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FOREWORD

This report describes a portion of the results obtained on NASA Grant

NSG 3044. This work was done under subcontract to the University of Illinois,

Urbana, with Prof. S.S. Wang as the Principal Investigator. The prime

grantee was the Massachusetts Institute of Technology, with Prof. F.J. McGarry

as the Principal Investigator and Dr. J.F. Mandell as a major participant.

The NASA - LeRC Project Manager was Dr. C.C. Chamis.

Efforts in this project are primarily directed towards the development

for finite element analyses for the study of flaw growth and fracture of

fiber composites. This report presents study of boundary layer problems in

composites based on an exact solution.



ABSTRACT

A study of boundary-layer stress singularities in multilayered fiber-

reinforced composite laminates is presented. Based on Lekhnitskii's stress

potentials and the theory of anisotropic elasticity, formulation of the problem

leads to a pair of coupled governing partial differential equations. An eigen-

£unction expansion method is developed to obtain the homogeneous solution for

the governing P.D.R's. The order or strength of boundary-layer stress singu-

larities is determined by solving the transcendental characteristic equation

obtained from the homogeneous solution for the problem. Numerical examples of

the singular strength (or singular eigenvalues) of boundary-laye i ' stresses are

given for angle-ply and cross-ply composites as well as the cases of more general

composite lamination.
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1. INTRODUCTION

if

The response of a multilayered fiber-reinforced composite laminate near
i+

its geometric boundaries has been a subject of intensive investigation during

the last decade. Both experimental studies and approximate analytical solu-

tions have indicated that complex stress states with rapid change of

gradients occur along the edges of composite laminates, for example, Refs [1-

1S]. This phenomenon is considered to result from the presence and inter-

actions of geometric discontinuities of the composite and materials discon-

tinuities through the laminate thickness. The anomaly has been found to occur

only within very local, region near the geometric boundaries of a composite

laminate, and is, therefore, frequently referred to as "boundary-layer effect"

or "free-edge effect" — a problem unique to composite laminates and not

obser'v'ed lit hcamogeneoi3s solids in general. It has been shown further that

the boundary-layer effect is three-dimensional in nature and not predictable

by the classical laminate theory (CLT) [16,17]. The boundary-layer effect is

apparently one of the most fundamental and important problems in the mechanics

and mechanical behavior of composite laminates. The high stresses developed

in the boundary-layer region coupled with the low interlaminar strength are

certainly of critical significance in aggravating the failure of composite

materials and structures. For example, boundary-layer stresses have been

observed to be responsible for the initiation and growth of local hetero-

geneous damage in the forms of interlaminar (delamination) and intealaminar

(transverse cracking) fracture in composite laminates under static loading

13,131. They are considered to have even greater effects on the long term

strength of composite laminates under cyclic fatigue loading [19,20].

1
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While the significance of boundary-layer effects has long been recognized,

research progress on this subject has been relatively slow. The situation is

apparently caused by the inherent complexities involved in the problem: the

strong anisotropy of mechanical properties of each individual ply, the abrupt

change of materials properties through the laminate thickness, the geometric

discontinuity along laminate boundaries, and the coupling between in-plane

and transverse deformations and stresses near the edges of the composite lami-

nate. According to Pagano [14], analytical studies to date may be roughly

classified into two general categories: approximate theories and numerical

solutions. The first ,approximate solution for finite-width composite laminates

was proposed by Puppo, et al. 14] based on a laminate model containing aniso-

tropic laminae and isotropic shear layers with the interlaminar normal stress

being neglected throughout the laminate. Other approximate theories were also

attempted to examine the problem such as the extension of the higher-order

plate theory [21] by Pagano [10], the perturbation method by Hsu, et a1. [12],

and a boundary-layer theory by Tang, et al. [11]. Recently, Pagano [14,15)

has developed an approximate theory based on assumed in-plane stresses and

the use of Reissner's variational principle. Even though there is no singu-

larity involved in the formulation, the approach has certain features signifi-

cantly important in objectively determining detailed laminate stress fields.

The study of edge stresses in composites by using a numerical(finite differ-

ence) method was apparently first made by Pipes, et al.[5]. Isakson and

Levy [6] developed a finite-element scheme containing membrane elements,

which closely resemble the laminate model of P uppo et al. [4]. Later finite

element studies on this subject by Wang, et al. [13] and Herakovich, et al.

[18] led to numerical solutions similar to that given by Pipes [5]. Due to

,x

r



the singular nature of the problem, a large number of elements, especially

through the thickness direction, are required in conjunction with a lengthy

extrapolation procedure in order to achieve satisfactory solutions even for

a simple two or three layer laminate. Improved finite-element methods by

using a more complex element btiffness formulation based upon Maxwell stress

functions [7] and by hybrid-stress elements X22] have been able to achieve an

expedient computation with significantly less elements. Unfortunately, the

refinements do not guarantee [23] the convergence and accuracy of the numer-

ical solutions because of the singular nature of the boundary-layer stress

field. That is, with each more refined analysis, numerical values of the

maximum interlaminar stresses are shown to rise with continuously decreasing

element size. The quest, apparently, is to show that a stress singularity

exists at the edge of a composite laminate.

From a linear elasticity point of view ; it is well known that stress

singularities are prevalent at the corners of geometric boundaries joining

dissimilar materials (see, for example, [24-26]). Unfortunately, the search

for the order of stress singularities for the boundary-layer region in a com-

posite laminate containing anisotropic plies has not been successful to date,

to the authors' knowledge. Since the singular boundary-layer stresses are

extremely localized in nature, the precise nature of the boundary-layer effect

will not be fully understood until the exact order of the stress singularities

is defined. In this paper, the first in succession, a rigorous theoretical

investigation of the free-edge stress singularity in composite laminates is

presented.

In the next section, a mathematical model and basic equations for each

lamina of the composite are presented. Based on the theory of anisotropic

3
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elasticity and Lekhnitskii's stress potentials [27], a pair of linear

governing partial differential equations is derived. 	 Appropriate

near field boundary conditions, end loading conditions and interface contin-

uity conditions are given also. The homogeneous solution for the problem is

obtained in Section 3 by an eigenfunction expansion method. The solution proce-

dure used to evaluate the exact order of the boundary-layer stress singularity

is presented. Degenerated cases of commonly used cross-ply composite laminates

are examined also. Numerical examples of determining the edge stress singu-

larities for graphite-epoxy composite laminates with various fiber orientations

are given in Section 4. As will be shown later, the existence of the free-

edge stress singul.Rrity in composite laminates is proven mathematically in

this paper. It settles, once and for all, thus previous conjecture of boundary-

layer stress singul.nLities in composite materials, and provides a rigorous

mathematical method for determining the exact value of the edge stress singu-

larity, which is the fundamental basis for the boundary layer theory in com-

posite materials and structures.

4



2. FORMULATION

2.1 Basic Equations

Consider a composite laminate composed of fiber-reinforced plies with

constitutive equations described by ;enerali.zed Hooke's law in the con-

tracted notation as

	e
i 

- Sij aj	 (i,j - 1,2,3,4,5,6),
	

(1)

where the repeated subscript indicates summation and S ij is the compliance

tensor. The engineering strains, e i , in Eq 1 are defined in a Cartesian co-

ordinate system by

Du	 av	 aw
e l - ex 

a 
ax'	 e2 - ey - ay 	 e3 

s e z - az'

e	
aw	 av	 a w	 au	 au	 av	 (2)

4 -Yyz - ay^'az' e 5 -Yxz a ax + az' e6=Yxy-ay^ax'

where u, v and w are the components of displacements. The stresses, a i , are

defined in an analogous manner in the Cartesian coordinate system_.

The composite laminate considered here has a finite width and is sub-

jected to surface tractions acting in planes normal to the generator of

the lateral surface and not varying along the generator, i.e., along the z-

axis (Fig. 1). The composite is assumed to be sufficiently long that, in

the region far from the ends, the end effect is neglected by virtue of the

Saint Venant principle. Consequently, the stresses in the laminate are in-

dependent of the z-coordinate. The case of a finite-width composite laminate

subjected to a uniform axial strain, e z=e, along the z-axis has been inten-

sively studied by many researchers [5-13 ]. The special case in which

stresses and displacements are independent of z corresponds to the well known

5
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generalized plane deformation [ 27). Under these assumptions, the equat-ona of

equilibrium without body : • ,, rce read

30	 BT3T	 3a	 3'c	 3T

3xx + 2y a 0,	 axy + 8Z 
a U

'	 axz 
+ ^ . 

U•	 (3)

Following the procedure in [27], it can be shown after some mathematical

manipulation that the general expressions for displacements and the stress

component
a 	

have the following form:

U W - 2 A1S 33 z2 - A4yz + U(x, y) + w 2z - w 3y + uo , (4a)

V . - 
2
A2S33z2 + A4xz + V (x,Y) + w 3x - w Iz + v 0 (4b)

w • (A1x + 
A 2 + A3 ) S33z + W(x ► y) + w ly - w 2x + wo , (4c)

o z W A 
1 
x + A 2 y + A3 - S 3j ' j / S33 ,	 (j 1,2,4,5,6). (4d)

The unknown functions, U, V and W, depend on x and y only, and can be shown

easily to obey the following relations:

au
3x

S ij o j + S13 (A1x + A 
2 
y + A3 ), (5a)

8ys
S 2j 'j + S 23 (A1x + A 2 + A3 ), (Sb)

aW a
3x

S	 Q	 +S	 (Ax+Ay+A) +Ay,5j' 	 53	 1	 2	 3	 4 (5c)

aW a
3y

S	 Q	 +S	 (Ax+Ay+A) - A x,
4j j	 43	 1	 2	 3	 4 (5d)

3U +
Ty

3V	
S	 Q	 + S	 (A x + A y + A ) ,3x	 6j	 63	 1	 2	 3 (Se)	 j

where
i

S i j	 S i j - S
13 

S  
j3/533,	

(i,j 1,2,4,5,6). (50

It is obvious that the constants, u o , vo , w  and w i (i = 1,2,3) in Eqs 4a-4d

characterize the rigid-body translations and rotations of the solid. A l and

7
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A2 represent the bending of the laminate in the x-z and y-z planes. A3

characterizes the uniform axial extension of the composite laminate, and

A4 , the relative angle of rotation about the z-axis.

2.2 Governing Partiltl Differential Equations

Introducing Lekhnitskii ' s stress potentials, F(x,y) and T(x,y) (27],

such that

a2F
ax ' any

ay
Txz - ay,

2
oy a"x ',

aT

T yZ - - ax,

a2F
Txy - - axay'

(6)

one can show that the equations of equilibrium are satisfied identically.

Eliminating U and V from Eqs Sa, 5b and Se and W from Eqs 5c and 5d by dif-

ferentiation, we obtain the following system of governing partial differential

e, : aations for the problem:

L 
3 
F + L27 - - 2A4 + A1S34 - A2 S35'	 (7a)

L 
4 
F + LIT - 0,	 (7b)

where L2 , L 3 and L4 are line differential operators defined as

L2 - S44 ax2• 
-2 

S45 axay + SSS =5Y'	
(7c)

L3 - 
S24 a— - + X525 + S46 ) a ax 8 (S i4 + S56 ) a axay^ + S15 ayf'	 (7d)

94	 94	 34	 a4	 -	 a4
L4 = S22 axe - 

28
26 axT8y + 

(25
12 + s66 ) axz ayz - 2S16 axay' + S11 ay

(7e)

8



2.3 Boundary and End Conditions

Assuming that the edges of a composite laminate, BB F , are traction free

and the interface of the mth and (m+l)th plies is a straight line meeting

the traction-free edge at a right angle (Fig. 1), one can obtain the following

boundary conditions along 8B F:

X	 Xy	 X2

The conditions at the ends of the composite laminate may have the form from

the statically equivalent loads as

	
ff Bff BTxZ 

dx dy - 0,	 ffBTyZdx dy - 0,	
`IZ 

dx dy - PZ,

ffB a z y 
dx dy ° Mx, 

ffB 
a 

z 
x dx dy = My, 

ffB (
T 
yz 

X - T xZy)dx dy = Mt,

(9)

where the integrals are taken over the entire area B of the cross section,

and PZ , Mx , y and Mt are the applied force, bending moments and twisting

moment acting on the ends, respectively.

2.4 Interface Continuity Conditions

Consider a portion of the laminate cross section composed of the mth and

(m+l)th fiber-reinforced laminae, as shown in Fig. 1. Assuming that the

plies are perfectly bonded along the interface BB I , one can immediately es-

tablish the continuity conditions of the stresses and displacements along

the interface as the following:

a (m) n (m) + T (m) n (m) _ -a (m+l) n (m+l) - T (m
+l) n (nl+l)	 (10a)

x	 x	 xy y	 x	 x	 Xy	 y

T (m) n (m) + a (M) n (m) _ -T 
(m+l) n (m+1) - a (m+1) n (m+1) ,	 (10b)

xy x	 y	 y	 xy	 x	 y	 y

9
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- tT 
(►n) 

n 
(►n) +T (111) n 	r -T	 n

r) (m)	 (m+l) (m+1)	 (m	
n

+1) (m+1)	 (10c),
xx x	 yM y	 xx	 x	 yM	 y

and
u(m) . u (m+l)	 v(in) 

as 
V(M+l)	

w(m)	
w(m+l)	

(lOd-f)

where the superscripts denote the mth and (m+l)th plies in a composite

laminate, and nx and n  are components of unit outward normal to the inter-

face.

10



3. HOMOGENEOUS SOLUTION AND FREE-EDGE STRESS SINGULARITY

The governing equations, 7a and 7b, are coupled, linear partial differen-

tial equations with constant coefficients related to the anisotropic elastic

constants of each individual lamina. With the aid of aforementioned near-field

boundary conditions and interface continuity conditions, the homogeneous solu-

tion for the governing P.D.E.'s can be determined easily. The homogeneous

boundary conditions and interface continuity conditions also provide the in-

formation for determining the important strength or order of the free-edge

stress singularity in a composite laminate, which is the major concern in

this paper.

According to Lekhnitskii (27], the homogeneous solution for the governing

partial differential equations has the general form as

6	 6

F(x'y) - Z Fk (x + Pity),	 1V(x ► y) - E nk Fk (x + P ky )v	 (11a-b)
k-1	 lc-1

where the prime (') in Eq llb denotes differentiation of the function

Fk (x t- P ky) with respect to its argument, and the coefficients P it are the roots

of the following algebraic characteristic equation

z4 (P)R 2 (P) - Z3(P) - 0,	 (12a)

and

where

(12b)

(12c)

(12d)

(12e)

11h " - Q 3 (P k	.. )/Z  2 (P k
 ) - - Q 4 (P k ) / Q 3 

(P k ) '

£2(11)  - S55P 2 - 2845P + 844,

R 3 (P)	 - S
ISO (S14 + 556 ) P 2 + (S25 + s46 )P - S24,

Q4(P) -
S
1111

4 - 2S 160 + (2S12 + 566 )P 2 - 2S
26

tj + 822.

11



It can be shown that Eq 12a cannot have a real root (thus, P  
have to appear as

complex conjugates), and F  are analytic functions of the complex variables

z  
• X + uky - 

r (e ie
+ 

Ake-i8 ) I (l + Ak) with X  M (1 + iuk) / (1 - iu k )	 and

r and ®	 being components,of polar coordinates. Substituting the expressions

of F(x,y) and T(x,y), Eqs lla and llb, into	 Eqs 6a-6e, the homogeneous solu-

tions for stresses a i may be expressed in terms of Fk (Zk) as

axh) -
6

uk Fit(Zk)^
k^l

(13a)

Cr (h)	 .
6	

Fit (Z0'k 
(13b)

y k-1

T 

Ch) - C6	 ^It
-L	 n lc E^k(ZIc)'

(13c)
y 

z
k-1

(.h)

TXZ	
-

6

X	 uknk F
It (Zlt ), (13d)

k-1

TXy) _
6

-I	 uk Fit(zk ). (13e)
k-1

The expressions for displacement components may be obtained directly from

Eqs 5, 7 and 13 with omission of the terms which are to be included in the

particular solution,

6
u (h)	 ^+

k^1 Pk
(Zk),	 (14a)Fk

6

v (h) qk gk ( Zk)	 (14b)
k-1

6
w (h) tk Fk(Zk),	 (14c)

k-1

12



wn^a^

where

Pk ° S11uk + S12 - S14nk + 9
15nO k - S16uk'
	 (14d)

q  ° S12uk + S22/11k - S24nk/uk
 + S25nk - 826,
	

(14e)

t  ° 5 14p + S24 /11k .— S44nk/uk + 545nk S46'
	

(14f)
	

°y

We now choose the form of Fk (Zk) as

Fk(Zk)
CkZk+2 / I(6 + 1)(6 + 2)], (15)

where C 	 and 6 are arbitrary complex constants to be determined later.	 Sub-

stituting Eq 15 into Eqs 13 and 14 gives

(h)
ax

°	 3c	 2 6	 —2 —6

[CO kZk 
+ Ck+3 IlkZk]'

(16a) 
kL l

v (h)
3

°	 7 [CKZk + C', k]'
(16b)

I k°1

Tyz)
3

+ Ck+3 n k Z ]'
lc^i[CknkZk

(16c)

T xz )
3 

O kZk + Ck+3 
_ _

n k µk k]'kG 1 [Ckn
(16d)

Txy)
3	 _

° Ok + Ck+3 Pk k]'k l (CO
(16e)

and

u (h)
3	 _

(C	 6+1l + 
Ck+3 pk k+1]/(6 + 1), (17a)

v(h) [CkgkZk+1 + Ck+3 qk k+l]/(6 + 1), (17b)
ks1

w(h)
3	 _

[CktkZkl + Ck+3 t 	 k+l1/0 + 1) , (17c)
k=1

13
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where the overbar denotes the complex conjugate of the associate variable.

For convenience, we drop the superscript h associated with the above homogeneous

solutions for stresses and displacements in this paper.

The homogeneous solutions are required to satisfy the homogeneous boundary

conditions and interface continuity conditions. This leads to a standard

eigenvalue problem for determining the values of S. It is noted that S general-

ly appears as a set of complex conjugates, which enable to make Eqs 16 and 17

real funct !!ans by superposition. Furthermore, the value of S is required to

satisfy the condition

Re[S] > -1
	

(1s)

to ensure the finiteness of displacement components at the origin, where Re

represents the real part of S.

A expedite	 t	 deve 1T_ 	 further uavc.t.t7pinenL9, we transform the stress and displace-

ment components from Cartesian coordinates to polar coordinates. Thus, we

have
3	 _

a e e k=1 (CkHlkZk + Ck+3 H 1 k'a)'	
(19a)

3	 S	 —S
Tez 

a k!1 (CkH2kZk + Ck+3 H 2 Zk)'	
(19b)

3	 _

T er @ kL1 (CkH3kZk + Ck+3 H3k k)'	 (19c)

3	 _

a rr ' kE1 (CkH4kZk + Ck+3 H 4 k) '	( 19d)

3	 _

T rz a kI1 (CkHSkZk + Ck+3 H5k k) '	( 19e)



15

and
3	 _

u
	

.	 +l/(d + 1) + Ck+3 H 6 k+l/(d kz1CCkH6kzk
+ 1)J, (2Oa)

3	 _
ue .	 1/(b + 1) + Ck+3 H7k k+l/(8kIl[CkH7kzk + 1)J, (2Ob)

3	 _

uz W	
l/(6 + 1) + Ck+3 H8k k+l/(SkEl(CkH8kzk + i)a, (2Oc)

where Z  are defined in the polar coordinates and H,jk
Q - 1,2,...8)	 are

functions of n k 
I uk I pk I qk' t 

	 and 6 given in Appendix 1.

The traction-free boundary conditions, Eqs 8a-8c, along the free- ages

of the m th and (m+l)th plies in polar coordinates read

a( ) 
. 
T0z) 

o. 
Tr0) . 0
	 on	 0 . 2, (21a)

(m+l)	 (m+1) __	 (1n+1)
"66	 `0z	 ` r6	 - 0	 or,	 o = - 2• (lib)

The continuity conditions, Eqs 1Oa-1Of, along the ply ir-erface give

{ a (m)	 (m)	 (m)'uOn) 'u(m) 'u(M))/T	 1 T06	 6	 z

(a (m+l) T (m+l) T (m+l) u (m+l) u (m+l) u (m+l) }^	
f	 .	

'
Be	 0z	 r6	 r	 0

'	
z

on 6 - 0. (21c)

More explicitly, the homogeneous boundary conditions, Eqs 21a and 21b and the

continuity conditions provides

(C (
k

m ) H(M k(2)	 [ S2 (M)(Tr J d + Ck+3 H (k)(2)	 [n (M (2)J a } 0 ' (22a)
k=l



3 {Ck +1) H(i+l)(-Ir) Ink +1)(-Tr 
a + Ck 31) H(k+l)(.7) ink +1)(--2)16} - 0'

k=1

(22b)

k^
3

	

	 (m) (m)	 (m) r W _	 (m+l) (m+l)	 (m+l) — (m+l )

l
(^Ck rrk + Ck+3 rk	 ^Ck	 rrk	 + Ck+3	 rrk	

)} °` 0,	 (22c)

Q = 1,2,3; r - 1,2,3,4,5,6),

where H
ik

(2) and H
jk

( 2) are values of Hid evaluated at 8	 2 and 6	 - 2,

respectively; Qk (8) are defined as

Qk(6) _ 
(e i9 + Xke-iA)/(1 + X 0
	 (23)

and

rlk 
1, r 

2 = '1k' r 3 '0 	 r 4 = Pk' r 5 
a q

k' r 
6 = tk .	 (24)

Solving for C (M) from Eqs 22c in terms of C(M+1), one finds

C M = aksCs
M

+l)	 (k,s = 1,2,...6).	 (25)

Substituting Eq 25 into Eq 22a gives

( C sm+l) c {H^(k) (̂ )s ^^k )(2)}a + H
^k )(^2) a (k+3)s ^^km)( 2 )^ a }^	 0.

sal 11

	
k 1G=

(26)

Equations 22b and 26 constitute a system of homogeneous linear algebraic

equations in Ckm+1). The existence of a nontrival solution for 
Ckm+1) 

re-

quires the vanishing of the coefficient determinant

IA(a)I = o,	 (27)

where A(a) is a six by six matrix involving 6 in a transcendental form. Thus,

i
16



Eq 27 is a transcendental characteristic equation for the standard eigenvalue

problem. It has a very complicated structure as can be seen from the coeffi-

cients of Ck 
+1) 

in Eqs 22 and 26, and the detailed expression for 11(6) is not

given here. The investigation of the characteristic equation requires the

employment of standard numerical techniques such as the Muller 's method [28] 	 E!
c

with the aid of a digital computer. The eigenvalues 6 n obtained from the

numerical solution of Eq 27 give important information concerning the behavior

of the edge stresses and displacements. Due to the positive definiteness of

strain energy of the elastic body and the condition in Eq. 18, the eigen-

value of 6 n bounded by

-1 < Re[6n] < 0	 (28)

characterizes the order of the inherent singularity of the boundary-layer or

A. ofg-	 iT	 .^
	 laminate. 	 small • .l	 r thefree-cafi ge 9cre^5ea 1L1 d compos ite 	 Theo, for ou{a.{.s. vai.uc..v	 ,	 —

asymptotic stresses are proportional to 
rRe[6n], provided that 6 n satisfies

Eq 28.

17



laminate, i.e., laminae with 0° and

stresses and the out-of-the-plane

the material symmetry in each lamina.

r stress components of interest here,

for displacements and a  may be

4. DEGENERATED CASES — CROSS-PLY COMPOSITE LAMINATES

In the case of a cross -ply composite

90 0 fiber orientations only, the in-plane

shear stresses are uncoupled by virtue of

We shall concentrate our study on the fou

ax , ay , Txy , a z . The general expressions

simplified as

u = - 2 AlS33Z2 + U Cx , y ) + W 2z - W 3y + uo ,	 (29a)
t

v = - 2 AZS33Z2 + V(x, y ) + W3x - Wlz + vo ,	 (29b)

w = (A1x + A 2 + A3)S33z + W 1 
y - W 

2 
x + wo ,	 (29c)

a s A	 1 A - /	 i n	 ) /n	 (.... )

z	
A X	 ^,`y	

" 3
-
 `S31"x 

T "
3 a	

033 .	 ^yd

Following the same procedure shown in the previous section, the govern-

ing partial differential equations are uncoupled and may be written as

L4F(x , y) = 0,	 (30a)

where L4 is defined as before

L4 = S22 8x^' + (2312 + S66 ) ax= 2y^ + 311 8y .
	 (30b)

The homogeneous solution for Eq 30a may be obtained in a simplier form,

4

F (x , y ) - I Fk (x + U ky ),	 (31)
k=1

where U k are the roots of the following algebraic equation:

1 4 (U) = S11194 + (29 12 + 966 )U 2 + 922 = 0.	 (32)

18



The homogeneous stress and displacement solutions are than given as

ax	 uk Fk(x U ky),	 t7y	 Z Fk(x + UkY)'
kmi	 kol

4

	

rxy 
n 

k1l 
uk Fk(x + u kY),	 (33)

4	 4

	

u(X,Y) • I Pk Fk (x + U ky ),	 v(x,y)	 I q  Fk (X + U ky ),	 (34)
kul	 kal

where

Pk	 S11U k + S12'	 qk .. 521Uk + c22 /U k.	 (35)

We shall choose the form of Fk (x,y) as

Fk (Zk) . 4 CkZk 2 /I(a+l)(d+2)J,	 (36)
k•1

where C  and 6 are, ao before, arbitrary complex constants to be determined

later. Imposing the homogeneous traction-free boundary conditions along the

free edges and the continuity condition along the ply interface, one can

proeede with the same procedure outlined in the previous section. Then, the

eigenvalues and eigenfunctions can be determined in a manner similar to those

in the previous cases.

19



5. NUMERICAL EXAMPLES

From the structure of the governing p...cial differential equations and

the homogeneous solution for the problem, it is clearly seen that the asymp-

totic stress and strain fields in the vicinity of the edge are governed by

the singular terms with the strength of stress singularity 6 n determined

fro+, the eigenvalue analysis. Exam ping the structure of Eqs 22b and 26, it

is obvious that the eigenvalue solutions, and therefore, the edge stress

singularities, are related to laminar constitutive properties and fiber ori-

entations of adjacent plies.

Consider a composite laminate with ply properties typical of those used in

earlier studies [5] (values of GTz-1.5GLT and vLz- .85 vLT have been found to

make only a few % difference in 6n):

EL = 20 x 106 psi,	 ET = E  - 2.1 x 10 6 psi,

G	 = G	 = Gv.v5 	 1n6 nai _	 ( 37)
LT	 Lz	 Tz	 `"`-'

vLT = vTz 'm
	 m 0.219

where the subscripts, L, T, and z refer to the fiber, transverse, and thick-

ness directions of an individual ply, respectively. The influence of material

properties of composite plies on the boundary layer stresses may be related to

the roots P  
of the characteristic equation, Eq 12a. With the lamina proper-

ties given above, the roots of the characteristic equation for the graphite-

epoxy lamina of different fiber orientations 0 are shown in Table 1. It

appears that all the six roots p  
are purely imaginary by virtue of the

material properties of Eqs 37.	 Furthermore, the µk for +0 ply is the

same as those for -0 due to the in-plane rotation of fiber directions.

Based on the material constants, uk' pk, 
q  and tk obtained for the

graphite-epoxy, the transcendental characteristic equation, Eq 27, can

20



Table 1

Roots u  of Characteristic Equations For Graphite-Epoxy
Composite System with Fiber Orientation 0

±0 u1,2 u3,4 u5,6

15 0 ±0.88782 i	 ±1.10301 i ±1.56776 i

30 0 ±0.86122 i	 ±1.06956 i ±2.53630 i

45 0 *_0.80902 i	 ±1.03503 i ±3.44438 i

60 0 ±0.73316 1	 ±1.01323 i ±4.15870 i

75 0 ±0.66324 1	 ±1.00294 i ±4.61201 i

1

*Ois the angle measured counterclockwise from the positive
z-axis to the fiber direction

21
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n

;r

be solved numerically to provide the eigenvalueu for the homogeneouo

solution. For illustrative purposes, the first twelve non-integer eigen-

values associated with the stress solution for the free edge of a 45°I-45°

graphite-epoxy are shown in 'Fable 2. Eigenvalues d o smaller than -1 are ex-

cluded for the reasons given in the previous section. It is seen that there

exists one and only one eigenvalue which satisfies the required constraint

conditicn , Eq 28,for this case, i.e., 6 1 0 -0.02557. In fact, the eigenvalue

6 1 is the strength or order of the free -edge or boundary-layer stress singu-

larity, which is of major concern in this study. The fact that the;.a is

only one 6 n which meets Eq 28 is observed in all cases with various other fiber

orientations studied; the only difference is that, for each case, 6 1 possesses

a different value. Higher -order eigenvalues occurring as integers (including

zero) and as complex conjugates always exist and should be included for de-

termining the complete solution when remote boundary conditions are matched

by a numerical method to be discussed in an associated report (29].

For the commonly used (*_0) angle-ply graphite -epoxy composite, as anti-

cipated, the order of the boL+dart'-layer stress singularity is a function of

the fiber orientation 0. Numerical xasults of 6 1 for each of the t9 fiber

orientations are calculat d and shown in a graphic form in Fig. 2. It is

clearly seen from the Figure that the composite free edge associated with the

laminate of an approximately ( ±51°) ply orientation possesses the strongest

boundary-layer stress singularity. As the 0 changes to either directions,

the order of the stress singularity 6 1 decreases rapidly. Its value con-

verges to zero for the cases of 0 . 0° or 90 °, since the two plies become

identical with orthotropic elastic properties.

22
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Table 2

First Twelve Non-Integer Eigenvalues * for Free-Edge Stress
Solutions in'(i W ) Graphite-Epoxy Composite

-2.5575658 E-2

8.8147184 E-1 i 1 2.3400497 E-1

1.5115263 E 0 ± 1 7.9281732 E-1

2.3389433 E 0± i 1.1158402 E 0

3.0913532 E 0± 1 1.7360464 E 0

3,9520023 E 0± 1 2.0287146 E 0

4.7440929 E 0 t 1 2.5683871 E 0

5.6021457 E 0± i 2.85800510 E 0

6.3962635 E 0± i 3.3652707 E 0

7.2565174 E 0± 1 3.6575937 E 0

8.0497237 E 0± i 4.1479983 E 0

8.9120567 E 0± 1 4.4407609 E 0

Integers, 0,1,2,...n, are always eigenvalues obtained from Eq 27

M»
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Fig. 2. Strength of Boundary-Layer Stress Singularity in
(0/-0/-d/0) Graphite-Epoxy Composites
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In the case of a free edge associated with two plies of more general fiber

orientations, instead of the symmetric +0/-0 configuration, solutions for the

eigenvalues 8n are obtained also. To illustrate the nature of the eigenvalues

for this case, we examine the free edge associated with 30'/0 fiber orienta-

tions in a graphite-epoxy composite, where 0 varies from 7.5 * to 82.5 * . The

first few non-integer eigenvalues for various O's in these cases are given in

Table 3. The integers (including zero) are also eigenvalues, but not included

in the Table. The case of 30 * /30 * graphite-epoxy is not included either since

the two plies are identical. Again, it is observed from the Table that there

exists only one d o which meets the requirement of Eq 28 and gives the dominant

singular stress state at the edge of each of the 30 * /0 composite laminate.

The degenerated case of cross-ply composite laminates which are discussed

in the previous section is investigated also. 	 The eigenvalues for

the free-edge Stresses in a graphite-epoxy composite with 0 r'/90 0 lamination

are given in Table G. The dominant stress singularity in the present case has

an order of magnitude similar to those in (±O) angle-ply composites and in more

general (0 1 /0 2 ) laminates. It is noted that the orders of the boundary-layer

stress singularity for both angle-ply and cross-ply composites are generally

much weaker than those associated with other typical elastostatic singular

stress problems such as elastic crack problems. The relatively weak singularity

for the boundary-layer stresses introduces some unique features as well as

difficulties for the evaluation of the boundary-layer effects in composite

laminates, which will be discussed in an associated report [29].
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Table 4

First Twelve Non-Integer Eigenvalues for Free-Edge Stresses
in Cross-Ply Graphite-Epoxy Composite*

-3.33888 E-2

8.80268 E-1

1.41674 E 0 ± 1 3.93303 E-1.

1.65345 E 0 ± 1 6.85523 E-1

2.83449 E 0 ± 1 1.76219 E 0

3.75294 E 0 ± i 1.1853E E 0

4.29235 E 0 ± 1 2.66884 E 0

5.70726 E 0 ± 1 3.57190 E 0

5.79010 E 0 ± 1 1.52461 E 0

7.12293 E 0 ± 1 4.48145 E 0

7.81068 E 0 ± 1 1.76401 E 0

* Integers, 0,1,2,3 .... are also eigenvalues

27



-	 yob	 ., k

6. SUMMARY AND CONCLUSIONS

A study of boundary -layer stress singularity in both angle-ply and cross-

ply composite laminates has been presented. Formulation of the problem is

based on Lekhnitskii ' s complex-variable stress functions and basic relation-

ships in the anisotrrpic elasticity theory. An eigenfunction expansion method

has been developed to obtain the homogeneous solution for the coupled govern-

ing partial differential equations for the problem. Angle -ply and cross-

ply composites as well as more general laminates have been studied. The

strength of boundary -layer stress singularity for each case has been determined

to illustrate the fundamental nature of the edge effects in composite materials.

Based on the information obtained, the following conclusions may be drawn:

1. Boundary-layer or free-edge stress field in a composite laminate

is inherently singular in nature due to the geometric and material

discontinuities.

2. The order of boundary-layer stress singularity can be determined

by solving for the transcendental characteristic equation ob-

tained from. the homogeneous solution of the governing partial

differential equations.

3. The boundary-layer stress singularity depends only upon material's

elastic constants and fiber orientations of adjacent plies in

composite laminates.

4. For angle-ply and cross-ply composites as well as more general

laminates the order of boundary-layer stress singularity is very

weak in general. In a graphite -epoxy system, for example, 6 1 is

much smaller than other kind of singular stress problems in

elastostatics such as elastic crack problems.
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APPENDIX 1

Expressions for Hi3 (0) in Equations 19 and 20

Hlk .
 (Ilk sine+ cose)2

H 
2 ' -nk (uksine + cose)

H 3	 (uksine + cose)(ukcose - sine)

H 4 
R (u kcose - sine)2

H 5 
Q rtk (vi kcose - sine)

H 
6 = pkcose + gksine

H 7	
pksine + gkcose

H 8 t 
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