the delamination crack in the first quadrant
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TABLE 4

Energy Release Rate G for Edge Delamination in (6/-8/-6/0) Angle ~Ply
Graphite-Epoxy Compositet Under Uniaxial Extension €,

0 v G/10% €2 (psi-in.)
15° 8.1076
30° 4,0506
45° | 0.5740
~  60° 0.0138
75° 0,0036

Ta = hy = h, 1 in., b = 8 in.
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APPENDIX 1

Materials Parameters for Nalamination Crack~Tip Eigenvalues
in Cross-Ply Composite Lamlnate

§ =n or
n
Ly . 4 x 2 242
Gn = (n - '2") i-ﬂ'fbn{[b + (b% =~ 4a%)“]/(2a)}
where
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