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DEVELOPMENT OF A NONLINEAR VORTEX METHOD

By

Os ama A. Kand i 1*

1t► is semi-annual report covers the progress of the research work

conducted . under this grant from October 1, 1980 to March 31, 1981. Wring

this period, the following tasks have been accomplished:

1. Development of the Modified Nonlinear Discrete Vortex (MNDV) method

has been completed. The method is complemented by a viscous model for the

vortex core based on the first-order boundary-layer-like equations. (Viscous

analysis is supported under a separate contract from the Naval Air Develop-

ment Center, Warminster, Pa.). The results of the inviscid and viscous

methods have been reported in the AL4A paper No. 81-1263 titled " Aecent

Improvements in the Prediction of the Leading and Trailing Edge Vortex Cores

of Delta Wings." A copy of this paper is enclosed in Appendix A. This

paper has been submitted for publication in the Journal of Aircraft.

2. Development of the Nonlinear Hybrid-Vortex (NHV) method for wings

with side-edge separation in steady and unsteady flows has been completed.

The steady and unsteady results of this method have been reported in the

AIAA paper No. 82-0351 titled "Steady and Unsteady Nonlinear Hybrid Vortex

Method for Lifting Surfaces at Large Angles of Attack." A copy of this

paper is also enclosed in Appendix A. This paper has been submitted for

publication in the AIAA Journal.

3. The principal investigator has been invited as a lecturer in a

short course on "Computational Methods in Potential Aerodynamics," organized

by the International Canter for Transportation Studies (ICTS) in Amalfi,

Italy, in the period from May 31 to June 5, 1982. The lecture is titled

"Steady and Unsteady Incompressible Free-Wake Analysis." The lecture covers

the state of the art of free-wake analysis including a derailed presentation

*Associate Professor, Department of Mechanical Engineering and Mechanics,
Old Dominion University, Norfolk, Virginia 23508.



of the work developed so far under this grant. A copy of the lecture is

also included in Appendix A. The lecture will appear in the proceedings of

the course, an ICTS publication.

The following tasks are to be completed by September 30, 1982:

1. The Inverse Hybrid-Vortex Method; Accurate Near-Field Calculations.

For accurate near-field calculations in the MNDV method, the lumped vortex

filaments, representing the wing and its wake, are redistributed on the

corresponding surface panels. This modification guarantees the accuracy of

the MNDV method and moreover maintains the efficiency of this method over

the expensive panel methods. To eliminate any leapfrogging at the location

of trailing-edge core and to expedite the convergence, functions of helical

curves are used to fit the computed nodes of the free-vortex segments after

each iteration cycle.

2. Steady and Unsteady Nonlinear Hybrid-Vortex Method for Leading-Edge

Separation. The present NHV-method (covered in AIM Paper No. 82-0351) is

currently extended to treat wings with leading-edge separation. The

computer code is very general; it can treat combined-edge separation (LE 6

TE), general planforms, and cambered wings. The solenoidal property of

vorticity is also enforced across the edges of vortex panels. This

eliminates (on the average, since the vorticity distribution is assumed to

be linear) the discontinuity in the vorticity gradient.

3. The steady part of the NHV-method completed in item 2 will be used

to develop the unsteady NHV-method for the frequency domain approach.

4. The NHV-method for bodies of revolution with prescribed separation

lines is being completed.

Mr. Li-Chuan Chu is working on the NHV-method reported in items 2 and 3

above for his Ph.D. dissertation while Mr. Cheng is working on the NHV-

method reported in item 4.
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APPENDIX A

1. AIAA Paper No. 81-1263.

. ALAA Paper No. 82-0351.

3. Lecture prevented at the International School of Applied

Aerodynamics, Amalfi, Italy, May 29-Juts .- 5, 1982.
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 AND UNSTEADY NONLINEAR HYBRID VORTEX NETHOU
FOR LIFTING SURFACES AT LARGE ANGLES OF ATTACKt

Osama A. Kand11	 Li-Chiian Chu	 and Thomas Tureaud
Old Dominion University, Norfolk, VA. 23508

Abstract

Steady and unsteady Nonlinear Hybrid Vortex
(NHV) method, for tow aspect ratio wings at large
angles of attack,is developed. The method uses
vortex panels with first-order vorticity distribu-
tion (equivalent to second-order doublet distribu-
tion) to calculate the induced velocity in the near
field using closed form expressions. In the far
field, the distributed vorticity 1s reduced to con-
centrated vortex lines and the simpler Biot-Savart's
law is employed. The method is applied to rectan-
gular wings in steady and unsteady flows without
any restriction on the order of magnitude of the
disturbances in the flow field. The numerical
results show that the method accurately predicts
the distributed aerodynamic loads and that it is of
acceptable computational efficiency.

I. Introduction and Background

In recent years, development of numerical
methods for predicting the steady and unsteady
aerodynamic characteristics of lifting surfaces
exhibiting leading- and/or side-edge separations
has received considerable attention.

For the steady-flow problems several numerical
techniques have been developed These include the
Nonlinear Discrete-Vortexl•5 jNDV) methods, high-
order doubiet panel m;a»s7' and Nonlinear Hybrid-
Vortex (NHV) methods.	 For the unsteady-flow
problems. the literature shows fewer numerical
techniques which include the N^y_methods 1 2-15 and
constant doublet panel methods 6 T7 . The litera-
ture lacks high-order panel methods for the unsteady
flow problems.

For this reason and because of the success of
the high-order panel methods in steady-flow pro-
bltas, we are presenting in this paper an efficient
and accurate method for the steady- and unsteady-
flow problems of lifting surfaces at large angles
of attack.

In this method, vortex panels with first-order
vorticity distribution is used in the near-field
calculations. In the far field calculations, the
distributed vorticity over each far-field panel is
lumped into equivalent concentrated vortex lines.
In this way, accuracy is satisfied in the near
field while computational efficiency is maintained
in the far field. The coupling of a continuous
vortex-sheet representation and a concentrated
vortex-line representation for solving the non-
linear lifting-surface problem is called the

t This researc work is supported by NASA Langley
Research Center under Grant No. NSG 1560 and by
the Naval Air Development Center under Contract
No. N62269-80-C-0704.

' Associate Professor of Mechanical Engineering and
Mechanics, AIAA Member

"Graduate Research Assistant. AIAA Member
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"Nonlinear Hybrid Vortex (WV)" method.

. 11. Formulation of the Problem

The problem is foroulated relative to a wing-
fixed fraw of reference xyz. The x-axis is the
wing centerline and the xy-plane is the wing plane
of symty. . The wing is rotating at the ingular
velocity a and the freestream velocity 1s U . The
general orientation of the wing is describes using
the Eularlan angles a, B. and *f figure 1, which

refer to the angles of attack, yaw and roll; respec-
tively. In terms of these angles and their tiiae
rate of change, the dimensionless freestream velo-
city and the angular velocity are expressed by

e. • Cosa cpse T + (-sine cosy + ose sin$ siny)l
+ (sift sing + Cosa sine cosy)f	 (1)

a • (;a sin$ + Y)T (a cos si^ + e Cosy)j
+ (a cos$ cosy - $ sinM

 
M. ax } aye + azTc (2)

where T, T and Tc are the base unit vectors of the
xyz-frame of reference -

The unsteady irrotational ideal flow in the
region outside of the wing and its separated vortex
sheets is governed by the Laplace's equation

	

v24 n 0	 (3)

where 4(-r.t) is the perturbation velocity potential.
The no-penetration condition on the wing s(r,t),
relative to the wing fixed frame of reference, is
given by

is

at + (a. 
+ v4 - &F)-vs • 0 on s(r,t) • 0 (4-a)

For a rigid wing. a
s 

• 0 and equation (4-a) reduces
to

	

(ems + 74 - &-r)-W, • 0	 on s(r) • 0	 (4-b)

On the separated free-vortex sheet w(r.t), the no-
penetration condition is given by

aw

at 
+ (e. + v4 - axr) • vw a 0 on w(F,t) n 0 (5)

The no-pressure jump condition on w(r.t) 1s obtained
from the unsteady Bernoulli's equation

	

Cp (r,t) • -ar • [ g1 + 2 	 N )I - 2	 (a)at
where C (r.t) is the pressure coefficient at any
point rpand at any time t. Forming the pressure
jump from equation (a) and equating the result to
zero, we obtain

AC 
	 CPi - C

P2	 -( 70 1 - v02)•[v41+ v02+2 (e^-nxr)1

	

- 2 LLO 1 - 02) n 0	 (b)

t
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where the subscripts 1 and 2 refer to the upper and
lower surfaces of the wing, respectively. Rearran-
ging squelon (b) and setting

4 1 - 42 - a#	 (c)

one obtains

aco - 4dr + vw • 7) (A#) - -2 Ref) - 0	 (d)

where v - velocity of a wake element relative to
the xyzMframe of reference

• T (14 1 + V42 ) + % - Up
Equation (d) represents the theorems of Klelvin and
Helmholtz

o-frt ff A dA-0 onw(-r.t) -0 (6)

of conservation of the Circulation and the outflow
of vorticity; respectively. In equation (6), n is
a unit normal to the surface A bounded by a closed
curve around which the circulatioe T is calculated.
Equation (6) simply states that the rate of change
of circulation around a closed curve or the rate
of change of outflow of vorticity thrbugh the sur-
face bounded by this closed curve is zero (following
the same fluid particles.)

For uniqueness of the solution, one has to
impose the Kutta condition along the edges of
separation. Here. Kutta condition is represented
by

a Cpp

TE, .SE

Finally, the infinity condition requires that

q + 0 any from s and w	 (8)

Equation (1) - (8) are the required equations for
the general unsteady flow problem.

III. Nonlinear Hybrid-Vortax Method for Steady Flows

III.1. Governing EguationE

The research effort in this paper 1s concen-
trated on the symmetric-flow problems. For a
steady-symmetric flow, the governin equations are
obtained from the general "motion 1j - (8) by
setting p n 0. 0 n y n 0 and dropping the time
dependent terms. The resulting equations art

e. - COS a T - sin s	 (2)

V2# - 0	 (10)

(7% + v4) - W. - n	 on s(Fj - 0 (11)

(e- + V#	 nw - 0	 on w(r - 0 (12)

Acp n -2(nwxw^ 	 (e• + v4) n 0 on w(-r) - 0 (13)

AC  I	 n 0	 (14)

TT,LE,SE

V# • a away from s _,nd w	 (15)

III.2. Method of Solution of the _Steady _Flow-PrOibl-m

Equation (12) requires the flow to be tangent
to w while equation (13) requires this tangential
flow to be parallel to the vorticity direction.
Therefore, if the flow direction is forced to be
parallel to the vorticity direction on the surface
w, the boundary conditions of equations (12) and
(13) are automatically satisfied. Next, we outline
the method of solution.

One the wing and its free-shear layers are
represented by vortex sheets, equations (10) and
(16) are automatically satisfied. The basic un-
b ums'in thejoresent problem are the vorticity
distribution w and the free-vortex sheet w. They
are determined by satisfying the remaining boundary
conditions, equations (11W4), through a finite.
element type approach.

In this approach, the bound-vortex sheet
(representing the wing) is divided into quadrilateral
bound-vortex panels while the free-vortex sheets
(representingg the free-shear layers) are divided
Into triangular free-vortex panels, sae figure 2.
On each vortex panel (bound or free). a local
vorticity distribution with undetermined coeffi-
cients is defined in a local-coordinate system.
The local distribution is selected such that the
solenoidal property of vorticity is satisfied. The
continuity of vorticity (a compatibility condition)
is enforced at certain nodes on the interelemeet
boundaries of adjacent panels.

The retaining boundary conditions, equations
(11-(W9 art enforced at certain nodes of the vortex
panels to obtain the undetermined coefficents of
the local vorticity distribution and the shape of
the free-vortex panels. Kutta condition, equation
(14), is enforced at the nodes of the bound-vortex
panels along the edges of separation. The no-
penetration condition, equation (11), is enforced
at the average points of the bound-vortex panels.
The no-penetration and no-pressure-dump conditions,
equations (12) and (13). are simultaneously satis-
fied at the node of the from vort

e
x panels.

To satisfy these conditions, an iterative
technique is followed which alternatively yields
the local vorticity distribution on the bound-
vortex panels and the shape of the free-vortex
panels. During a typical iterative cycle, an
overdatermined set of algebraic equations are solved
for the undetermined coefficients of the local
vorticity distributions. This is followed by adjus-
ting the surface w such that V and (T + vp) at the
nodes of the free-vortex panels becomi parallel.
The overdeteralned set of equations consists of
the equations obtained from the continuity of
vorticity condition, Kutta condition, the no-
penetration condition on the winngy, and a symmetry
condition applied at the nodes alon the line of
symmetry. This set is solved by a least-square
technique.

Once the iterative technique converges, the
pressure distribution is calculated and this is
followed by calculating the total aerodynamic
characteristics. convergence of the technique is
expedited by using an initial guess for w provided
by the Nonlinear Discrete-Vortax method" (NOV-
method).

2
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In the next subsections, the basic equations

required at each step of the solution are given.

III.2.1.	 Quadrilateral Panel

Quadrilateral vortex panels are used to repre-
sent the bound-vortex sheet. On each panel, a local
first-order vorticity distribution is specified.
For the Ktb panel, the vorticity distribution is

given by

where

r G	 (WG sin Y 2 - WE cos Y2 )L 2/(cos y l sin Y2

sin y l cos y2)
	

(21 )

r E	 ( WE cos y l - WG sin yl)il/(cos y l sin y2

- sin y l cos Y2)
	

(22)

W G ( k )	 a l ( k) + a 2 ( 10 c(K) + a 3 ( K) E(K)	 (16)	 -	 l	 3	 G i+l	 E(G)

W E (K) •-a 2 ( K) E(K) - a 4 (k) - a 5 ( K) c(k)	 (17)	
wG - 

A 1 . 1 	 Gi	 0	
W G dG dE (23)

which contain five undetermined coefficients; aI-a 5.
it should be noted that a first order vorticity
distribution is equivalent to a second-order doublet
distribution. The distributions given by equations
(16) and (17) satisfy the solenoidal property of W

o • W - 0	 (1e)

The four corners of the panel serve as nodal points
where continuity of vorticity condition. Kutta con-
dition, and/or symmetry condition are satisfied.
The C and r axes are located in the panel plane
such that the G- axis coincides with tie 1-4 side
of the panel. The n-axis is perpendicular to the
panel such that C. E, and n axes form a right-handed
local coordinate system. The average point of the
four nodes serves as the control point where the I
no-penetration condition is enforced, see figure 3a.

In the near-field, the indi , ced velocity at any
field ;point x, y, i is calculated by

_	 2.3 Gi+1 E(G) Y w e +[(Z-00
v(x.Y.z) - -I I 	 I	 Ii ^1	 G,	 0	 ^(	 +(Z

-( x -E)W	 e

E ; dE dC

where the summation over i indicates that the panel
Is divided into two (in the case of a triangular
panel, see ses.I11.2.2) or three subpanels.	 Sub-
stituting equations (16) and (17) into equation
(19), we integrate the resulting expression in the
E-direction analytically. The resulting equations
are given in appendix A. The integration in the
;-direction is performed numerically. Currently,
complete analytical integrations in both directions
are aeveloped, Appendix B.

In the far-field, the vorticity distribution
is lumped into concentrated vortex lines and the
simpler Biot-Savart's law is used to calculate the
induced velocity. The locations of the concen-
trated vortex lines ere the lines connecting the
riu-points of opposite sides of the panel. The
far-field equation of the induced velocity is given
by

	

3 G1+1	 E(G)
W	 1 I	 I	 I	 W dc dE	 (24)

E	 ^+ -1	 ci	 0	 E

and A is the panel area. Figure 3.b, shows the
different parameters used in equations (20) - (22).

III.2.2.	 Triangular Panels

Triangular panels model nonplanar and twisted
surfaces more accurately than quadrilateral planar
panels. Therefore, they are used to represent the
free-vortex sheets where highly nonplanar and

twisted surfaces are encounterea. The local
vorticity distributions are still given by equations
(16) and (17). The corners of this panel serve as
nodal puints where certain boundary conditions are
enforced. The ;-axis coincides with the 1-3 side

of the panel, the E- axis is in the panel plane,
and the n-axis is perpendicula r to the panel such

that G. E. and n axes form a right-handed local
coordinate system, figure 4a.

In the near field, the induced velocity at any
point is given by equation (19), where k - 1,2.	 In
the far field, the vorticity distrioution on the
panel is lumped into concentrated vortex lines so
that Blot-Savart's iaw can be used to calculate the
Induced velocity. The locatiuns of the two concen-
trated vortex lines are chosen to be the line con-
necting the midpoints of sides 1-2 and 2-3 and the
line connecting none 2 to the midpoint of side 1-3.
The far-field equations of the induced velocity are
given by equations (20)-(24), wnere y l - 0 and
k - 1,2.

III.2.3.	 Boundary Conditions

At each control po i nt of the bouna-vortex
panels, we satisfy equatior: (11). For the rate
control point (a receiver panel), equation (11)
gives

N _
I	 v(m,k) ^ s(m)	 - e- ^ n s (m)	 (25)

k-1

X19)

wnere N is the total number if bound- anu free-
vortex panels (k refers to a sender panel}, inu

5	 _
(2G)	 v(m,k) • 	 (uj(m,k)i (k) + v'(m,k)en(k)

+ iv3 (m,k)i,(k)Ja ' (ra,k)	 (26)

r
V	 cos e	 + cus e )e	 + ^ (cos e.

n	 1;	 2; vC	 en.	 1E
c

+ cos e2E)evE

3



ORIGINAL PAGE 13
OF POOR QUALITY

The coefficients of 0 9and w are given by the
equations of AppendixJ (A) Jor Appe^Idix (9).

The unit normal n (m) of a bound-vortex panel
and the base-unit vectirs 1(k), a (k) and i (k) of
the local coordinates of thl k jh lender panel
(bound or free) are expressed in terms of the base-
unit ve tors of the global wing-fixed coordinate
system . I and as follows:

ns(m) • d,x (m) T + dny (m) + des (m)	 (27)

it (k) • dtx (k) T + dty(k) + d4= (k) T:

	

li jk) • dnx (k) T + dw(k) + dnd (k) F	 (28)

!t (k) • dtx(k) T + d
CX
(k) + dt= (k) Tc

where d refer to the direction cosine .

Substituting equation (28) into (26) and sub-
stituting the resulting equation and equation (27)
into equation (26), the no-penetration at any nth
point reduces to

T

N 5	
dnx	 d(x dnx dtx	

uJ

k•l ,i1 dny	 dty dny dty	
vJ

des	 dCz des d^	 inJ
!	 k	 n ,k

T
Coss	

dnx

a(J.k) - -	 -sins	 dny	 (29)

0	 dal

n

It should be noted here that the number of
unknormcoofficients a(J.k) an reduced from SM
(Sx total number of bound- and free-vortex panels)
to 5 N (Sx total number of bound-vortax panels)
by ;Qting the outflow of vorticity from the bound-
vortex panels to the inflow of vorticity into the
free-vortex panels along the separation edges.
Moreover, the vorticity vector is aligned with one
side of the triangular free-vortex panels. Once
this is accomplished, the free argument m has the
range 1 to Nt, and thus we obtain N b unknowns.

In addition, we write equations of vorticity
continuity at each common node of the bound-vortex
panels. Atypical couple of equations written at
the (I+1,J) global node. corresponding to the two
local nodes (2, k) and (i,k+l) between panels number
k and k+l is given by see figure 0)

WZ (I+1.1) - WC (2.k)d
;z (k) + w( (2 3)d(I(k)

• wC (l.k+l)d CI (k+l) + w((2,k+1)d(Z(k+1)

wx (I+1.JJ • - C ( 2 . k )d cx (k) + w((2.k)d(x(k) 	
(30)

• wC (l,k+l)dU (k+i) + a((l.k+l)d(x(k+l)

where w and w are expressed in terms of the
underte61nod coefficients s(J,k) using equations
(16) and (17).

Kutts condition, equation (14), is satisfied
at the nodes of bound-vortex panel: along the edges
of separation. At a typical global node (I+2,J),
equation (14) gives

rx (I+2,J) vI (I+2,J) - rZ ( 1+2.3) vx ( I+2.J) n 0 (31)

Since r , r . v and v are functions of the •nnder-
ainied caefficiats, o4ation (31) is a ncnl i:iesr
"mtIon In

equations (22) )to and(31) disturbs the linurityypof
the resulting set of equations. Therefore, we
enforce equation (31) in a linearized approach.
W divide equation (31) by v(I+2,J) and tot

vI(I+I ,J)/v(I+2 ,J) • coso(I+2,J)

and vx(I+2.J)/v (I+2.J) • SIR10+2,J) 	 (32)

Thus. equation (32) becomes

rx (I*2 .J) coss ( I+2,J) - rZ (I+2.J) sins 0+2.J) • 0
(33)

Assuming that 0(I+2,J) is initially known, equation
(33) becomes a linear equation in(ai. In the sub-
sequent iterative steps, the angle A is calculated
by equations (32) using the W values of the pre-
ceding iterative step.

The last sat of linear equations are obtained
from the symmetry condition ( for symmetric flow)
along tho,root chord. A typica^^atry condi-
tion written at a global node ( .J). corresponding
to a local node (1,E), is given by

aX (i.J) - rt (l,k)dtx 0) + a9 0 ,i)dtx (i) - 0	 (34)

The resulting set of equations obtained from
equations (29). (30), (33) and (34) are solved for
the coefficients w by a last square solver (over-
determined set of equations).

Once the coefficients are determined, equations
(12) and (13) are enforced by aligning sides i-3 of
the triangular free-vortax panels with the local
flow directions. Equations of the following fors
are used to calculate the now global downstream
nodes of these sides:

x(L+i.J) - x(L.J) + rM (L,J)/vm(L.J)

y(L+1.J) - y(L.J) + bvy,(L.J)/vm (L.J)	 (35)

I(L+1,J) - I (L,J) +;vMZ(L.J)/vm(L,J)

where (L.J) and (L+1 ,J) refer to the upstream and
downstream nodes of side (1-3), ; is the length of
this side, and v is the velocity calculated at the
upstream node (eJ).

III 2.4 , Pressure Distributign

The net-pressure coefficient is calculated at
the no-penetration control point of a bound-vortex

4
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panel. At the m th control point, the net-pressure
coefficient is ,liven by

N	 N
ACp (m) - Vwx (m) L vz(m.k) - Wz (m)t z vx(m.k)

kn 1	 k-1

+ cos 03)	 (36)

where ox (m) - Wt(m)dcx(m) + 0 4 Wdtx(m)

Wz(m) - wC (P)dcz(m) + WE(m)d4z(m)

in
uat
terms of the c̀oefficients A.

 give
Thew^lerill

 and
force

coefficient 15 them calculated by

	

N 
	

N 
en • i aC' (m) A(m)/ i A(m)	 (37)

	

Mrl	 Mai

when A(p) is the area of m th panel. A more
accurate calculation of C is obtained b fitting
a surface to discrete of Daluas of aCp(m). The
resulting function AC'(x.z) is then u ed to obtain

Cn - AI AC'(x.z) dA/ll dA
A

olioUnsteady
F1 OWS

For unsjeady symmetric Mow. we set
- Y - ; - Y • 0 in equations (1) and (2). Tho

resulting equations are

n cos a T - sin a	 (39)

G - Qj F n srt	 (40)

	

v10 - 0	 (41)

	(ice + q - ozxr) ns • 0	 on s(—)-O (42)

+ co-̂  + vy - Gzxr) iw n 0 on w(r.t)-O (43)

	

Ot - 0
	 on w(,t)-0 (44)

	

AC  i-O	 (46)

TE.LE,U

	

q + 0	 away from s and w (46)

of Solution of the UnSMgy-Fl ow
prop] a

The source of flow unsteadiness in this problam
can be a tine dependent angle of attack or a time-
depe-dent froestream speed. Figure $ . In the time
domain approach of this orobl me, we divide the
'unction or angle of attack into discrete chan of
In the angle of attack corresponding to discrete
changes in time; i.e.. at t •to. *-so and at t-tea
+ At, aona etc. Tow problem is than solved at
each time stop where the solution of the precelir,g
ti a step serves as the initial condition for the
present time Step.

This approach can trot problems whore the flow
unsteadiness starts (at t • t ) from a steady flow
or where the flow unstadlnest starts impulsively
from rest. The former problem initially requires
the steady-flow solution to be known; "u8tiL1s (9)-
(15), while the latter problem initially rlwcy^,res
the solution of the flow over a wing without a
wake surface.

Once the initial condition is obtained, we
March step by step in 

tin 
Satisfying equations

s(Lt) (46). t)re
 each 

in step• th
e	 basic unknowns

Next, we discuss the boundary conditions and
the calculations of the pressure distribution at
each step.

Although the developed tin& domain technique is
a generel one and moreover is not restricted to any
particular source of flow unsteadiness, the case of
an impulsively started wing f0 m rat is considervC
for the purpose of explaining the details of the
tochnigp. In this case, we set a-o and replace
i by -ems in equations . (39), (40) and (42)^ (45). The
following steps explain the procedure to enforcethe
to obta in̂̂ rand

 conditions 
of 

equations (42)-(45) and

a. The initial condition, at t at . is considered
to be a wing without a wake surface having a velo-
city of -ems . At this instant, we assume that not
enough tine has passed for the vorticity to be
convected from the separation edgers The initial
vorticity distribution on the wing W(F,t) is ob-
tained from the least-square solution of an over-
determined set of linear &I	 tic equations in the
unknown coofficibnts (a). Cast of eguationis
consists of the no-penetration conditions. equation
(42), the continuity of vorticity conditions,
equation(30), the Kutta Conditions, equation (45),
and the symmetry conditions. equation (34).

It should be noted that the initial vorticity
distribution on the wing is such that the circula-
tion around any closed curve embracing a wing sec-
tion or equivalently the outflow of vorticity from
a surface anclosed by this curve is zero. Con-
sequently, a starting vortex of opposite strength
to that of the vorticity on the wing develops at
the edges of separation. The starting vortex is
then convected downstream with the local particle
velocity, the flow existing at the preceding instant
Is disturbed, and the vorticity distribution on
the wing changes creating a now starting vortex to
be downstream.

This process continua and by the end of the
first time step, at tat +At, a free-vortex strip.
consisting of triangulaf free-vortex panels attached
to the separation edges, is created. The free-
vortex strip obeys the conditions given by equa-
tions (43) and (44) and its upstream edge satisfies
Kutta condition at the separation edges, equation .
(45).

b. At tat +et, one needs r(r ,t +et) to determine
the width Sf the vortex strip. *Since this velocity
is unknown so far, a good estimate is taken as the
velocity at the preceding time step v(r.t o ), which

(36)

bl
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1s Completely known from the solution corresponding
to the initial condition. Within the time step •t.
the displacement •1r of any panel node is found from

ear - r(t0 * •t) - r(t0 ) - at • v(r,t0 )	 (47)

where

'v(—r.ta ) • -% + q(r.ta)

(;so for the considered case) 	 (41)

v4^.to) • =b vk(r.to )	 (49)

k-1

rk (h',t0 ) is given by equation (19)	 (50)

and N  is the total number of panels on the wing.

At tat +at, one also needs the vortici ty of
the trlangu?ar  vortex panels forming the free-
vortex strip. r C.t +•t). For each triangular
panel, we express its five unkeaMn coefficients
(at )-(as ). describing its linear vorticity dlstrl-
bution, in tar's of the five unknown coefficients
of the adjacent hound-vortex panel, at the separa-
tion edges, at t-to (a t -a5 of the bound panel are
already known) and at t •t +at (a -a of the bound
panel are still unknown).° This Is Ichieved by
satisfying the foilwing conditions. At t ot +•t,
the vorticitX iL continuous at the global noses (on
the separation edge) between the bound- and free-
vortex panels. At t-to+at, the fluid particles
along the downstream aloes of the triangular panels
are the same particles which existed at the edge of
I ration at t-4. According to He)holu theorem

[- G+- o)r]. the vorticlty of these particles
changes as they are convected downstream. But
according to Kelvin theorem Or

(	 o), the circula-

tion around these particles remains Constant and
hence additional equations are written to satisfy
Kelvin theorem between t-tc and t-to+rat.

Next t the vorticity distribution on the wing
w(r,t0+Ot) is obtained from the overdetermined set
of algebraic equations.

C. At MOW, d now free-vortexstrip 	 astrip is created
along the separation edges. the first shed free-
vortex strip is convected downstream under the
-:ondition Dt • .. ' and step (b) is reputed to find

,1he locations of the free-panels nodes and
w(r.to+2at).

d. The study state is reached once the change to
the voracity distribution is less than a pre-
scribed error.

TV-2.2, Pressure Distribution

To calculate the net-pnslure coefficient at
any point on the wing surface r at any time
t • t + k • et. we apply the unsteady Bernoulli's
e6ti8n

Cp(r.tk) ' - 1RJ (r.tk) • [o<(.tk) + (e- •^^

3"(r.tk)
.2	

It

when 9 (r.t ) is the jump in the tangential velo-
city acAss the wing, which is completely known
from the vorticity vector at this location,
; r.t ). The first tans in the brackets v0(r,t )
is calculated from equation (19). The last taA
on the right-hand side is calculated as follows:

^N(r. ) A#(—r	 - N(r.t I
s	 •

r(r.tk) - r(r.tk-1)	
(92)

	

'	 •t

A computer program 1s developed to implement
the methods of solution of the steady and unsteady
fiw problems. The program 1s divided into three
major parts and each part consists of several sub-
routines.

The first part deals with the wing geometry,
wing panelling (bound-vortex panels) and wake
panelling (free-vortex panels). Usage of initial
make panelling depends on the initial conditions
of the unsteady problem. No wake panelling is con-
sidered if the unsteady problem starts from rat.
For the unsteady problem with steady-state initial
condition, make panelling is considered. Several
subruotlna are used to generate the global and
local coordinates of the panels and the direction
cosines of the local -oordlnate systems.

The second part deals with the initial condi-
tions. For the unsteady problem with steady-state
initial condition, the study-flow probl em is
initially solved. The boundary conditions on the
bound- and free-vortex panels are satisfied (Set-
.tion II1.2.3.) through several subroutines. For

I
(F), these subroutines fill a rectangular matrix
N` (number of boundary-condition equations) x

N tnsiber of undetermined coefficients of the
bound-vorticity distribution)] will. the coeffi-
cients of the boundary-condition equations; no-
penetration conditions, continuity of voracity
conditions, Kutta conditions, and symmetry condl-
tions. The overdetermined set of equations 1s then
solved using a least-square solver. For M(r), the
boundary conditions on the free-vortax panels are
enforced using a separate subroutine. Once the
boundary conditions are satisfied, the net-pressure
coefficients are calculated as 99ivea in Section
I11.2.4. It the Initial condition 1s rest, the
problem is solved without any free-vertex panels.

The third part of the program deals with the
problem at t > to. Several subroutis are used

	to satisfy the
	 subroutines

boundary conditions (Section
IV.2.1.) as 06 subsequent time steps tk ntJ*k•t;

k•l.2.... One subroutine is used to generate a
new shed free-vortex strip and another subroutine
is used to convect the previously shed free-vortex
strips. The vorticity distribution of the panels
forming the previously shed free-vortex strips

(51)

•
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:r (r,tk ) is found from another subroutine which
enforces Kelvin theorem. The unknown voracity
coefficients of the panels forming the newly shed
vortex-shoot strip are related to these coeffi-
cients of the wing panels existing at the separ-
tion edges.

Other subroutines are used to fill the astrix
representing the wing boundary conditions; ne-
penetration condition, continuity of vortcity
condition, unsteady Kutta condition and symmetry
audition. The least-square solver is used to
obtai n the voracity distribution at this time
clap. V r,tk)-

The unsteady Swimill's equation, Equation
(51), is than used through a separate subroutine
to calculate the net-wsssure coeffl clent.
Figure 7 shoo a flow chart of the computer pro-
gram.

The developed computer program is used to solve
for the study flow past a rectangular wing having
side-edge separation. The wing is of aspect ratio
of one at 1.7 0 angle of attack. The wing is
divided into US quadrilateral bound-vortex panels.
the trailing edge free-vortex sheet is divided
into Sxf quadrilateral free-vortax panels,and
the side edge free-vortex sheet is divided into
S vortex strips and each is divided into a dif-
Perot number of quadrilateral free-vortex panels
such that the last panel in each strip occupy the
same chordwi se station as that of the last panel
of the trailing edge free-vertex panel.

Figure i shoe a typical converged solution of
the spamd sea and cordwlse componeou of voracity
at the local nodes of the quadrilateral vortex
panels. At any node, the upper number is the span-
wise component W and the 1 owes number is the cord-
wise component	 It is soon that the continuity
of voracity conhltion. Kutu condition and the
symmetry condition are satisfied at the common
nodes. at the nodes of the trailing and side edges,
and at the notes of the line of symmetry; respec-
tively.

Figure 2 shows the spenwise variation of the
section normal-force coefficient at three
iteration steps. The solution converges in the
third iteration step and is in good a9reeaw>At with
the experimental data of Scholti	 The figure
also shows the solution of the same case obtained
by the NOV-method with US bound-vortex lines.
One can conclude that the NOV-sethed underesti-
=in the normal-force coefficient near the wing
tip. If the number of bond-vgrtu lines of the
NOW-method is increased to 904 . the solution
agrees with that obtained by the NNV4*thod with
Sxi bound-vortex panels. This clearly shows that
a less number of vortex panels gives the same
accuracy as that obtained by a large number of
bound-vortex lines.

Figure 10 shows the converged solution of the
spanwise variation of the section pitching-moment
coefficient for the wing. The results of the NOV-
method with Sx6 and 9x7 bound-vortex lines are

also included in the figure.

Figure 11 shows the spenwise variation of the
net-pressure coefficient at different chord stations
with different number of panels for a recto War
wing at 15 1 angle of attack. The corresponding
results of the NOY-method are also shown in the
figure.

The present computer program ;5 co^utationally
efficient when it is compered with other existing
codes which use high-order doublet distribution.
The CM time on the CY8E8 175 for this case is about
200 seconds.

YI.2. Uhstaedv Flow

Nest, the developed computer 	 Is used to
solve for the unsteady flow past 1 lslvely stared
wings from rest without side alga separation. In
the two asanplos e the wing is divided into 5x5
uadrgllatenl bound-vortex panels with a sloe dis-
tribution in the chordwtse direction and a cosloe
distribution In the spenwise direction. In the
present cases, the dimensionless time step Is
aquivalent to 0.48 while the root-chord length is
5 units.

Fire 12 shows the distribution of the lift
coefficient for a rectangular wing of aspect ratio
of three at 50 angle of stuck for t*2 and t•22.
The present results are compared with the stead
nmerical date of reference (19) where 195 panes
of constant potential function are used. It is
also compared with the experimental data of
Reference (20) . Although we used 25 panels In the
present case, the remelts comperep well with the
other numerical and experimental data.

Figure 13 compares the growth of indicial lift
for the same wing considered above with the wmeri-
cal data of reference (17) where 100 panels of
constant doublets are used.

Although we used 26 panels in the present case
the results compare well with the other R~ical
data.

Figure 14 shows the distr tr:riva of not pres-
sure coefficient for a rectanj)uiar wing of aspect
ratio of two at 20.5 0 angle of attack for t•2,
10, 21 and 22. On the CYSIX 175 computer. the CM!
time for each use with 5xS bound panels and Z2
time stops is about 10 minutes.

Currently, work is underway to increase the
number of panels, use the efficient far field
calculations,'and caicuiate cases with side- and
leading-edge separation:.

VII, Concludlna Ammerks

Steady and unsteady Nonlinear Hybrid Vortex
Method for low aspect ratio wings at large angles
of attack is developed. The method uses vortex
panels with first-order vorticity distribution
(equivalent to second-order doublet distribution)
in the near field calculations. In the far-field.
the distribution vortcity is reduced to concen-
trated vortex lines where  the simpler Blot-Savart's
law is employed for the velocity-field calculations.
The method i^ applied to study and unsteady flow
probims without any restrictions on the order of



magnitude of the disturbances in the flow field.
The presented maaerical results show that the
method products accurate results and it is com-
putationally efficient.
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	SEMI-ANALYTICALLT IN	 EXPRESSIONS OF THE

INDUCED VELOCITY FIELD

	

17 = ujc + vnen + wiet	(A.1)

5
jr (uj e{ + r; en + ^j id aj	 (A.2)

1 5 2,3	 =i+l

- Z* E : f (
uj eE 

t vi 
en + rj e^)

j l t l	 t i

do 
a 
	 (A.3)

where

u1 - y(F/63 - x/62)/6l (A.4)

u2 - tut (A.S)

U3 - y[(CxF + 61 )/63 - 627/61 (A.6)

u4 - 0 (A.7)

u5 ` 0 (A.8)

v1 - 1/63 - 1/62 (A.9)

v2 - cv1 - (2 -r.)u3 (A.10)

v3 -	 111 [(62 - 1)/(63 - F)J + Cx -F)/63 (A.11)

v4 • -rz -i)ui (A.12)

v5 - Cv4 (A.13)

WoI
	 - 0 (A.14)

w2 - °3 (A.15)

w3 - 0 (A.16)

r4 - u1 (A.17)

r5 - u2 (A.18)

F - x - $j4 - b (A.19)

- y2 + cz -c)` (A.20)

62 - 
(x2 + 6

1 ) 1/2 (A.21)

63 ' ( F2 + 6l ) 1/2 (A.22)

S- t i+11 41

i
(A.23)

Z  - ti

b 
	

n 
41 - Sir-i (A.24)

APPENDIX B
ANALYTICALLY INTEGRAT 	 SIONS OF THE INDUCED

VELOCITY FIELD

V ' u  it + vn en + rc ac	 (8.1)

5
0 eE + vj in + Mj ^^)aj 	(B.2)

where

uE -	 [( tA,)a, + (	 Ai -	 A2)s2

+(' A3 -	 Al *	 A2)a3J 	 (8.3)
ly l	 M1	 {in,Ein

vn - ^ (0/2 A3 - 
^f A

V )&1 + [j A3 + M1

+ [^ A3 - ly l	 -
it NJ + (I-z+xt)

Ya3

+ (^
.
	 A2 )&4 + [(g A3 - lyl Al + E

+ 
x 

l n[(x-E)2 + ;23 - y tan-' 43
y

+	 + t2 2z-Z-xL	 A2 - E ln[2(tE+I-z)

N1

+ 2r3]a5 ) Lfn 'ETM (B.4)
tin,Ein

lyl NJ

+ (	 ^ )a4 + (l
	

Al

-	 Gf11.Efn

- X 1 /2 A2)a53tEin. in
(B.5)

r ' [(x -E)2 + y2 + (z -t)2 31/2	 (B.6)

NJ - 1 + t2	 (8.1)

Al 
• tan-1 (z- I-xt)(E-x) + Y2t	

(B.8)
yr

A2 n In [2 
Nl 1/2^ + ZM

I t + 2t(I-z) - 2xj	 (8.9)

)



A3 , to
z-I-tE+r

C fn ` tfnE * Ifn

Efn G2

C2 Cl
tin E2 - E1

(8.10)

Gin ' tin  + Iin	 (B.11)

. tin 'a 	 (B.12)

G1 EC

2

 - GE Ei	
(B.13)

- 1

+ No Penetration Condition
O Continuity of Vorticity
• Kutta Condition

X O.Symetry Condition
Kelvin Theorela

Figure 2. Boundary Conditions and Arrangmeent of
Bound- and

A t	

Panels
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For a triangular panel:

t , r.3 - G2	 I	 . z
2 E3 - G3 E2	

(B.14)
fn E3 - E2	

fn	
C3- E2

For a trapezoidal panel:

t ' G4 - C3	 I	 a t3 E4 - G4 E3	
(8.15)fn E4 - E 3	 fn	 E4 - E3

Figure 1. Space-Fixed Coordinates XYZ, Wing-Fixed
Coordiantes xyz, and Eulerian's Angles
Moy.
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+ No-Penetration Condition, Eq. (22)
O Continuity of Vorticity Condition, Eq. (30)
• Kutta Condition, Eq. (33)

C Symeetry Condition, Eq. (34)
• Kinematic and Dynamic Conditions, Eq. (35) 	

LK+1"aK K+K•6U
 n

K1J
Figure S. Details of the Boundary Conditions for

the Steady-Flow Problem. 	 .
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Loads

Figure 6. Typical Sources of Unsteadiness for the	 Figure 7. Flow Chart of the Computer Program For
Unsteady Symaeth c Flow Problem	 the Steady and Unsteady (Time Domain

Approach) Flow Problems.
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RECENT IMPROVEMENTS IN THE PREDICTION OF THE LEADING AND TRAILING
EDGE VORTEX CORES OF DELTA WINGS

Osama A. Kandil* and Lakshmanan Balakrishnan**
Department of Mechanical Engineering and Mechanics

Old Dominion University, Norfolk, VA

Abstract

The recently Modified Nonlinear Discrete.
Vortex (MNDV) method has shown a remarkable success
in predicting, for the first time, the latest ex-
perimantal data published by Hummel on vortex for-
metisn behind a slender delta wing at an angle of
20.5 .

This paper presents the recent developments
in the MNOV-method in order to accurately predict
the location of the trailing-edge vortex core and
the surface pressure distribution.

Moreover, a Viscous Core model based on the
boundary-layer-tike approximations quasi-cylin-
drical approximations). is presented. The re-
sulting parabolic-equations, with the outer-edge
boundary conditions obtained from the inviscid-
model solution using the MNOV-method, are inte-
grated using a finite-difference marching tech-
nique. Typical velocity profiles of the leading
and trailing vortex cores have been used to
Initiate the step-by-step marching technique.

I. Background

I.1 Existing Exriment 1 Data and Concludin
*mar s

The separated free-shear layers emanating
from the leading edges of highly sweptback wings
roll up spirally Into two counter rotating vortex
cores. The vortex cores are fed, through the
free-shear layers, with vorticity shed along the
wing leading edges from the boundary-layer flow
on the wing surfaces. This flow separation is
known as the "primary separation" and it has a
dominant effect on the wing aerodynamic charac-
teristics due to the large strength of its vortex
cores and their proximity to the upper surface
under the primary vortex corv.

The adverse spanwise pressure gradient due
to the primary vortex core inducas secondary
separation" of the boundary-layer flow on the
upper surface. Depending on the angle of attack
and the ring aspect ratio. the secondary sepa-
rated flow forms either an additional fr**-shear
layer or a bubble. In the range of moderate to
large angles of attack, a secondary free-shear
layer develops. rolls up spirally in an opposite
sense to that of the primary free-shear, and forms
a secondary-vortex core of much smallei strength
than that of the primary-vortex core

Depending on the type of boundary-layer flow
on the upper surface, the secondary-vortex core
:say affect the pressure distribution on this sur-
face. For a laminar boundary-layer flow, a small
pressure peak is produced between the secondary
and primary lines of separation while for a

*Assoc I ate ro essor, Member AIAA
**Graduate Student, Member AIAA

turbulent boundary-layer flow, such a peak is
hardly noticed and the pressure peak corresponding
to the primary-vortex core is lgrger than that of
the laminar boundary-layer flow ,7 . A third type of
flow involving a "tertiary" separation may occur
between the lines of primary and secondary sepa-
rations due to the adverse spanwis! pressure g a-
dient generated by the secondary-vortex corel.^.

It is seen from the description given above
that secondary and tertiary separations are viscous
phenomena and cannot be modeled by using inviscid
analysis only. However, their effects are small
particularly when turbulent boundary-layer flow
exists on the upper surfaca of the wing and hence
they are neglected. Therefore. when inviscid
analysis is used to predict pressure distributions,
one mast compare the surface pressure distributions
with those experimental data corresponding to
turbulent boundary-layer flows .

The free-shear layer emanating from the
trr.iling edge is of opposite strength to that of
the primary free-shear layer. Within a short
distance behind the trailing edge (a distance of
& . 1/4 root-chord length for a dolts w^ng of aspect
ratio of one at 20.5 an Is of attack ). the trail-
ing free-shear layer ro11s up spirally in an oppo-
site sense to that of the primary free-shear layer
and forms two counter rotating vortex cores. The
trailing-edge vortex core has the same stns* of
rotation and almost the sent spanwis* location as
those of the secondary vortex core, although each
originates from a different phenomenon. The former
Is due to an edge separation while tie latter is
due to &.surface separation. Hummel concluded
from his latest experimental measurements for tur-
bulent boundary layers at the trailing *dg* that
the secondary-vortex core decays rapidly behind the
trailing edge and its remains roll up into the
trailing vortex.

Figure 1 (rep-oduced from Reference 5) shows
the vortex formation behind a slender delta wing.
Figure ib corrects the location of the trailing-
edge core as given earlier - by Figure 1&. It
also shows that the secondary-vortex core has the
same spanwise location as that of the trailing-edge
vortex core but it does not show their interaction
which is still unknown.

Predicting the correct formation of the trail-
ing-loge vortex core is essential for predicting
the correct aerodynamic loads near the wing trail-
ing edge due to its proximity to this edge. More-
over, a correct prediction is of paramount impor-
tance to problems involving high-angle-of-attack
aerodynamics for the canard-wing configurations.
Consequently, one concludes that any prediction
method which employs a prescribed shape of the
trailing-edge voafex sheet (the so-called "fixed
design wake* 10.
	

) will be strictly limited to
isolated-wing problems away from the trailing-edge
region.

The size of the primary-vortex core and
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viscosity of the flow within a narrow region around
the core centerline play important rotes in the
aerodynamic characteristics of low-espect ratio
wings at large angles of attack. For these types
of wings, it is well known that the lift coeffi-
cient increases nonlinearly with the increase in
the angle of attack. This is attributed to the
increase of the strength of the primary vortex
core. However, the increase in the lift coeffi-
cient is limited by the occurrence of vortex-core
breakdown over the wing and hence there exists a
maximum angle of attack corresponding to the maxi-
WA 11 ft.

The phenomenon of vortex-tore breakdown is
defined as an abrupt Increase in the core diameter.
It occurs due to the adverse Wtinduced pressure
gradients along the core axis 	 Using the
radial component of the momentum equation of the
boundary-layer like equations (for quasi-cylin-
drical vortex cores). one can show that an increase
in the swirl velocity of the flow, due to an in-
crease in the core strength. increases the axial
pressure gradient along the core axis. Therefore,
the flow near the core axis loses its axial momen-
tum and swelling of the vortex core develops.

For moderate angles of attack, vortex-core
breakdown develops far downstream from the wing
trailing edge. As the angle of attack increases,
vortex-core strength increases and the breakdown
point travels upstream toward the trailing edge.
As the breakdown point approaches the trailing
edge, the slope of the lift versus angle of attack
curve decreases until the maximum lift is reached.
Thereafter, the lift coefficient drops sharply,
the breakdown point crosses the trailing edga and
the wing stalls.

To account for all these changes. one has to
include the viscosity within the vortex core in
order to have a realistic model in this region.

I.2.Existina Inviscid Models and Concluding Remarks

In most of the existing inviscid analyses,
primary flow separation is only considered. The
attached boundary layers are replaced with bound-
vortex shots while the free-shear layers are re-
placed with free-vortex sheets. Accordingly, the
inviscid region representing the vortex core should
be represented by a conical spiral vortex shat
which ends with a concentrated vortex line along
the core centerline. Although this theoretical
representation of the vortex-core is ideal for the
inviscid model, the usage of many turns within the
core region creates numerical problems in a three-
dimensional model which does not assume slander-
body approximations. The numerical problems arise
due to the proximity of the vortex layers of the
spiral and due to the l:r?e number of small-site
panels needed to accurately model the turns. How-
ever, it was found, according to the numerical
results and their excellent comparison with the
experimental data. that only one turn of the spiral
need to be accurately modeled white the remaining
turns of the spiral are replaced by a cut ending
with a concentrated vortex line along its edgi.

In all the invisCid models. the wing edges,
where separation occurs, are assumed to be sharp
so that the separation lines are known a priori
and hence viscous modeling is not needed to deter-

mine the lines of separations. However, for wings
with round edges, vis^$us modeling is needed to
determine these lines . Moreover, vortex-break-
down points are assumed to be far downstream to
that the variations in the site of the primary-
vortex core can be nnglacted. In fact, this as-
sumption limits the large angles of attack at
which inviscid modeling is applicable. With the
vorticity confined to the inner boundary of the
flow region (bound- and free-vortex sheets), the
resulting model 1s a potential-flow model governed
by laplfce's equation and certain boundary con-
di ions 6.

The existing inviscid models can be divided
into four mein groups. Next. each group is pro-
sented and evaluated.

The first group of mode^^ u^^s slender body
and conical flow assumptions	 . Modeling of
the primary-vortex core and its feedip9 sheet was
first introduced by grown and Michael . However,
the feeding sheet in their model was taken as a
planar surface and hence it did not represent tote
real rolled-up vortex sheet. Mangler and Smith10
introduced the first realistic model of the primary.
vortex core and its feeding shat. However, this
model does not account for the feeding-shaft defor-
mation in the chordwise direction due to the
slender-body assumption. These models satisfac-
torily predict the pressure distribution on the
front portion of the wing surface. In the rear
portion, the models fail to predict satisfactory
pressure distributions because Kutta condition can-
not be satisfied at the trailing edge. Such models
were limited to slander delta pltnforms.

The- ecand group of models uses the old NDV-
method a 6 The most obvious drawback of the old
model is the lack of a realistic model of the
primary-vortex core and its feeding sheet. The
primary-vortex sheet was modeled by a system of
segmented vortex lines which were rendered force-
free during the course of solution and no attempt
was made to lump these lines into a concentrated
primary-vortex core. Although the agreement
between the calculated and experimental total aero-
dynamic loads was excellent, the agreement between
the calculated and experimental pressure coeffi-
cients was less than satisfactory in particular for
highly sweptback wings.

panels 41t	 392^p o Ie this smfthodY theuwina-and
its free-vortex sheets are divided into networks of
quadrilateral panels. Each panel of the networks
representing the wing has a biquadratic local
doublet distribution and a bilinear local source
distribution. The panels of networks representing
the free-vortex sheets have biquadratic local
doublet distributions. Source and doublet splines
are used to express the distributions of singu-
larities on the networks in terms of discrete values
of singularity strength at certain standard points
on each network. The boundary conditions and con-
t!nuity of singularity strengths across abutting
networks are enforced at certain standard 4 points on
each network. The results of this method UU 	 t1 are
generally good when the solution converges. Ap-
parently, the difficulty in obtaining convergence
is due to the fail;;re in satisfying the continuity
of the derivatives of the doublet strength across
abutting networks. This is equivalent to the axis-
tence of concentrated vortex lines between abutting
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networks.

The doublet panel method was extended 
42 

to
include the affect of entrainment of the primary
vortex cores through an empirical approach. The
results indicstad that the entrainment increased
the normal-force coefficient substantially over
the experimental values.

This group of models do not account for the
chordwise deformation of the primary-vortex sheet.
Consequently, the primary vortex sheet cannot be
fed three-dimensionally with the shed vorticity.
Moreover, the trailing-edge free-vortax sheet was
represented by a • fixed design wake."

Therefore. none of the models given in the
first and third groups is capable of predicting
the deformation and interaction of the trailing-
edge vortex sheet and its vortex core. Additional
references of the three groups given above can be
found in references 43 and 44.

The fourth grouof	 els employs a nonlinear
hybrid vortex methodIs • 4^ In this method, con-
tinuous-vorticity and vortex-line representations
of the wing and its separated free-shear layers
are used. Continuous vorticity is used in the
near-field calculations while discrete vortex-tines
are used in the far-field calculations.

The wing and its free-shear layers are divided
into planar quadrilateral panels naving first-order
vorticity distribution. The aerodynamic boundary
conditions and continuity of the vorticity distri-
butions are imposed at certain nodal points on the
panels. To satisfy these conditions. an  iterative
technique is foil'owed which alternatively yields
the local vorticity distribution on the bound-
vortex panels and the shape of the free-vortex
panels. This method has been used to calculate
the steady distributed and total loads on ptanar-
tow-aspect-ratio rectangular wings. The results
have sham that the spanwiss variations of the
load coefficients are in good agreement with the
experimental data. Comparisons of the results
with those of the NOV-method have shown that the
hybrid method requires less nrmber of vortex panels
for the same accuracy. Currently the method is
extended to include leading and side-edge sepa-
rations for steady-flow problems and for unsteady-
flow problems due to small oscillations of wings
around large mean angles of attack (flutter appli-
cations) and due to general nonstationary wing
motions (dynamical applications). Work is underway
to use this technique to predict the details of the
flow field including the primary and trailing-edge
vortex core interactions.

Although the old NOV-method, used in the
second group of models. was almost abandoned in
predicting9 the flow details and the distributed
aerodynamic characteristics. the modified NOV-
method pinpointed and cured mos^of the problems
encountered with the old method . It enjoyed a
remarkable success in predicting, for the first
time, the latest experimental results of Hummels.

1. 3. Existino Viscous- 	 Models and Concludin g.
Rema rk s

In this paper, we only consider existing vis-
cous-core models which adopt the quasi-cylindrical

approximations. In the quasi-cylindrical approxi-
mations, we assume that the axial gradients are
small compared with the radial gradients and that
the streamsufaces be cylindrical. These boundary-
layer-like assumptions simplify Navier-Stokes equa-
tiee s and reduce them to a parabolic set of equa-
tions. Approx motion oft this ty have bbeeeen used
by Gar shore 4/ , Nall	•49, lossell , Rest SO and
Wilson to predict the locations of the vortex-
core breakdown. Gartshore and Nall used the dif-
ferentiAl form of the equations while lossel, Rest
and Wilson used the integral form of the equations.

The numerical results obtained from the quasi-
cylindrical equations have shown good agreement
with the experimental data particularly for the
vortex core behavior. For the locations of the
breakdown points. the difference between the pre-
dicted and measured locations was within two dia-
meters of the viscous core.

In this paper, we use the quasi-cylindrical
approximations for the narrow viscous region around
the core centerltne. Outside the viscous region.
one un treat the flow as a potential flow only or
as a rotational tnviscid flow followed by an outer
Potential flow. Hence two 'models with various
degrees of accuracy emerge. In the first model,
the vortex core is represented ty a narrow exisym-
metric viscous region around tht core axis. This
viscous con is fad with vorticity shed from the
wing edges through a vortex sheet with only one
turn and a cut. The flow outside the viscous core
and the vortex shect is a potential flow. Figure
2.a. shows a schematic of this model. In the second
model. the vortex core region is divided into in
inner narrow viscous part and an outer inviscid and
rotational part. In each part the Clow is exisym-
metric. Outside the core region. a potential flow
is assumed. Figure 2.b. shows a schematic of this
model.	 n this paper, only the first model i.s
considered.

II. Steady Inviscid Model and Prediction of the
revrscid Co res

11.1. NomenclatureZZA

AR	 wing aspect ratio
b	 wing half span
b(x)	 local half span

C 
	 static pressure

AC 
	 net surface pressure

C 	 wing root chord
ITER	 iteration Number
LE	 Leading Edge
LEC	 Leading Edge core
TE	 Trailing Edge
TEC	 Trailing Edge core
xyz wing-fixed coordinates, origin at wing

vertex, x-axis is along the root chord,
y-axis is perpendicular to wing

xy z	 wind-fixed coordinates, origin at the
trailing edge, a-axis is parallet to the
freestream direction
freestream velocity

Y	 velocity at anX field point
Vx,Vy,V icamponents of V in the wind coordinate

system

Viy	 component of Y in planes z • constant,
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o	 angle of attack

C.r..0	 dimensionless coordinates,
E-x/b. n-y/6. t-1/b

II.2. Existing NOV-Meth94_lildJtt Drawbuk}

In this section, a critical evaluation of the
existing NOV-Method is given in order to pinpoint
its drawbacks. In this method, the bound-vortex
sheet is replaced by a bound-vortex lattice and
the free-vortex sheets ire replaced by segmented
free-vortex lines.

Starting with an initial guess for the In-
clination of the free-vortex tines. the no-pene-
tration condition is satisfied at certain control
points on the bound-vortex lattice. The resulting
set of linear algebraic equations is solved for
the circulation distribution. Next, with the
known circulation distribution. the positions of
the vortex segments of the free-vortex lines are
calculated by simultaneously enforcing the no-
penetration and no-pressure jump conditions at
certain control points on these segments. These
two steps of calculationsrepresent one iterative
cycle. Several iterative cycles are performed
until the positions of the frae-vortex segments
or the circulation distributions converge.

Figure 3 shows a typical converged solution
of the system of free-vortex lines in three view
for a delta wing of aspect ratio of unity and 15
angle of attack. The plan view also slows the
arrangement of bound-vortex lattice. In the three
dimensional view the leading-edge cart (LEC) is
shown. This core is calculated attar the solution
converges and it represents the centroid of the
leading-edge vortex system.

Comparison of height and spanwise position of
the calculated Ca Mold with those of the measured
leading-edge care^^4 is given in figure 4. Al-
though this comparison was encouraging, the calcu-
lated centroid does not model the physical vortex
core where the vortex core is continuously fad
with Vorticity from the leading edge through the
free-shear layers. Using the system of free-
vortex lines. the total-aerodynamic loads were
accurately calculated but the calculated surface
pressure distribution was unsatisfactory. On the
other hand, using the cantrold of the leading-edge
vortex system instead of the leading-edge vortex
system itlelf, the calculated surface pressure
improved33 (this does not satisfy the no-penstra-
tion condition on the wing since the centroid is
calculated after the solution converges.) It
should also be noted here that replacing the
leading-edge vortex system by its cantrold is
similar to the model used by legendrel6.

Figure 5 shows a recent converged solution of
the system of free-vortex lines  with a long de-
formed wake. It can be seen that the trace of the
trailing-edge vortex system In cross planes indi-
cates that the sheet tends to deform upwards
showing a tendency to form a trailing-edge vortex
core. However, the cross-flow planes taken further
downstream show that the free-vortex lines leap-
frog. This does not represent the real flow.
Figure 6 shows four of this cross-flow planes
taken perpendicular to the wind direction.

It is clearly seen from the few examples
given above, that the existing model of the NOV-
method does not realistically model the leading•
and trailing-edge vortex carts. Therefore, the
model and the numerical technique must be modified
in order to obtain realistic vortex-core modeling.

The MMOV-MeShod and M04011 go of the Primar
vortex Wre

In the MNOV-Method a realistic modeling of —s
primary-vortex core region is introduced. the aid
NOV-method is only used in the first iterative cycle
to initiate the roll-up process and to calculate
the centroid of the leading-edge vortex system.
Next, the leading- and trailing-edge vortex segments
are replaced by smaller segments. Then. the itera-
tive cycles proceed.

In a typical iterative cycle, each free-vortex
line of the leading-edge vortex system 1s allowed
three-dimensionally to rotate around the most
recently calculated centroid a prescribed portion
of a turn (1/4, 1/2, 3/4, or 1 turn). This is
done by continuously checking the coordinates of the
free-vortex segments (as they are adjusted) with the
location of the calculated centroid. Once this is
achieved, the remaining free-vortex segments of each
line are dumped into the calculated cantroidal tine
3f the vortex system. The iterative technique is
followed until the circulation distribution con-
verges.

Figure 7 shows typical solutions at different
iterative cycles. It can be seen that after one
iterative cycle, the system of fret-vortex lines
shows good roll-up. The converged solution, indi-
cated by ITER-6, shows the leading-edge core and
its feeding free-vortex lines. It can also be seen
that the free-vortex lines continues to feed the
LEC beyond the trailing edge. The trailing-edgqe
core is also indicated on the figure. This will
be clearly seen in the cross-flow planes discussed
in the next section.

Figguures 8 and 9 show converged solutions _;-ng
a 12 x 12 bound-vortex lattice for i/4 and 1/2 turns
of the free-vortex lines.

II.4. Numerical Cxawles and Comparisons with
Mummel's Experimental Kesults

The calculated circulations around the free-
vortex lines emanating from the wing trailing edge
was found to be of opposite sign to that of the
free-vortex lines emanating from the wing leading
edge. This is in agreement with Hummel's measure-
ments. The difference in the signs can be explained
as follows:

The primary-vortex core creates large suction
pressure peak and hence the pressure continuously
rises in the spanwise direction from the wing axis
to the location of the suction peak (this is com-
pletely opposite to the sn.snwise variation of
pressure for wing; with 1„rge aspect ratio and smell
angles of attack.) Consequently, the circulation of
the spanwise bourd-vortex segments increases in the
spanwise direction. in order to satisfy the spatial
conservation of circulation at the nodes of the
bound-vortex lattice, the spanwise increase of
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circulation requires the circulation of the chord-
wise bound-vortex segments to be of opposite sign.
In the present model. the leading-edge vortex
system originates from spenwise-vortex segments at
the leading edge while the trailing-edge vortex
system originates from chordwise-vortex segments.

According to the difference in sign of the
circulation of the trailing-edge vortex system from
that of the leading-edge vortex system, one expects
the trailing-edge vortax system to roll up in an
opposite sense to the roil-up of the leading-edge
vortex system.

In reference 46, the results of the MNDV-
method using 1/4 and 1/2 turns only for the leading-
edge vortex lines were presented. In this paper.
we add to these cases the results of the 3/4 turn.
The latest results clearly show the capability of
the ITV-method in reproducing and confirming the
experimental results of Huim ml .

Flguresl0 -12 show comparisons between the
experimental and numerical results for leading- and
trailing-edge vortex sheets and flow directions in
cross-flow planes perpendicular to the wind direc-
tion. The numerical resul ts are drawn at the same
scale as that of the exper.mmntal results. The
predicted sizes and locat'{.ns of the leading- and
trailing-edge vortex shoe: • are in excellent agree-
ment with the measures or,° t. The results of the
3/4 turn show the tha correct roll-up of the trail-
ing-edge vortex sheet and the correct locations of
the LEC and TEC. This is exactly whit we expected
when we increased the roll-um from 1/2 to 3/4 turn.
With the 3/4 turn of the leading-edge vortex systam.
the roll-up tightens and larger velocities are
induced at the trailing-edge vortex sheet which
cause it to deform upwards and leftwards. Due to
the large curvature of the trailing-edge vortex
sheet (Figure 12. 3/4 turn case), one can see a
small leapfrog at the TEC location. This is
attributed to the insufficient number of vortex
lines used to model this large curvature.

Figure 13 shows the results for an aspect
ratio of 1.45. It is seen, by comparing these
results with the corresponding results for the
aspect ratio of one, that the TEC develops earlier
than that of the aspect ratio of one.

Figure 14 shows comperions between the pre-
dicted and measured static-pressure contours in
different cross-flow planes. The predicted sizes,
locations, and levels of the pressure contours are
in good agreement with those of the measured data.

Figure 15 shows comparisons -if the predicted
and measured spanwise net surface pressure variation
at difference chordwise stations. It is seen that
the results of the 3/4 turn are more accurate than
that of the 1/2 turn. With 3/4 turn. the roll-up
of the leading-edge vortex system tightens and
produces better predicted distribution than that of
the 1/2 turn.

The developed computer program of the MNDV-
method is computationally efficient. One CYBER-115
machine. a typical solution using a 12 x 12 lattice
and including the cross-flaw planes calculation
takes 10 minutes of CPU time.

Currently the technique is modified for
accurate near-field calculations by replacing the

concentrated vortex segments with vortex panels
having linear vorticlty distributions. The vorticity
functions are expressed in terms of the unknown
circulations of the original concentrated vortex
segments. This is the opposite process currently
used in the Nonlinear Hybrid-Vortex Method 46.

III. Steady Viscous Model of the Vortex Core

111.1, Nomenclature

Ar	grid aspect ratio n AC/Ax

a	 fraction of the step size in the x-direction
b	 n I - e
Acr characteristic length

h	 radial velocity in the computational domain •
w / a

k	 swirl velocity in the computational domain n
aCv

m	 axial station number
M	 radial station number
p	 pressure
R	 n b/a
R	 Reynold's number
re	 stretched radial coordinate • gift!

radial coordinate
ro (x) stretched outer core radius at any axial

stati on
ro (xi ) stretched outer core radius at the initial

axial station
DO	freestream velocity

u	 axial velocity
v	 swirl velocity
w	 stretched radial velocity • wRf
Q	 radial velocity
x	 axial coordinate
Ox	 axial step size
A	 shape factor n ro(x)/ro(xi)

C	 radial coordinate in the computational domain
(o	outer radius to the computational domain

g	 radial step site

111.2. Formulation of the problem

Starting with the nondimensional Navler-Stokes
equations for incompressible axisymmatric steady
flow, using a boundary-layer-like stretching trans-
formation and performing an order of menude

analysis, one obtains the nondimensionat equations
for quasi-cylindrical vortex flows48.

aw + w+au n 0	 (1)'Jr r 77

v2 n ?P	 (2)
F r

au	 h n 3+ 32u + 1 au	 (3)

w av + wv + av a 2v + 1 av _ v
r	 u 3x	

arz	
r ar ;7(4)
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This 1s a parabolic set of equations and hence a
finite difference marching technique proceeding in
the axial direction is applicable to this set. A
basic difference between these equations and the
first order boundary-layer equations is the
pressure term. In the boundary-layer equations,
the pressure across the boundary-layer thickness is
constant while in the present equations the pressure
is varyin in the radial direction as given by
equation 12).

The viscous region diverrggtts in the downstream
direction due to the swirl induced adverse pressure
gradient. If the finite-difference grid is con-
structed in this physical domain, one needs to
increase the 

number 
of grid points In the radial

direction as one proceeds downstream. For computa-
tional efficiency and convenience of applying the
finite-difference marching technique, It is desir-
able to transform the physical diverging domain
into a rectangular computation domain. In this way,
equal number of grid points can be used In the
radial direction at each station of the axial
direction (see figure 16). This is easily achieved
by adopting the transformation used by Mall

E • r(x)/A(x)	 (5)

A(x) - ro (x)/ro (x i )	 (6)

Thus, the outer boundary 
C  

at any axial station
becomes a constant

Eo - ro (x)/A(x) • ro (x i ) • constant	 (7)

Moreover. the swirl velocity v is transformed into
a variable proportional to the circulation k, while
the radial velocity is scaled by the shape factor

k(x.c) - rv(x.r) - Acv	 (8)

h(x.c) • w(x,r)/A	 (9)

Using the transformation equations of equations
(5). (6). (8) and (9) into equations il) - (4). we
get

a ^h - -c ^ * C2 T V	
(10)

a	 k2	
(11)

au 1

3^ aZ^J

	

2	 ,

u	 -	
+ (h - ^ Cu - -w-

A ac

	A
3 

k 
2 - 2x	

(12)

ik	 32kA	 ak . 0
	 ti3)ur-8^ + (h - 7 Gu +)

	

A ac	 A c

Equations (10) - (13) are the governing equations
in the computational domain. Equation e. (10) - (11)
are first order equations in h and p; respectively.
while equations (12) and (13) are parabolic
equations in u and k; res pective l y. Therefore, the
boumoary conditions on h and p must be specified

on only one boundary; either on the axis or on the
boundary c0 • cons t, while the boundary conditions
on u and It must be specified on the axis and the
outer boundary.

Along the core axis, c - 0, the following
boundary conditions are imposed:

c^ - k(X,0) - h(x.0; • 0	 (14)

The first condition exprsues the fact that the
axial velocity is symmetrical about the axis. The
second condition requires the circulation to vanish
on the axial Le., a rigid body motion exists in
the limit as the axis 1s approached. The third
condition requires the radial velocity to vanish in
the absence of sources or sinks on the axis. On
the outer surface, the following boundary conditionm
must be specified:

u(x.co) • uo (x). k(x.co) • ko(x), p (x.co) - po(x)

(1S)

The functions u (x), It (x). and p (x) are provided
by the 1nviscidosoluti8n of the ater flow obtained
in Section II.4.

The initial conditions at the initial station
xi are given by

u(xi .c) - u l (c). k(x i ,c) - ki (c)	 (16)

These profiles are obtained from experimental data
or from previous approximate solutions. Alterna-
tively, they may be obtained from the three
dimensional 'viscous flow solution on the wing
surface.

111.3. The Finite Difference Techni que and
m,luasn n lnotrrzation

In this section, we develop the basic dif-
ference equations required to determine a function
or its derivatives along the axial and radial
directions with second-order accuracy. Next, we
develop a -quasilinearization technique' to
linearize the nonlinear terms in the equations.

Figure 17 shows a rectangular computational
domain covered by a grid system consisting of
constant x and t lines. Subscript m refers to
the point number in the x direction while subscript
n refers to the point number in the Z direction.
The deveioped equations are evaluated at the xc
location which is defined as follows:

xc • xm + a	 6x - xm + &(X 
0+1, 

X0 )	 (17)

where a+b•1

Expanding the fucctions 8 e n and 6m+1 n about point

(c.n). adding and neglecting terms of^0(ax) 2 or
higher, we got

roan = DG
m.n + a6n+j ,m + O(ax) 2	(18)

Subtracting the two expansions I.., and Cm.1 n,
we get	 '

6
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n - F"-a) 1
2
 C A + 0(0x)7

 in

!y letting b-a-Oiox), the second term on the right
becomes of 0(nx) z and the equation can be truncated
there and we get

sG
t.n	 i n - %.n2

 0(0x)2	(19)
ax	 ax

Expanding Gt.n+l and f`c.n-1 about point (c,n),

subtractin and adding the uations, nws obtain
the following	

eq
ng equations; respectively

a`^ c.n 
• G_ __, t aC. 

-1 
+ O(AC) 	 (20)

126 	 . 6	 24	 • G n-1 • 0(K )2	 (21)iln

ac	 (ac)

Substituting eq. (le) into eqs. (20) and (21), we
get

IQ CA • a(6mr•1, n+l	 ^m+l.n•1^ ' b( ^m.n.l - ^.n-1)
ac	 tat

+ C(ac)2	
(22)

a2 6- - - a (6e+1.n+i - 2%O1 .fl ' 1,+1.n-1 )   •

ac =	 W)

b(6m n+l - 21,,n + Gm n-1)+ O(AC) 
2	 (23)

(ac)

Next. we consider the :Quasi I inearization Tech-
nique.' Equations (10) - (/2) include nonlinear
terms, e.g.; 

au
au W
	

etc. which produce

nonlinear 4lgebralc terms in the finite difference
form. Sinca the solution of nonlinear equations is
time consuming. one needs to linearize these tarn .
For this purpose. we consider Taylor's expansions
of two functions Gm-1. , and Mm+l,n about Gm.n and

Nm n ; raspectively, and form the linearized ex pres-

lion of a typical nonlinear tars 
60+i,n N0+l.n

G,V+1 ,n Nm+l ,n m Gm+l .n Ms.n ' an., Mm+, ,n -

Mm,n + 0(ax)2	(24)6m,n 

Since to* ggoovern i n equations are evaluated at
point (c,n), a typical nonlinear term at this point
is linearized as follows

Gc.n M
c.n	 a Gm+l,n Mm,n ' Gm,n Me+l,n

( 1- 1 ) Ge.n MI.n] • O(ex) 2	(21)

rhea^e 4 06/4	 (26)

It should be mated that ems. (16) and (24) are used
to derive eq. (25).

111.4.	 i	 n.1 ("itio"I of the Go verning

Iduatio"A

:on inui [me i n
Y 1s evaluated at point (co-y).

Using the difference expressions developed in the
preceding section. one obtains the following
equation:

( "	 aA^1.n 
• NET, 10+1 R.1 + R (n- I Am.n-1 - Am.n

+	 ()t[Rvm (2n-3) + 1 J um on - (Rem (2n-3)

veto• , + (ve (2n-3) - 11 um+l.n - (vm (2n-3)

+ 1]
t.n•1	 a (27)

who

ntum Eowt1

Equation (11) 1s evaluated at point (CO-0 .
Using the difference expressions developed to the
preceding soctlon, one obtains the following
equation:

0
M1.n-1 • 04+1.n + R( pe.n - pe.n-1)

6_
2a

' (28 J)	
,n(R(ke.n ' 'm-1) + (xN	

2
l ^ n + a l^n-1)^

(29)

where

in - -1/(a 2 642""1 + R4)2 J	 (30)

ntum Eouation

Equation (12) is evaluated at point (C.O.
 Cho difference expressions developed in the

preceding section, one obtains the following
equation:

Rn km+l.n-i ' Rn km+l,n ' Cn "1 ."-1 • In	 (31)

where

An • a(6n + Yn )	 (32)

In • an - 2a i n 	(73)

Cn • a(6n - rn )	 (34)

un	 .R(Em • Y n ) km.n .i + (an • 2b En)km.n

aR(En • t m ) km.n-1	 (35)

am • Um.m/Gx	 (36)
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a	 where

H • {h and I • 2k [ 	- { (H+1) at]	 (47)

- At {n- 13 vm (Rum n 
+ uum+l,n) - 8n/(n- 1)]	 (37)	 uK

To obtain the difference equation of eq. (46), we

x-Momentum Equation	 evaluate the equation at point (l,n-}). The inte-
gral on the right-hand side is evaluated by using

Equation (13) is evaluated at point (c,n).	 the trapezoidal rule. The resulting equation is

Using the difference expressions developed in the
preceding section, one obtains the following 	 N	 1H	 u	 - u	 + uequation:	 1,n	 u1,n_1 [ l,n-1 l,n	 l,n	 1.n-1

An um+i.n+l +	 n ue+l,n + ['n 'f*i.n-1 • On	 (38) - 4(n-3/2 )
(ul •n-2 - ul.n-} + ul,n-1)]

+	

2n-32
[	 ('I'n-1 + Il,n-})n_2where ul.n-1

A	 • a(8	 + 0	 + 0	 uAn	 n	 n	 n	 m,n (39)
n•2

+,Z (I	 + I	 +1.1	 l,n-1 ) n--3	 ^(^	 Il,i)n>4]	 (48)

in • a., - 2a8n + 9n(um,n+1 um,n_ 1 )	 (40)
III.5.2.	 Subsequent Stations

en • a8n - auyn - 8n um,n (41)
Nero, iteration must be used to obtain the

0•
vm an
—	

[2	 +

2 solutions for 
lm+I- hm+l,n- pm+l,n- 'e+i,n and

u	 The shape factor	 then	 n_ I	 ^e+l,n	 ,n( (R•1) km],n m+I .n	 Xe+i which signifies
expansion of the viscous core in the downstream

• (pm+l,n - pm,n)/&x
direction can be determined by iteration or by
assuming that the outer boundary is a stream sur-
face.	 If the shape of the outer boundary is

+ [a	 + 2b8	 - (R-1)(un	 n	 m,n+I - u	 )8 ] um,n-1	 n	 m.n
prescribed, then '0+1 is already known.	 Next, we

describe the steps used to proceed in the downstream
direction using equations (27), (29), (31) and (39).

- b(dn + Vin) um,n+1 '- b ( 8n - fin) um,n_1	
(42)

i.	 Equation (27) is used to calculate ha+l,n'

aFyn • }[^ 
(Rhm,n + hm+I,n ) + 0'/0-03	 (43)

Starting at n • 2, we march toward n • N + 1. 	 On
the right hand side h	 h	 , h	 , u+I,n-1mm,n-1	 m,n	 m,n

8	
• -

(n-1)
v (^) um,n-1 and ve are known while um+1,n and um+l,n-1

n	 m are unknown.	 The latter values are initially
extrapolated from the preceding station values um,n

and um,n-1'	 (During the iteration cycles, they are
II.S.	 Method of Solution Implementation, and assumed equal to the recently calculated values of

Computer Prtqram the preceding iteration.)

III.5.1. Initial Axial Station

Once the axial- and swirl-velocity profiles are
specified, equation (16), the initial pressure and
initial radial-velocity profiles are calculated from
equations (10)-(13). for the initial pressure,
equation (11) is evaluated at point (1,n-J) and we
obtain	 2

_ (k i n + kl n-1)

	

p1,n-1 • 	p1.n	
4" . 0-3/2)	

(45)

This equation is used to calculate the initial
pressure.

For the initial radial velocity, we eliminate
the axial derivatives in Equations (10)-(13) and
obtain the following equation

	

2	 {

	a{	 o

ii. Equation (31) is used next to calculate km+i,n

Following the Tridiagonal Algorithm, we obtain the
following recurrence equations.

I s D 	 C  In•	 -An	 (49)J •	 +

	

n n n-I	 n n1

I 1 • J 1 n 0	 (50)

km+l,n ' I n + Jn km+1,n+1	 (51)

Starting at n • 2, we march toward n • N	 to
calculate It and J using eqs. (49) and (50). Since
the value 8f km+lnN+1 is known from the boundary

conditions, we march backward from n • N to n n 2
to calculate k

m+1	
using eq. (51). The unknown

value of u"1,n, 4. (37), is initially extrapolated

8
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from the preceding station value u,,, . (During he
iteration process, they ere assumed-'Dual to the
recently calculated values of the preceding itera-
tion.)

A Plotting Subroutine is also included to
plot the profiles h, k, p and u at any desired
station.

iii. Equation (29) is used next to calculate
pm+l.n-1 starting from n - N + land marching toward

n - 2.

iv. Equation (38) is used next to calculate
um+l.n- The following recurrence equations are used.

-A
L	 Dn - to Ln_1	

Nn	
n	

(52)n 
8n + Cn Nn-1	 8n + Cn Nn-1

L 1 - 0. Mi - 1	 (53)

ue+l.n * Ln + Mn um+l,n+1	 (54)

Here, we march upward and backward in the same way
as step iii using equations (52) - (54).

v. Steps i-iv are repeated until the calculated
values converge.

vi. Next, we march to the next axial station. It
should be noted that if convergence failed at any
or took large number of iteration cycles, this
indicates that the breakdown point may be reached.
The boundary-layer-like equations are not valid
in this region and one has to resort to the Navier-
Stokes equations.

111.5.3. Computer Program

A computer program is written to implement the
developed method of solution. The Main Program
reads the boundary conditions and initial conditions
either in the form of discrete values or in the
form of analytic expressions. It also reads the
step size dc. aspect ratio of the grid A-, number

of steps N in the c direction, the parameter a.
and the ratio R. The main program interacts with
several subroutines.

Two subroutines are devoted to the initial
conditions; the first calculates the initial
pressure profile 

Pl.n-1 
while the second calculates

the profile of initial radial velocity hl'n.

Another five subroutines are used to calculate

^11+1. hm+l ,n' km+l .n' Pm+1,n-1 and ue+l ,n. These
subroutines are successively called in the main
program within a continuous iterative loop until
the values of h, k. p and v converge at two succes-
sive cycles of iteration. If convergence is not
reached at any downstream station a fter a prescribed
number of iterations, the program stops. This is
an indication that this station is closely upstream
of the breakdown station. If the program converges
at all stations, it is stopped after a prescribed
distance in the axial direction. In the case of
the l eading-edge vortex core, the program stops
after a distance equals to one and one-hall the
wing root chord.

Figure 18 shows a flow chart of the main fea-
tures of the computer program.

III.6. Numerical ELMIes

Preliminary numerical examples have been con-
sidered to check the developed computer program.
In this paper. the results for a trailing-edge
vortex core calculations are presented. Typical
velocity profiles for the initial viscous-core flow
are used. This example was considered earlier by
Halt	 The application to a leading-edge vortex
core, with boundary conditions obtained from the
1 mwiscid model. is currently considered. The DEC-
10 Computer of the Old Cominion University Computer
Center is used to carry out the calculations.

For the trailing-edge vortex core. the follow-
ing initial conditions are used:

At x 1 0.25, we have

u(x i .L) - 1 - 0.25 exp (-c2I.

k(xi .C) - 0.5[1-*xP(-C2)]

For the boundary conditions. the following
conditions are used:

At co - 6.0 and for 0.25 < x < 1.0. we have

u(Go.x) • 1.0. k (co .x) -as. P(co .x) - 1.0

The shape factor of the outer boundary is
considered constant; ^(x) - 1.0. In the axial
direction, 15 stations are taken (Ax n 0.05),
while in the radial direction, 80 stations are
taken (dc - 0.075). The factor R is taken to be
1.0. Figure 19 shows the axial- and swirl-velocity
profiles at x - 0.25 , 0.5 , 0.75 and 1.0. One can
see the strong interaction between the axial and
swirl velocities. As the swirl velocity decreases
in the downstream direction, the axial-velocity
deficit 1-u decreases too. These results agree
exactly with those of reference 48. The results

of the linear theories 
52,53 

are also included in
the figure. The computational time for this cast
took 4.0 seconds of CPU time.

IV. Concluding Remark

Integrated numerical methods are developed for
the inviscid and viscous solutions of highly swept-
back winya at large angies of attack. The results
of the MMV-method are remarkably successful in
predicting Hummel's experimental data. The devel-
oped viscous program, based on the first order
boundary-layer-like equations, successfully repro-
duces Hall's numerical results. Currently, accurate
near-field calculations of the inviscid model are
developed to provide the boundary conditions ^eeded
for the viticous solutions of the leading- and
trailing-edge cores.
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three-dijensional views; AR - 1,
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STEADY AND UNSTEADY INCOMPRESSIBLE FREE-WAKE ANALYSIS

Dr. Osama A. 4andil, Associate Professor
Department of Mechanical Engineering and Mechanics
Old Dominion University, Norfolk, Va. 23508, USA

Tel. 804-440-3720

ABSTRACT
The first part of this lecture covers detailed descriptions of the

flows around highly sweptback wings and bodies of revolution at high
angle of attack. Next, inviscid model approximations and mathematical
formulation of the problem are given for steady and unsteady Incompres-
sible flows. .A general presentation of the methods of solution is
given with emphasis on the modern computational techniques. Detailed
descriptions of the nonlinear vortex- lattice and vortex-panel techniques
are presented to show how the boundary conditions are enforced using
iteration.

Typical numerical results are compared with the available experi-
mental data. The lecture ends with concluding remarks regarding the
existing computational techniques and the outstanding problems in
this area.
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IN RECENT YEARS, accurate analysis and reliable prediction of vortex
flows have become extremely important to aerod namicists dealing with
modern designs of fighter aircrafts, l missiles and helicopters.3
Modern fighter aircrafts fly at high angles of attack during take-off,
offensive and defensive maneuvering, approach and landing. In this
range of angle of attack., vortex flows develop around the aircraft
with dominant effects on its aerodynamic characteristics and controlla-
bility. Modern designs of missiles require high launch angles of attack
and high maneuverability within which a very complex vortex flow
develops. For helicopters, the interaction of a blade with the vortex
wake of another blade affects its operating performance, vibration and
noise characteristics. In forward speeds, blade slap, a predominant
source of external noise, occurs due to the rapid time rates of change
of the blade pressure developing from its passage through a tip vortex
of a preceding blade. Examples of these vortex flows are given in

Figure 1
For all these applications, one has to deal with strong nonlinear

aerodynamics. Compressibility and separation of the flow are the main
sources of the strong nonlinear effects. As the flow Mach number changes
from low subsonic to transonic and supersonic, the flow undergoes

several qualitative changes a:A shack waves (detached or attached)6+7
appear in the flow. As the angle of attack increases from low to
moderate and high values, the lift- and pitching- moment coefficients
became nonlinear functions of the angle of attack. This nonlinear
behavior of the total loads is attrib­ i^d to flow separations, from
the wing edges ( side and leading edge.	 > id the body leeward side, in
the form of vortex sheets that roll up into strong vortex cores.

Prediction of the coupled effects of nonlinearities; compressible
and separated flow nonlinearities, is currently receiving considerable
efforts from researchers working i n the computational fluid dynamics
area, but it is far from being complete. In the supersonic flow regime,
a few successful attempts based on the finite difference solution of
Euler ' s equations exists . 8 , 9 In the transonic flow regime, nothing is

available yet and several efforts have just btarted.
In the present lecture, I am going to discuss the nonlinearity due

to flow Separation only. Compressibility effects will be presented
using the Prandtl -Glauert transformation. The full nonlinear com-
pressibility effects will be presented in the next lecture using the
integral equation formulation (Greln's function solutions). In this
regard, the lecturer has presented 10 a steady nonlinfti- vortex lattice
technique which accounts for the full nonlinear compressibility terms
in the nonlinear potential equation. Flow compressibility in this
technique is modeled by volume -source distribution within a finite
volume around the body. The technique has not been numerically tested
yet but work is underway using a similar technique which includes
shock capturing using the artificial compressibility method of reference
11.

The first part of this lecture covers a description of the flow
based on the available experimental measurements. This is followed by
the inviscid model approximations and the mathematical formulation of
the steady and unsteady problems. A general presentation of the methods
of solutions is given with emphasis on the modern computational techni
ques. Detailed descriptions of the nonlinear vortex-lattice and vortex-
panel techniques are presented to show how the boundary conditions are
enforced using iteration. Typical numerical results are compared with

F
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the available experimental data. The lecture ends with concluding
remarks regarding the existing computational techniques and the out-
standing problems in this area.

Major portions of this lecture are based on earlier published
papers, reports and theses 10 , 12-22 by the lecturer, his collaborators
and his students.

DESCRIPTION OF THE FLOW FIELD

In the low-subsonic to transonic speed range, numerous experimental
data are available for vortex flows about highly swept back wings23-38
and bodies of revolution 39-5 1 at an angle of attack.

HIGHLY SWEPT BACK WINGS-The fluid flow past such wings is charac-
teri%:c by flow separations from side and leading edges due to strong
cross lows. The flows from the pressure and suction sides of the wing
leave at the side and leading edges to form free -shear layers. The
separated free-shear layers roll up spirally and form two vortex cores

which are continuously fed by vorticity shed from the attached boundary
layers on the wing surfaces through the free -shear layers. This type
of flow separation is known as the "primary separation." It has a
dominant effect on the aerodynamic characteristics due to the large
strength of its vortex core and its prximity to the upper surface
of the wing. It generates a large suction pressure peak on the upper
surface under the primary vortex core.

The primary separation lines of wings with sharp leading and side
edges are fixed along these edges and hence they are known a priori.
In the case of rounded edges, the sepa-ation lines are inboard of the
edges and are not known a priori. Hence a viscous model or perhaps an
empirical formula is needed to locate these lines.

The adverse pressure gradient outboard of the suction peaks affects
the boundary layer flow on the upper surface and "secondary separation"
from the wing surface occurs. The secondary separated flow forms either
an additional free shear layer or a bubble depending on the angle of
attack. In the range of moderate to large angles of attack, the secon-
dary free-shear layer rolls up spirally in an opposite sense to that of
the primary shear layer and forms a secondary vortex core with a
strength much smaller than that of the primary core and of opposite

-sense. The effect of secondary separation depends on the type of
boundary-layer flow on the upper surface. For a laminar boundary layer,
the secondary core produces another lower pressure peak between the
secondary and primary lines of separation. For a turbulent boundary
layer, such a pressure peak is hardly noticed, and the primary pressure
peak is slightly higher than that of the laminar boundary-layer flow.4

A third type of flow involving a "tertiary" separation may occur
between the lines of secondary and primary separation due to the adverse
pressure gradient created by the secondary vortex core. Figure 2 gives
a schematic of these flow separations.

The free -shear layer emanating from the trailing edge is of oppo-
site strength to that of the primary free-shear layer. Within a short
distance behind the trailing edge (a distance of a 1/4 root-chord
length for a delta wing of aspect ratio of one at 20. 5' angle of attack),
the trailing free-shear layer rolls up spirally in an ^pposite sense to
that of the primary free-shear layer and forms two counter rotating
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vortex cores. The trailing-edge vortex core has the same sense of
rotation and almost the same spanwise location as those of the secondary
vortex core, although each originates from a different phenomenon.
The former is due to an edge separation while the latter is due to a
surface separation. Hummel4 concluded from his latest experimental
measurements for turbulent boundary layers at the trailing edge that

the secondary-vortex core decays rapidly behind the trailing edge
and its remains roll up into the trailing vortex.

Predicting the correct formation of the trailing-edge vortex core
is essential for predicting the correct aerodynamic loads near the
wing trailing edge due to its proximity to this dege. Moreover, a
correct prediction is of paramount importance to problems involving
high-angle-of-attack aerodynamics for the canard-wing configurations.

The size of the primary-vortex core and viscosity of the flow with-
in a narrow region around the core centerline play important roles in
the aerodynamic characteristics of low -aspect ratio wings at large
angles of attack. For these types of wings, it is well known that the
lift coefficient increases nonlinearly with the increase in the angle
of attach. This is attributed to the increase of the strength of the
primary vortex core. However, the increase in the lift coefficient
is limited by the occurrence of vortex-core breakdown over the wing and
hence there exists a maximum angle of attack corresponding to the maxi-
mum lift, Figure 3.

The phenomenon of vortex-core breakdown is defined as an abrupt
increase in the core diameter. It occurs due to the adverse swirl-
induced pressure gradients along the core axis. Using the radial com-
ponent of the momentum equation of the boundary-layer like equations
(for quasi -cylinderical vortex cores), one can show that an increase
in the swirl velocity of the flow, due to an increase in the core
strength, increases the axial pressure gradient along the core axis.
Therefore, the flow near the core axis loses its axial momentum and

swe l ling of the vortex core develops.
For moderate angles of attack, vortex-core breakdown develops far

downstream from the wing trailing edge. As the angle of attack
increases, vortex-core strength increases and the breakdown point
travels upstream toward the trailing edge. As the breakdown point
approaches the trailing edge, the slope of the lift versus angle of
attack curve decreases until the maximum lift'is reached. Thereafter,
the lift coefficient drops sharply, the breakdown point crosses the
trailing edge and the wing stalls.

SLENDER BODIES - Three distinct patterns of flow separa-:ion develop
on the leeward side of a slender body as it is pitched through three
ranges of angles of attack.

At low to moderate angles of attack (6°-25°), two symmetric vor-
tices appear on the leeward side which consist of two counter rotating
vortex cores with increasing strength and size in the downstream direc-
tion. Vorticity from the boundary- layer flow on the body surface is
shed from the separation lines and feeds the vortex cores through roll-
up free-shear layers. This type of flow separation is also known as the
primary separation. The separated flow has a dominant effect on the
pressure distribution on the leeward side. Similar to the flow around
delta wings, secondary-flow separation develops also inboard of the
primary separation line.
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Above the 25° angle of attack, the two continuous feeding free-
shear layers break-up asymmetrically at points along the two separation

lines and multiple pairs of asymmetric vortex cores form over the lee-
ward side of the body. Each vortex core originates from a separate

point on the separation line. Ericsson and Reding 52 conclude that both

the "vortex crowding" near the body nose and the degree of freedom of
the separation point may contribute to the formation of asymmetric

vortices. The resulting asymmetric pattern of vortex cores produces
large side forces which can be larger than the normal force.

At very large angles of attack, above 60° angle of attack, the
crossflow becomes dominant and unsteady vortex shedding starts. The
separated free-shear layers are shed in the form of a Karman vortex

street.

APPROXIMATIONS FOR INVISCID ANALYSIS

The experimental results given above show that we are dealing with

highly c anplex flow fields. For highly swept back wings, four different
vortex cores (primary, secondary, tertiary, and trailing-edge) have been

found and apparently their origins are well understood. For bodies of

revolutions, two different vortex cores (primary and secondary) have
been found and three different modes of flow separation (steady sym-
metric, steady asymmetric and unsteady asymmetric) have been identified.
For inviscid analysis, certain approximations are adopted so that the

resulting potential flow model represents the main features of the real

flow to a good degree of accuracy.
For wings, the effect of the tertiary vortex core is very small and

can be neglected. The effect of the secondary vortex core is small in
symmetric flows particulary when the boundary layer on the suction side

is turbulent. Hence, its effect on surface pressures and integrated
forces can be neglected without Appreciable error under the conditions
stated. Thus, we are left with the primry flow separation and the
trailing-edge flow separation. For an isolated wing, the effect of
deformation of the primary and trailing-edge vortex cores and their
feeding free-shear layers is neglected after a distance of about 1/2
to 1 root chord since it is a far field effect. For canard-wing,
wing-tail. and strake-wing configurations, this effect must be taken

into account.
In most inviscid analyses, the attached boundary layers are

replaced with bound-vortex sheets while the free-shear layers are
replaced with free-vortex sheets. Accordingly, the inviscid region
representing the vortex core should be represented by a conical sprial
vortex sheet which ends with a concentrated vortex line along the core
centerline. Although this theoretical representation of the vortex-
core is ideal for the inviscid model, the usage of many turns within
the core region creates numerical problems in a three-dimensional model
which does not assume slender-body approximations. The numerical

problems arise due to the proximity of the vortex layers of the spiral

and due to the large number of small-size panels needed to accurately
model the turns. However, it was found, according to the numerical
results and their excellent comparison with the experimental data,
that only one turn of the spiral need to be accurately modeled while
the remaining turns of the spiral are replaced .,y a cut ending with a
concentrated vortex line along its edge (Figure 4.)
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Since one does not know a priori where the trailing-edge vortex core
originates, one has to obtain it as a part of the solution. This has
been successfully accomplished, for the first time, by the lecturerl3,15.

In all inviscid wing models, the wing edges are assumed to be
sharp so that the separation lines are known a priori and hence viscous
modeling is not needed to determine the lines of separations. However,
for wings with round edges, viscous modeling is needed to determine
these lines. Moreover, vortex-breakdown points are assumed to be far

downstream so that the variations in the size of the primary -vortex

core can be neglected. In fact, this assumption limits the large
an§les of attack at which inviscid modeling is applicable. With the
vorticity confined to the inner boundary of the flow region (bound-
and free-vortex sheets), the resulting model is a potential-flow model

governed by Laplace ' s equation ( in ii ,compressible flows) and certain
boundary conditions.

For bodies, the effect of secondary separation is also small and
can be neglected. Unlike the primary separation of wings; the primary
separation lines are not known a priori and hence viscous solutions
are needed to locate there lines Inc > termine the strength of shed

vorticity (this is a separation from a smooth surface and hence Kutta
condition is not applicable). In this regard, the reader is referred
to the work of Mendenhall, Spangler and Perkins. 53 Since we are
dealing with inviscid analyses only, this problem will not be discussed
anymore in the present lecture. The rest of the lecture addresses the
steady and unsteady problems of wings with vortex flows.

MATHEMATICAL FORMULATION OF THE GENERAL PROBLEM

The problem is formulated relative to a wing-fixed frame of refer-
ence xyz. The x-axis is the wing centerline and the xy-plane is the
wing plane of symmetry. The wing_is rotating at the angular velocity
n and the freestream velocity is U,,. The general orientation of the
wing is described using the Eulerian angles a, e, and y, Figure 5, which
refer to the angles of attack, yaw and roll; respectively. In terms
of these angles and their time rate of change, the dimensionless
freestream velocity and the angular velocity are expressed by

s cosa toss T + (-sina cosy + cosa sine siny)j + (sina sing

+ cosa sins cosy)k 	 (1)

n = (-a sine + i)i + (a cose sing + s cosy)5 + ( a cosy cosy
- 8 siny)k = t2x i + n ,j + az k	 (2)

where i, j and K are the base unit vectors of the xyz-frame of
reference.

The unsteady irrotational ideal flow in the region outside of the
wing and its separated vortex sheets is governed by the Laplace's
equation
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72^ = 0	 (3)

where o(r,t) is the perturbation velocity potential. The no-penetra-
tion condition on the wing s(r,t), relative to the wing fixed frame

of reference, is given by

at
+ 	 + v^ - sixr ) -vs - 0 on s(r ,t) = 0	 (4-a)

For a rigid wing, i
s
 
= 0 and equation (4-a) reduces to

(ew + v^ - 5xr ) •ns = 0	 on s(r) - 0	 (4-b)

On the separated free-vortex sheet w(r,t), the no -penetration condition
is given by

aw

WE
	 (em + vo - sixr) -vw = 0 on w (r,t) - 0	 (5)

The no-pressure jump condition on w(r , t) is obtained from the unsteady
Bernoulli's equation

C p (r,t)	 + 2 ( em - sixr)] - 2 A	 (a)

where C (r,t) is the pressure coefficient at any point r and at any
time t? Forming the pressure jump from equation ( a) and equating the
result to zero, we obtain

oCp = Cpl - Cp2 = - (vo l - 70 2 )•[vp l + vo 2 + 2(em - 5xr)l

at

	
^2 ) = 0
	

(b)

where the subscripts 1 and 2 refer to the upper and lower surface of
the wing; respectively. Rearranging equation (b) and setting

0 1 - 0 2 = no	 (c)

one obtains

nCp = -2( at + vw ' °)( off) 
_ -2 LAO) = 0	 (d)

where vw - velocity of a wake element relative to the xyz -frame of
reference

. 2 (vo l + v0 2 ) + em - xr

Equation (d) represents the theorems of Melvin and Helmhotlz

_



OR G %AL PAGE IS
OF POOR QUALITY	 8

Dr = pt tt w nA d A = 0	 on w(F,t) = 0	 (6)

of conservation of the circulation and the outflow of vorticity;
respectively. Ire equation ( 6), RA is a unit normal to the surface A
bounded by a closed curve around which the circulation, r is calculated.
Equation ( 6) simply states that the rate of change of circulation around
a closed curve or the rate of change of outflow of vorticity through the
surface bounded by this closed curve is zero (following the same fluid
particles.;

For uniqueness of the solution, one has to impose the Kutta condi-
tion along the edges of separation. Here, Kutta condition is repre-
sented by

A C  I	 = 0	 (7)
TE,LE,SE

Finally, the infinity condition requires that

V# 0 away from s and w	 (8)

Equations(1) - (8) are the required equations for the general unsteady
flow problem.

For steady and unsteady symmetric flows, equations (1)-(8) are
simplified as follows:

STEADY-SYMMETRIC FLOW-For this problem, we set a-0, s =y =0 and
drop the time dependent terms. The resulting equations are

em = cosai- sinaj	 (g)

	720 = 0
	 (10)

(em + VO) • As = 0	 on s (F) z 0	 (11)

(e W+ VO) • nw = 0	 on w(F) = 0	 (12)

_ACp = -2(nwxw)	 ( em + vf) =0 	 on w(F) = 0	 (13)

AC  I	 = 0	 (14)
TE,LE,SE

of ^ 0 away from s and w 	 (15)

UNSTEADY-SYMMETRIC FLOW-For this problem, we set B =Y= s=Y=O and
the resulting equations are

em = cos a i - sin a j	 (16)

=i2z kak	 (17)
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v2^ = 0	 (18)	 ;`

(e,. 
+ v^ - aZxr)	 ns • 0	 on s 	 • 0	 (19)

	

iw+ a +v -nxr.• vw= 0 onw rt) • 0 	 20

D • 0	 on w(r,t) = 0	 (21)

ocp (	 = 0	 (22)

TE,LE,SE

v^ 1. 0	 away from s and w	 (23)

EXISTING METHODS OF SOLUTION

Before the Nonlinear Vortex-Lattice [Nonlinear Discrete-Vortex (NDV)]
and Nonlinear Vortex-Panel [Nonlinear Hybrid-Vortex (NHV)] methods are
discussed in detail, a brief discussion of the existing mathematical
models is presented. The literature contains several steady and unsteady
inviscid-flow models with various degrees of limitations and drawbacks.
These models can be divided into four main groups. Each group is
presented and evaluated in the next subsections.

SLENDER-BODY MODELS-This group of models uses slender body and
conical flow assumptions. 54- 61 Modeling of the primary-vortex core and

its feeding sheet was first introduced by Brown and Michael. 55 However,
the feeding sheet in their model was taken as a planar surface and hence
it did not represent the real rolled-up vortex sheet. Mangler and

Smith56 introduced the first realistic model of the primary-vortex core
and its feeding sheet. However, this model does not account for the

feeding-sheet deformation in the chordwise direction due to the slender-
body assumption. These models satisfactorily predict the pressure
distribution on the front portion of the wing surface. In the rear
portion, the models fail to predict satisfactory pressure distributions

because kutta condition cannot be satisfied at the trailing edge. Such
models were limited to slender delta pplanforms.

OLD NDV-MODELS-In these models, 0.17-22,62-66 the bound-vortex
sheet and the free-vortex sheets are approximated by a set of concen-
trated vortex lines. The bound-vortex sheet is replaced by a bound-
vortex lattice, while the free-vortex sheet is replaced by segmented

free-vortex lines (in the case of steady flow) or by a growing free-
vortex lattice (in the Li,3Q of unsteady flow). The boundary conditions
are satisfied at certain coi;troi points on the bound- and free-vortex
system using an iterative technique. Excellent agreement was foundl0.22
between calculated and experimental total aerodynamic characteristics,
and the agreement between calculated and experimental total aerodynamic

characteristics was satisfactor y for wings with only side-edge separa-
tion. For wings with leading-edge separation, however, the agreement
was less than satisfactory for some cases. Although the discrete-
vortex model has for many years worked very well for attached-flow

problems, 67 when vortex-type separation from leading edges and/or tips

f
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occurs, the free-vortex system lies close to the lifting-surface and

the results are found to be sensitive to the model of the primary
separated flow. The most obvious drawback of the old model is the

lack of a realistic model of the primary vortex core and its feeding

vortex sheet.
Although the old NDV-method was almost abandoned in predicting the

flow details and the distributed aerodynamic characteristics, 	 the

modified NOV-method l3 , 15 pinpointed and cured most of the problems
encountered with the old method. It enjoyed a remarkable success in
predicting, for the first time, the latest experimental results of

Hummel4.	
68-75

DOUBLET-PANEL MODELS-This group of models employs doublet-panels
In this method, the wing and its free-vortex sheets are divided into
networks of quadrilateral panels. Each panel of the networks repre-
senting the wing has a biquadratic local doublet distributions and a
bilinear local source.distribution. The panels of networks representing

the free-vortex sheets have biquadratic local doublet distributions.
Source and doublet splines are used to express the distributions of
singularities on the networks in terms of discrete values of singularity
strength at certain standard points on each network. The boundary
conditions and continuity of singularity strengths across abutting

networks are enforced i 0 4ertain standard points on network. The
results of this method	 are generally good when the solution con-
verges. Apparently, the difficulty in obtaining convergence is due to
the failure in satisfying the continuity of the derivatives of the
doublet strength across at-itting networks. This is equivalent to the
existence of concentrated vortex lines between abutting networks.

The doublet panel method was extended 75 to include the effect of

entrainment of the primary vortex cores through an empirical approach.
The results indicated that the entrainment increased the normal-force

coefficient substantially over the experimental values.
This group of models do not account for the chordwise deformation

of the primary-vortex sheet. Consequently, the primary vortex sheet
cannot be fed three-dimensionally with the shed vorticity. Moreover,

the trailing-edge free-vortex sheet was represented by a "fixed design

wake."
NHV-MODELS-This group of models employs a nonlinear hybrid vortex

method l2 , 14 , 16 . In this method, continuous-vorticity and vortex-line
representations of the wing and its separated free-shear layers are
used. Continuous vorticity is used in the near-field calculations
while discrete vortex-lines are used in the far-field calculations.

The wine, and its free-shear layers are divided into planar quadri-
lateral panels having first-order vorticity distribution. The aero-
dynamic boundary conditions and continuity of the vorticity distributions
are imposed at certain nodal points on the panels. To satisfy these
conditions, a-! iterative technique is followed which alternatively yields

the local vorticity distribution on the bound-vortex panes and the
shape of the free-vortex panels. This method has been used to calculate
the steady distributed and total loads on planar-low-aspect-raio rectan-
gular wings. The results have shown that the spanwise variations of the
load coefficients are in good agreement with the experimental data.
Comparisons of the results with those of the NDV-method have shown that

the hybrid method requires less number of vortex panels for the same

accuracy.
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NONLINEAR DISCRETE-VORTEX (NOV) METHOD

In this method the basic unknowns are the circulation distribution
and the shape of the free-vortex sheets. The following sub-sections
give the details of the method.

CONSTRUCTION OF THE DISCRETE-VORTEX METHOD- Figure 6 shows how the
discrete vortex model is constructed for a delta wing. Although the
example discussed here is for a thin, flat, delta wing, the method is
general and is not restricted by the geometrical parameters of the wing;
e.g. camber, aspect or thickness ratios or wing planform.

The first step is to divi:e the wing into rectangular and cropped-
delta winglets as shown by the dashed lines in Figure 6.a. A rectan-
gular winglet is aerodynamically represented by a spanwise bound-
vortex segment of constant circulation ri. This segment is placed at
the quarter-chord length of the winglet (the chord length of the
rectangular winglet is the characteristic length of the problem).
In addition a control point is placed at the three quarter-chord length.
The choice of these positions is suggested by thin airfoil theory.
It can be shown that the bound-vortex sheet representing the two-
dimensional flow around a f'at plate a: an angle of attack can be
replaced by a point vortex of the same strength as that of the continuous
vortex sheet under the following conditions: a) the point vortex is
placed at the quarter-chord length and b) the flow tangency condition
is enforced at only one point at the three-quarter-chord length.

On the other hand, a cropped-delta winglet is aerodynamically
represented by a bound-vortex segment of constant circulation. This
vortex segment is directed along the perpendicular from the midpoint
of the winglet root chord to its leading edge. With this choice it can
be seen that the vorticity of this vortex segment does not have a
component along the leading edge and hence the Kutta condition is
approximately satisfied along this edge.

Chordwise bound-vortex segments arise due to the differences in
the strengths of the neighboring spanwise, bound-vortex segments. In
this way, a bound-vortex lattice which replaces the continuous, bound-
vortex sheet is constructed. The model is completed by adding free-
vortex lines, representing the continuous free-vortex sheets at the
ends of the bound-vortex lattice along the edges of separation ; the
leading and trailing edges. Each line is divided into a series of
small, straight segments (near-wake region) and one semi-infinite
vortex line (far-wake region). The upstream end of each segment
represents a control point of the wake surface where the kinematic and
dynamic boundary conditions are satisfied. The initial positions and
shapes of these lines are prescribed. The resulting model is shown in
Figure 6b. This model has an unknown circulation distribution and a
wake that can be deformed to satisfy the boundary conditions.

The model described above is used to solve the steady-flow problem
by satisfying the corresponding boundary conditions. On the other hand,
if the problem under consideration is for an unsteady flew which starts
from a steady flow situation, then the solution of the steady-flow
problem serves as an initial condition to the unsteady problem. Further-
more, if the problem under consideration is for an'unstesdy flow which
arises from an impulsive motion of the wing, then the ir-.ial condition
corresponds also to the solution of the model given above, but with the
wakes removed from the model.
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CALCULATION OF THE VELOCITY FIELD-To satisfy the boundary conditions
on the wing and its wake and to calculate the surface pressure distri-
bution, one needs an accurate method to calculate the velocity at any
field point rj at any time step tk. If the field point is off the wing
and its wake, than the velocity is given by

V(Fi ,tk ) - W ri .tk ) + ew - ii(t k ) x Fi	 (24)

where

n(tk)
v#(ri ,t k )	 E [ri(tk)/4,rh1(rj.tk)][coseli(ri,tk)

i

- cose2 1 ( Fi 9t k )Je i (
Fi st k )	 (25)

is the induced velocity from all the vortex segments of the model. The
parameters on the right-hand side of equation (25) are those of Biot-

Savart's law78. The number of vortex segments n(tk) is a function of
the time step tk due to the growing vortex lattice in the wake in the
unsteady-flow problem. To account for the near-vortex velocity, equa-

tion (25) is modified by an artificial vis ,::osity which is obtained

from reference 77.
When the field point is on the wing surface or on the wake surface,

one has to account for the self-induced tangential velocity due to the

local strength of the vortex sheet. Figure 7 shows the parameters
involved in calculating the components of the induced tangential velo-
city in the x and z direction at a point p for a rectangular vortex
element in the xz-plane. With linear interpolation, it is easy to .,how

that these components are given by

^tx (y = 0±) _ ± (1/2 tl)[ri(x + t 1 - x i ) + r 3 (xl - x)NI	 (26.a)

-v tz (y - 0-) _ + (1/2 zi)[ra(Z + R2 - 21) + r 2( Zi - 2 )N2	 (26.b)

where the arguments y = 0 + and y - 0 correspond to the upper surface
and the lower surface of the wing, respectively. Equations (26) must
be added to equation (24) if one-is to calculate the pressure distri-
bution on the upper and lower surfaces by using Bernoulli's equation.
Extension of equations (26) to a general, quadrilateral vortex element
is straightforward.

BOUNDARY CONDITIONS FOR THE STEADY PROBLEM-The boundary conditions
on the wing surface s(r) and the wake surface w(r) are satisfied by an
iterative process. To initiate the iterative process, one needs to
prescribe an initial geometry of the wake surface. It has been found
from several numerical tests that the number of iterative cycles
required to achieve the solution can be reduced by an appropriate choice

of • he initial geometry. This initial geometry depends on the problem
under consideration and thus it varies from one problem to the other.

For instance, the number of iterative cycles for the steady,
symmetric-flow problem is reduced by about 20% when the free-vortex
lines emanating front'the leading edge are prescribed to be straight
lines pitched at one half the wing angle of attack. In addition,
those lines emanating from the trailing edge are assumed straight lines
pitched at one third the wing angle of attack. Here, the comparison is



made with respect to the number of iterative cycles required for the

same problem when all the free-vortex lines are prescribed to be
straight lines pitched at an angle equal to the wing angle of attack.

In the case of a steadily, rolling wing at zero angle of attack,
an appropriate initial guess is found to be related to an angle e(F)
t 1/2 tan- 1 j ?ixF /U,.. Here, we specify the free-vortex lines  emanating
from the edes c:f the advancing and receding sides t be straight lines
pitched at Ne angles +e and -e; respectively.

Next, the flow-tangency condition and the spatial conservation of

circulation are satisfied at the control points and node points,
respectively, of the bound-vortex lattice. Thus, we obtain a set of
linear algebric equations which yeilds the circulation distribution ri.

With the circulation distribution fixed, the kinematic and dynamic
boundary conditions at the control points of the free-vortex lines are
satisfied. For steady flows, these two conditions are combined into a
simple condition in which we require that each vortex segment in the

wake be aligned with the local velocity at its upstream end (a control
point on the wake surface). This means that each vortex segment is a

segment of a streamline (kinematic condition). Moreover, it means
that the force on each vortex segment is zero according to Kutta-
Jawkowski theorem in the small (dynamic condition). This process is

carried out by calculating the downstream end of each vortex segment
according to

F j+1 = F j + i i Ii / 1V j i	 ( 27)

where F and Fj+l are the position vectors of the upstream and downstream
ends, respectively, z- is the segment lea th and Vj is the velocity at
its point [equation (14) for steady flows .

The iteration scheme moves back and forth from the control paints
of the bound-vortex lattice to the control points of the free-vortex
lines until convergence is achieved. We consider the iteration scheme
converged when the variation in the circulation distribution or the
displacement of the downstream ends of the free-vortex segment between
two seccessive iteration cycles does not exceed a certain prescribed
tolerance. Once convergence is achieved, we calculate the pressure
distribution and the total load coefficients.

BOUNDARY CONDITIONS FOR THE UNSTEADY PROBLEM -Here, we consider the
problem of unsteady flow which starts from a steady flow situation. The
continuous motion of the wing is discretized into a series of impulsive
changes occuring at discrete time steps. At each time step tk, a set
of starting vortices develops along the edges of separation and are shed
with the local velocities to restore the smoothness of flow at the edges
(Kutta condition). In the same time, the starting vortices shed in the
wake at earlier time steps are convected downstream with the local
velocities without changing their strengths. This process satisfies
the kinematic condition on the wake (a wake element moves along the

direction of the local velocity) and it also satisfies the dynamic
condition on the wake (a wake element satisfies Kelvin-Helmholtz
theorem).

The position of any shed vortex -rj at any time step tk is determined

by

13
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ri(tk) 
a ri (tk-1 ) + (tk - 

t
k- 1 )Yj (ri' tk-1 ) 	(28)

where tk-1 is the preceding time step and Y is given by equation (24).
The strength of any newly shed vortex is related to the change in the
bound circulation. Hence, with the positions of the shed vortices
known from equation (28) and with the strength of the newly shed
vortices given in terms of the change of the bound circulation, the
flow tangency condition at the control points of the wing yields the
unknown circulation distribution. TQ account for the error in equation
(28) (because of using the velocity VJ(r ,tk - i, ) at the preceding time
step tk-1 rather than the current time step 	 t K ), an iteration procedure
similar to that of the steady-flow problem is performed.

In both the steady and unsteady flows, the only difference between
the symmetric and asymmetric problems is the longer computational time
required for the latter problem as compared to that of the former pro-
blem. In the former problem, we need only to use half the wing to
obtain the solution because of the flow symmetry. In the latter problem,
the whole wing must be used to obtain the solution.

CALCULATION OF THE PP.ESSURE COEFFICIENT-The distribution of the
pressure coefficient on the upper and lower surfaces of the wing is
calculated by using Bernoulli ' s equation in terms of a Ming -fixed frame
of reference.

Cp (r^.tk ) - - [V(r^,tk )J2 + 2Y(rl,tk ) - [i2(tk ) x r „ 1^ - e

a4^^•tk )- 2	
et	

(29)

where

V(r:.tk) = a (ri.tk) + vtx ( Fl .tk ) + v tz (rl ,tk )	 (30)

r± is the position vector of the control point, the positive and nega-
t1ve superscripts refer to the upper surface and lower surface of the
wing, respectively, and 70,v 

x 
and vtz are given by equations(25),

(26.a) and (26.b), respectively. The pressure is calculated at the
control points of the bound-vortex lattice because these are the points
where the flow tangency condition is enforced.

In the steady-flow problem, the last tzrm of the right-hand side
of equation (29) is zero and all the other terms ire time independent.

The net pressure coefficient is given by

oCp ( -rj ,tk )	 4[v ^(rj,t k ) + v Lz (r+,t k )] • [5(t k ) x r j - er

- v0( ri . tk )J - 2[r(r i ,tk ) - r( r i ,tk-1 )/(tk - tk-1 )J	 (31)

The total-load coefficients are obtained by integrating the net pressure

coefficient on the wing.
NUMERICAL EXAMPLES; NDV-METHOD-Figures 8-15 show typical solutions

of free-vortex sheets emanating from side, leading and trailing edges

of isolated wings, a canard-wing configuration and a wing-body combina-
tion for steady symmetric and asymmetric flows and for unsteady symme-

tric flows.
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In figure Vii. the arrangement of the bound-vortex lattice used for
rectangular wings is also shown. It is noticed that the tip vortex
covers about 13% of the wing semi-spare and fence its effect on the
spanwise pressure distribution is confined in this region,

In figure 3, Rehbach's soi,ation 64 for a delta wing of aspect
ratio of 1 is shown. Starting with the solution of a rectangular
wing, he progressivel Ly deform the wing leading edge to obtain the
solution of the delta wing; a time consuming process. Tire! present NDV-
method solves the problem directly without cluing through this deforma-
tion process. Although the arrangement of the bound-vortex lattice
of the present method differs; from !Rebac:h's (compare Figure 6.b and
9.4), the final shapes of the leading-edge vortex lines are the same.

Figure 10 shows the solution for a delta wing of aspect ratio of
0.7. Figure 11 shows the solution for the same wing which is now

steadily rolled at zero angle of attack. Notice the antisymmetric roll
up of 'the leading-edge vortex lines.

Figure 12 shows the solution for a yawed delta wing and the
relative sixes of the leading-edge vortex sheets emanating from the
windward a nd leeward sides,

In Figure 13, it is seen that the vortex trail of the canard is
deflected inboard of the main wing toward its plane of symmetry. It
also moves downwards toward the surface of the main wing. This pro-
duces a downwash on the central part of the main wing and an upwash
on its tip region.

In Figure 14, the solution of the leading-edge vortex for a wing-
body combination without leeward-side separation from the body is
Oiven.

Figure 15 shows the development of the leading- and trailing-edge
vortex system for a delta wing undergoing a sinusoidal pitching motion.

Figures 16-21 show samples of the computed total and distributed
loads for the cases considered above.

It is seen from figure 16 that the section-lift peak near the
wing tip moves inboards ai the angle of attack increases. In the linear
case, indicated by the dotted lines, the tip vortex is not taken into

account and one can seethe substantial effect when the tip vortex is
included (indicated by the solid lines).

Figures 17 and 18 show the spanwise variation of the pressure
coefficient. The suction peak of the pressure coefficient exists

almost, at the same spanwise location of the center of the leading edge
vortex.

Figure 19 shows the pitching-moment coefficient versus the lift
coefficient and the lift coefficient versus the angle of attack for

a wind-body combination. Although the leeward-side separation from
the body is not taken into account, the computed results are in
good agreement with the experimental data.

Figure 20 shows the well-known hysteritic behavior encountered in
unsteady flows as the angle of attack increases to a maximum, then
decreases to its initial value.

Figure 21 shows the variation of the normal-force and pitching-
moment coefficients with time for the delta wing considered in Figure 15.
Notice the phas e lag between the loads and the wing motion.

1p^_­"
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Figure 22 shows a recent converged solution of the system of free -

vortex lines with a long deformed wake. It can be seen that the trace
of the trailing-edge vortex system in cross planes indicates that the
sheet tends to deform upwards showing.a tendency to form a trailing-
edge vortex core. However, the cross-flow planes taken further down-
stream show that the free-vortex lines leapfrog. This does not repre-

sent the real flow. Figure 23 shows four of these cross-flow planes
taken perpendicular to the wind direction.

It is cleary seen from the example given above, that the existing
model of the NOV-method does r.it realistically model the leading- and

trailing-edge vortex cores. Therefore, the model and the numerical
technique must be modified in order to obtain realistic vortex-core
modeling.

In the MNOV-method a realistic i.odeling of the primary-vortex core
region is introduced. The old NDV-method is only used in the first
iterative cycle to initiate the roll-up process ano to calculate the
centroid of the leading-edge vortex system. Next, the leading- and
trailing-edge vortex segments are replaced by smaller segments. Then,
the iterative cycles proce,2d.

In a typical iterative cycle, each free-vortex line of the leading-
edge vortex system is allowed,three-dimensionally,to rotate around the
most recently calculated centroid a prescribed portion of a turn

(1/4, 112, 3/4, or 1 turn). This is done by continuously checkin
the coordinates of the free-vortex segments (as they are adjusted?}

with the location of the calculated centroid. Once this is achieved,
the remaining free-vortex segments of each line are dumped into the
calculated centroidal line of the vortex system. The iterative
technique is followed until the circulation distribution converges.

Figure 24 shows typical solutions at different iterative cycles.

It can be seen I after one iterative cycle, that the system of free-
vortex lines shows good roll-up. The converged Solution, indicated by I TER -E,
shows the leading-edge core and its feeding free-vortex lines. It can
also be seen that the free-vortex lines continue to feed the LEC
beyond the trailing edge. The trailing-edge core is also indicated

on the figure. This hill be clearly seen in the cross-flow planes
discussed in the next sub-section.

NUMERICAL EXAMPLES-Figures 25-21 show comparisons between the
experimental and numerical results for leading- and trailing-edge
vortex sheets and flow direction in cross-flow planes perpendicular to
the wind direction. The numerical results are drawn at the same scale
as that of the experimental results. The predicted sizes and locations
of the leading- and trailing-edge vortex sheets are in excellent agree-

ment with the measured ones. The results of the 3/4 turn show
the correct roll-up of the trailing-edge vortex sheet and the correct
locations of the LEC and TEC. This is exactly what we expected when
we increased the roll-up from 112 to 3 1 4 turn. With the 3/4 turn of

the leading-edge vertex system, the roll-up tightens and larger velo-
cities are induced at the trailing-edge vortex sheet which cause it to

deform upwards and leftwards.
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Figure 28 shows comparisons between the predicted and measured
static-pressure contours at C = 1.066. The predicted sizes, locations,
and levels of the pressure contours are in good agreement with those of
the measured data.

Figure 29 shows comparisons of the predicted and measured span-
wise net surface-pressure variation at difference chordwise stations.
It is seen that the results of the 3/4 turn are more accurate than that
of the 112 turn. With 3/4 turn, the roll-up of the leadingedge vortex

system tightens and produces better predicted distribution than that of
the 1/2 turn.

The developed computer program of the MNDV-method is computationally
efficient. On a CYBER-175 machine, a typical solution using a 12x12
lattice and including the cross-flow planes calculation takes 10 minutes
of CPU time.

THE NONLINEAR HYBRID-VORTEX (NHV-METHOD)

In this method, vortex panels with first-order vorticity distribu-
tion is used in the near-field calculations. In the far field calcula-
tions, the distributed vorticity over each far-field panel is lumped
into equivalent concentrated vortex lines. In this way, accuracy is
satisfied in the near field while computational efficiency is maintained
in the far field. The coupling of a continuous vortex-sheet representa-
tion and a concentrated vortex-line representation for solving the non-
linear lifting-surface problem is called the "Nonlinear Hybrid-Vortex
(NHV)' method.

STEADY-FLOW PROBLEM-Equation (12) requires the flow to be tangent
to w while equation X13) requires this tangential flow to be parallel

to the vorticity direction. Therefore, if the flow direction is forced
to be parallel to the vorticity direction on the surface w, the boundary
conditions of equations (12) and (13) are automatically satisfied.
Next, we outline the method of solution.

Once the wing and its free-shear layers are represented by vortex
sheets, equations (10) and (15) are automatically satisfied. The basic
unknowns in the present problem are the vorticity distribution w and

the free-vortex sheet w. They are determined by satisfying the remaining
boundary conditions, equations (11)-(14), through a finite-element t.ype
approach.

In this approach, the bound-vortex sheet (representing the :, p ing) is
divided into quadrilateral bound-vortex panels while the free-vortex
sheets (representing the free-shear layers) are divided into triangular
free-vortex panels, see Figure .10. On each vortex panel (bound or free),
a local vorticity distribution w;th undetermined coefficients is defined
in a local-coordinate system (Figures 31, 32). The local distribution
is selected such that the solenoidal property of vorticity is satisfied.
The continuity of vorticity (a compatibility condition) is enforced at
certain nodes on the interelement boundaries of adjacent panels.

The remaining boundary conditions, equations (11)-(14), are enforced

at certain nodes of the vortex panels to obtain the undetermined coef-
ficients of the local vorticity distribution and the shape of the

free-vortex panels. Kutta condition, equation (14), is enforced at the
nodes of the bound-vortex panels along the edges of separation. The no-
penetration condition, equation (11), is enforced at the average points

R
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of the bound-vortex panels. The no-penetration and no-pressure-jump
conditions,equations (12) and (13), are simultaneously satisfied at
the nodes of the free-vortex panels, Figure 33.

To satisfy these conditions, an iterativC technique is followed
which alternatively yields the local vorticity distribution on the
bound-vortex panels and the shape of the free-vortex panels, Figure 34.
During a typical iterative cycle, an overdetermined set of algebraic
equations are solved for the undetermined coefficients of the local
vorticity distributions. This is followed by adjusting the surface w
such that W and (em - vf) at the nodes of the free-vortex panels become
parallel. The overdetermined set of equations consists of the equations
obtained from the continuity of vorticity condition, Kutta condition,
the no-pen r'-3t;.,1 condition on the wing, and a symmetry condition
applied at 4he nun ,-!s along the line of symmetry. This set is solved by
a least-square technicue.

Once the iterative technique converges, the pressure distribution
is calculated and this is followed by calculating the total aerodynamic
character)fitics. ^un '̂ ergence of the technique is expedited by using an
initial guess for w provided by NOV-method. More details of the method
are given in reference 12.

UNSTEADY-FLOW PROBLEM-The source of flow undsteadiness can be a
time dependent angle of attack or a time-dependent freestream speed.
In this time-domain approach the function of angle of attack is divided
into discrete changes in the angle of attack corresponding to discrete
changes in time; i.e., at t=to, a-ao and at t=to + At, ao+ea etc. The
problem is then solved at each time step where the solution of each step
serves as the initial condition for the next discrete time step. The
case of an impulsively started wing frum rest is.considered for the
purpose of explaining the details of the technique. In this case, we
set a=0 and replace e. by -eW in equations (lb), (17) and (19)-(22).
The following steps explain the procedure to enforce the boundary condi-

tions of equations (19)-(22) to obtain !(r,t) and w(r,t):
a. The initial condition, at t=to, is considered to be a wing without
a wake surface having a velocity of -L. At this instant, we assume
that not enough time has passed for the vorticity to be convected from
the separation edges. The initial vorticity distribution on the wing
w(r,t) is obtained from the least-square solution of an over-determined
set of linear algebraic equations in the unknown coefficients describing
the vorticity distribution. The set of equations consists of the no-
penetration conditions, the continuity of vorticity conditions, the
Kutta conditions, and the symmetry conditions.

It should be noted that the initial vorticity distribution on the
wing is such that the circulation around any closed curve embracing a
wing section or equivalently the outflow of vorti,:ity from a surface
enclosed by this curve is zero. Consequently, a starting vortex of
opposite strength to that of the vorticity on the wing develops at the
edges of separation. Next, the starting vortex is convected downstream
with the local particle velocity, the flow existing at the preceding

instant is disturbed, and the vorticity distribution on the wing changes
creating a new starting vortex to be shed downstream.

This process continues and by the end of the first time-step, at
t=to+p t, a free-vortex strip, consisting of triangular free-vortex panels
attached to the separation edges, is created. The free-vortex strip
obeys the conditions given by equations (20) and (21) and its upstream
edge satisfies Kutta condition at the separation edges, equation (22).
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b. At t=to+at, one needs v(r,to+at) to determine the width of the vortex
strip. Since this velocity is unknown so far, a good estimate is taken
as the velocity at the preceding time step v(r,t ), which is completely
known from the solution corresponding to the ini^ial condition. Within

the time step at, the displacement ar of any panel node is found from

ar = r(to + at) - r(to ) = at - V(r,t0 )	 (32)

Equation (22) is the same as equation (28) of the NOV-method.
At t=tQ+at, one also needs the vorticity of the triangular vortex

panels forming the free-vortex strip, uw(r,to+nt). For each triangular
panel, we express its five unknown coefficients describing its linear

vorticity distribution, in terms of the five unknown coefficients of
the adjacent bound-vortex panel, at the separation edges, at t=to
(the coefficients of the bound panel are already known) and at tato +at
(the coefficients of the bound panel are still unknown). This is
achieved by satisfying the following conditions. At t=to+at the vorti-

city is continuous at the global nodes (on the separation edge) between
the bound- and free-vortex panels. Also, at t=to+at, the fluid particles
along the downstream edges of the triangular panels are the same parti-
cles which existed at the edge of separation at t=to. According to
Helmholtz theorem[Dw/Ot = (w• v)v], the vorticity of these particles
changes as they are convected downstream. But according to Kelvin
theorem (Dr/Dt = 0), the circulation around these particles remains
constant and hence additional equations are written to satisfy Kelvin
theorem between t=t4 and t=to+at.

Next, the vorticity distribution m the wing !(r,to+at) is obtained
from the overdetermined set of algebraic equations.
c. At t=to+2at, a new free-vortex strip is created along the separation
edges, the first shed free-vortex strip is convected downstream under
the condition Dr/Ot = 0, and step (b) is repeated to find locations of
the free-panels nodes and m(r,to+2at).
d. The steady state is reached once the change in the vorticity distri-
bution is less than a prescribed error.

To calculate the net pressure coefficient at any point on the wing
surface r at any time tk = to + t k • at, we apply the unsteady Bernoulli`s
equation

ea^(r,tk)
AC p (r,tk ) 	 -2V j (r,t k )	 [70(r,t k ) + (e. + akxr)] - 2 at

(33)

where Vj(r,tk) is the jump in the tangential velocity across the wing,
which is completely known from the vorticity vector at this location,

W(r,tk).
NUMERICAL EXAMPLE FOR A STEADY-FLOW-The developed computer program

of Figure 34 is used to solve for the steady flow past a rectangular wing
having side-edge separation. The wing is of aspect ratio of one at 9.10

angle of attack. The wing is divided into 6x6 quadrilateral bound-
vortex panels, the trailing edge free-vortex sheet is divided into 6x6
quadrilateral free-vortex panels, and the side edge free-vortex sheet is

divided into a 6 vortex strips and each is divided into a different
number of quadrilateral free-vortex panels such that the last panel in
each strip occupy the same chordwise station as that of the last panel



of the trailing-edge free-vortex panel.
Figure 35 shows a typical converged solution of the spanwise and

chordwise components of vorticity at the local nodes of the quadrila-
teral vortex panels. At any node, the upper number is the spanwise

component	 and the lower number is the chordwise component w . It
is seen tha the continuity of vorticity . condition, Kutta cond tion
and the symmetry condition are satisfied at the common nodes, at the
nodes of the trailing and side edges, and at the notes of the line of

symmetry; respectively.
Figure 36 shows the spanwise variation of the section normal-

force coefficient at three iteration steps. The solution converges in
the third itera Non step and is in good agreement with the experimental
data of Scholtz . The figure also shows the solution of the same case

oL;ained by the NDV-method with 6x6 bound-vortex lines. One can con-
clude that the NDV-method underestimates the normal-force coefficient
near the wing tip. If the number of bound-vortex lines of the ADV-
method is increased to 9x7 (Figure 16), the solution agrees with that
obtained by the NHV-method with 6x6 bound-vortex panels. This clearly
shows that a less number of vortex panels gives the same accuracy as
that obtained by a large number of bound-vortex lines.

Figure 37 shows the converged solution of the spanwise variation
of the section pitching-moment coefficient for the wing. The results.

of the NDV-method with 6x6 and 9x1 bound-vortex lines are also included
in the figure.

Figure 38 shows the spanwise variation of the net-pressure coeffi-
cient at different chord stations with different number of panels for
a rectangular wing at 15 0 angle of attack. The corresponding results

of the NDV-method are also shown in the figure.
The present computer program is computationally efficient when it

is compared with other existing codes which use high-order doublet
distribution. The CPU time on the CYBER 175 for this case is about

200 seconds.
NUMERICAL EXAMPLE FOR AN UNSTEADY FLOW-The same computer program

is also used to solve for the unsteady flow past impulsively strated
wings from rest without side edge separation. In the two examples,
the wing is divided into 5x5 quadrilateral bound-vortex panels with a
sine distribution in the chordwise direction and a cosine distribution
in the spanwise direction. In the present cases, the dimensionless
time step is equivalent to 0.48 wh ie the root-chord length is 5 units.

Figure 39 shows the distribution of the lift coefficient for a

rectangular wing of aspect ratio of three at 5 0 angle of attack for t-2

and t=22. The present results are compared with the steady numerical
data of reference (83) where 196 panels of constant potential function
are used. It is also compared with the experimental data of Reference
(82). Although we used 25 panels in the present case, the results
compares well with the given data.

Figure 40 compares the growth of indicial lift for the same wing
considered above with the numerical data of reference (84) where 100
panels of constant doublets are used.

Figure 41 shows the distribution of net pressure coefficient for

a rectangular wing of aspect ratio of two at 20.5° angle of attack for

tat, 10, 21 and 22.
On the CYBER 175 computer, the CPU time for each case with 5x5

20
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bound panels and 22 time steps is about 10 minutes.
Currently, work is underway to increase the number of panels,

use the efficient far field calculations, and calculate cases with

side- and leading-edge separations.

CONCLUDING REMARKS

Steady and unsteady, incompressible free-wake analysis has been
presented in detail. In the first part of the lecture, the motive behind
the problem is established. Some of the existing experimental measure-
ments and data are discussed and the approximations for the mathematical
model are deduced. Using the model, the general formulation of the
problem and special steady and unsteady cases are developed. The

existing methods of solution are divided into four main groups;
slender-body methods, nonlinear vortex lattice methods, doublet-panel

methods, and nonlinear vortex-panel methods.
Two specific methods (one from the second group; the NDV-method

and the other from the fourth group; the NHV-method) are presented in
detail with numerical examples showing their capabilities and success.

I would like to emp kisize that the nonlinear discrete-vortex method should

not be abandoned in%" ,̂ w of the success of the MNDV-method. It is simple,
accurate, and efficient. For more accuracy, all we need is to replace
the near-field calculations by continuous vortex panels instead of the

vortex lines.
The solution of the free-wake problem is far from being complete.

The problem of compressibility effects in high subsonic and transonic
flow needs considerable efforts in the future. In the transonic regime,
the problems of shock capturing and shock-free wake interaction will
require careful analysis and bigger computing machines. Currently,
several researchers are approaching the present problem using the
finite difference method. It remains to be seen how successful this

approach is.
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b. Symmetric Vortex Flow of a Wing-Body Configuration
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c. Vortex Flow of a Hovering Rotor (Reference 5)

Figure 1. Examples of Vortex Flows
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Figure 5. Construction of the discrete-vortex system in the NDV-method.
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Figure 9. Rehbach's 64 progressive deformation of rectangular wing.

Figure 10. Typical solution of the leading-edge vortex sheet,
steady flow, AR=0.1, a=15 0 , 8x8 lattice, NOV-method.
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Figure 11. Typical solution of the leading-edge vortex sheet,
steady rolling motion, AR=0.1, a=0°, il l -0.2, 8x8 lattice,
NDV-method.

V

Figure 12. Typical solution of the leading-edge vortex sheet,

Yawed wing, AR-0.7, a=15% S-10% Gx8 lattice, NDV-method.
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Figure 13. Typical solution of the free-vortex sheers for a canard-
wing configuration, steady flow, AR-1.66, a=15% 5x5 and
8x8 lattices for the canLrd and main wing; respectively,
UV-method.

Figure 14. Typical solution of the leading-edge vortex sheet for a
wing-body combination (cro leeward separation), AR=2,
f=9.86, a= 12.15 0 , 9x9 lattice for wing, 25x16 lattice for
the body.
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Figure 15. Typical solution of the unsteady wake for a delta wing,
AR=1, a=15°+4 sin n t, 6x6 lattice, NDV-method.
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Figure 19. Lift and pitching-moment coefficients for a wing-body
combination, AR =2, f=9.86, 9x9 lattice for wing,
25XI6 lattice for body.
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Figure 20. Variation of the normal-force and pitching-moment

coefficients with increasing and decreasing angle of
attack, rectangular wing, AR-1, a=1, 4x4 lattice,
NDV-method.
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