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TECHNICAL MEMORANDUM
I. INTRODUCTION

The purpose of this report is to present the NASA-Marshall Space Flight Center
solar activity long-range statistical estimation technique and the basis for the proce-
dure used. The motivation for issuing the information monthly is the need for a
current and systematic input for use in an upper atmosphere der ~ily model employed
in satellite orbital lifetime estimates. The mission analysis and planning for spacecraft
operations require estimates of orbital lifetimes for launches up to 15 years in the
future relative to various orbital altitudes, inclinations, and eccentricities.

The upper atmosphere density model used [1] is based on the work an models
developed by Jacchia [2,3] and his colleagues at the Smithsonian Astrophysical Obser-
vatory (SAO). A more recent model [4] uses essentially the same type solar activity
input and gives more detailed information on number densities for the various constit-
uents. To compute neutral density at the pertinent orbital altitudes and times, the
model requires as inputs the 162-day mean and daily value of 10.7 cm solar flux (F10 7)

and the 3-hour interval geomagnetic index (Ap) 6 to 9 hoursprior to the time of the

desired density calculation. The variability of the solar flux and geomagnetic activity
precludes the long-term prediction of these daily and 3-hourly values with ary degzree
of accuracy; therefore, smoothed values of these indices, estimated using a least-
square linear regression procedurz, are employed as inputs to the model. The model
then predicts the neutral density values required in the computation of satellite orbital
lifetime estimates.

This study presents the results of comparison studies conducted in the Atmos-
pheric Sciences Division, Space Sciences Laboratory, Marshall Space Flight Center
(MSFC), on various applicaiions of statistical prediction methods for short-term
(months) and long-term (years) fcrecasting of solar activity. This is one of many
approaches to the estimation of future solar flux and geomagnetic activity prepared by
those whu have and are now doing research on the subject. There is no generally
accepted statistical or deterministic procedure based on any known physical mechanism
by the scientific community. The one reported here is an attempt to improve upon the
statistical confidence of a linear regression procedura developed around 1949 by McNish
and Lincoln.

The basic theory first suggested and applied by McNish and Lincoln [£] and
later modified by Boykin and Richards [6] and improved by Rowe and Avaritt 17] is
given in Appendix A. An excellent survey is also presented by Scissum [8] and
Slutz, et al. [9].

II. TECHNIQUE

A Historical Background

McNish and Lincoln [5] suggested that the estimation of a future solar cycle,
based on the mean approximation of all past solar cycles, could be improved by adding
to the mean a correction proportional to the departure of the current values of the
cycle from the mean cycle. However, this technique was not recommended for making
projections longer than 1 year in the future.
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Yu.l. Vitinskii [10] conducted a very extensive survey and analysis of solar
activity forecasting methods. While recognizing the considerable importance of the
problem and encouraging studies of active processes taking place on the Sun as a con-
tribution toward the solution of the proolem, he well stated what is still the current
situation. Vitinskii concluded: "...we have shown that the reliability of the results
obtained using these methods still leaves much to be desired." However, his analysis
showed that the linear regression method gives the best accuracy for future solar
activity estimates up to a year in advance. For estimates severa! years in advance,
- the linear regression method becomes increasingly less accurate. 1he uncertainty of
' the linear regression method is given by the standard deviation estimat:s as computed
by the least-square linear regression method reliability procedure. With the lack of
l any proven deterministic prediction scheme based on physical laws, the statistical
) predictions produced by this technique are used as a basis for calculating upper
atmospheric density values needed for mission planning and analysis. We thereby
. have a best estimate and confidence bounds ba: i on the available data record of
e solar activity.

.

Using data from two additional solar cycles, Boykin [6] modified the McNish-
Lincoln technique so that the Zurich-smoothed sunspot number (R) could be estimated
for 10 years in advance, and at quarterly rather than yearly intervals.

Since the measured FIO 7 data base is relatively short (1947 to date), the cata

base was extended back to 1749 vsing the following eqmtionl to convert recorded
smoothed (R) data to smoothed solar flux (FIO 7) data:

FlO 7= 49.4 +0.97 R +17.6 exp (-0.035 R) . (1)

The recorded data for FIO 7 and R from 1947 to the present were used to

derive equation (1). The linear rorrelation coefficient_for equation (1) is 0.98.
Equation (1) is used to construct sr.othed solar flux F10 7 data for the period 1749

to 1946. After 1946, the measured values of the daily solar flux F10 7 are used to

compute the F This combined data base was then stored by cycle number and

10.7°
point number, Lagrange interpolrted and inputed into the main linear regressijon
subroutine.

All solar flux cycles used in the regression model data base prior to 1947 use
the Zurich established sunspot number maxima as the starting point. After 1947, the
maxima are based on the actual maxima from the smoothed solar flux values computed
from the measured FlO 7 values.

The output of the solar activity long-range statistical scheme is an estimate of
the 97.7, 50, and 2.3 percentile values of the F10 7 arranged in a monthly time
sequence. '

1. Developed in collaboration with Jack Slowey of Smithzonian Astrophysical
Observatory.
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Since the measured geomagnetic Ap data base ‘- relatively short (1932 to date),

the data base was extended back to 1884 using equation (2) to convert geomagnetic
C. data to geomagnetic A p data.

2 3

Ap = Exp (0.8267 + 4,3661 Ci - 4,0832 Ci + 2.1795 Ci - 0.3536 Ci4) . (2)

The recorded data for A p and Ci from 1932 to the present were used to derive

equation (2). The linear correlation coefficient for equation (2) is 0.99. Cycles 13
through 16 computed Ap valuts were then combined with actual Ap values from 1932

through present. This combined data base was then smoothed and stored by cycle
number and point number, Lagrange interpolated and put into the main linear regres-
sion subroutine.

The output of the solar activity long-range statistical scher=2 is an estimate of
the 97.7, 50, and 2.3 percentile values of Ap arranged in 2 monthly time sequence.

B. Lagrangian Least Squares Method

The Lagrangian least-squares prediction method outlined in the following steps
was compared with the conventional application of the McNish-Lincoln method and
also with various applications of the Lagrangian method to determine the methods
which gave the best predictions of past cycles of solar activity.

1) Select all maximum (or minimum) points.

2) Determine all the Periods {P].}.

3) Determine the average period P.

4) Divide all cycle periods (in step 2) by P (the average period).

This will give an average time increment Tj = P]./f’ to be used for the jth cycle. Note

that ’[j will be less than, equal to, or greater than 1 mor .h.

5) Consider each cycle a block of data by selecting m = P sunspot (or flux)
points in each ‘ycle. This will require some interpolation tc obtain each sunspot (or
flux) correspon.ing (o all m points per cycle, since points are not being selected at
the 1-month increment.

6) When all the cycles have been blocked in this manner, the McNish-Lincoln
method can be applied to produce a prediction of the mean and *1g, 20, and 30 values
of Fio7 for the next cycle, assuming that the distribution of values is Gaussian.

7) The predicted cycle time increment is approximated by averaging all the past
cycle time increments. It just so happens that this time increment will be exactly
equal to 1.




Proof:

N
1
N [ N N P
1 1 i 1 =1
] Ne1"RE Yy RE Feo- L prty—-1 ®
j=1 j=1 j=1 1 p
. N j
i=1

N is the number of past cycles,

Pj is the period of the jth cycles.

8) The interpolation mentioned in step 5 is accomplished by applying a conven-
tional Lagrangian method from the MSFC math-pack computer prcgram librsry [11].

9) The predicted cycle period will be the average period P plus or minus its
20 alue; i.e., P 20p.

R
the sunspot (or flux) values will give the "error space” on the two-dimensional plot
of R versus t.

10) The 2op error band on the time axis combined with the 20_ error band on

1II. SINGLE CYCLE PREDICTION

The preceding procedurc was applied. with the number of points per cycle (m)
being 132. This number was selected because it is the closest integer to the average
period in months. A single cycle was then predicted using the previous 16 cycles
(from 1749) in order to predict cycle 17 for comparison with the actual observations.
This process was then repeated in order to predict cycles 17, 18, 19, and 20 by the
conventiona! McNish-Lincoln method and the Lagrangian least-squares approach.

This particular statistic gives a relatively simple and easily applied criterion for
judging and comparing goodness of fit of various models (or expected values) of
observed data. For large degrees of freedom, the standard chi square distribution
approaches the normal distribution. It also gives a standard, acceptable and fair way
of determining those r.odels (or portions of the models} which fall within the con-
ventional 95 percentile level of confidence.

Table 1 gives a summary of the results of the preceding :iethod. The entries
L
ure the calculated \~ (0.05) by Pearson's chi-square statistics [12]; i.e.,

. m (Oi - Ei)2
i N = .):. —E " (4)
ji i

where 0i is observed and Ei is the expected (predicted) value.
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TABLE 1. SINGLE CYCLE x2(0.05)

Method 17 18 19 20

McNish-Lincoln

1 Coefficient 721 1687 268 400

4 Coefficient 1404 6128 236 304
Lagrangian

1 Coefficient 277 1193 155 177

4 Coefficient 753 513 1221 183

Note: These are to be compared with the x2(0.05, 127) and x2(0.05, 130)
values from the standard chi-square tables, which are 154 and 158.

Table 1 shows that the Lagrangian least squares approach produces a signifi-
cantly better prediction of the next solar cycle than the McNish-Lincoln technique
with the exception of cycle 18,

IV. EXTENDED AND DOUBLE CYCLE PREDICTION

This section presents descriptions of the six methods for extended predictions
which were compared, again using Pearson's chi-square statistics [see Eq. (4)].

The double-cycle McNish-Lincoln technique applied the standard regression
program to the data blocked in 262 points per block, which is approximately 22 years
or two average cycle periods. The 262 points started at the maximum and ended 262
months later.

The double-cycle Lagrangian teciinique blocked the data into double cycles of 262
points which started at the maximum and ended at a maximum two cycles later. This
necessitates interpolation because the time increment between points varies from block
to block.

The technique of Langrangian prediction connected to the mean at the minimum
blocks the data into single cycles of 132 points per cycle. The 132 points start at the
maximum and end at the next maximum. A future cycle is predicted to the next minimum
and then patched (connected with a cubic at the nearest inflection point 2 years before
the maximum) to the mean cycle for the remaining part of the extended prediction (see
Appendix B for cubic connection).

The technique of Lagrangian prediction connected to the mean at the maximum
technique is similar to the preceding technique except that the prediction is over a full
future cycle to the next maximum and then connected to the mean cycle for the remain-
ing part of the extended prediction.
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The iterated Lagrangian technique predicts over a full cycle, treats the predicted
data as actual data, and then predicts over another future cycle.

The Lagrangian derivative technique includes the influence of the rate of change
of the deviations from the mean cycle in the regression scheme. The regression model
has this term added in the same way as the deviations are included,

m

i) = ek T L Cak MR e R (5)

1 a.k T Q. a,k " q,)

If the derivative influence is zero, the d K coefficients will be zerc or the first m AR's
will be zero. a.

Each of the preceding methods was applied to predict cycles 15 through 20 by
using all the previous cycles to the one being predicted. Since actual or observed
data and expected or predicted deta were then available, Pearson's [12] chi-square
could be calculated at each point of the cycle (beyond, say, 10 or 20 for a significant
number of degrees of frzedom). The results of applying the methods ahove are shown
in Figures 1 through 40.

The even figure plots (2, 4, 6, .... 40) give the predicted solar flux (.), the
actual smoothed values (*), the plus 2¢ error (+), and the minus 20 (-) error bands.
The plus and minus 20 error was calculated using the predicted (expected) values of
the current cycle or cycles minus the actual 13-month smoothed Lagrangian values at
corresponding points of all previous cycles for tle deviations.

1
2

z

9
LBy 0y

\d
Q, = N
! N-1 (6

i =

where i refers to the Lagrangian point in the cycle and N is the number of known past
cycles.

The odd figure plots (1, 3, 5 ..., 39) give the \2 versus point number (i) in the

9
cycle together with the standard \“ (0.95) at the 0,05 level of significance versus
points (i) in the cycle. Table 2 presents the overall chi-square comparisons for the
full extended predictions. It can be seen again that the Lagrangian technique gave
a better chi-square than the McNish-Lincoln, but it still was not within the 95 per-
centile level of confidence given in the right column, except for cycles 15 and 16,
It may also be noted that not one of the methods tried did well on cycles 18 and 19,
This suggests that the long period effect (7 or 8 cycles) referred to in the literature
and in Section VI cunnot be predicted by any of the methods tried thus far. From
the plots one can « termine how well the prediction method is doing as it progresses
through the cycle and beyond. The plots also show when the method is within the

0.05 level of significance.
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Figure 1. Chi square versus point number (nominally mor.ths), 13-month
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cycles 1 through 14 predicting cycles, 15 and 16 from point 1.
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Figure 3. Chi square versus point number (nominally months) 13-month
Lagrangian-smoothed flux (extended by median cycle from min.) 1
coefficient linear model using cycles 1 through 15 predicting cycles
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Figure 4. Predicted and actual flux versus time 13-month Lagrangisn-smoothed
flux (extended by median cycle from min.) 1 coefficient linear model using
cycles i through 15 predicting cycles 16 and 17 from point 1.
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coefficient linear model using cycles 1 through 16 predicting cycles
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Figure 6. Predicted and actual flux versus time 13-month Lagrangian-smoothed
flux (extended by median cycle from min.) 1 coefficient linear model using
cycles 1 through 16 predicting 17 and 18 from point 1.
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smoothed flux (extended by median cycle from min.) 1 coefficient linear model using
cycles 1 through 17 predicting cycles 18 and 19 from point 1.
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Figure 8. Predicted and actual flux versus time 13-month Lagrangian-smoothed
flux (extended by median cycle from min.) 1 coefficient linear model using
cycles 1 through 17 predicting cycles 18 and 19 from point 1,
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Figure 9. Chi square versus point number (nominally months) 13-month
Lagrangian-smoothed flux (extendea .y median cycle from min.) 1
coefficient linear model using cycles 1 through 18 predicting cycles

19 and 20 from point 1.
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Figure 10. Predicted and actual flux versus time 13-month Lagrangian-smoothed
flux (extended by median cycle from min.) 1 coefficient linear model using
cycles 1 through 18 predicting cycles 19 and 20 frem point 1.
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flux (extended by median cycle from max.) 1 coefficient linear model using

cycles ! through 14 predicting cycles 15 and 16 from point 1.
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Figure 14. Predicted and actual flux versus time 13-month Lagrangian-smoothed
flux (extended by median cycle from max.) 1 coeificient linear model using

cycles 1 through 15 predicting cycles 16 and 17 from point 1.
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Figure 15. Chi square versus point number (nominally months) 13-month
Lagrangian-smoothed flux (extended by median cycle from max.) 1
coefficient linear model using cycles 1 through 16 predicting cycles

17 and 18 from point 1.
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Figure 16, Predicted and actual flux versus time 13-month Lagrangian-smoothed
flux (extended by median cycle from max.) 1 coefficient linear model using
cycles 1 through 16 predicting cycles 17 and 18 from point 1.



B o, S —— . oot

ol e

P

]

.

= # STANDARD CiN SOUARE
g\}:.w'm
-l m—
AGE IS

; 1000 |~
3
3
i 1200 -

-t

w00l

° 1 ] 1 ] : L1

Il 1 i i
L] 2 L J [ 90 100 120 140 10 W0 200 220 240 200
DEGREES OF FREEDOM

Figure 17. Chi square versus point number (nominally months) 13-month
Lagrangian-smoothed flux (extended by median cycle from max.) 1
coefficient linear model using cycles 1 through 17 predicting cycles
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Figure 18, Predicted and actual flux versus time 13-month Lagrangian-smoothed
flux (extended by median cycle from max.) 1 coefficient linear model using
cycles 1 through 17 predicting cycles 18 and 19 from point 1,
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Figure 21. Chi square versus point number (nominally months) 13-month
Lagrangian-smoothed flux (extended by iterated McNish-Lincoln) 1
coefficient linrear model using cycles 1 through 14 predicting cycles

15 and 16 from point 1.
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Figure 22. Predicted and actual flux versus time 13-month Lagrangian-
smoothed flux (extended by iterated McNish-Lincoln) 1
coefficient linear model using cycles 1 through 14 predicting
cycles 15 and 16 from point 1.
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Figure 23. Chi square versus point number (nominally months) 13-month
Lagrangian-smoothed flux (extended by iterated McNish-Lincoln} 1
coefficient linear model using cycles 1 through 15 predicting
cycles 16 and 17 from point 1.
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Figure 24. Predicted and actual flux versus time 13-month Lagrangian-smoothed
flux (extended by iterated McNish-Lincoln) 1 coefficient linear model using
cycles 1 through 15 predicting cycles 16 and 17 from point 1.
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Figure 25. Chi square versus point number (nominally months) 13-month
Lagrangian-smoothed flux (extended by iterated McNish-Lincoln) 1
coefficient linear model using cycles 1 through 16 predicting
cycles 17 and 18 from point 1.
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Figure 26. Predicted and actual flux versus time 13-month Lagrangian-smootiied
flux (extended by iterated McNish-Lincoln) 1 coefficient linear model using
cycles 1 through 16 predicting cycles 17 and 18 from point 1.
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Figure 27. Chi square versus point number (nominally months) 13-month
Lagrangian-smoothed flux (extended by iterated McNish-Lincoln) 1
coefficient linear model using cycles 1 through 17 predicting
cycles 18 and 19 from point 1.
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Figure 28. Predicted and actual flux versus time 13 month Lagrangian-smoothed
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flux (extended by iterated McNish-Lincoln) 1 coefficient linear model using
cycles 1 through 17 predicting cycles 18 and 19 from point 1.
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29. Chi square versus point number (nominally months) 13-month

Lagrangian-smoothed flux (extended by iterated McNish-Lincoln) 1

Figure 30,

coefficient linear model using cycles 1 through 18 predicting
cycles 19 and 20 from point 1.
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Predicted and actual flux versus time 13-month Lagrangian-smoothed

flux (extended by iterated McNish-Lincoln) 1 coefficient linear model using
cycles 1 through 18 predicting cycles 19 and 20 from point 1.
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Figure 32. Predicted and actual flux versus time 13-month Lagrangian-smoothed
flux (extended by derivative and connected to median cycle from max.)
1 coefficient linear model using cycles 1 through 14 predicting
cycles 15 and 16 from point 2,
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Figure 33. Chi square versus point number (nominally months) 13-month
Lagrangian-smoothed flux (extended by derivative and connected to median
cycle from max.) 1 coefficient linear model using cycles 1 through 15
predicting cycles 16 and 17 from point 2.
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predicting cycles 16 and 17 from point 2.



BN
! e L )

ORIGINAL PAGE IS
QF PUOR QUALITY

CUMULATIVE O SOUARE
] ] §

i 1 —d. 1 1 i A - i
o n » ® (] 100 120 W0 0 0 200 0 M0 200

DEGAEES OF FREEDOM

Figure 35. Chi cquare versus point number (nominally months) 13-month
Lagrangian-smmoothed flux (extended by derivative and connected to median
cycle from max.) 1 coefficiest linear model using cycles 1 through 16
predicting cycles 17 and 18 from point 2.

® ACTUAL

© PAEDICTRD

+ PREDICTRD + 20 #
) — PREDICTROD - 20

BOLAR FLUX F10.7

Figure 36. Predicted and actual flux versus time 13-month Lagrangian-smoothed
flux (extended by derivative and connected to median cycle from max.) 1
coefficient linear model using cycles 1 through 16
predicting cycles 17 and 18 from point 2.
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Figure 37. Chi square versus point number (nominally months) 13-month
Lagrangian-smoothed flux (extended by derivative and connected to median
cycle from max.) 1 coefficient linear model using cycles 1 through 17
predicting cycles 18 and 19 from point 2.
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flux (extended by derivative and connected to median cycle from max.) |
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Figure 40. Predicted and actual flux versus time 13-month Lagrangian-smoothed
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flux (extended by derivative and connected to median cycle from max.) 1
coefficient linear model using cycles 1 through 18
predicting cycles 19 and 20 from point 2.
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TABLE 2. EXTENDED CYCLE X>

Method 15&16 | 16 817 | 17& 18 | 18 & 19 | 19 & 20 X2(0-05)
Double-cycle
1. McNish-Lincoln 1891 7597 738 360
From Point 12 1828 7753 1000 287
From Paint 24 1910 8179 912 274
Double-cycle
2. Lagrangian 190 4000 650 300
From point 12 204 3521 643 287
From point 24 213 3075 383 274
Lagrangian
3. Patched at min. 214 426 1427 3306 454 242
From point 12 175 425 1344 3371 514 229
From point 24 181 439 1051 3250 459 216
Lagrar.gian
4. Patched at max. 238 351 1348 3074 479 242
From point 12 218 355 1243 3104 597 229
From point 24 227 362 1155 2549 634 216
Lagrangian
5. Iterated 248 676 2562 2406 348 242
From point 12 207 728 2216 2355 686 229
From point 24 231 653 1589 725 1038 216
Lagrangian
6. Derivative 244 381 1430 3057 617 242
From point 12 255 344 1312 2804 727 229
From point 24 248 340 1249 2714 435 216

V. CONSTRUCTION OF MODEL DATA BASE

The NASA-Marshall Space Flight Center solar activity long-range statistical estima-
tion technique utilizes the 13-month Zurich procedure smoothed values of solar flux
(F 10 7) as the data base. For the period from August 1947 to the present, the actual

measured values of solar flux, smoothed by the Zurich procedure, are used in the pro-
gram. Prior to 1947, the solar flux was estimated using available Zurich sunspot numbers
according to the procedure presented in Section II of this report. The estimated data
plus actual measured data are then used in the main linear regression program to predict
the remainder of the current cycle (peak-to-peak or minimum-to-minimum depending on
initiaiization point), including the statistical confidence bounds, 97.7 and 2.3 percentile
values. Table 3 provides a summary of the data base characteristics.

[
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ORIGINAL PAGE IS
OF POOR QUALITY

Min Max
Year Year Rise Fall to to
of of Time Time Min Max
Cycle Minimum Moximum In Years In Years Period Period
0 1745 1750.3 5.3 4.9 10.2 11.2
1 1755.2 1761.5 6.3 5.0 11.3 8.2
2 1766.5 1769.7 3.2 5.8 9.9 8.7
3 1775.5 1778.4 2.9 6.3 9.2 9.7
4 1784.7 1783.1 3.4 10.2 13.6 17.1
) 1798.3 18€5.2 6.9 5.4 12.3 11,2
6 1810.6 1816.4 5.8 6.9 12.7 13.5
7 1823.3 1829.9 6.6 4.0 10.6 7.3
8 1833.9 1837.2 3.3 6.3 9.6 10.9
9 1843.5 1848.1 4.6 7.9 12.5 12.0
10 1856.0 1860.1 4.1 7.1 11,2 10.5
11 1867.2 1870.6 3.4 8.3 11.7 13.3
12 1878.9 1883.9 5.0 5.7 10.7 10.2
13 1889.6 1894.1 4.5 7.6 12.1 12.9
14 1901.7 1907.0 5.3 6.6 11.9 10.6
15 1913.6 1917.6 4.0 6.0 10.0 10.8
16 1923.6 1928.4 4.8 5.4 10.2 9.0
17 1933.8 1937.4 3.6 6.7 10.3 10.3
18 1944.1 1947.7 3.6 6.5 10.1 10.5
19 1954.2 1958.2 4.0 6.4 10. 4 12.4
20 1964.6 1970.6 6.0 5.8 11.8
21 1976. 4
STD. Deviation ¢ 1.2 1.34 1.23 2.2
21 Cycle Average 6.4 11.02 11.02
20 Cycle Average 4.6
Interpolation Points 53 79

VI. SMOOTHED PERIOD AND AMPLITUDE VARIATION

Using the sunspot periods obtai..ed from Waldmeier [13], Chernosky and Hagan
f14], or Schove [15], Table 3 was constructed up to 1947, Beyond 1947, actual flux
observations were used. A five-cycle smoothing of these periods, rise times and fall
times versus cycle number, is given in Figures 41 and 42. Figure 43 gives the five-
cycle smoothed maximum amplitudes. These curves suggest a seven- to eight-cycle
variation in the periods as well as the maximum ampliti.des.

To further study this variation, autocorrelation and power spectrum analyses
were run. Figures 44 and 45 give the results. It should be pointed out that these
were determined from the Lagrangian interpoiated data. This explsins the rather
regular variation at 132-point intervals on the autocorrelation and the sharp spike at
1/132 frequency on the power spectrum,

28



YIRS

KA

ORIGINAL PAGE IS
OF POOR QUALITY

+ MIN TO MIN PRRIOD
@ SALL TIME
! o RIETIME
up + R
+ +
+ + + s Y
1 + . + + R + + ¢+ +
+ +
+
10 + *
E o
g
€ [ ]
¢ 7t ® ° )
° L °
o © [ I J ® ® o ®
sk o . ® o
[ ) L4 ® [
'y g o O o .
st o0 ¢, . . o
* [ ]
¢ . ® ° e ® o® .
o . ° (] . o
3 i " A i N L "
-10 -8 -8 -4 -2 [] 2 4 [] [] W0 12 14 16 1. 20
CYCLE
Figure 41. 5-cycle smooth periods (min. to min.), 0 cycle = year 1745
min and year 1750.3 max.
% MAX TO MAX PERIOD
& FALL T
13 - ® RISE TIME
’1ir * * * * *
* * ¥
* * *
" - * % *
* * * % X %
* % x x X
10 [ *
. p—
£
8 °
t [ b o® %o °
20 o ® L0
o ®
sl 0 i °
L B Ceo
[ J o © L
“;' ' ) . L o« o’
o i °
® ® . ° o ® °
o [ ]
4 - L4 « ®
s L1 1 i WU ED VS N W R N U TR TN TN TR U U SN SR N S VU O VS S
-1 -4 -4 -4 -2 ] 2 4 ] ] " 12 1" 1 " *
CYCLES
Figure 42. 5-cycle smooth periods (max. to max.), 0 cycle = year 1745

min and yesr 1750.3 max.

(3]
L'y

T T e e Y



190 190
100 ~ » A <
cRvanAl PARE IS 180
100 4150
150 . 4150
140 410
g 130 - ° J1%0
; 120 . . o {1z
1" . Ho
g . . .
g 100 . {100
[ ] ° [ ]
0 . ° (] 90
80| . 80
” 170
loo
50 460
n yus A A A PR e A A A e A A A ry A Y A “
1 2 3 4 5 ] 7 s $ W 11 12 13 1 15 18 17 18 19 2

CYCLE NO.

Figure 43. 5-cycle smoothed sunspot amrplituda of 13-month
smoothed monthly values.

A
. f[\’,l

ozt

OMBERVATIONS

Figure 4%¢. Autocorre¢lation cf Lagrangian-smooth flux from cycles 1 through 20.
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Figure 45. Power spectrum of cycles 1 through 20 Lagrangian-smooth flux.

Even though the Lagrangian interpolated data forced the preceding variations, it
did not force the long-term variation (eight cycles) in the autocorrelation or the lower
frequency peak at 0.0011 in the power spectrum. This gives some evidence to support
the application of a correction to the average period for future predictions.

The following examples use the apparent systematic variation in the periods in
Figures 41 and 42 to prbject the maximum to minimum fall time for cycle 21 and the
maximum to maximum period for the same cycle.

Maximum to Minimum Fall Time-—-Cycle 21:

From Figure 41 the five-cycle smoothed fall time for cycle 19is = 6.5 years. Now,
if the last four fall times for cycles 17, 18, 19, and 20 plus the unknown fall time for
cycle 21 are averaged and equated to the extrapolated smoothed fall time (7 years).
we can then solve for the unknown fall time for cycle 21.

1 . .
5F g+t FigtFg+Fyu+Fy) =Fq, (N

31



where

17
18
19

20

m o m m m o

21

19

From Eq.

or

Minimum to Maximum Rise Time—Cycle 21-22:

or

32

21

Fay

Applying the same technique io the minimu
ing results are obtained:

R17

21

= 6.7 years (maximum to minimum period for cycle 17)

6.5 years

6. 4 years

= 5.8 years

(7) one can now solve for F

Unknown

7 years (five-cycle smoothed period at midpoint of smoothing interval).

S5F,, - (F

19

9(6.5) - (6.7+ 6.5+ 6.4+5.8),

7.1 years maximum to minimum.

- 3.6

3.6
4.0
6.0

Unknown

(Rig) - (Ryg +Ryg +Ryg+ Ryp)

5(4.5) - (3.6 + 3.6+ 4.0+ 6.0),

m to maximum rise times, the follow-

= 5.3 years minimum to maximum period.
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Vil. COMPUTER PROGRAMS

The computer programs to calculate the pr« " ‘'ted cycles and perform sub-
sequent statistical analysis were developed by Cowmputer Sciences Ccrporation under
contract NAS 8-31640. The programs were implemented in FORTRAN on the UNIVAC
1100/80 computer at Marshall Space Flig' t Center.

Although six distinct program versions ‘vere used to obtain the numericsl
results of Table 2, all programs were essentially variotions on the single theme of
linear regression. Gsaussian reduction was used to solve the normal equations via
subroutine GJR, contained in the UNIVAC "Math-Pack" subroutine library. The

evaluation of the inverse xz function was accomplished through subroutine CHIN
(also drawn from the "math-pack") and through normal approximation for large
degrees-of-freedom. Graphic output was performed off-line on an FR-80 micro-
graphics unit.

Space prohibits including listings for all six programs. However, FORTRAN
source code for the Lagrangian prediction connected at cycle maximum appears in
Appendix C. All of the system subroutines are not listed but, rather, only the main
program and the McNish-Lincoin subroutine described in Appendix A.

VIll. APPLICATIONS FOR SPACE PROGRAM DESIGN
AND MISSION ANALYSIS

The solar flux and geomagnetic activity are principal inputs to the upper atmos-
phere models and thus the ambient density values computed for use in spacecraft
orbital lifetime estimaticn control analyses programs.  For those spacecraft projects
which require a design lifetime at a given orbital altitude(s) and/or a specified con-
trol capability, it is recommended that the 97.7 percentile estimates of solar and goeo
magnetic activity be used.  This then permits the design of a statistically conservative
spacecraft lifetime at a given orbital altitude(s). It can be interpreted to mean the
spacecraft will have a 97.7 percent chance of (1) remaining in orbit for at least the
number of months calculated by the orbital lifetime scheme and/or (2) maintaining the
specified control capability.  The determination should be made based upon the most
current long range statistical estimate of the solar flux and geomagnetic index consist-
ent with the critieal project development decision time points prior to launch of the
spaceeraft.

For spacecraft already in orbit, or for some prelaunch orbial altitude tradeoff
analyses, the 97.7, 50, and 2.3 percentile velues may be used to compute the respec
tive expected future lifetimes and control capability and then a statirtical interpola
tion made as a first estime’e of the probability that (1) the spacecraft will remain in
orbit, or above a given orbital altitude, for any selected time period or (2) the
specified control capability will be maintained for the required time in orbit.

After launch, the statements on remaining lifetime should always be given in
terms of the probability that a spacecraft's lifedime will equal or exceed a given date
or dates depending on program management requirements.

Since orbital lifetime programs and control analyses require a specific date to
associate with the solar flux l-‘10 7 and geomagmnetic Ap estimations to compute a

corresponding atmospheric density, the data points should be identified with the
midway point of the given month.
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It should be recogrized and remembered that all statements of spacecraft orbital
lifetime and control capabilities made using inputs of expected solar activity to the
upper atmosphere models, must be interpreted in terms of statistical probabilities.
Figure 46 provides a description of the various inputs necessary to compute a space-
craft's orbital lifetime.

SPACECRAFTY
ORBITAL STATE
VECTOR

PREDICTED
FUTURE

SOLAR ACTIVITY
BEHAVIOR

D——
/ SREDICTED
PREDICTED ORBITAL SPACECRAFT
ATMOSPHERIC _J ATMOSPHERIC LIFETIME  |=o ORBITAL
DENSITY MODEL LIFETIME AND
DECAY

PREDICTED
HUTURE
GEOMAGNETIC
ACTIVITY
B8F JAVI TR

PREDICTED
SPACECRAFT
ATTI(UDE
TIMELINE

PREDICTED
BALLISTIC

COEFFICIENT
TIMELINE

SPACECRAFT
CHARACTERISTICS

Figure 46. Solar predictions and spacecraft orbital lifetime.
IX. CONCLUSIONS
The results of this study strongly suggest that better predictions are possible,

in a chi-square sense, by "lining up" the maximums (or minimums, or both).

Evidence has also been presented which supports the existence of an aperiodic
variation in the periods as well as in the amplitudes.
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The expected value of R (solar flux) at k points beyond m, where m is the

number of points known (or used as known) in the current cycle and k is the

number of points beyond m, is:

m
Rsk,j = Roex * qil (Cq.x Rq i * Pg.k Aﬁq’]) ,
where
N
f-l = .l_ hX R
m+k ~ N =1 m+k,j ; N = Number of known past cycles
ARm+k,j - Rm+k,j " Rk

Then Eq. (A-1) may be written as

m
AR .= I C 4R _.+b _AR ).
ML) g1 “q,x°Rq,j ¥ Pqk %q,7
Then
AR . = = [AR AR . ]
q,] 2At]- q+l,]j q-1,j
m -
AR T (C AR . +Db AR )

N m . 2
S = j£1 AR q-El (Cqx 2Rq,j *Pg.k ARq’j)]
35 _, 5y 'AR . % C_LAR .+b Af{.-AR.
3Cpk =1 LA B T DL 0 B S B p.]
o8 -_-2;] AR g] C .AR_.+Db Al'%.-AI'!.
bk =1 ) =1 @] Tak g P

(A-1)

(A-2)

(A-3)

(A-9)

(A-5)

(A-6)

(A-T)

(A-8)

(A-9)
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This equated to zero gives the normal equations

N N m N m
I AR .AR_.=% I C AR .AR .+ I I b AR .AR .
j=1 m+k,j Pl j=1 q=1 q,k q.,] p,] j=1 q=1 q,k q9,] P»]
A-10
N . N m . N m . ( )
I AR ,AR_ .= T I C AR ., AR .+ I b AR . AR_ . .
j=1 Wk TP =1 q=1 K a9 P j=1 q=1 g,k " q,j "Tp,j
Note: (A-11)
AR .= 4 [AR - AR_ ., .
q.j A%, q+l,j a-1,j (A-12)
P, . . N
At=:-J—,P=ﬁ2 P, . (A-13)
P j=1
For one-point prediction, p =1, m = 1.
N N N .
L ARy 8RRy = L Cpy ARy AR+ I by ARy AR, (A-19)
=1 i=1 i=1
N . * - *
Py ARkH,j ARp’j = f Clk ARIJ. Ale + 'z:blk Ale Ale (A-15)

=1 j=1

Since the C's and b's are not summed, they may be taken outside the summation;
i.e.,

Clk ZAle Ale + blk ZAle /Ale = XARk+1,j Ale (A-16)

AR AR

ZAR,. AR_. + b, TIAR THE (A-17)

Co 28Ry ARy + by

AR

1k SRy = IRy

This can be written in vector and matrix notation if we let

. TeRy,, 5 ORy,
) (A-18)
LORy 11,5 2Ry
ZAR.. AR,. I AR.. .
A = Rl] Rl] ARl] ARl]
IAR,. AR.. I AR.. AR (A-19)
g SRy ARy ARy
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(A-20)
1k

Then AC =B » C = A"} B,

For two-point prediction

1

ZAR2+k’].AR1j = ZCIkAleAle + ZCZkARZjAle + ZblkAleAle + ZIbZRARz].ARlj (A-21)

AR £C..AR,.AR.. + £C.. AR Ib,, AR .AR,. + b, AR

PORgu Ry T ECuAR Ry T FOnARy ARy * B0 ARy ARy T IO Ry Ry (A-22)

AR.,. = ZC ., AR _.AR.. + ZC_, AR .Ale + ZblkAleAle + Ib,, AR .Ale (A-23)

ER g, iRy = 5C AR yoRy; 4 ICo ARy, 7"

2+k,]j

ZAR AR.. = IC

24k, i R 2 AR ARy + IC g ARpAR . + zblkmljmzj + Iby ARy AR (A-24)

1k

This may be written in vector and matrix notation if we let

N
B= , where £ = [ (A-25)
) |
ZAR,. AR.. ZAR. AR.. IAR.. AR, IAR,.. AR,
ARyj ARy %5 2Ry 3 ARy % 11\
AR,. AR R.. AR, tAR.. AR, IAR.. AR
A= | ARy ARy EORy 2Ry 1j ARy 2 2Ry |
R.. ok . sR. zoR.. aR & sk (A-26)
IRy ORy  E8Ry ARy IAR AR, EAR aRy
R,. AR, TAR.. AR, AR,. AR tak_. AR,
ZoRy; ARy, g ARgj  IARy; ARy LARy ARy
/.
“1k
Cox
C= (A-2T)
Py
b
Then AC =B + C = A"l B. (A-28)
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APPENDIX B

Cubic Connection From Predicted To Mean Cycle

1) Select the last inflection point of the predicted cycle (tI, FI) near the

24-month point before the maximum. This should be done with at least a five-point
numerical scheme for determining where the second derivative goes to zero. One

such scheme is Sterling's [16]

aZr 1 Fyea  Fya 5Py Wy Fyo,
=) "= |1t 3 - T tT3 & . (B-1)
at“ /o b

2) Select the maximum (or minimum) on the mean cycle (tm, Fm). This is
normally input, but it can also be determined numerically. '

dr} _ 1| _ 1 2 .2 1 )
(a?)N Y 7 P2 "3 FNel 3PN P T FN-2 | - (B-2)

The second derivative should be zero at (tI, FI)’ and the first derivative is
zero at (tm, F rrl). A cubic curve is the lowest degree polynomial which can be

determined that will go through the two points and have these properties at the two
points.

; The coefficients of the poiynomial
o3 2
F=at”+bt" +ct +d (B-3)

are to be determined from the following four linear equations and will have the
required four properties:

second derivative is zero at (B-4)

6rt, + 2b = 0 inflection point

I

2

3at_“+ 2t +c=0 first derivative is zero at (B-5)

maximum or minimum

3

I +ct, +d =F

+ bt I I

2
at I

point (tl, FI)
curve goes through the maximum (B-7)

{ curve goes through the inflection (B-6)
{ (or minimum) point (tm, Fm).

3e



These four linear equations in the four coefficients are to be solved for a, b, ¢, and
The solutions are:

d.

Fon = F1
: 3
_ 2.2m _ 2.2
2tm +'3'§I__ 1Y +2tmtl
1
T3P

CRIraL PAGE

IS
TY

(B-8)

(B-9)

(B-10)

(B-11)
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APPENDIX C
Computer Program Listirigs

INTEGER TITLE(12),.PCYCI,PCYC2,CASE
DIMENSION EPOCH(21),PERIODI21) 4R1132,21),RMEANL2608)
RPRED(264),YEARI268) ,ROBSVI264) ,gRRUP1264) ,ERRDN L2601},
CHIPRS1264),CHITAB(264) DGFREE( 26WN)
INCLUDE PLOT],LIST
pROC
IMENSION TTIT_ 24120, ITITL2¢12),ITITL3(12),1ITITLU¢12)
BIHENSION ICAPL(13),ICAP2(1T7),ICAP4E20),INgTR(22)
DATA INSTR/3pHF ICHE AND ONE HARDCOPY. THANKS,17#6H /
DATA ITITLLI/6HYEAR ,1126M /
DATA ITITL2/18HSOLAR FLUX F10.7 ,9%6M /
ODATA IpIyL3/18HDEGREES OF FREEOOM ,9%6H ’
DATA ITyTL4/28HCUMULATIVE CHI SQUARE 18eb6H /
DATA ICAP1/36H*#* ppNOTES ACTUAL °*.° DENOTES NOMIN,
G2KAL *e®, %< DENOTE 42 SIGMAS,=2 SIGMAS
DATA ICAP4/3CHe*s* DENOTES THEORETICAL °*,°* DE,
30HNOTES EXPERIMENTAL (PEARSON®*S)/
LATA IASTR/40/,ID0T/35/,IPLUS/34,,IMINUS/ 33/

1500 FOQRMATII3,® COEFFICIENT LINEAR MODEL USING CYCLES *,I2,

END

c1

10

END

c2

20

* THROUGH "»I2+° PREDICTING CYCLES *,I2,° AND *,12,
* FROM POINT *,I3,4X)
CALL IOENT(105,INSIR)

READt5,5500) TITLE
READ¢5,5075) M,N
-ZADULS,5C13) (EPQCH(J) ,J=1,y N}
10 § JZ1,N
PEADIS,53515) PERIOD(Y)
READ(5,5020! (Ril,J),121,M)
CONTINUE
READ(S5,5024%) NCASES
DO SCO CASE:-1,NCASES
READ(S,5C30) NU1,ANU2 MU,MU2 ,ALPHA
PCYCLl = NUZ + 1}
PcYC2Z = nU2 + 2
DO 10 K=|],M
ROBSVIK) = R(K,FCYCl)
ROBSVIMeK) = R(K,PCYC2)
YEARIK) = EPOCH(PCYCL) ¢ (K=1)®(PERIOD(PcYCcI)/M)
YEAR(MeK) = EPOCH(PCYC2) ¢ (K1!®(PERIOD(PCYC2)/M)
CONTIN,E
CALL LINCMCIRsMoNoNUIoNU2MysMU2,RMEAN ,RPRED ,ERRUP ,ERRDN)
INCLUDE C1,LIST
PROC
CALL PCHMAX(RPREDJERRUPLERRDN M, INFL (%PTS)
MM = M + NPTS

wRITEL6,6300) TITLE MU,NUL, NU2,MU2,PCYCy,PCYC2
WRITE(646n]S) ALPHA
00 20 K=),MU2
WRITE(E,6N10) YEARIK) JROBSV () PMEANIK)
CONTINUE
MU2P1 = MU2 ¢ ]
CHIPR = Us
INCLUDE C2,LIST
PROC
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00 70 Kz=MU2Pl,4¥

1F(K «GTe INFL) GO TO 3C

DEV = RPRED(K) = RMEAN(K)

CHIPR = CHIpR + (RPREDIK) = ROBSYIK))ae2/RPRED(IK)
CHIPRS(K) = CHIFR

NDF = K = MUcZ

DGFREE (X) = NOF
CHITAB(K) = CHIN(ALPHA NDF,840)

G0 T0 sC

CHITAB(K) = GoSe{SQRTI2,2DGFREEIK) = 1.) ¢ 1,9602)%9%2

IF(K 6T« INFL) GG TO &0

wRITE(6+6715) YEARIK),ERRUP (K) ,ROBSVIK),RPRECIK) ,ERRDNI(K),
S RMEANIK)DEV,CHIPRSIK),CHITAB(K ), ,NDF

GO Y0 70

WRITE(6,C20) YEARIK) ,ERRUP (K) ROBSV K ) RPREDIK) ,ERRDNIK),
SCHIPRS(K),CHITAD(K) ,NDF

IF ¢ oLTe M) WRITE(6,6L25)

CONTINUE

INCLUDE PLOT2,LIST

FLOATULIFIX(YEAR(L) = 141))
FLCAT(IFIX(YEAR(2%M) + 1,))

UXMIN « XMAX)/2,

NP = MM - MUZPL + )

CALL SETMIv(24, 24,120,24)

CALL GRIDIVIZoXVINXMAX,00y3000y0S9Sey=29=29=4s=4p4¢3)
CALL XSCLVIU(XMIN,IXMIN,IERR)

C.LL YSCLVI(ISQ..IY"ID|IEPR,

IX = IXMIN - 40

Iy = 1yMID + 9y

CALL APRNTVIDe=12,16,ITITL2:IX,1Y)

CALL XSCLVI(XMIC,IXMID,IERR)

CALL YSCLV1(GeyIYMIN,IERR)

IX = IXMID - 32

IY = IYMIN = 24

CALL PRINTV 4o ITITLY,IX,1Y)

Ix = IxMID - 312

1y =2 Iy - 25

CALL PRINTV(7g, ICAP1,IX,1IY)

IX = IXMID . 288

Iy - 1Yy - 15

CALL PRINTVIT2,TITLE,IX,1IVY)
ENCCDE(1C2,1C000,1CAP2) MU,NULINU2 PCYCL,PCYC2,MU2
IX = IXMID - 408

Iy = 1y - 15

CALL PRINTV(102,ICAP2,IX,1Y)

CALL CHARSZ(18)

CALL PLOTLN(=2%VY,YEAR,KOBSV,IASTR)

CALL PLOTLN!~NP,YEAR(MU2P]) ,RPRED (MU2P1),1IDOT)
CALL PLOTLNI=NP ,YEARIMU2P]) ,ERRUP (MU2P1),1IPLUS)
CALL PLOCTENU=NP,YEAR(MUZP]1) ,ERRDN (MU2P L), IMINUS,
CALL CHARSZ2(14)

YMAX = AMAXT(CHIPRS(MM) , CHITag(IMM)) + 10,

YMID = YMAX/2.

CALL DXDYVI2,0¢ ,YMAX,DY,MY,JY,NY,8, ,IERP)

CALL GRID!V‘3'3.'26“'QOO'Y"‘XQSO'DY'-!.'-"V'-“g-JY's'Nv’

b ol

2

»

»
"N
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Call XSCLV1(CeoIXuINsIERR)
CALL YSCLVI(VHIDc!VHIO.IERR)
IX = IXMIN = (NYe2)%g
IV = IYMID + 134
CALL APRNTVI(Q,=12421-ITITLU,IX,1Y)
CALL XSCLVI(IS?.QXX"IDQIERR)
CALL YSCLV1I(Ues, IYMIN,IERR)
Ix = IXMATY = 72
IV = IYRIN - 24
CALL PRIHTV(18, (TItL341X,Iy)
IXx = IXrIC - 24C
IY = 1Y - 25
CALL PRINTV(gO, ICAPU,IX,IY)
IX = IXMID . 288
1y - Iy - 158
CALL PRINTVIT2,TITLE,IX, 1Y)
IX = IXMID - 438
Iy = 1y - 15
CALL PRINTVUIO2,ICAP2,1X,1Y !
CALL CHARSZ2(18)
CALL PLOTLNU(=NP ,OGFREE (MU2P1),CHITABIMUZPL) , I5STR)
CALL PLOILN(=NP ,DGFREE (MU2P ), CHIPRS(MU2P1),IDIT)
CALL CHARSZ(1W)
END
900 CONTINUE
CALL ENDJOB
STOP
SCO00 FORMAT (4 -Ab)
5005 FORMAT(3fu)
SCl10 FORMAT(8FS.3)
S01S5 FORMATIUX,FS.1)
SC20 FORMATILIZFG.1)
SC25 FORMAT(I4)
S030 FORMAT(uIG,F4,2)
6000 FORMAT (1H1,12A6/7)1HCI3,1X,*COEFFICIENT LINEAR MODEL USING CYCLES®,
$ lx.IZolXo'THROUGH'.1!.12,IX,OFROH POINT*,1XsI3,1X,*PREDICTING *,
3 °CYCLES'.1X.I2.11.‘AND'.1x.12)
6C0S FORHAT(IHO.YIOQQ'PEIRSON"S"Sx.'CHI'SOUARE'/6X.'OATE"BX"OZ SIGM
SAS® 4SXy*OBSERVED" 46X ) *PREDICTED " 95X 9" =2 SIGMAS®y4X, "HEAN CyCLE"®,
$5X, YOEVIATION® , SXy *CHI-SQUARE"* 44X, *SIGNIFICANCE /71X,T102,
S*(CUMULATIVE) s ,uX,LEVELZ " F4 2//)
6C10 fORHAT‘ZX.F803|2“X'F501l37X'F501)
6C1S pORHAT(Zl.FG.S.10X.5(F5.1.9x).FSol.ZX.Z(SX.FIC-S).'('.13.')'l
6020 FORMATIZXoFB o3y 10X 88 FSelsOX) 21X 2(5XsFl0e3)*(*,13,%))
6C25 FORMAT(1He,%%*)
END

ECAST-A
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SUBROUTINE LINCMC (R MsNyNUI JNU2)HUMU2,RNEAN ,RPRED, ERRUP ,ERRDN)
INTEGER P,Q

DIMENSION R{MyN)yRMEAN(L) ,RPREp(L!yCRRUP(1),ERRDNIS),
$ DOR(132,21),A110,10)0,AINV(10,:0),APRINE(1JO1,8¢132,10!,
S C(132,i00yJ0UM(20),DETA{2)

COQUIVALENCE (AC1,1),AINVII, 1) ,APRINE(L1))

MUL = NUZ - MY +

NU = NU2 = NU1 + ]

MUPRIM = M = MY2

DO 15 I=).M

RMEAN(I) = O,

00 10 J=NUl,NU2

RMEANCI) = RMEANII) ¢ R(I, J)

CONTINUE

RMEAN(I) = RMEANCI)/NU

CONTINUE

DO 25 I=1,M

D0 20 J=NUL,N

DREIsJ) = R(IyJ) = RMEAN(I)

CONTINUE

CONTINUE

DO 40 Kx=1,mMv

00 35 Q:=3:1,MU

AKy,QG) = Do
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6O 30 J=NUA NU2
AN Q) = a{K,Q) 4 ODR(MULOK=1,J)80R(MUL*Q=1,J)
CINTINUF
CONTINLE
CON INUE
D9 55 Pzl hUPRIM
G0 SO Q:zi,Mu
8i{P.Q) = 0.
Dg &% JIhUl,,Ny2
BIP,Q) = BIP,Q) + PRIMUZ¢p,UI*DII{MyLeQ~1,J)
CONTINUE
CONTINJE
CONTINUE
K -0
O &5 J=j3 .MU
bo 6C Iz).MU
Kz K o1
APRINS(K) = All,0)
SOy VINVE
CONTINUE
CETAaLl) = 3,
DETAL2) = D,
Cabll CUR(AZNU,,HU,MU,MU,%999,JDUM,DETA)
IFLDETA(L: +EQe Os) GO TC 999
K = MUsMy ¢+ ]
0 75 J=MUyl,e~}
80 20 I2KUyl,y=]
£ 2K« 3
AINVIT,J) = APRIMELK)
CONTINUE
CONTINLVE
DO 90 Pz}l ,MUPR]L®
DO 85 k=i, kU
CtP,K) = O
Do 86 =iy
C‘P’K, s C‘P’K, + B‘P;Q"AI"V‘Q;K)
CONTINUE
CONTINUE
CONTINUE
DO 1g% P=1,v
RPREDIF) = R(P,ANU2.1)
GO Ty 1g5
RPR[D‘P) = Qe
00 3100 K=t MU
RPRCDUIP) = RFRLCCI(P) ¢ CUP=MUL X)I®DRIMUL*K=],NU2¢1)
CONTINUE
RPREDIPY = RPRED(P)Y +» RMEAN(P)
CORTINUE
MU2Pl = MUZ + }
Do 12p p=ny2Pl, ¥
SIGuA = Qe
DO 115 y=NUl.NUQ
SIGMA = SIGMA ¢ (R(P,J) = RPREDI(pPp)I)I*w2
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CONTINUE

SIGMA = SQRT(SIGMA/ (NU=MU+1))
ERRUP(P) = RPREC(P) ¢ 2.%SIGMA
ERRON(P) = RPREDIP) - 2*SICMA
IF (ERRON(P) LT, Oe¢) ERRDN(P)
CONTINUE

RETURN

STOP SINGLR

ZND

.
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