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Ahstract

An analytical approach to heat transfer for crystal growth
in a Bridgman-Stockbarger configuration has been developed. All
first order efifects on the axial temperature distribution in a
solidifying charge are analyzed on the basis of a one~dimensional
model whose validity could be verified through comparison with
published finite difference analyses of two~dimensional models.
The present model includes an insulated region between axially
aligned heat pipes and considers the effects of charge diameter,
charge motion, thickness and thermal conductivity of a confining
crucible, thermal conductivity change at the crystal-melt inter-
face, generation of latent heat at the interface and non-infinite

- charge length. Results are primarily given in analytical form and
can be used without recourse to computer work for both improved
furnace design and optimization of growtﬁ conditions in a given

thermal configuration.
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1. INTRODUCTION

Conventional techniques for crystal growth from the melt
prove increasingly inadequate in meeting property requirements
for electronic materials as dictated by advanced device technology.
In this context it is of interest that renewed attention is
recently being paid to secded vertical Bridgman growth where the
driving force for interfering free melt convection is reduced
and the critical axial and radial thermal gradients are at least
in principle readily ¢ontrollable., Motivation for a
thorough re-examination of this crystal growth technique is
provided by ample evidence in the open literature that basic heat
transfer considerations have been largely ignored in its applica-
_tion. These considerations are now recognized to strongly affect
both crystalline and chemical perfection of the resulting solid.

In recent years several thermal analyses of Bridgman-type
crystal growth systems have been reported in the literature.
Noteworthy among these is a series of outstanding publications by
Wilcox et al.(1’2’3) in which the effects of several dimensionless
parameters on both axial and radial temperature distribution were
analyzed and significant wonclusions were drawn. The modeled
systems, however, were simplified in several respects and the two-
dimensional formulation (except for part of Chang and Wilcox(l))
precluded simple analytical results. Of interest is also the work

(4) (5,6) which demonstrates that one-dimensional

of Davis and Clyne
models can accurately predict experimental axial temperature vari-
ations. Their models were not nondimensional and, consequently,

significant thermal and geometrié parameters which control the




gystem behavior were not identified, and their conclusions cannot
readily be extended to systems of different parumeter values,

The present work is part of a comprehensive integrated theo-
retical and experimental approach to vertical Bridgman growth in
which one- and two~dimensional heat transfer mocdels are used as a
basis for optimized system desi¢n. The system «(presently in con-
struction) makes use of high temperature heat pipes which provide
for axial and axi-symmetric temperature uniformity and thus for
thermal boundary conditions which permit a meaningful theoretical
analysis. The configuration (Fig. 1) includes, between aligned
heat pipes, a gradient control region in which the crystal-melt
interface is to be located. The purpose of this region, first

(1) is to provide control of heat

suggested by Chang and Wilcox,
flow near the interface, required for the establishment of desired
radial thermal gradients. The design and operation parameters are
expacted to provide for the system under construction a wide range
of critical axial gradients and radial gradients leading to growth
interface morphologies ranging from convex to concave. Primary
attention is focused, however, on the establishment of growth
conditions which preclude nucleation at the confining boundary
with the simultancous minimization of radial segregation effects.
The use of a magnetic field for the reduction of free melt convec-
tion is provided for.

This study analyzes the effects of both system and operation

parameters on the axial temperature distribution in the charge on

the basis of a one-dimensional model.* This particular approach

!

*Radial temperature variations in the charge are the subject of a
publication (Part II) presently in preparation.
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was selected since oversimplified models are not required in order
to provide useful and easily applied analytical results. The heat
transfer analysis focuses on the following effects: geometry and
material of the charge-confining crucible, diameter effect of the
charge, length of the gradient control region, charge motion,
thermal coupling to the furnace, charge'length, generation of
latent heat at the cr}stal~melt interface, and thermal conductivity
change at the interface. Special attention is given to the axial
temperature gradient at the interface and the axial position of the
interface within the gradient control region.

The purpose of this analysis, which considers all first order
effects on axial thermal gradients, is to provide a basis for the
design of Bridgman-~type growth systems and to give guidelines for
optimized axial gradient control during the execution of growth
experiments., Its primary asset is the timesaving element, since
meaningful information can be obtained from the analytical results

without resort to computer werk.

2. DEVELOPMENT OF HEAT TRANSFER MODEL

The factors of concern for the development of a one~dimensional
heat transfer model of the Bridgman growth system depicted in
Fig. 1 are shown in Fig. 2. Hot and cold heat pipes comprise the
hot and cold zones; the region between them is called the gradient
zone. The length of the charge is broken down into LH' LG, and LC
within the hot, gradient and cold zones respectively. The charge

is lowered through the furnace with a velocity V, has liquid and

solid portions with different thermal conductivity, and has a



vt SR p..5- i oot

crystal-melt interface which generates latent heat. A crucible
provides containment for the charge.
The model makes the following assumptions:

l. Hot and cold zone furnace temperatures are
uniform, reflecting the heat pipe action,
and extend to infiinity in either direction.

2, The system is at all times in a gquasi~steady
state; i.e. transients are neglected.

3. No heat transfer by convection in the melt,

4. Heat exchange between the furnace and the charge
is described by a heat transfer coefficient, h,
that is constant within each zone; for simpli-
fied models in which the crucible is not taken
into consideration, h is calculated between the
furnace and the surface of the charge; when a
crucible is included in the modeling, h is calcu-
lated between the furnace and the outezr crucibhle
surface. The gradient zone is assumed adiabatic,
i.e. hg = 0.

5. The one-~dimensional model considers only axial
heat transfer within the charge; i.c. the temper-
ature in the charge is not a function of radius.

With these assumptions, the charge is analagous to the moving

(7)

thin rod treated by Carslow and Jacger and the equation, in non-

dimensional form, describing the axial temperature distribution is:

2

i-g- - Pe 9-2 - 4Big = -4Bib, (1]
de >

where:

r = z/D (non-dimensional axial coordinate measured
from the center of the gradient zone)



6 = 2%;222, (non-dimensional temperature)
ref
ef = non-dimensional furnace temperature
Pe = Peclet number = VD/a
Bi = Biot number = hD/k
o = thermal diffusivity ’
h = heat transfer coefficient
k = thermal conductivity‘
V = charge displacement rate (lowering rate)
D = charge diameter

Equation [l] is applied to each region of uniform properties and

Bi. In the present model there are four such regions when placing
the growth interface in the gradient zone: +the hot and cold zones
and the liquid and solid parts of the gradient zone. Boundary con~
ditions are equality of temperature and continuity of £lux between

adjacent regions. At the crystal-melt interface, the flux condition

gives:
de de
(55) = Pe . + (5%) [2]
R liquid solia®n * 'dT) ).
where
RK = kliquid/ksolid
RH = AHSL/Cp,solidATref

AHSL

i

latent heat of so%idification

Cp solid = specific heat of the solid
[4

(The Peclet number in eq. [2] is correctly based on the actual



growth rateand it is assumed here that the growth rate ieg equal to
the lowering rate V.)

For each region, eq. [l) yields two exponential terms for the
homogeneous solution and a particular solution that depends on Oﬁ.
The constants of integration on the exponential terms are found
using the boundary conditions. This has been done analytically
for systems of infinite charge length; expressions for the axial
gradient in the liquid and for the temperature at the crystal-melt
interface are given in the Appendix. (If the complete axial temper-
ature distribution is required, it is more convenient to determine:
the constants of integration by computer.)

In consideration of the complex naturce of the éhermal model,

a system with idealized parameter values, presently called a
"symmetric" system, is usaed as a reference against which the efifects
of individual parameters will be assessed. A symmetric systom is
defined to have the following parameter values:
1. Equal Biot number in hot and cold zone; i.e.,
Biy = Biy ¥ Bi.
2., Pe = 0,

3. Bqual solid and liquid thermal conductivities

4. No genecration of latent heat (Ry = 0).

5. Equal charge lengths in the hot and cold zones

Under such conditions, a symmetric system will have the

axial temperature distribution,

0(-g) + 8(K) =1 (3]

AP S o




3. ANALYSIS

3.1 Crucible Effect

In Bridgman growth, all charges are confined in a crucible
which, depending on conditions, varies in dimension and composition.
containment of the charge tends to decrease axial gradients (Sen
and Wilcox<2)), A crﬁcible of low thermal conductivity lowers the
gradient by adding thermal resistance between the charge and fur-
nace, effectively decreasing Bi; one of high thermal conductivity
lowers the gradient by "short-circuiting" heat f£low within the
crucible itself.

The domain of eq. [l] is here considered to be the charge only
and the crucible is not explicitly included. However, a simple
model of the heat transfer within the crucible allows for its
consideration in eq. (1] through modified Biot and Peclet numbers.

The temperature distribution in the crucible obeys the heat
conduction equation in cylindrical coordinates. Neglecting Pe

effects, we obtain:

2
90 9780
1l 29 cr cr
— AV + =1 0 4
4 where:
| .
j ecr = non~dimensional crucible temperature

p = non-dimensional radial coordinate, r/D

1

r radial coordinate

The first term of eg. [4] accounts for the radial thermal resis-

tance of the crucible, while the second accounts for the "shoxrt-
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circuit". If, at each axial location of the crucible, azocr/acz
is considered to be independent of p and equal to dze/dt;2 of the
charge, eq. (4] can be integrated to yield a radial distribution

of ecr. The boundary conditions are:

do

- e 1 ' _.cr  “lat the outer cru-
hch<9f Ocr) kcr dp cible surface) [5a)
0 = § (charge) (at the inner cru- [5b]

cr .
¢ible surface

where:

hcr = heat transfer cocefficlent between furnace and
outer curcible surface

I

k thermal conductivity of the crucible

cr

(Equation [5b]) assumes that the crucible and Eharge are in intimate
contact..) The heat flow from the crucible to the charge can thus
be obtained in terms of dez/dz;2 and used to reformulate eq. [1]

through "effective" Biot and Peclet numbers:

Bicr
Bl gg = . 3 T [6a]
l+Bmcr[ (§°-1) -—,O.ns] + K (6 -l) -z-kBlcran
1 1
Pell + == ,Q,nﬁ]
= 2K [6b]

Pe
eff L 21 T oLl
l-%Blcr[E(G 1) f nﬁ]-%K(G 1) + ZI(Blcrlné

where:
Bieff = Biot to be used in eq. (1]
Pe ep = Peclet to be used in eq. [1l]
Doy = outside diameter of the crucible




Bige = hopDo /K

k = conductivity of the charge (either solid
or liquid)

8 = D_,/D

K = kcr/k

¥

The relationship between the effective Biot number and the
conductivity ratio K is shown in Fig., 3 for § = 1.25 and various
Bi,.. It can be seen that Bi .. is significantly reduced by both
low and high values for K. (The relationship between Bi and axial.
. gradients will be established in Section 3.3; it shows that the
present findings are in basic agreement with those of Sen and
wilccx;(z)) The conductivity ratio K which maximizes Bi_gg can be

obtained from eq. [6]:

- cr
K(max Bi) ~\/ 5 <2 an (7]

Taking typical values of Bi,,. and §, the conductivity ratio pro-

viding for maximum axial gradients is found to lie bewteen 0.1 and
1.0. (Since all charges require confinement, the Biot and Peclet
numbers used in subsequent sections are to be considered as Bieff

and Peeff unless otherwise stated.)

3.2 Peclet Number Effect

Pe is the ratio of axial heat transfer in the charge due to
motion and dwe to conduction. The effect of Pe on the axial temper-

ature distribution in an otherwise symmetric system, obtained



through eq., (1], is shown in Fig. 4, large Pz (c.g. high lowering
rate or low thermal conductivity of the chaprus) increases the tem-
perature of the charge everywhere, As a consequence, in systems %

with constant melting point temperature, the crystal-melt inter-

face will move toward the cold zone; alternatively, the furnace
teméerutures must be lowered if the fhtérfacc position is to
remain fixed.

In conventional growth experiments, the Pe effect is small
since the lowering rates are small (e.g. 0.1-10 um/sec). A test
criterion for its relative magnitude is provided through the

characteristic roots of eq, [1l]:

Per1 & (1416 B4 )1/21 (8]
m‘ e :!: + Y e ‘
+ 2 PQZ

It can be secn that Pe disappears from eq. [8] when

(1) who reported that the

Equation [9] agrees with Chang and Wilcox
Pe effect was stronger for smaller Bi. If the inequality in eq.

[9) holds, the Pe cffect is small enough to satisfy the Peclet
number cirterion for symmetric systems (i.e. Pe = 0). It should

be noted (eq. [2]) that the generation of latent heat at the growth
interface is also dependent on Pe. Thus, Pe has a small effect on

the axial temperature distribution only if eq. [9] holds and the

latent heat effect is small (see Section 3.6).
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3.3 Biot Number Effect

The Biot numbex, through the heat transfer coefficient h, is
a direct measure of the thermal coupling between the charge and
the furnace. Typical values for the effective Biot number (i.e.
after accounting for the crucible) vary from 0.05 for high conduc-
tivity materials such as Ge to 5.0 for low cmndﬁctivity matexials
such as CdTe., Axial temperature vrofiles for several Bi, calcu~
lated from eq. [l] for symmetric systems, are shown in Fig. 5. 1In
agreement with Chang and Wilcox,(l) it is found that the charge
temperature follows more closely the furnace temperature and, as
a result, the axial temperature gradient in the gradient zone
increases as Bi increases.

The axial gradient behavior at the crystal-melt intexface
presented in the Appendix can be simplified for symmetric
systaemsg:

do -1

- _ [10)
az Mg * Bi 172 |

wherae:
A = non-dimensional zone length, L/D

Bi = BiH = Bic for symmetric systems

Ay = A

H = infinity

c

The dependence of the gradient (d0/dz) on Bi, according to eq. [10],
is plotted in Fig. 6 for various gradient zone lengths (Ag). The
graphs show that the dependence of the axial gradient on the gradi=-

ent zone length becomes stronger with increasing Bi., It can also
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be scen (cuive AG = 0) that there cxists a minimum Bi for any

desired non-dimensional axial gradient. An obvious alternative
to increasing 'Bi for achieving larger axial gradients is to in-
crease the temperature difference between the hot and cold zones

since:
' . .

&= Mo 7 (11)
This approach, however, is contingent on the absence of adverse

slide cffects such as the development of excessive vapor pressures
associated with increases of the hot zone temperature; it is also
no viable alternative if, as a consequence of furnace temperature
changes, the non-~dimensional interxface temperature is altered and
results in the interface boing shifted into an undesirable region

within the gradient zone,

The Biot numbers of the hot and cold zones are generally not
equal due, for example, to the temperature dependence of radiative
henrt transfer. For such conditions the zone with the larger Bl
will more strongly influcnce the overall temperature level (Fig.
7). Compared to the symmetric case (BiH = Bic), the temperature

increases everywhere within the charge when Bi, » Bi, and

H C

c > BAH. In Fig. 7,

the crystal-melt interface location for each curve is placed in

decreases everywhere within the charge when Bi

the center of the gradient zone and the unequal Bi effect appears
as a change in nondimensional interface temperature, To retain
the interface in this location during a growth experiment necessi-

tates a lowering of the hot and/or cold zone temperature as Big

decreases.,




The expression for the axial temperature gradient in the gra-
dient zone (analagous to eq. [10] for Bic # BiH) isy
de _ -1

daz L, .=1/2 -1/2
?\G + E(Bic ohe BiH )

[12]

where: .

Ay = A

H = infinity

c

System is symmetric except BiC 7 BiH
Interface is at the center of the gradient zone.

Equation [12] indicates that if one of the Biot numbers is much

smaller than the other, it will control the axial gradient. Effort

to increase axial gradients by adjusting Bi should therefore first

= = =

be directed at the zone with the lower Bi.

3.4 Charge Diameter Effect

The effwect of the charge diameter D on the axial temperature
gradient i1s assessed on the basis of eq. [10]. In practice, chang-
ing D will affect other parameters as well; a corresponding change
in the geometry of the furnace cavity, for example, will modify
both conduction and radiation heat transfer coefficients; changes
in D,,. and § will also alter the effective Biot number. In order
to permit isolation of the diameter effect, all other parameters
are assumed fixed in the present analysis.

Since the axial coordinate in eq. [l0], ¢, is non-dimensionali
with respect to D, it is considered more informative to compare

axial gradients based on the dimensional axial coordinate z. If




the gradient zone length, Lgy
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remains unchanged (i.e., AG varies

as D-l), the limiting cases for large and small Bi are given by:
Am  iag/dz) ) |
Bi > 21 (13a]
AG # 0 13073351
! im [(ao/dz),] 7%
where:
subscript = 1 denotes value before a change in diameter
subscript = 2 denotes value after a change in diameter
I AG remains unchanged (i.e., Lg varies as D), then eq. [l0] gives:
.lim ”(&G/dz)l Dl
o | @z, | T b, [14a]
G L.
lim [T(d0/dz), p,y /2
Bl > 0l tqo7aey, | T ["1'5';] [145]

The relationship between the
function of the initial Biot
initial system with charge di
Accordingly, increasing the c
dimensicnal axial gradient un
The effect of decreasing the
a function of Bi. For large
large increase in axial gradi

decrease in AG.

axial gradient and changes in D as a
number, Bil, (i.e., Bi based on the
ametexr Dl)’ is presented in Pig. 8.
harge diameter (D) will decrease the
less compensated for by other changes.
charge diameter, on the other hand, is
Bi a decrease in D will produce a

ent if associated with a simultancous

If Bi is small, regardless of the magnitude of AG’
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any decrease in D will cnhance the axial gradient, however, to =

lesser extent than with a large Bi.

3.5 Thermal Conductivity Change at the Crystal-Melt Interface

The effect of Ry on the axial temperature distribution according
to egq. [l] is shown in Fig. 9 for systeﬁs whicﬁ are otherwise
symmetxic {i.e., Bin = BiC/RK). In all instances, tle charge phase
with higher thermal conductivity exhibits a lower axial gradient
because of lowexr thermal resistance to heat transfer in the axial

direction. For charges with R, > 1, the axial gradient in the

K

melt near the interface is therefore less than in the solid. The
functional relationship between the axial gradient in the melt at

the melt-cxystal interface and Ryer analagous to eq. [L0]), is:

) = - ot [15]
in melt at  BinT/ (R +RE D) 4 Ao (R, k1)
interface c K K G 'K

Q:iQJ
=

(

where:

Blu = BLC/RK

Ay = A

. = infinity

C

RK # L; system is otherwise symmetric
Interface is at the center of the gradient =zone

Comparing egs. [15] and [10], it is scen that, independent of Bi,

any increase in R, results in a decrease of the axial gradient in

K

the melt. The axial gradient as a function of Ry

eq. [15] is plotted in Fi¢g, 10 for several nic values with A, = 1.0.

according to

Applying eq. (12] to germanium (RR ¢ 2.5), for example, it is found
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that the conductivity effect reduces the interfacial melt gradient

by about 50%.

3.6 Latent Heat Effect

The generation of latent heat of solidification at the melt-
crystal interface enters the solution of eq, [i] only through the
boundary condition at this interface {(eq, ([2]). (Pe in this section
is not Peeff, but should be interpreted as deafined in eq. [1].)

Fo; the symmetric case (RK = 1), the axial temperature gradient

in the liguid at E@e crystal-melt intexface thus becomes:

- 2
-2 + Pe R (B2 4y )
g—@. 2 s 1 G [16]
az o rma =172 °
2(B1 i-AG)
where:
Bl = Bmc = Bln
Ag = Ag = infinity
Pe Ry # 0; system is otherwise symmetvic
Intexface is at the center of the gradienc zone
For Ry # 1, the axial gradient assumes the form:
-2 + pe R (BiZt/2 42 )
0 _ S H C G
ac = iy 172 [16a]
BiC (RK-J*RK )y o+ AG(1~FRK)

where:

BlH = BlC/RK
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From eq. (16]) is can be secn that the effect of the latent heat on
axial gradients (and also on the temperature profile) will be small

if:

%’-(PQSRH) (i~ . M)

1

¢ << 1 [17]

Equation [17) demonstrates that the efﬁeht of latent heat on the
axial temperature behavior increases as Bi decreases.

Axial temperature profiles calculated from eq. [1] for various
values of ¢ are plotted in Fig. 1l where, in order to isolate the
latent heat effect, Pe was chosen small ecnough so that eq, [9] is
satisfied. It can be seen that the generation of latent heat
both increases the charge temperature and decreases the axial gra=
dient at the interface in the melt. For small values of ¢, the

latent heat effect disappears and the axial temperature profile

approaches that of symmetric systems.

3.7 "Infinite" Charge Length

The contribution from the posit..re characteristic root, eg. (8],
to the solution of eq. [1l] is normally small and is zero for an
infinite charge length. The charge thus appears infinite in length
when the contribution from the negative root also becomes small,
i.e., for large y. The temperature change within the hot or cold
zone reaches approximately 99% of its final value when expl(m_)g] &=
0.0). Using this as a criterion for infiinite length:

5
m (18]

Tal
8
v
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where:
5o ™ length of charae in hot ox cold zone for charge
to appear infinitely long
If Pe is small so that eq., [9]) is satisfied, the characteristic

roots baecome:

m, = £2¢BL [19]

and by substitution we £ind:

5
b * 27BL 201

which is a usaful expression for determining .

For any charge length which appenrs infinite in both the hot
and cold zones, the temperature tield of the charge will not change
(interface position remains fixed) as it is lowered through the gra-
dient zone. Figure 12 shows the progression of axial temperature
profiles as the charge moves from the hot zone to the cold zone for
charge lengths less than infinite., It can be seen that charge
tomperatures are displaced toward the hot zone furnace temperature
when most of the charge is in the hot zone and vice~venrsa. Accord-
ingly, to achieve constant interface position for non~infinite
charge lengths, the nondimensional melt temperature must be reduced
as the experiment proceeds. At constant nondimensional melt tem-
perature, the interface will move from the cold zone teward the hot
zone and the interface growth velocity will be greater than the
lowering rate. This finding is in_agrecment with the experimental

(5,6)

results of Clyne which suggest that longer charges and higher

Bi will tend to stabilize the intexface position (growth rate is
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the same as the displacement rate).

When the charge length is not "infinite", appropriate boundary
conditions must be applied to the ends of the charge. For a solid
pull rod, an approximate Bi can, for example, be obtained by
treating it as a simple fin, exchanging heat with the environment.
The curves of Fig. 12 were calculated using for the ends the same

Bi as for the circumference.

3.8 Rffect of Radial Gradients on the Axial Temperature Profile

A}

In the development of eq. [l), the radial temperature distri-
bution of 6 at each axial location ; was considered constant,
Presently, radial gradients in the charge afe considered insofar as
they affect the preceding results for the axial temperature distri-
bution.

The hecat transfer between the furnace and charge accounted for
in the Bi term of eq. [l] depends on the temperature difference be-
tween the furnace wall and th¢ charge surface. This temperature

difference can be accommodated in eq. [1])

2
d®e dao
-C;—-z- - Pe 'a-(';- = “4}31(9:5“ Os) [21]
g
where:
OS = surface temperature of charge

Integrating each term of eq. [21] with respect to the cross sectional

area of the charge and assuming that the average of the derivatives
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is approximately equal to the deriwvative of the averages, we f£ind:

- -
a - o
Zf% - Pe §F = ~4BL{(0g~T) - (0 -D)] [22]
where: ' N
X E 'fareax + d(area)

[In eq. [22] the radial gradients are expressed by the term (Os-ﬁ).]
If the radial temperature distribution within the charge is approxi-

mated as was done for the crucible in Section 3.1, we obtain:

2-

«f

.-'(_)') m:.-l-.a

32

——
b
L

[

(0g

fo 7]
VN

Combining eq. [23) with eq. [22] leads to a relationship for an
effective Bi, (Bigff), which accounts for radial temperature gradi-
ents within the charge:

eg * OB [24]

l'}"-é—-

Bi

where:
Bi = Biot as defined in Section 3.1 {accounting
for crucible effect, but not for zadial
gradient effect)

= Biot accounting for hoth c¢rucible effect and

Bi* .
eff radial temperature gradients in the charge

Equation [24] can be used to approximate the effect of radial gradi-
ents on the axial temperature distribution if Bi/8 is not small

compared to unity. If Bi/8 is small compared to unity, on the other
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hand, eq. (1) reasonably predicts the axial temperature profile,
The validity of eq. [24] can be tested on the basis of data
obtained through the two-dimensional finite difference model by
Fu and Wilcox.(s) viqure 3 of their paper presents the radial
variation of the axial gradient at the interface of symmetric sys-
tems for several Bi and Ag. Point values from these curves wexe
numerically integrated to obtain the average axial gradient over
the cross section and were compared to the wvalues obtained using
eqs. [10] and [24] (see Table 1l). Considering the approximations
required in the derivation of eq. [24], the agreement of the data
must be taken as excellent. The comparison demonstrates that the
one~dimensional models presently used provide a meaningful repre-
sentation of the parameters governing the axial temperature behavior

of charges in a Bridgman-type growth configuration.

4. DISCUSSION AND CONCLUSIONS

The one-dimensional model developed in Section 2 has been shown
to correlate well with a corresponding two-dimensional model of
Sen and Wilcox(z) concerning the axial temperature distribution in
a solidifying charge. It is expected, therefore, that the results
derived from this model accurately demonstrate the effects of
furnace and material property paramcters and can be applied to the
optimization of both furnace design and execution of growth experi-
ments. The model is easily applied to machine computation. Its
primary asset, however, lies in the fact that it yields extremely
useful and relatively simple analytical relationships. For example,

criteria could thus be derived which define the conditions under which
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the effects of charge motilon, length of charge in the hot and cold
furnaces, and the generation of latent heat can be neglected; the
effects of thickness and thermal conductivity of a confining cru-
cible could be accounted for by a simple modification of the Bi
parametex.

The model indicates that the axial gradient in the liquid at
the interface is adversely affected (decreases) by the following
charge properties:

*Large thermal conductivity
‘Large latent heat of solidification

"Laxge RK (kliquid/ksolid)

Maximization of axial gradients in the charge can be approached
through secveral operational and design options, each of which, how=

ever, has its limitations and potential drawbacks:

Biot Number: Axial thermal gradients can be increascd by increasing

the heat transfer coefficients (h) in both the hot and the cold
zones (eq. [10]). Since in typical high temperature growth experi-
ments heat transfer is largely controlled by radiation, it is imper-
ative that furnace emissivities be kept high. (Within the gradient
zone, however, undesirable ruadial heat transfer can be reduced
through the installation of highly reflecting radiation shields.)
Given the third power temperature dependence of the radiation heat
transfer coefficient, an increase of the furnace temperature will
also increasc Bi. This approach; however, has its limitations in
systems which develop high vapor pressures and thus require special

crucible materials and construction, which in turn may reduce Bi.
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Heat conduction across the gap betwecen the furnace and the cru-
cible can significantly contribute to the overall heat transfer coef-
ficient if the gap width is small and the gas has a high thermal con-
ductivity. For example, He in a one millimeter gap will transfer
about the same quantity of heat by conduction as is transferred by
radiation at 900°C, Small gap widths, however,. accentuate errors
in centering the charge within the furance cavity and thus will

prevent the establishment of axi=-symmetric boundary conditions.,

Gradient Zone Length: For any given temperature difference between

the hot and cold zones, a decrease in the gradient zone length, AG;
will increase the éxial gradient, especially for large Bi (eq.
[10]). A smallex AG, however, will also produce larger radial gra-
dients in the gradient zone,(37 and the precision with which the
interface must be localized in order to satisfy radial gradient

criteria will increase.

Charge Diameter: For agiven system, any decrease in charge diameter

will decrease Bi and thus the nondimensional axial gradient, but
will increase the dimensional axial gradient (see Scction 3.4).
This effect is most pronounced for large Bi and when accompanied

by a decrease in XG.

Furnace Temperature Difference Between Hot and Cold Zones: Increas-

ing AT ¢ will produce a proportional increase in the axial gradi-

ent, eg. [Ll1l].

Crucible: To prevent a severe reduction in Bieff, the thermal con-
ductivity of the crucible should be close to that of the charge.
In systems with large conductivity differences between the liquid

and solid charge, the conductivity of the crucible should be chosen
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so that the nondimensional axial gradient is maximized according
to eqg. (12], A thin crucible (§ close to unity) also sorves to
keep Bieff high, If vapor pressure considerations arc important,
the resultant decrease in crucible strength can be overcome by
pressurizing the furnace system, An alternate approach to maxi-

mizing Bieff consists of the use of coabied metdllic crucibles,

Growth Rate: If the generation of latent heat is significant (eq.

(L7]1), a decrease in the growth rate (smaller PQSRH) will serve to

increase the axial gradient in the liquid at the interface.

The present study of functional relationships concerning the
axial tomperature distrikbution in Bridgman configurations is of
obvious importance for gradient control and the related morpholog-
ical stability of the growth interface. Morcover, axial gradient
control is interrelated to the nucleation and segregation affecting

radial thermal gradient control, dealt with in Part II of this work.
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APPENDIX

For an infinite charge length and crystal-melt interface posi-

tion within the gradient zone, the model of Secction 2 yields the

following expression for the axial gradient in the liquid at the

interface: .
My
+ Pe,R
m S™H
1 4 [_i-.l]gm4(““§m)
gg»= ny "
: [.’L t [Eé--l}e“mg’(wgm)]
™y my
R = mo m
3 [l N [-i~1]om4(“"5nl):|
my
whora:
Pey 1 BiH 172
ml=-—2—-— l"‘[l’f‘lﬁ ;——*2"] ]
o e]_
4
Peg r Bic /2.
My # =5 l-[l-l'lﬁ -——-'—é-] ]
- Pe
my = PeL
m4 = PGS
Pe, = Peclet number based on liquid propertics
Peg = Puclet number based on solid properties
BiH = Biot number in hot zone (based on liquid properties)
Bic = Bjiot number in cold zone (bascd on solid properties)
1 _ 1
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i ™ dimensionless interface position with respect to
the center of the gradient zone. =-p < Cm <+,

The reclation between interface temperature (em) and position

(r ) is given by:

m
- i — + PegRy
1+ [ﬁi - 1] ™4 (W=tp)
1-8, = m : R,m
. 4 - K3
My m4 (U=Zm) My -m3 (Y+Zm)
l+[-—l}e m l+[—--l]e 3187 5m
) my

Note that an iterative solution is required if it is desired to
determine g_ given 0_,
m m
For a symmetric system, eq. [9] holds and my and m, can be
approximated by eq. [20]. This leads to a simplified form of the

axial gradient expression, which is used in Section 3.
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Table L. Axial thermel gradients at the crystal-melt interfacoe as

obtained through cgs. [10] and (241, 48/dr, and average
axial thermal gradients (d0/4%) py, a8 determined from
the two=dimensional model of IMu and Wilﬁcx.(3>

[do] av
0T oy ay
Mu and Wilc@x(B) Bgs. [10) and [24)
AG = 0 1,310 - 1.260
Bi = 2 AG = 0025 0.575 0.961
AL ® 0.50 0.778 0.775
G
AG e 0 0,010 0.617
Bi = 0.4
)‘G @ (0,5 0.464 0.472

rgymmetric systom

vinfinite ends
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FIGURE CAPTIONS

Modificd Bridgman~Stockbarger configuration.

Thermal model of furnace and charge with crucible.
. .

.

Effect of thermal conductivity of a crucible on the
effective Biot number.

Effect of charge motion on the axial temperature dis-
tribution in a charge.

Effect of thermal coupling between furnace and chaxge
on the axial temperature distribution within the chaxgoe.

Effcct of gradient zonc length and Bi on the axial tom=
perature gradient in the melt at the crystal-melt intor-
face.

Effect of unequal. hot and cold zone Bi on the axial
temperature distribution in the chaxge.

Effeat of charge diameter on the axial temperature
gradient at the crystal-melt interface. (The axial
coordinate is dimensional.)

Effect of difference in thermal conductivity of crystal
and melt on the axial temperature distribution in the
charge.

Effiect of thermal conductivity ratio (RK) and Bi on the
axial temperature gradient in the melt at the crystal-
nelt interface.
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Fig. 11

Fig. 12

Effect of the generation of latent heat at the growth
interface on the axial temperature distribution in the
chaxge.

Effect of charge position within the furnace on the
axial temperature distribution,

+
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