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PREFACE

This Final Report, prepared by RCA Laboratories, Princeton, NJ 08540, de-

scribes the results of work performed from January 29, 1981 to August 5, 1981

in the Energy Systems Research Laboratory, Dr. B. F Williams, Acting Director.

The Project Scientist was Dr. D. Redfield, and the Project Supervisor was

Dr. A. H. Firester, Head, Process and Applications Research. Dr. R. V. D'Aiello

also participated in the %esearch (cell processing) for this report.
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SECTION I

GOALS A14D OBJECTIVES

The goal of this program was to evaluate the applicability of previously

developed solar-cell and module-processing sequences developed for single-

crystal silicon under the sponsorship of the LSA Project for use on lower-cost

epitaxial silicon wafers, These process sequences have been shown to be of

potentially low cost and to perform effectively when applied to the high-quality

silicon crystals for which they were developed, Tile present program was

intended to verify the extent to which such process sequences can also perform

effectively when applied to lower-cost thi ►-film solar cells formed by epitaxial

deposition of Si on potentially inexpensive substrates of upgraded-metallurgical

grade (MG) Si. Therefore, maximum use was made of process steps developed

under the LSA Project, and of epitaxial Si wafer development being performed at

RCA Laboratories under the concurrent SERI Exploratory Development program,

Because of the premature termination of this contract, the goals were not

accomplished.

I
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SECTION 11
,

INTROUIXTION

To achieve the program goals, 28 minimodules were to have been fabricated

and tested, using 600 cells made from three-inch-diameter wafers processed by

the sequence chosen for this purpose. Of these 600 cells, half were to be

made from epitaxially grown layers on potentially low-cost; substrates. The

other half were to be made from commercial, semiconductor-grade (SG), single-

crystal silicon wafers that served as controls. Cell processing was normally

performed on mixed lots containing significant numbers of each of these two

types of wafers, After evaluation of the performance of all cells, they were

separated by types for incorporation into modules that were to be tested for

Electrical. performance and response to environmental. stress. A simplified flow

chart displaying this scheme, for quantities representing half of the planned

total, to be processed, is shown in Fig, 1.

	

160 MO SUBSTRATES 	 160 SG WAFERS

ETCH & CLEAN 40 WAFERILOTETCH &CLEAN 26 WAPERILOT

p+ SINGLE CRYSTAL	 EPITAXIAL	 42 WAFER/RUN
CONTROLS	 GROWTH	 Iti RUNS)

NLUS CONTROL
PLUS CONTROLS	 J

FORM MIXED LOTS 00 WAFER/LOT -	 2 LOT INITIAL
4	 QUALIFICATION RUN

CELL
FABRICATION

	

EPI/MO	 SG

CELL TEST

MODULE FAB. 1 I MODULE FAO.	 I

Figure 1. Processing flow chart.
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Documentation of the specifications and procedures of all process steps

chosen for this program, and detailed SAMICS cost analyses have been provided

in separate reports bearing those titles, As with all R&D projects, however,

inhere are unavoidable differences between some of the laboratory processes used

to fabricate cells and modules for the present evaluations and the analogous

processes as they would take place in a factory at high production rates. In

all cases where uncertainties may exist in specific process steps, the materials

or procedures used were consistent with developments occurring under either the

bSA program or the Exploratory Development (ED) contract that RCA was conducting

for SERI [1j, In this report, some information is provided on relevant work

under the ED program.

1-7 "l^,xploratory Development of Thin-film Polycrystalline Photovoltaic
Devices," Solar Energy Research Institute Contract XS-097.00-3.
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SECTION III

DATA AND RESULTS

Progress, present status, and data are presented by tasks defined in the

contract,

A. TASK 1: SILICON SUBSTRATE MATERIALS

1, Epitaxial Substrates

Because low-cost substrates for epitaxial growth of Si are still under

development, their properties are not yet thoroughly established. Indeed,

there are substantial variations in the properties of substrate materials from

different• suppliers. RCA has used a variety of such substrates and has chosen

for its epitaxial programs materials that are basically UMG-Si (all p-type) as

being most promising for meeting both the cost and performance goals of the
Exploratory Development contract [1]. The specific type that seemed most

promising was the heat-exchanger-method (HEM) Si that is made in large ingots

by Crystal Systems, Inc. Therefore, use of that material was planned in this
program as well.

Extensive chemical analysis of HEM material has shown that its purity

benefits substantially from segregation of impurities during the slow direc-

tional solidification. For aluminum, which is always a high- costcentration im-

purity, the results indicate that the quantitative amount of purification is

close to that which would be expected from the value of the equilibrium segrega-

tion coefficient. If that were also true of the transition metals, which have

very low segregation coefficients, it would lead to exceedingly low concentra-

tions of them in the HEM wafers. That would explain the success of these wafers

as epitaxial substrates, in that the epi layers are quite free of lifetime

killers. However, present evidence is that carbon does not segregate in HEM at

the equilibrium rate. That could be because carbon in Si is rather special, or

it may be that a number of elements do not follow their equilibrium behavior in

the HEM process.

For several reasons, it was decided to use two types of substrate materials

in this program. One reason was uncertainty regarding the timely availability

of enough 11EM substrates. A second reason was the continuing difficulty that

had been experienced in the early portion SERI Exploratory Development program



with particulate inclusions in HEN material. Inclusions occurred commonly in
those wafers and have been identified as the cause of low fill factors in

large-area cells that cannot exclude them.
Recent evaluation of various HEM materials by the ED epitaxial progr&.,n

[1), however, produced two major findings: (1) that the use of well-selected
MG feedstock can provide substantial improvement in solar-cell properties; and

(2) that double solidification can improve the material further, provided much

of tPe particle-containing top is removed after the E:LrsL solidification. The

performance of epitaxial solar cells made on substrates of these improved MM

wafers ha s been quite good

Chomical analyses show that the particles in HER material that cause poor
solar-cell, properties seem to be of two types: predominantly iron or predomi-

nantly carbon. Regardless of type, however, recent experiments by Crystal

Systems, Inc. have shown that the number of harmful particles can be greatly
reduced by simply increasing the lateral dimensions of the ingot. This result

further improves the prospects) f or use of IM substrates in epitaxial solar

cells.

A number of cells of various sizes were made on epitaxial wafers whose HEM

substrates were solidified twice by the use of South African metallurgical-

grade-silicon (MG-Si) feedstock. The numbers of particulate inclusions in these

substrates are much lower than in previous HEM substrates, for which other feed-

stocks were used, and the cell performances are correspondingly better. For

20-cm 
2 

cells with evaporated metals, efficiencies of more than 10% have been

obtained with good yields. Also on these substrates, cells of 4,5-cm 
2 

area

with screen-printed metals displayed equally good efficiencies. Cells of larger

sizes are now being processed on these materials. There appear to be good

prospects for finding alternative sources of better-quality MG-Si in the United

States and for avoiding the need for a second HEM solidification.

The second material chosen for substrates was UNG from Hemlock Semicon-

ductor Corp. (a subsidiary of Dow-Corning Co.). Considerable experience at RCA

with such substrates had shown these to be satisfactory for the present purposes,

and they were available to us immediately in sufficient quantity (viz., 150),

However, analyses of results described tinder Task 2 showed that there is reason

to suspect the presence of a few harmful inclusions in some of these wafers as

well. Close visual examination has indeed revealed some particles that had not

previously been found, Thus, this may be a generic problem to UMG materials.

5



Spectroscopic analysis of the impurity content of these Dow-Corning wafers

and the electrical resistivities had previously been measured [2], Although

the impurity con .nt in somewhat variable, the resistivities are quite} uniform

at 0,01 0-cm.

Also purchased for this program were 50 three-inch-r di ameter wafers of Via+

C? silicon for use as control substrates for epitaxial growth. These w"?rc to

be employed in the as-sawed condition to resemble the UMG wafers, which were

unpolished. The some etching treatment was used for these controls and 1JVG

materials in preparation for epi growth.

2. Epitaxial G^,owth

Preparation of as-sawed wafers for use as epi substrates consisted only of

etching 2 mils off each side of all wafers in batches of 25 in an NBK Model

SW-100 Etching Apparatus that had just been tested and put into use here for

the first time. The etch takes two minutes in a solution of buffered II>!/I(NOS.

Following rinsing, 1-he wafers are subjected to a Megasonic cleaning just before

placement, in the epi reactor. rater experience, described below, caused a

switch to NaOH.

All epi growths for this program were done in RCA's high-throughput:

reactor (HTR) which can process a batch of about 40 wafers at a time with quite

good uniformity. On the basis of considerable experience with epitaxially made

solar cells, a doping profile such as shown in Fig. 2 was chosen. Not only

does such a profile make economical use of the high-quality Si in the epi. layer

(since that layer is only about 20 dam thick), but it also produces naturally a

"back-surface field." This field exists as a consequence of the difference in

resistivity between the front and the substrate. It can also be easily tailored

to provide a wide range of doping gradients in the transition region. Moreover,

the high conductivity of the substrates eases problems of making good electrical

contact to the back of the cell.. Another factor of major importance is that

epi growth (at about 1,100°C) can produce a layer whose carrier lifetimes are

adequate. Thus, there is not a serious problem of contamination by the UMG

substrate,

2. R V. D'Aiello and P. I{. Robinson, "Low-Cost Fpitaxial Techniques for
Solar-Cell.. Fabrication," Final Report, $ERI/PR-0 -$274-4, November 1980,

3?	 Subcontract No. XS-9-$274.

i
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(MOINAL PACE IS
()y pooR QUALITY

The IITR received several improvements before this program began. The

entire gas handling system was revised with improved components, and the

hydrogen gas that is used in quantity as a carrier gat, it; now supplied from a

liquid-hydrogen tank rather than from ordinary cylinders. This enhances the
hydrogen purity.

REPRESCNWI VE
RESIST/ vl rY
PROPM E OF

	

0	 EPITAXIAk LAYER

r

0 .1

r	 01
SUOSTRATE

p	 10	 15	 20	 25
DEPTH (µm)

Figure 2. Representative resistivity of epitaxial layer.

In three epitaxial-growth runs performed in the high-throughput reactor,

12 pow-Corning UMG wafers and seven single-crystal CZ control wafers had epi

layers grown. The resistivity profiles all were similar to that shown in

Fig. 2; the layer thicknesses were 28 jam for run 39, 19 {am for run 40, and 24
}am for run 41,

All substrates were etched before growth in the manner described above.
ICowever, on the basis of subsequent results, there is reason to doubt that the

amount of material removed in this way was as great as desired, This etching

is intended to remove saw damage on the UMG wafers, which are neither lapped

nor polished. Because saw damage can propagate through an epi layer, this

removal is essential for the production of good solar cells. Experience has

shown that 2 mils should be removed this way from each sawn surface to achieve

the necessary quality. The use of the new Latch etching machine and imprecise

7
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 ^#thickness measurements may have resalted in unce;-r.ain values for the thicknes s

removed.

As part of the effort to check on the possible presence of residual saw

damage at the surfaces of UNG substrates, a series of x-ray topographs were

made. These reveal strain patterns in the Si, whether they are caused by

isolated dislocations, misfit at epitaxial interfaces, or saw damage. Figure 3

shows three portions of a section topograph of an epi/UMG wafer from epi run

40. The dark band on the right side is the epi layer that contains many misfit

dislocations caused by nonuniform doping; their presence is verified by projec-

tion topographs. The dots throughout the thickness of the substrate are

dislocations and other strain-inducing defects. Along the left surface are

numerous dark regions -- more than the bulk density can explain -- that appear

to be remnants of saw damage. Therefore, it appears fair to infer that similar

damage existed on the other surface where the epi layer is grown. If insuf-

ficient removal of saw damage did occur, then we should expect that all of the

properties (Jsc , 
Voc, FF) of the eventual cells would be harmed. As discussed

in the next section, another closely related effect may be simultaneously

affecting the FF.

B. TASK 2: PROCESS SEQUENCE DKTEMINATION

The process seg4enee chosen for this program is characterized in broad

terms by POC1 3 junction diffusion, thick-film screen-printed Ag front grid,

thick-film aluminum back contact, and sprayed-on antireflection coating.

Details have been presented in the "Process Development Plan" submitted as a

separate report. A graphical summary of this sequence appears in Fig. 4.

Of particular importance in this sequence are the screen-printed metalliza-

tions. Although promising for cost reduction, this technology is still under

development. It is also desirable to eliminate the use of silver eventually,

so future changes in this process are possible. The epitaxial cells provide a

useful advantage for the back contact, regardless of contacting procedure,

,I because of the high conductivity of all UMG epi substrates. It is generally

easier to make good electrical contact to silicon of high conductivity than of

low conductivity. This property of epi substrates was exploited by use of a

simple aluminum ink that is fired briefly into the back of epi cells. A final

pattern of screen-printed silver covers the Al (after thorough cleaning),
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Figure 4. Summary of process sequence.

To develop familiarity with this cell -processing sequence in batches of

full size, three lots containing uoly semiconductor - grades (SG) wafers (25 in

each :lot) were processed. 'These are designated by process lot numbers 1, 2 and

3, even though they contain no epi wafers. The cell-processing sequence was

complete for these lots except that the Alt coating was not applied. There is

enough information to evaluate the electrical properties of such cells since a

good AR coating normally Increases the current by a factor of about 1.35, and

the efficiency by about 1.4.

Values of V oc and J'Sc for the cells of the first two lots are pre-

sented in Table 1. Two significant ;facts emerge from 'Table 1: Lhe currents

are very good, and there is little spread in the values of both 'V oc and J'so'

The mean values and standard deviations for these quantities are given in Table

2. 'There were problems with the fall ,factors that will be described next.

;l!irsL, it is worth noting that the mean values of Table 2 are characteristic of

quite good cells. That can be seen by assuming a reasonable fill factor of

0,75 for use with V oc = 0,56 and Jsc = 32 K/cm2 (including the factor of 1.35

for the effect of an AR coating). Together, these values lead to a mean

efficiency of n = 1.3,4% (at 100 mW/cm2 irradiance).

10
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TABLE 1.

Cell No.

01PO1S
01P02S
01P05S
OIP06S
01P07S
01P08S
O1PO9S

01P11S
OIP12S
OIP13S
OIP14S
O1P15S
01P16S
01P17S
01P18S
01P19S
OIP21S
OIP22S
01P23S
01P24S
OIP25S
02P01S
02PO2S
02PO3S
02PO4S
02PO7S
02PO8S
02PO9S
02P10S
02P11S
02P12S
02P13S
02P14S
02P15S
02P16S
02P17S
02P18S
02P20S
02P21S
02P22S
02P23S

CURRENTS AND VOLTAGES

VOc
(V01 t)

0.559
0,567
0.560
0.567
0.563
0.571
0.563

0.561
0.558
0.558
0.567
0.552
0.562
0.560
0.562
0.557
0.555
0.557
0.553
0.558
0.557
0.565
0,562
0.561
0.561
0,555
0.559
0.559
0.559
0.559
0.562
0.558
0.558
0.570
0.554
0.558
0.561
0.557
0.554
0.547
0.556

FOR PROCESS LOTS 1 AND 2

isc
(mA/cm

23.64
24.19
24.34
24.29
23.02
21,22

j21.97
22,29
23.82
24,42
23.19
21.69
24.35
22.09
24.25
23.67
24.02
24.33
24.08
22.69
22.03
23.42
23.52
24.34
24.67
24.89
24.61
24.65
24.79
24.58
24.86
24.35
24.25
23.78
24.60
24.86
24.10
23.92
24.42
23.49
23.87
22.84

11



'Parameter

Voc

'IV

1135xjsc

Lp L o^ I

0,560 V

0.005

23.3 mA/cm

1.0

31.5 Wed

 Loy- 2

01559 V

0,005

24.3 MAP

0.55

32.8 mA/cm 2

TABLE 2. MRAN VALUES AND STANDARD DEV IATIONS

a volt V 
ov 

AND J Be IN LOTS 01 AND 02

(a)
The normal effect of an AR coating is to inervaso J Be by this factor,

The measured fill factors and, therefore, the efficiencies of all Cells in

lots I and 2 were very poor. Additional measurements showed resistive

effects in the screen-printed metal contacts.

The third process lot of 25 SG wafers was processed, with several subgroups

givon, slightly different. 	 i n an effort to diagnose the cause of the
poor fill factors in the first two lots. These variations and subsequent work
led to the conclusions that (i) the poor FFs wore Oup to inadequ a te metal-
semiconductor contact by the screen-printed metal on the front of the 

cells

(aoL the back); (0) the surface texture Of the Si substrate KWAs the quality
Q the contact; and( i ii) the surface Conductivity of the diffused layer is high
enough to make fairly good contact With the scroon-prinled silver.

The first of these conclusions was reached by several different Aching
treatments of the metals that consisted of aipping the cells into 2% UP solution.
This type of treatment is known. Lo improve the contact properLies of poor
screen-printed Ag on Si, although 

it 
causes other problems, as described below,

By masking the backs of some wafers and Lhv fronts of others before this etch,
we demonstrated that the effect occurred only when the UP dip acted on the
metal of the front of the cells,

The role of surface texture in determining the quality of the moLal-Si

contact has been established in other places, and was confirmed here by direct

comparisons of the properties of cells that wore a p arty identical except for
the nature of the initial surface. The Central result is that a highly polished
Si surface makes poor contact to screen-printed silver. This result is not

12



understood, and the limits of its validity are not known. Specifically, will a

variety of crystallographic orientations 
in the surface doe to polycrystallinity

create problems in the surface preparation for this purpose?

One complication that is not fully resolved is the close relation between

the improper surface texture and the possible presence of saw damage at the

surface, There is clear evidence that each of these can harm cell performance,

but it is difficult to distinguish between them at present.

The conclusion that the surface conductivities used here are not the

primary source of the poor FFs was reached by modifying the diffusion schedule

for some wafers to produce a higher conductivity ( N25 0/0) without a significant

increase 
in 

junction depth, At this level of conductivity, it is well estab-

lished that the silver ink used here can make a good electrical contact. But

this increase 
in 

conductivity (the former value was N40 SI/0) did not succeed in

eliminating the problem with poor FVs.

The first epitaxial wafers to be processed into solar cells were 14 wafers

from epi runs 39 and 40, which were processed simultaneously with 11 SG single-

crystal wafers as process lot 4. One of the 14 epi wafers consisted of an epi

layer grown on a substrate of p * single-crystal CZ Si as a control for evaluating

the epitaxial growth. The FFs for Lhese cells before and after the HF dip are

shown in Fig. 5 as a function of the wafer position in the group of 25 as they

stood 
in 

the diffusion furnace. It is obvious 
that 

in their initial condition

the cells made on UMG substrates had much worse Us than the others. (There is

evidence, shown later, that cell Nos, 24 and 25 at the end of the furnace had

lower Us because of lower surface conductivity.) The fact that cell No. 10,

which was the epi control, had a much better FF than all the other epi cells

makes it clear that the responsibility for poor. FFs is not with the epi growth.

The effects of 
an 

]IF dip on the K's of the 'UMG cell are dramatic; also,

most of the SG cells have improved Us. There is, unfortunately, insufficient

understanding of the cause of this improvement to allow its use to diagnose the

original trouble with the Us. There may be two contributions to the limitation

in FF: one due to nonoptimum surface textures and one due to some remnant saw

damage at the front surface. One further observation in Fig. 5 is that even

after the 1IF dip the FFs are not quite as good as they should be for good cells

(1-0-75).

13
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Figure 5. Fill factors of cells in process lot 4 in their original
condition and after IIF treatment to improve the metal
equalization. The wafer position number is its location
in tlx:: boat during diffusion, with the lowest numbers at
the end near the gas entrance.

That is not the only problem with the use of LIT' to :improve the metal

contact. There has been evidence in the past that contacts that need the lIF

dip become sensitive to moisture after the treatment. In the case of process

lot 4, this effect appeared prominently upon subsequent application of an AR

coating as shown in Fig. 6. The Frs dropped back to values comparable to their

initial. values, The AR. coating used here -- a sprayed-on suspension of Ti02-

based particles -- contains a great deal of water when it is applied.

Also shown in rig. 6 are the measured values of the sheet resistivity of

the diffused layers in all of these cells. These data were obtained by 4-point-

probe measurements on the front surfaces after diffusion, and before :Further

processing. It can be seen that this diffusion process results in layers with

somewhat higher resistivities near the end of the boat:, i.e., at the downstream

end As determined by the direction of flow of the gases. Among the SG cells,

some correlation apparently exists between low resistivity and higher FF.

	

However, this cannot	 explain	 the very poor FFs of the UMG cells, many of which 	 1=
s

have quite low resistivities.
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Figure 6, Fill factors of cells in process lot 4 after application
of a sprayed-on AR coating, and slicet resiatatices of the
diffused layers.

Subsequent measurement of tli,^ solar-cell properties of the cells of lot 4

showed still further degradation of their FFs, presumably due to the action of

humidity in the air. This effect is shown schematically for two epi/UMG cells

and one SG cell in Fig. 7. Without any further pursuit of this type of obser-
vation, it becomes quite clear that the improvement caused by ]IF or,, the FF of

poor contacts of screen-printed Ag is illusory: it will eventually be lost to
natural degradation. On the other hand, contacts that are initially good

appear liRely to stay that way.
As part of the evaluation of substrates of IMN/South African MG-Si,

epitaxial solar cells were processed by the use of both evaporated and screen-
printed metals. At the same Lime, two 4.5-cm 2 cells were processed on the
wafers from epitaxial/Dow-Corning I)MG growth, run 39. These cells had the same
screen-printed metals as were used in process lot 4. In this small size the
two cells, even without any treatment, had FFs of 0.78 and 0.79, both better

than any seen in lot 4. The present conjecture is that occasional particulate

inclusions ,nay spoil a large-area cell in which they are unavoidable, whereas

small cell k̂ i,,iiglit well be free of such scarce inclusions.
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Figure 7. Representation of the variations in. fill factors of thr ve
cells of process lot 4 at three different stages of their
processing and at two subsequent times.

One other significant result of this group of cells was the marked differ-

,ence in FF between cells that had epi layers grown on polished wafers (average

FF = 0.56) or on etched wafers (average FF = 0.77). This confirms other

observations of the importance of surface finish. This finish is influenced by

both the initial amount of saw damage and the surface treatments.

In further efforts to diagnose the source of the poor fill factors, two

exploratory series of cells were made by having a different operator perform

the etching and epi growth. These both used 2-inch square wafers, and growths

took place in a horizontal epitaxial reactor. One set contained Dow-Corning

MIS substrates and p* CZ substrates, all getting the same epi layers, The

second set contained twice-solidified HEM substrates. Of all the resulting

cells, none had good fill factors, although those of the CZ substrates were

better than the others. After measurement, two of the HtM cells were cut into

smaller pieces to look for possible local variations in their properties. The

subcells from cell 19, whose FF was 0.52, had FFs that ranged from 0.42 to

0.72. Thus, there seems to be clear evidence for problems 
in 

the surface

finish that affects the screen-printed Ag contacts used on all cells, and in

inhomogeneities in the UMG substrates from both Dow-Corning and Crystal Systems.
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Because of continuing problems in the FF of single-crystal cells with

screen-printed Ag contacts, and the mounting evidence of the importance of-

surface finish to the quality of those contacts, we have introduced a different

Si etch to our processing. The purpose of the change 
is 

to reliably produce a

slightly roughened surface that is known to be desirable for good

screen-printed contacts. To achieve this, we chose NaOH, an etch that has been

widely used within the LSA program. It is less expensive than the acid etch we

have been using, and is known to be capable of producing "textured" surfaces

under the right conditions. Since the present need is different from the

texturing process (removal of saw damage is a major requirement here), we used

a procedure developed by Spectrolab (under JPL sponsorship) for this purpose.

A series of etching experiments was performed on semiconductor-grade

single-crystal wafers using 30% NaOH solution at 85°C for times of 5-20 min.

The criterion used to qualify this process wao a surface texture (observed

under a microscope) that appeared to match a previously acid-etched wafer which

had formed a good contact to screen-printed Ag, All the cells etched this way

had good fill factors as well as good V 
oc 

and J sc , as shown in Table 3. With

this encouraging result, a group of wafers has been prepared in this way for

use as epi substrates. This group includes wafers of HEM, Dow-Corning UMG 1 and

single-crystal materials. The premature termination of this contract prevented

completion of the experiment.

TABLE 3. SOLAR-CELL DATA ON NaOH-ETCHED SINGLE-CRYSTAL DEVICES

Moc sc
FF (NoCell No. i Volt:) MA-em'

5-A 0.59 23.0 0.69 9.3

5-3 0.59 22.5 0.69 9.1

10-A 0.59 22.5 0.71 9.4

10-B 0.59 22.4 0.72 9.4

15-A 0.59 21.8 0.73 9.4

15-B 0.59 21.9 0.75 9.6

20-A 0.584 21.600 0.736 9.3

20-B 0.586 21,120 0.700 8.7

17



C. TASK 3i PROCESS SPECIFICATION

The preliminary set of cell process specifications 
and 

procedures has been

prepared and submitted in a separate report entitled "Preliminary Process

►
	

Specifications and Procedures" (April 1981). These specifications represent

the detailed descriptions of the various processes, materials, and procedures

for the sequence that is outlined in Fig. 3. Tile change to Na011 etchant is not

incorporated in that report, All of the specifications are consistent with

either the epitaxial cell development by RCA under the ED contract (1) or the

various LSA processes that were developed under JPL sponsorship. Because of
certain unavoidable differences between laboratory processing as performed in
the fabrication of cells under this contract and eventual factory production at
high rates, these specifications differ 

in 
some details from the currently used

processes. One example is the provision of specificaLio ,'5 for opitaxial wafers
that are 4-inch. squares rather 

than 
the present 3-inch circles, In addition,

recent advances in technology dictated specifications for the projected use of
EVA encapsulant rather 

than 
the PVB now being used.

Planned revisions of these specifications were not completed at the time
of tile premature termination of this contract.

D. TASK 4: MINIMODULE DESIGN

Design of the minimodules to be fabricated is complete, and is to be
glass/PVB/cell/PVB/Tedlar,* all laminated. For compatibility with JPL testing

mounts, the moditles have external dimensions to comply with JPL Dwg. No,10087506,

Rev, A as provided to us by JPL. The cells were to be series-connected, as
called for in that drawing, but no lialf-cells were planned for use,

E. TASK 5: PROCESS AND DESIGN VERIFICATION

Verification tests and measurements on cells were reported under Task 2.

Because 
of 

the problems with performance of the epi/'UMG cells reported under

Task 2 1 the fabrication of operating modules containing such cells had been
postponed. Iii the meantime, however, a group of non-epi cells of 3-in.-
diameter was obtained and used in tile fabrication of a complete trial module.

^T*t—edi—W—,Ls a registered trademark for PVF film made by R. I. du Pont de Nemours
& Co., Inc., Wilmington, DE.
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This procedure has established the various steps in cell interconnect, module

assembly, and lamination. These processes appear to be well in hand so as to

be ready when useful epi/UMG cells will be available.

F. TASK 6: COST EVALUATION AND PROJECTIONS

An initial SAMICS cost: analysis has been prepared and submitted as a
separate report entitled, "Initial SAMICS Cost Analysis" (April 1981), As with

the process specifications in Task 3 1 this ar4alysis is based on the projected

factory operation which is, of course, not identical to the present  laboratory

processes. A brief summary of the principal process steps and their projected

costs are presented in Table 4. It can be .seen that the projected module price

is far below the $700/kWp that was the 1986 goal of this contract. The reason

is that the associated Exploratory Development program of SERI has a target

date of 1990, by which time it is expected that this epitaxial technology can

produce modules at less than $500/kWp.

Planned revisions of this SAMICS Cost Ana'.y is wei.:e not complete at the

time of the premature termination of this contract.

TABLE 4. SAMICS COST SUMMARY
(from Initial. SAMICS
Cost Analysis)

Process Step P/̂ WP
HEM Solidification 0.052
Sectioning 0.015
PAST Slice 0.047
Wafer: etch 0,038
Megaaonic Clean - 1 6.014

11TR Epi 0.085
POC1 3 Deposition 0.007

Junction Plasma Etch 0.007
Megasonic Clean - 2 0.014
Screen Print Al Back 0.008
Screen Print Cu Pad 0.004
Screen Print Ag Grid 0.076
Spray Alt 0.007
Cell. Test 0.004

Cell Interconne,t 0.059

Encapsulation (Spri.ngborn) 0.072

Module "lest (Motorola) 0.002

Total.	 0.491
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