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DEVELOPMENT OF A NONLINEAR VORTEX METHOD
By

Csama A. Kandilw

Tis semi-annual report covers the progress of the research work
conducted under this grant from October 1, 1930 to March 31, 198l. During

this period, the following tasks have been accomplished:

1. Development of the Modified Nonlinear Discrete Vortex (MNDV) method
has been completed. The method is complemented by a viscous model for the
vortex core based on the first-order boundary-layer-like equations. (Viscous
analysis is supported under a separate contract from the Naval Air Develop-
ment Center, Warminster, Pa.). The results of the inviscid and viscous
methods have been reported in the AIAA paper No. 81-1263 titled "Recent
Improvements in the Prediction ¢f the Leading and Trailing Edge Vortex Cores
of Delta Wings." A copy of this paper is enclosed in Appendix A, This

paper has been submitted for publication in the Journal of Aircraft.

2. Development of the Nonlinear Hybrid-Vortex (NHV) method for wings
with side-edge separation in steady and unsteady flows has been completed.
The steady and unsteady results of this method have been reported in the
AIAA paper No. 82-0351 titled "Steady and Unsteady Nonlinear Hybrid Vortex
Method for Lifting Surfaces at Large Angles of Attack." A copy of this
paper is also enclosed in Appendix A. This paper has been submitted for

publication in the AIAA Journal.

3. The principal investigator has been invited as a lecturer in a

' organized

short course on "Computational Methods in Potential Aerodynamics,'
by the International Center for Transportation Studies (ICTS) in Amalfi,
Italy, in the period from May 31 to June 5, 19@2. The lecture is titled
"Steudy and Unsteady Incompressible Free-Wake Analysis." The lecture covers

the state of the art of free-wake analysis including a detailed presentation

*Asgsociate Professor, Department of Mechanical Engineering and Mechanics,
Old Dominion University, Norfolk, Virginia 23508,



of the work developed so far under this grant, A copy of the lecture is
also included in Appendix A. The lecture will appear in the proceedings of

the course, an ICTS publication.
The following tasks are to be completed by September 30, 1982:

l. The Inverse Hybrid-Vortex Method; Accurate Near-Field Calculations.
For accurate near-field calculations in the MNDV method, the lumped vortex
filaments, representing the wing and its wake, are redistributed on the
corresponding surface panels. This modification guarantees the accuracy cof
the MNDV method and moreover maintains the efficiency of this method over
the expensive panel methods. To eliminate any leapfrogging at the location
of trailing-edge core and to expedite the convergence, functions of helical
curves are used to fit the computed nodes of the free-vortex segments after

each iteration cycle.

2. Steady and Unsteady Nonlinear Hybrid-Vortex Method for lLeading-Edge
Separation. The present NHV-method (covered in AIAA Paper No. 82-0351) is
currently extended to treat wings with leading-edge separation. The
computer code is very general; it can treat combined-edge separation (LE &
TE), general planforms, and cambered wings. The solenoidal property of
vorticity is also enforced across the edges cf vortex panels, This
eliminates (on the average, since the vorticity distribution is assumed to

be linear) the discontinuity in the vorticity gradient.

3. The steady part of the NHV-method completed in item 2 will be used

to develop the unsteady NHV-method for the frequency domain approach.

4. The NHV-method for bodies of revolution with prescribed separation

lines is being completed.

Mr. Li-Chuan Chu is working on the NHV-method reported in items 2 and 3
above for his Ph.D. dissertation while Mr. Cheng is working on the NHV-

method reported in item 4.



APPENDIX A
1. AIAA Paper No. 81-1263.
AIAA Paper No. 82-0351.

3. Lecture presented at the International School of Applied
Aerodynamics, Amalfi, Italy, May 29-Jun= 5, 1982.
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Abstract

Steady and unsteady lioniinear Hybrid Vortex
(NHV) method, for low aspect ratio wings at large
angles of attack,is developed. The method uses
vortex panels with first-order vorticity distribu-
tion (equivalent to second-order doublet distribu-
tion) to calculate the induced velocity in the near
field using closed form expressions. In the far
field, the distributed vorticity is reduced to con-
centrated vortex 1ines and the simpler Biot-Savart's
law is employed. The method is appiied to rectan-
gular wings in steady and unsteady flows without
any restriction on the order of magnitude of the
disturbances in the flow field. The numerical
results show that the method accurately predicts
the distributed aerodynamic 1oads and that it 1s of
acceptable computational efficiency.

1. Introduction and Background

In recent years, development of numerical
methods for predicting the steady and unsteady
aerodynamic characteristics of 1ifting surfaces
exhibiting leading- and/or side-edge separations
has received considerable attention.

' Ffor the steady-flow problems several numerical
techniques have heen dnvologed. These include the
Nonlinear Discrete-Vortex!- suov) methods, high-
order doubliet panel thods’-9 and Nonlinear Hybrid-
Vortex (NHV) wethods.!0-11 For the unsteady-flow
problems, the 1iterature shows fewer rumerical
techniques which include the N?!-*,thods12-15 and
constant doublet panel methods'®=!/, The litera-
ture lacks high-order pane! methods for the unsteady
flow problems.

For this reason and because of the success of
the high-order panel methods in steady-flow pro-
blems, we are presenting in this paper an efficient
and accurate method for the steady- and unsteady-
flow problems of 1ifting surfaces at large angles
of attack.

In this method, vortex panels with first-order
vorticity distribution 1s used in the near-field
calculations. In the far field calculations, the
distributed vorticity over each far-field panel is
lumped into equivalent concentrated vortex lines.
In this way, accuracy is satisfied in the near
field while computational efficiency is maintained
in the far field. The coupliing of a continuous
vortex-sheet representation and a concentrated
vortex-1ine representation for solving the non-
linear 11fting-surface problem is called the

+ This research work is supported by NASA Langley
Research Center under Grant No. NSG 1560 and by
the Kaval Afr Development Center under Contract
No. N62269-80-C-0704.

* Associate Professor of Mechanical Engineering and

_'Mechanics. AJAA Member
Graduate Research Assistant, AIAA Member
This papee is doctared 3 work of the U.S.

Governmant sad therefore is in the public domain.

Copyright © American institnie of Asronsstics sad
Astrensutiss, ic., 1961 Al rights reserved.

"Honlinsar Hybrid Vortex (NMV)" method.

. I11. Formulation of the Problem

The problem is formulated relative to a wing-
fixed frame of reference xyz. The x-axis is the
wing centerline and the xy-piane is the wing plane
of symmetry. The wing is rotating at the ﬁpgular
velocity 8 and the freastream velocity is U_. The
general orientation of the wing is described using
the Eulerian angles a, 8, and vy, figure 1, which
refer to the angles of attack, yaw and roll; respec-
tively. In terms of these angles and their tiwe
rate of change, the dimensionless fresstreaw velo-
city and the angular velocity are expressed by

® = cosa c9s8 T + (-sina cosy + cosa sing siny)?)

+ (sina siny + cosa sing cosy) (1
G (zasing+ )T+ cos siny + 8 cosy)j \
+ {a cosB cosy - 8 siny)k =g 1 + ad+ nif (2)

where T, T and X are the base unit vectors of the
xyz-frame of reference .

The unsteady irrotational ideal flow in the
region outside of the wing and its separated vortex
sheets is governed by the Laplace's equation

V¢ = 0 (3)

where ¢(F,t) 1s the perturbation velocity potential.
The no-penetration condition on the wing s(r,t),
relative to the wing fixed frame of reference, is
given by

%% + (e + 9 -0xr)evs =0 ons(r,t) =0 (4-a)
For a rigid wing, %% = 0 and equation (4-a) reduces
to

(v, + % - En’F)-Fs =0 on s(r) =0  (4-b)
On the separated free-vortex sheet w(r,t), the no-
penetration condition is given by

Ha(w +-Tr)we0 onu(Ft)=0 (5
The no-pressure jump condition on w(r,t) 1s obtained
from the unsteady Bernoulli's equation

Co(Fit) = -[w ¢ 2(3, - TF)) - 2 3 ()

where C_(F,t) is the pressure coefficient at any
point Pand at any time t. Forming the pressure
jump from equation (a) anc equating the result to
zZero, we obtain

8Cy = Coy = Cpp = =(%0y = Yoy )- [V +5,42(e_-tar))

-2 %{91 =92) . g (b)
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where the subscripts 1 and 2 refer to the upper and

lower surfaces of the wing; respectively. Rearran-
ging equa*ion (b) and setting
IO PR U (e)

one obtains
acy = 2dg + 7, - o) =2 a0 (q)

whers v_ = velacity of & wake element relative to
the xyz-frame of reference

< (%0 + ) ¢ T, - BF

Equation (d) represents tha theorems of Klelvin and
Helmholtz

Eefra.-wdrso

of conservation cf the circulation and the outflow
of vorticity; respectively. In equation (6), n, is
a unit normal to the surface A bounded by a clo’od
curve around which the circulation I' is calculated.
Equatfon (6) simply states that the rate of chanye
of circulation around a closed curve or the rate
of change of outflow of vorticity thrdugh the sur-
face bounded by this closed curve is zero (following
the same fluid particles.)

For uniqueness of the solution, one has to
impose tha Kutta condition along the edges of
separation. Here, Kutta condition is represented

by
AC s Q (7)
2l

Finally, the infinity condition requires that
¥ +0 amay from s and w (8)

onw(r,t) =0 (6)

Equation (1) = (8) are the required egquations for
the general unsteady flow problem.

Nonlinear Hybrid-Vortex Hethod for dy Flows

.1. Governin uation

The research effort in this paper 1s concen-
trated on the symmetric-flow problems. For a
steady-symmetric flow, the governing equations are
obtained_from the general equation z‘l) - (8) by
setting 0 = 0, 8 = vy = 0 and dropping the time
dependent terms. The resulting equations are

o scosaTasinad - (9)
a0 (10)
(s, +w)-n =0 ons(r) =0 (1)
(3.¢v¢)oF'-0 enw(r) =0 (12)
Acp - -Z(F'x:) c (e, +%)=0 onwF) =0 (13)
ac =0 (14)
TE.LE,SE
V-0 away from s :nd w (15)

LLL.2, Method of Solytion of the Steady Flow Proplem

Equation {12) requires the flow to be tangent
to w while equation (13) requires this tangential
fiow to be paralle! to the vorticity direction.
Therefore, if the flow direction 1s forced to ba
parailel to the vorticity direction on the surface
w, the boundary conditions of equations (12) and
(13) are automatically satisfied. Next, we outline
the method of solution,

Once the wing and its free-shear layers are
represented by vortex sheets, equations (10) and
(18) are automatically satisfied. The basic un-
knowns ‘in the ent problem are the vorticity
distribution « and the free-yortax sheet w,
ars determined by utisfyi:? the remaining boundary
conditions, equations(10-04), through a finite-
element type approach.

In this approach, the bound-vortex sheet
(representing the wing) 1s divided into quadrilateral
bound-vortex panels while the free-vortex sheets
(npmonun? the free-shear layers) are divided
into triangular free-vortex panels, see figure 2.
On each vortex panel (bound or free), a local
vorticity distribution with undetermined coeffi-
ctfents 1s defined in a local-coordinate system.

The local distribution is selected such that the
solenoidal property of vorticity is satisfied. The
continuity of vorticity (a compatibility condition)
1s enforced at certain nodes on the intersiemert
boundaries of adjacent panels.

The remaining boundary conditions, equations
(0 0=04), are enforced at cartain nodes of tiie vortax
panels to obtain the undetermined coefficents of
the local vorticity distribution and the shape of
the free-vortax panels. Kutta condition, equation
(14), 1is enforced at the nodes of the bound-vortax
panels along the edges of saparition. The no-
penatration condition, aquation (11), is enforced
at the average points of the bound-vortex pansls,
The no-penetration and no-pressure-jump conditions,
equations (12) and (13), are simultanecusly satis-
fied at tha nodes of the free-vortsx panels,

To satisfy these conditions, an iterative
technique 1s followed which alternatively yields
the local vorticity distribution on the bound-
vortex panels and the shape of the free-vortex
panels. Ouring a typical iterative cycle, an
overdetarmined set of algebraic equations are solved
for the undetermined coefficients of the local
vorticity distributions. This is followed by adjus-
ting the surface w such that T and (¥_ + %) at the
nodes of tha fres-vortex panels bacome parallel,

The overdetsrmined set of equations consists of
the equations obtained from the continuity of
vorticity condition, Kutta condition, the no-
penetration condition on the wing, and a symmetry

condition applied at the nodes along the line of
sympatry, This set 1s selved by a least-square
technique.

Once the iterative technique converges, the
pressure distribution is calculated and this s
followed by calculating the total aerodynamic
characteristics. Convergence of the technique is
expadited by using an initial guess for w_provided
by the Nonlinear Discrete-vortex method-6 (NOV-
method) .




In the next subsections, the basic equations
required at each step of the solution are given.

II1.2.1, Quadrilateral Panel

Quadrilateral vortex panels are used to repre-
sent the bound-vortex sheet. On each panel, a local
first-order vorticity distribution is specified.

For the Kth panel, the vorticity distribution {is
given by

w (k) = a (k) +a,(K c(K) +a5(K (K (16)
we(K) =-a,(K) £(K) = a (k) - ag(K) c(K) (17)

which contain five undetermined coefficients; a, -ag.
It should be noted that a first order vorticity
distribution is equivalent to a second-order doudlet
distribution. The distributions given by equations
(16) and (17) satisfy the solenoidal property of &

Vews=0 (18)

The four corners of the panel serve as nodal points
where continuity of vorticity condition, Kutta con-
dition, and/or symmetry condition are satisfied.

The ¢ and * axes are located in the panel plane

such that the ¢- axis coincides with the 1-4 side
of the panel. The n-axis is perpendicular to the
panel such that ¢, £, and n axes form a right-handed
local coordinate system. The average point of the
four nodes serves as the control point where the
no-penetration condition is enforced, see figure 3a.

In the near-field, the induced velocity at any
field point %, ¥, Z is calculated by

2,3 Y441 ¢@) Y w8 +{(2-¢)w

;(;.¥|i) - -' I -"-E'z_‘z_'s_z—!n

 f I o = .
el g 0 [(x-€)%4y%+(2-¢)]

“(x-g)u J_ - Ju, €

where the summation over | indicates that the panel
is divided into two (in the case of a triangular
panel, see sec.lil.2.2) or three subpanels. Sub-
stituting equations (16) and (17) into equation
(19), we integrate the resulting expression in the
g-direction analytically. The resulting equations
are given in Appendix A. The integration in the
¢-direction is performed numerically. Currently,
complete analytical integrations in both directions
are developed, Appendix B.

In the far-field, the vorticity distribution
is lumped into concentrated vortex l1ines and the
simpler Biot-Savart's law {s used to calculate the
induced velocity. The locations of the concen-
trated vortex lines zre the lines connecting the
mid-points of opposite sides of the panel. The
far-field equation of the induced velocity is given

by
I _ r
V= ;;:: (cos e]; + Ccus 92;?cvc + I?%i(°°’ 8¢
+ cos 92()'vc (20)
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where

P, (&C sin v, - ;£ cos v,)1,/(cos v sin v,

- sin y, cos yz) (21)
Te ® (&E cos v, = &c sin 71)1]/(cos vy siny,
- sin Yy cos yz) (22)
= 1 3 Sia £(z) (23)
“w = I g b § w_dg dg 3
¢ Ky g 0 ¢

p 3 N k)
@ “z .t s ! w, dg dg (24)

3 i=1 5 0 £

and A {s the panel area. Figure 3.b. shows the
different parameters used in equations (20) - (22).

1.2« Triangular Panels

Triangular panels model nonplanar and twisted
surfaces more accurately than quadrilateral planar
panels. Therefore, they are used to represent the
free-vortex sheets where highly nonplanar and
twisted surfaces are encountered. The local
vorticity distributions are still giver by equations
(16) and (17), The corners of this panel serve as
nodal puints where certain boundary conditions dre
enforced. The ;-axis coincides with the 1-3 side
of the panel, the - axis is in the panel plane,
and the n-axis is perpendicular to the panel such
that ¢, £, and n axes form a right-handed local
coordinate system, figure 4a.

In the near field, the induced velocity at any
point is given by eyuation (19), where k = 1,2, In
the far field, the vorticity distribution on the
panel is lumped into concentrated vortex lines so
that 8iot-Savart's iaw can be used to calculate the
induced velocity. The locations of the two concen-
trated vortex lines are chosen to be the line con-
necting the midpoints of sides 1-2 and 2-3 and the
1ine connecting node 2 to the midpoint of side 1-3.
The far-field equations of the induced velocity are
givc? gy equations (20)-(24), where ¥~ 0 and
k=1,2.

[111.2.3. Boundary Conditions

At each control point of the bound-vortex
panels, we satisfy equation (11). For the mth
control point (a receiver panel), equation (11)
gives

" — e - —
kil vim,k) « l;(l) .- "s(') (25)

where N is the total number »f bound- and free-
vortex panels (k refers to a sender panel), and

5
Vim,k) = Jf‘ [Gjm.x)Z:(k) + 3J(m.k)?n(k)

+ iJ(n.l):;(k)]lJ(l.k) (26)
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The coefficients of 0., 93. and w, are given by the
ecuations of Appendix”(A)%or Appo!\dix (8).

The unit normal n_(m)_of & bound-vortax panel
and the base-unit vectdrs s (k), e (k) and e_(k) of
the local coordinates of thé k th Sender pand)
(bound or free) are expressed in terms of the base-
unit u%tors of {,m global wing-fixed coordinate
system 1, T and k as follows:

ny(m) =d () Te dny(l) I d ) [ (27)

'o"(k) . anu) Te au(u) T du(k) X

'.‘n(k) s du(k) Te av(u) T du(k) 13 (28)

?c(u) . d‘x(k) Te du(k) T ‘:x("’ 13

where d refer to the direction cosine .

Substituting equation (28) into (26) and sub-
stituting the resulting equation and equation (27)
into equation (25), the no-penetration at any mth
point reduces to

T
NS “nx %x Ynx Y K|
A Jfl Yyt %y Y Y%y '
42 ) %2 %2 % ]
[ ] k .k

[-%

T
cosa 4,
a(J.k) = - ‘-liu% 3 hy (29)
(1] 41"x
s

It should be noted here that the number of
unknowmcoefficients a(J,k) a=e reduced from SN
(5x total number of bound- and free-vortax panels)
to 5§ N (5x total nucber of bound-vortex panels)
by equbting the outfiow of vorticity from the bound-
vortex paneis to the inflow of verticity into the
free-vortex panels along the separation edges.
Moreover, the vorticity vector 1s aligned with one
side of the triangular free-vortsx panels. Once
this 18 accomplished, the free argument m has the
range 1 to N, and thus we obtain Ny unknowns .

In addition, we write equations of vorticity
continuity at each common node of the bound-vortex
panels. A typical couple of equations written at
the (I+1,]) global node, corresponding to the two
Tocal nodes (2,k) and ? ,k+1) between panels number
k and k+]1 is given by (see figurs 9)

wy(lel,]) » uc(Z.k)du(k) * o 2.1)4‘1(”

. “C(] kel )du(kﬂ) + ug(Z.kﬂ )du(kﬂ)

(30)
w (141.0) @ w (2,000, (K) + w (2.K)d, ()

. -‘(l.kﬂ )d“(tﬂ) + u€(1.k¢l )du(kﬂ)

where w, And &, are expressed in terms of the
undertemined oefficients a(J.k) using equations
(16) and (17),

Kutta condition, equation (14), is satisfied
at the nodes of bound-vortex panels along the edges
of separation, At a typical global node (1+2,J),
equattion (14) gives

w (192,0) vy (142,0) - @, (142,]) v, (142,0) = 0 (31)
Since w_, u,, v and v_ are functions of the inder-
nined c&fﬁcuﬁu. eq‘ation (31) 1s a ncnls mar
equation in a{j,k). Adding equations of this type
to equations (29) and(31) disturbs the 1inearity of
the resulting set of equations. Therefore, we
enforce equation (31) in & linearized approach.

We divide equation (31) by v(1+2,J) and lat

v,(m.a)/v(m.a) » cosh{l+2,J)
and vx(m.a)/v(m..x) ] sm(m.a).

Thus, equation (32) becomes
u:(l*l.d) coss(1+2,J) - ol(I*Z.J) sing(1+2,J) =0
(33)

(32)

Assuming that p(I+2,J) 1s initially known, equation
(33) bacomes a linear equation in¢a). In the subd-
sequent {terative steps, the angle g s calculated
by equations (32) using the m valuas of the pre-
ceding iterative step.

The last set of 1inear equations are obtained
from the symmetry condition (for symmetric flow)
along the root chord. A typicn} try condi-
tion weitten at a global node (I,J), corresponding
to a local node {1,K), is given by

o (1.3) = (LR (R) ¢ w (1R (R) o0 (30)

The mu1t1ng set of equations obtained from
equations (29), (30), (33) and (34) are solved for
the coefficienis )by a least square solver (over-
determined sat of equations).

Once ths coefficients are determined, equations
(12) and (13) are enforced by aligning sides 1-3 of
the triangular fres-vortex panels with the local
flow directions. Equations of the following form
are used to calculate the new global downstream
nodas of these sides:

x(L+1,3) = x(L,d) + Brg, (L,d)/vg(Led)

Y1) = y(Lad) + B (Lad)/vg(LLd) (38)

2(191,)) = 2(LJ) + Brgg(Lad)/vg(Lsd)

whare (L,J) and (L+1,J) refer to_the upstresa and
downstreas nodes of side (1-3), b fs the langth of
this side, and a is the velocity calculated at the
upstream node (L,J).

111.2,4, Pressure Distribution

The net-prassure cosfficient is calculated at
the no-penetration control point of a bound-vortex
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panel. At the m th control point, the net-pressure
coefficient 1s jiven by

N /]
ACP(I) . 2(0,(!) kil vz(n.k) - “z(.)tki'l v‘(lyk)

+ cos al) (36)

where « (m) © n;(l)d“(!) + u'(-)d“(-)
w, (m) » u‘(p)du(-) . -‘(l)du(l)

Equations (16), (17), and (26) give w_, w, and v

in terms of the coefficients a. The hormfil force

coefficiert 1s then calculated by
" Y

Cow I 4Gy )/ o Alm) (an)

wherg A(m) 1s the area of » th panel. A more
accurate calculation of C_ 1s obtained by fitting
a surface to discrete of Ualues of aCy(m). The
resulting function AC,(:.:) 1s then used to obtain

" &f AC’(X.X) M/!A.r dA (38)
nl in - n
Zigws

For_unsteady symmetric Mow, we set
goyesgsys(in equations (1) and (2). Ths
resulting equations are

‘e ecosaT-stna7d (39)
Geq,Teak (40)
Ry = 0 (1)
(@ +w»- Ele) . F‘ =0 on s(r)=0 (42)

§§¢ (T, +w -Txr) - sw =0 on w(F,t)e0 (43)

g0

on w(r,t)e0 (44)

Acp i-o (48)
TE,LE,SE
) away from s and w  (46)

? Solytion -F1

The source of flow unsteadiness in this prodblem
can be s time dependent angle of attack or a time-
dependent freestream speed, Figure§. In the time
domain approach of this oroblem, we divide the
runction or angle of attack into aiscrete chanjes
in the angle of attack corresponding to discrete
changes in time; 1.e., at toty, a=a, and at tet,
+ at, agvaa etc. Tiw problem is them solved at
ach tine step whers the solution of the precedirg
tise step servas as the initial condition for the
prescnt time stap.

This approazh can treat probiems where the flow
unsteadiness starts (at t = t_) from & steady flow
or where the flow unsteadinesd starts impulsively
from rest. The former problem intitially requires
the steady-flow solutfon to be known; equsticas (9)-
(15), while the latter problem fnitially rwa res
the solution of the flow over a winyg without a
wake surface,

Once the inftial condition {s obtained, we
march stop by step in time satisfying equations
{42) = (45). _At each time stap, the basic unknowns
o(r,t) and w(r,t) are obtained.

Next, we discuss the boundary conditions and
the calculations of the pressurs distribution at
each stap.

In2.1. Beyndary Conditions

Althouyh the developed time-damsin technique is
& general one and morsover is not restricted to any
perticular source of flow unsteadiness, the case of
an impulsively started wing fira rest is consfdersd
for the purpose of explaining the details of the
tachnique. In this case, we set a=0 and replace
e by -¢_ in equations (39), (40) and (42)-(45). The
following steps explain the procedurs to enforce
the boundary conditions_of equations (42)-(45) and
to obtain w(r,t) and w(r,t):

a. The initfal condition, at tet_, 1s considered
to be a wing without a weke surfale having a velo-
city of -6 . At this instant, we assume that not
enough time has passed for the vorticity to be
convected from the separation edges, The initfal
vorticity distribution on the wing w(r,t) is ob~
tained from the least-square solution of an over-
determined set of linear al d1c equations in the
unknown coefficients (a). set of equations
congists of the no-penetraxion conditions, equation
(42), the continuity of vorticity conditions,
equation(30), the Kutta conditions, equation (45),
and the symmetry conditions, equation (34).

It should be noted that the initial verticity
distribution on the wing is such that the circula-
tion around any closed curve embracing a wing sec-
tion or equivalentiy the outfiow of vorticity from
a surface enclosed by this curve is zero. Con-
sequently, a starting vortex of opposite strength
to that of the vorticity on tha wing develops at
the edges of separation. The starting vortex is
then convected downstream with the local particle
velocity, the flow existing at the preceding instant
1s disturbed, and the vorticity distribution on
the wing changes creating a new starting vortex to
be downstream.

This process continues and by the end of the
first time step, at tet +At, a free-vortax strip,
consisting of trimquh? free-vortax panels attached
to the separation edges, is crested. The free-
vortex strip obeys the conditions given by equa-
tions (43) and (44) and 1ts upstream edge satisfies
:u‘a;;.a condftion at the separation edges, equation .

b. At tet,+st, one needs v(r,t_+st) to determine

the width 8! the vortex strip. “Since this velocity
is unknown so far, a good estimate is taken as the
velocity at the preceding time step v(r,ty), which
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13 completely known from the solution corresponding
to the fnitial conditfon. Within the time step at,
the displacament oF of any panel node is found from

oF = Tt ¢ at) - F(t)) =at - V(Fot,)  (47)
where

V(Flto) b ':. . ‘G"O)

(a=o for the considered case) (48)

Wit DF(F) )
k=]

?k(?'to) 1s given by equation (19) (80)

and N, is the total number of panels on the wing,

At t=t_+4(, One also needs the vorticity of
the triangufar_vortex panels foniug the free-
vortex strip, u (r.t +at). For each triangular
sanel, we expriss 1%5 five unknown coefficients
(8y)-(a;), describing 1ts 11near vorticity distri-
buhon. {n terms of the five unknown coefficients
of the adjacent bound-vortex panal, at the separa-
tion edges, at t-ty (a,-a; of the bound panel are
already known) and at sttt (a,~a5 of the bound
panel are still unknown).” This 1s Ichieved by
satisfying the following conditions. At tet +at,
the vorticiky 1 continuous at the global Aodes (on
the separation edge) between the bound- and free-
vortex panels. At tetg+at, the fluid particles

along the downstream edges of tbe triangular panels
are the same particles which existed at the edge of
separation at tetg. According to Helholtz theorem

(¥ = (-7)v], the vorticity of these particles

chnngc: 43 they are convected downstreas. But
according to Kelvin theorem (§ o), the circula-
tion around thase particles remafns constant and
hence additional equations are written to satisfy
Kelvin theorem between t=t, and t=t,eat.

- Hext, the vorticity distribution on the wing
u(r,to*st) 15 obtained from the overdetermined set
of algebraic equations.

C. At taty+2at, ¢ new fres-vortex strip is created
along the separation edges, the first shed free-
vortex strip 1s convected downstreas under the
condition a = o» 4nd step (b) is repeated to find

the locations of the free-panels nodes and
a(l'.t‘*ut).

d. The steady state is reached once the change in
the vorticity distribution 1s less than a pre-
scribed error.

v ._Pregsyre Distribytion

To calculate the net-presgure coefficient at
any point on the wing surface r at any time
L, * : ¢+ k - at, we apply the unsteady Bernoulif's
eQuat

A-C’Fotk) e Njﬁ'tk’ * [V( ‘?'tk) * G. - :EX:)]

e (7,t,)
i e LY

whare V,(F,t.) 1s the Jump in the tangential velo-
city m‘on !m wing, which s completaly known
from the vorticity vector at this location, _
wir,t, ). The first term in the brackets Ve(r,t )
1s u*cuht«l from equation (19)., The last tard
on the right-hand side 1s calculated as follows:

‘“GotL) . “(?r ) - “G.EL'J-).
[}

n

. PFity) - r(Foty )
4

: (52

L._Compyter Program

A computer program is developed to implement
the methods of solution of the steady and unsteady
flow problems. The 1s divided into three
major parts and each part consists of several sube
routines.

The first part deals with the wing geometry,
wing panelling (bound-vortax panels) and wake
panelling (free-vortax panels). Usage of inftial
wake panelling depends on the initial conditions
of the unsteady problem. No weke panelliny 1s con-
sidered 1f the unstesady problem starts from rest.
For the unstesdy problem with steady-state fnitial
condition, wake panelling is considered. Seversl
subruotines are used to generate the global and
local coordinates of the panels and the direction
cosines of the local -oordinate systems.

The second part deals with the inftial condi-
tions. For the unsteady problem with steady-state
initial condition, the steady-flow prodlem is
initially solived. The boundary conditions on the
bound- and free-vortex panels are satisfied (Sec-
tion [11.2.3.) through several subroutines. For
w(F), these subroutines fi11 a rectangular matrix

[N'Q {number of boundary-condition equations) x
- N

nusber of undetermined coafficients of the
dBund-vorticity distribution)] with the coeffi-
cients of the boundary-condition equations; no-
penetration conditions, continuity of vorticity
conditions, Kutta conditions, and symmetry condi-
tions, The ovardeterwined set of eguations_{s then
solved using a least-square solver. For N(r), the
boundary condftions on the free-vortex panels are
enforced using a saparats subroutine. Once the
boundary conditions are satisfied, the net-pressure
coefficients are calculated as given in Section
111.2.4. If the initfal condition is rest, the
prodlem 1s solved without any free-voriax panels.

The third part of the progras deals with the
problem at t > t,. Several subroutines are used
to satisfy the boundary conditions (Section
1v.2.1.) at the subsequent time steps ty=t,oket;
ks1,2,... One subroutine is used to generate a
new shed free-vortex strip and another sudbroutine
13 used to convect the previously shed free-vortex
strips, The vorticity distridbution of the panels
forming the previously shed free-vortex strips
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w(Fity) 18 found from another subroutine which
mforus Kelvin theorem. The unknown vorticity
coefficients of the panels forming the newly shed
vortex-sheat strip are related to those coeffi-
cients of the wing panels existing at tha separ:-
tion edges.

Other subroutines are used to 111 the matrix
reprasenting the wing boundary conditions; no-
penetration condition, continuity of voiticity
condition, unsteady Kutta condition ard symmetry
condition. The least-square solver s used to
obtain_the vorticity distribution at this time
step, o 'ot[)-

The uns y Bernoulli's equation, Equation
(81), 1s then un‘ through a separate subroutine
to calculate the net-pressure coefficient.
Figure 7 shows a flow chart of the computar pro-
graa.

Y. Mmerical Examples

L1, Steady Fiow

The developed computer progras 1t used to solve
for the steady flow past 2 rectangular wing having
side-edge separation. The wing 1s of aspect ratio
of one at 9.7° angle of attack. The wing 1s
divided into 6x6 quadrilataral bound-vortax panels,
the trafling ur free-vortex sheet is divided
into 6x6 quadrilatsral free-vortax panels, and
the side edge free-vortex sheet is divided into
6 vortax strips and each {3 divided into g dif-
ferent number of quadrilaters! free-vortax panels
such that the last panel 1n each strip occupy the
same chordwise station as that of the last panel
of the tratling edge free-vortex panel.

Figure & shows a typical converged solution of
the spanwise and cordwise components of vorticity
at the local nodes of the quadrilateral vortex
panels. At any node, the upper number is the span-
wise component we and the lower number {s the cord-
wise component It 1s seen that the continuity
of vorticity uﬁium. Kutta condition and the
symmetry condition are satisfied at the common
nodes, at the nodes of the trailing and side edges,
u"d :t the notas of the line of symmetry; respec-
tively.

Figure 9 shows the sparwise variation of the
section normal-force coefficient at three
itaration steps. The solution converges in the
third {teration step and s in agreament with
the experimental data of Scholtz figure
also shows the solution of the s- case obtained
by the NOV-method with 6xé bound-vortex lines.

One can conclude that the KOV-method underesti-
matas the normal-Torce coefficient near the wing
tip. If the nusber of bound-vortax lines of the
NOV-asthod 1s increased to 3x7%, the solution
agrees with that obtained by the NHV-method with
6xé bound-vortex panels. This clearly shows that
a less number of vortex panels rvu the same
nccuncy as that obtained by & iarge nuaber of
bound-vortex lines. ’

Figure 10 shows the converged solution of the
spanwite variation of the section pitching-mcment
coefficient for the wing. The results of the NDV-
sethod with 616 and 9x7 dound-voriax lings are

also Included in the figure,

gure 11 shows the spanwise variation of the
mt-pﬂuun coefficient at different chord stations
with different number of panels for a rectongular
wing at 15° angle of attack, The corresponding
;:wlu of the HDV-method are 4130 shown in the
w"'

The present computer program !t computationally
effictent when it 13 compared with other existing
codes which use high-order doublet distribution,
The CPU time on the CYBER 176 for this case 1s about
200 seconds.

Y2, _Unstaedy Flow

Next, the developed computer m'r- is used to
solve for the unsteady flow past impuisively staresd
wings from rest without side e separation. In
the two les, the wing 1s divided into 8x8
quadrilaters] bdound-vortex penels with a sine dis-
tribution in the chordwise direction and s cosine
distribution 1n the spamwise direction. In the
present cases, the dimensionless time step i3
;qutulut to 0.48 while the root-chord leagth s
unfts,

re 12 shows the distribution of the 11ft
cocfﬂc ent for a rectangular wing of aspect ratio
of three at 5° angle of attack for te2 and t=22,
The present results are compared with the ctead
numerical data of reference (19) where 196 panels
of constant potential function are used. It is
also compared vml the experimental data of
Reference (20). Although we used 28 18 in the
present case, the results compares well with the
other numsrical and experimental data.

Figure 13 compares the growth of indicial 1ift
for the same wing considered above with the numeri-
cal data of reference (17) where 100 panels of
constant doublets are used.

Although we used 25 panels in the present Case
the results compare well with the other numerical
date.

re Y4 shows the distr’i:tiun of net prese
sure coefficient for a rectznjular wing of aspect
ratio of tw at 20.5° anqle of attack for tel,
10, 21 and 22. On the CYSER 175 computer, the CMU
time for esch case with 5x5 bound panels and 22
time steps 1s about 10 minutes.

Currently, work is underway to incresse the
nuaber of panels, use the efficient far field
calculations, and calculate casas with side- and
lesding-edge separations.

i1, Cenclyding Remprks .

Steady and unsteady Nonlineas Hybrid Vortex
Method for low aspect ratio wings at large angles
of attack is developed. The method uses vortex
panels with first-order vorticity distribution
{equivalent to second-order doublet distribution)
in the near field calculations. In the far-field,
the distribution vorticity is reduced to concen-
trated vortex 1ines where the simpler Biot-Savart's
law {s employed for the velocity-field calculations.
The method 1s applied to steady and unstaady flow

problams without any restrictions on the order of



magnitude of the disturbances in the flow field,
The presented numerical results show that the
method produces accurate resylts and it 1is come
putationally efficient.
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XA APPENDIX 8
SEMI-ANALYTICALLY I%zxmssms OF THE TED EAPRESS
INOUCED VELOCITY FIELD MALYTICALLY xmse:mcm rxsux)w OF THE TNDUCED
V-ugee v, O ”'c': (A.‘l) V-ug :t *v, :n - ?C (8.1)
5 s = e = . o=
. jil ("J A ’;5 o ij :c) . \.2) = _jf'l (nj €+ ye + " 'c)',j (8.2)
1 5 2.3 ‘m( - - where
'Ff 1.: ! ;& vy R 0-17) 5 a
SR " SRR AR R AT
dc 3y (A.3)
-y Xy Stn,*tn
where + G, - Ij 5172 Aay] (8.3)
) &p &
uy = ¥(F/63 = x/6,)/6, (A.4) : e
v = {172 -8 la, + H Y- 4
u, = cuy (A.5) ok s l.,“z hin iz h %
u3 = HLGF + )16y - 6,108 (.6) _ tlieelod) + ¢(1-3t2)-k AJa
ug =0 (A.7) M :
u. = 0 (A.8) ~ R ;t ”1 + (I:l’;t)
s ’[%‘3"’“1‘%‘ I Ay
v = 1/6y - 1/§, (A.9) "
- 3 ] x s
vy = kvy = (2 =gy, (A.10) + (‘"—‘172- Aag + [(FAy - [yl A +¢
v3u DG - XM(6y - FI]+ G -FI/Gy (A1) L X
: +5{Geg)2 + 52 -y tan! B2
Ve = -G <)y (A.12) Z ! y
- . 2195 1>
Y5 <ty (A.13) + ;’-1- » LI ), g inf2(tee-2)
“ =0 ' (A.14) . "
Cen €
W2 % V3 (A.15) + orllag) et (8.4)
‘m,‘in
w0 (A.16) I .. .
s - ~ A, = XY t a
"4 aan o T s 4 St "172,‘1 L
w = U, (A.18) -y Cfﬂ.cﬂl
(= A, + (3’- -’177
Fex-8g- by (A.19) 57 Mt he " 2151 “4n,%4n
-2 z : (B.5)
& =¥ + (@ ) ’ (A.20)
6 - G + 672 way LG 2+ @0t " (8.6)
6y = (FF + )12 a2y Me1ed (8.7)
€501 = &4 1 (e (ea2y o 22
s, - -c-i‘—-c—1 (A.23) A = tan”! {Zoloxt _yr"‘ trt (B.8)
b, = -8 ! - -
17 & - 8%y (B.28) p wtn 2 w2 s amg +2601e2) - 6] (8.9)
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Figure 1. Space-Fixed Coordinates XYZ, Wing-Fixed
Coordiantes xyz, and Eulerian‘s Anyles

aBy.

10

+ No Penetration Condition
O Continuity of Vorticity
o Kutta Condftion

X  O.Symmetry Condition

o Kelvin Theorem

Figure 2. Boundary Conditions and Arrangsment of
Bound- and Free-Yortex Panels

. Quedrilatars! Pamel Hith Distriduted
.wtklu for tha Mear-Fislid Galculattens

N {velent Concentrated Yortex
L:u.‘:r the far-Flgld Calculations

Figere 3. Qudrilaters! Yortsz Pemel tUsed on the femmi-Vortax Sheet

A S -

§ 2 § 2

8. Triangular Panel With Distribeted
Yoerticity for the Near-Field Calculations

b. Eeuivalent Concemtrated Vortex
Lines for the Far-Field Calculations

Figure 4 . Triangular Yortex Pame! Used on the Free-Vortsx Sheet
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Coordinates

Local Coordinates
BDirection Costi

t'to
-T."on Free Steady | B.C. oniaound .
Panels 3
H(F‘.t ) —— _P!nols
0 Flow u(r.to)
|

4 No-Penetration Condition, Eq. (29)

© Continuity of Vorticity Condition, Eq. (30)
® Kutta Conditiom, Eq. (33)

O Symmetry Condition, Eq. (34)
* Kinematic and Dynamic Conditions, Eq. (35)

t=t_ + keat

Newly Shed
Figure 5.

Vortex Strip

" e
Details of the Boundary Conditions for
the Steady-Flow Problea. ’

Convection of 01d
Yortex Strips

y 3
Umit)
B.C. on Bound
/ x(t) \ G Pu)u\s
H r,t
' \ WAT ety
H
—vq'p-‘
t
I [ L1 -
T LN T« t Loads
Figure 6.

Typical Sources of Unsteadiness for the

. Figure 7. Flow Chart of the Computer Program For
Unsteady Symmetric Flow Problem

the Steady and Unsteady (Time Domain
Approach) Flow Problems.
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RECENT IMPROVEMENTS IN THE PREDICTION OF THE LEADING AND TRAILING
EDGE VORTEX CORES OF DELTA WINGS

Osama A. Kandil* gnd Lakshmanan Balakrishnan*+
Department of Mechanical Enginesring and Mechanics
01d Dominion University, Norfolk, VA

Abstract
The recently Modified Nonlinear Discrete-

Vortex (MNDV) mathod has shown a remarkable succass

tn predicting, for the first time, the latest ex-
perimental data published by Hummel on vortex for-
:8‘;8" behind a slender delta wing at an angle of

This paper presents the recent developmants
in the MNOV-method in order to accurataly predict
the location of the trailing-edge vortex core and
the surface pressure distribution.

Moreover, 3 Viscous Core model, based on the
boundary-layer-1ike approximations fquasi-cylin-
drical approximations), is presented. The re-
sulting parabolic dquations, with the outer-edge
boundary conditions obtained from the inviscide
model solution using the MNOV-methcd, are inte-
grated using a finite-difference marching tech-
nique. Typical velocity profiles of the 1eading
and trailing vortex cores have been used to
initiate the step-by-step marching technique.

1. _Background

1.1 Existing Experimental Data and Concludin
Renarks

The separated free-shear layers smanating
from the leading edges of highly sweptback wings
roll up spirally into two counter rotating vortex
cores. The vortex cores are fed, through the
free-shear layers, with vorticity shed along the
wing leading edges from the boundary-layer flow
on the wing surfaces. This flow separation is
kaown as the "primary separation” and 1t has a
dominant effect on the wing aerodynamic charac-
teristics due to the large strength of its vortex
cores and their proximity to the upper surface
under the primary vortex core.

The adverse spanwiss pressure grldicnt due
to the primary vortex core induces “secondary
separation” of the boundary-layer flow on the
upper surface. Depending on the angle of attack
and the ~ing aspect ratio, the secondary sepa-
rated flow forms either an additional free-shear
layer or a bubble. In the range of moderate to
large angles of attack, a secondary free-shear
layer develops, rolls up spiraily in an opposite
sense to that of the primary free-shear, and forms
4 secondary-vortex core of much sua!}g‘ strength
than that of the primary-vortex core

Oepending on the type of boundary-layer flow
on the upper surface, the secondary-vortex core
may affect the pressure distribution on this sur-
face. For a laminar boundary-layer flow, a small
pressure peak is produced between the secondary
and primary 1ines of separation while for a

*Issociate Professor, Member AIAA
**Graduate Student, Member AJAA

turbulent boundary-layer flow, such a peak s
hardly noticed and the pressure peak corresponding
to the primary-vortex core {s lgrgcr than that of
the laminar boundary-layer flow®., A third type of
flow {nvolving a "tetfary” separation may occur
between the 1ines of primary and secondary seps-
rations due to the adverse spanwise pressure ’E"
dient genarated by the secondary-vortax corel 5,

It 1s seen from the description given above
that secondary and tertiary separations are viscous
phenomena and cannot be modeled by using fnviscid
analysis only. Howaver, their effects are small
particularly when turbulent doundary-layer flow
exists on the upper surface of the wing and hence
thc{ are neglected. Therefore, when inviscid
analysis is used to predict pressure distributfons,
one must compare the surface pressure distributions
with those experimental data cgrrosponding to
turbulent boundary-layer flows®,

The free-shear layer emanating froa the
trailing edge s of opposite strength to that of
the primary free-shear layer. Within a short
distance behind the trailing edge (a distance of
a 1/4 root-chord length for a delta wing of aspect
ratio of one at 20.5° angle of attack®), the trafl-
ing free-shear layer rolis up spirally in an oppo-
site sense to that of the primary free-shear layer
and forms two counter rotating vortex cores. The
trailing-edge vortex core has the same sense of
rotation and ailmost the samé spanwise location as
those of the secondary vortex core, although each
originates from a different phenomenon. The former
fs due to an edge separation while the latter is
due to a surface separation. Hummel® concluded
from his latest experimental measurements for tur-
bulent boundary layers at the trailing edge that
the secondary-vortex core decays rapidly behind the
trailing edge and 1ts remains roll up into the
trailing vortex.

Figure 1 (reproduced from Reference 5) shows
the vortex formation behind a slender delta wing.
Figure 1b corrects the loc’tgon of the trailing-
edge core as given sarlier/=? by Figure la. It
also shows that the secondary-vortex core has the
same spanwise location as that of the trafling-edge
vortex core but it does not show their interaction
which is st111 unknown.

Predicting the correct formation of the trail-
ing-edge vortex core is essentfal for predicting
the correct aerodynamic loads near the wing trafl.
ing edge due to 1ts proximity to this edge. More-
over, a correct prediction s of paramount impor-
tance to problems involving high-angle-of-attack
aerodynamics for the canard-wing configurations,
Consequently, one concludes that any prediction
method which employs a prescribed shape of the
trafling-edge voncx sheet (the so-called "fixed
design wake*10, 11) w17 be strictly limited to
isolated-wing problems away from the trafling-edge
regiaon,

The size of the primary-vortex core and
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viscosity of the flow within & narrow regfon around
the core centerline play important roles in the
asrodynamic characteristics of low-aspect ratfo
wings at large angles of attack. For these types
of wings, it is wall known that the 11ft coeffi.
cient increases nonlinearly with the increase in
the angle of attack. This {s attridbuted to the
i{ncrease of the strength of the primary vortex
core. Howaver, the increase in the 1ift coeffi-
cient is limited by the occurrence of vortex-core
breskdown over the wing and hence there exists a
lnxiTu. angle of attack corresponding to the maxi-
mum 11¢¢,

The phenomenon of vortex-core breakdown {s
defined as an abrupt increase in the core diameter.
It occurs due to the adverse ?!1r1-1nduccd pressure
gradients along the core axis'ss 3. Using the
radial component of the momentum equation of the
boundary-layer 11ke equations (for quasi-cyline
drical vortex cores), one can show that an increase
fn the swirl velocity of the flow, dus to an in-
crease in the core strength, increases the axfal
pressure gradient along the core axis. Therefore,
the flow near the core axfis loses its axfal momen-
tum and swelling of the vortex core develops.

For moderate angles of attack, vortex-core
breakdown develops fer downstream from the wing
trailing edge. As the angle of attack incresses,
vortex-core strength increases and the breakdown
point travels upstream toward the trailing edge.
As the breskdown point approaches the trailing
edge, the slope of the 11ft versus angle of attack
curve decreases until the maxfmum 11ft {s reached.
Thereafter, the 11ft coefficient drops sharply,
the breakdown point crosses the trailing edge and
the wing stalls,

To account for all these changes, one has to
include the viscosity within the vortex core in
order to have a realistic model in this regfon,

1.2.Existing Inviscid Models and Concluding Remarks

In most of the existing fnviscid analyses,
primary flow separation is only considered. The
attached boundary layers are replaced with dound-
vortex sheets while the free-shear layers are re-
placed with free-vortex sheets., Accordingly, the
inviscid region representing the vortex core should
be represented by a conical spiral vortex sheet
which ends with a concentrated vortex line along
the core centerline. Although this theoretical
representation of the vortex-core fs ideal for the
fnviscid model, the usage of many turns within the
core region creates numerical problems in a three-
dimensfonal model which does not assume slender-
body approximations. The numerical problems arise
due to the proximity of the vortex layers of the
spiral and due to the large number of small-size
panels needed to accurately model the turns. Howe
ever, it was found, according to the numerical
rasults and their excellent comparison with the
experimental data, that only one turn of the spiral
need to be accurately modeled while the remaining
turns of the spiral are replaced by a cut ending
with a concentrated vortex line tlong its edge.

In a1l the inviscid models, the wing edges,
where separation occurs, are assumed to be sharp
s0 that the separation lines are known a priori
and hence viscous modeling is not needed to deter-

mine the 1ines of separations. However, for wings
with round edges, v1l?2ul model ing 15 needed to
determine these 1ines'®. Moreover, vortex-break-
down points are assumed to be far downstream o
that the varfations in the stze of the primary-
vortex core can be naglected. I[n fact, this as-
sumption limits the large angles of attack at
which inviscid modeling is applicable. With the
vorticity confined to the inner doundary of the
flow rejion (bound- and fres-vortex sheets), the
resuiting model 1s a potential-flow mode! governed
by Lap!*ge's equation and certain boundary con-
ditions !9,

The existing fnviscid models can be divided
into four mafn groups. Next, each group is pre-
sented and evaluated.

The first group of nodc‘g u!!l slender bdody
and confcal flow assumptions'®+ ¢°, Modeling of

-the primary-vortex core and its feedfpg sheet was

first fntroduced by 8rown and Michae! However,
the feeding sheet in their model was taken as a
planar surface and hence it did not represent t?g
real rolled-up vortex sheet. Mangler and Smith
{ntroduced the first realistic mode! of the primary.
vortex core and 1ts feeding sheet. However, this
mode]l cdoes not account for the feeding-sheet defor-
mation fn the chordwise direction due to the
slender-body assumption. These models satisfac-
torily predict the pressure distribution on the
front portion of the wing surface. In the rear
portion, the wodels fail to predict satisfactory
pressure distridbutions because Kutta condition can-
not be satisfied at the trailing edge. Such models
were limited to slender delta planforms.

‘rhx izcond group of models uses the old NOV-
method?8-38 The most obvious drawback of the old
mode! s the lack of a realistic model of the
primary-vortex core and its feeding sheet. The
primary-vortex sheet was modeled by 2 system of
segmented vortex ifnes which were rendered force-
free during the course of solution and no attempt
was made to lump these Tines into a concentrated
primary-vortex core. Although the agreement
between the calculated and experimental total aero-
dynamic loads was excellent, the agreement between
the calculated and experimental pressure coeffi.
cients was less than satisfactory in particular for
highly sweptback wings.

The third p of models employs doublet-
pcnclsvav ?‘- 3,598. In this method, the wing and
1ts free-vortax sheets are divided 1nto networks of
quadrilateral panels, Each panel of the networks
representing the wing has a biquadratic local
doublat distribution and a bilinear local source
distribution. The panels of networks representing
the free-vortex sheets have biquadratic local
doublet distributions. Source and doublet splines
are used to express the distributions of singu-
Tarities on the networks fn terms of discrete values
of singularity strength at certain standard points
on each network, The boundary conditions and con-
tinuity of singularity strengths across abutting
networks are enforced at certain standard aoinfs on
each network. The results of this method$U, 41 ape
generally good whan the solution converges. Ap-
parently, the difficulty in ob*afning convergence
1s due to the faiiure in satisfying the continuity
of the derfvatives of the doudblet strength across
sbutting networks, This is equivalent to the exis-
tence of concentrated vortex lines between sbutting



ORIGINAL PAGE 1S

OF POOR

networks,

The doublet panel method was cxtcndcd‘z to
i{nclude the effect of entrainment of the primary
vortex cores through an emptrical approach. The
results indicatod that the entrainment {ncreased
the normal-force coefficient substantially over
the experimental values.

This group of models do not account for the
chordwise deformation of the primarysvortex sheet.
Consequantly, the primary vortex sheet cannot be
fed three-dimensionally with the shed vorticity.
Moreover, the trailing-edge free-vortex sheet was
represented by a “fixed design wake."”

Tharefore, none of the models given in the
first and third groups is capable of predicting
the deformation and {nteraction of the trailing-
edge vortex sheet and its vortex core. Additional
references of the three groups given above can be
found in references 43 and 44,

The fourth srouv of‘!odcls employs & nonlinear
hybrid vortex method'Ss 45, [n this method, con-
tinuous-vorticity and vortex-line representations
of the wing and its separated free-shear layers -
are used. Continuous vorticity is used in the
near-field calculations while discrate vortex-1ines
are used in the far-field calculations.

The wing and its free-shear layers are divided
into planar quadrilateral panel; naving first-order
vorticity distribution. The aerodynamic boundary
conditions and continuity of the vorticity distri-
butions are imposed at certain nodal points on the
panels. To satisfy these conditions, an {terative
technique is followed which alternatively yields
the local vorticity distribution on the bound-
vortex panels and the shape of the free-vortex
panels. This method has been used to calculate
the steady distributed and total loads on planar-
low-aspect-ratio rectangular wings. The results
have shown thai the spanwise variations of the
1oad coefficients are in good agreement with the
experimental duta. Comparisons of the results
with those of the NOV-method have shown that the
hybrid method requires less number of vortex panels
for the same accuracy. Currently the method {s
extended to include leading and side-edge sepa-
rations for steady-flow problems and for unsteady-
flow problems due to small oscillations of wings
around large mean angles of attack (flutter appli-
cations) and due to general nonstationary wing
motions (dynamical applications). Work is underway
to use this technique to predict the details of the
flow field including the primary and truiling-edge
vortex core interactions.

Although the old NOV-method, used in the
second group of models, was almost abandoned in
predicting the flow details and the distributed
asrodynssic characteristics, the modified NOV-
method pinpointed and cured -osx'of the problems
encountered with the old method®. [t enjoyed a
remarkable succass in predicting, for the firsts
time, the lTatest experimental results of Hummel”.

[.3. Existing Vlscoug-&g;g Models and Concluding
emarks

In this paper, we only consider existing vis-
cous-core models which adopt the quasi-cylindrical

QUALITY

approximatfons. In the quasi-Cylindrical approxi-
mations, we agsume that the axfal gradients are
small compared with the radial gradfents and that
the stresmsufaces be cylindrical. These boundary-
laysr<1fke assumptions simplify Navier-Stokes equa-
tions and reduce them to a parsbolic set of equa-

tions. Approx;natfonl‘o‘ this type have n ysed
by Gargshore 47, Ha1148,39 pogsel!?, Raat®Y and
Wilson?' to pradict the locations of the vortex-

core breskdown. Gartshore and Hall ysed the dif-
ferential form of the equations while Sossel, Raat
and Wilson used the integral form of the equations.

The numerical results obtatned from the quasi-
cylindrical equations have shown good agreement
with the experimental data particularly for the
vortex core behavior. For the locations of the
breakdown points, the difference betwasn the pre-
dicted and measured locations was within two dia-
meters of the viscous core.

In this paper, we use the quasicy!indrical
approximations for the marrow viscous region around
the core centerlfne. Outside the viscous region,
one can treat the flow as a potential flow only or
as a rotational fnviscid flow folluwed by an outer
potential flow. Hence two models with various
degrees of accuracy emerge. In the first model,
the vortex core is represented ty 4 narrow axisym.
metric viscous region around the core axis. This
viscous core fs fed with vorticity shed from the
wing edges through a vortex sheet with only one
turn and a cut. The flow outside the viscous core
and the vortex shect {s a potential flow. Figure
2.a. shows a schematic of this model. In the second
model, the vortex core region is divided into an
inner narrow viscous part and an outer inviscid and
rotational part. In each part the tlow is axism-

metric. OQutside the core region, a potential flow

fs assumed. Figure 2.b. shows a schesatic of this

model. n this paper, only the first model {s

considered.

I1. Steady Inviscid Mode) and Prediction of the
Yaviscid Cores

I1.1. Momenclature

AR wing aspect ratio

b wing half span

b(x) Tocal kalf span

cp static pressure

ac, net surface pressure

<. wing root chord

ITER iteration Number

LE Leading Edge

LEC Leading Edge core

TE Trailing Edge

TEC Trailing Edge core

xyz wing-fixed coocrdinates, origir at wing

vertex, x-axis 1s along the root chord,

y-axis {s perpendicuiar to wing

Xyt wind-fixed coordinates, origin at the
trailing edge, X-axis {s parallet to the
freestream direction

0, freestream velocity

] velocity at any field point

v;.v-.vicompononts of V in the wind coordinmate
I Ziystem

vi} component of V in planes X = constant,
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Viye(Wd + V)"

a angle of attack
Eanod dimensionless cogrdinates,
gex/b, ney/b, coi/d

x1gting NOV-Meth ts Drawback

In this section, & critical evaluation of the
existing NDv-Meshod 15 given in order to pinpoint
i1ts drawbacks. In this method, the bound-vortex
sheet is replaced by a bound-vortex lattice and
the fres-vortex sheats are replaced by segmented
free-vortex 1ines,

Starting with an inttiasl guols for the in-
clinatfon of the free-vortex lines, the no-pene-
tration condition is satisfied at certain control
points on the bound-vortex lattice. The resulting
set of linear algebratc equations is solved for
the circulation distribution. Next, with the
known circulation distribution, the positions of
the vortex segments of the fres-vortex lines are
calculated by simultaneously enforcing the no-
penetration and no-pressure jump conditions at
cartatn control points on these segments. These
two staps of calculations represent one iterative
cycle. Several fterative cycles are parformed
until the pasitions of the free-vortex segments

or the circulation distributions converge.

Figure 3 shows a typical converged solution
of the systam of fres-vortex lines in three v!oua
for & deita wing of aspect ratio of unity and 1§
angle of attack. The plan view also shows the
arrangement of bound-vortex lattice. In the three
dimensional view the leading-edge core (LEC) i3
shown. This core is calculated after the solution
converges and it reprasents the centroid of the
leading-edge vortex system.

Comparison of height and spanwise position of
the calculated ccvtroid with those of the measured
leading-edge core! 4 15 given 1n figure 4. Al.
though this comparison was encouraging, the calcu-
lated centrofd dces not model the physical vortex
core where the vortex core s continuously fed
with vorticity from the leading edge through the
freg-shear layers. Using the system of free-
vortex 1ines, the total-asrodynamic loads were
accurately calculated but the calculated surface
pressure distribution was unsatisfactory. On the
other hand, using the centroid of the leading-edge
vortex system instead of the leading-edge vortex
system 15*01!. the calculated surface pressure
improved=% (this does not satisfy the no-penet-i-
tion condition on the wing since the centroid is
calculated after the solution converges.) It
should also be noted here that replacing the
Teading-edge vortex system by iis ctnfgaid is
similar to the model used by legendre'®.

Figure 5 shows a recent converged solution of
the system of free-vortex lines with a long de-
formed wake. It can be seen that the trace of the
trafling-edge vortex systam in cross planes indt-
cates that the sheet tends to deform upwards
showing s tendency to form & trailing-edge vortex
core. However, the cross-flow planes taken further
downstream show that the freg-vortex 11nes leap-
frog. This does not represent the redl flow,
Figure 6 shows four of thiy cross-flow planes
taken perpendicular to the wind direction.

It 1s clearly seen from the few examplies
given above, that the exfsting mode) of the NOV-
method does not realistically mode! the leading.
and trailing-edge vortex corss. Therefore, the
model and the numerical technique must be modified
in order to obtain realistic vortex-core modeling.

. The MNDY. d and 111g 9f the Primary-
ex_(ore
In the MKOV-Method & realistic modeling of '8
primary-vortex core region is introduced. The oid

NOV-method 13 only used in the first 1terative cycle
to inftiate the roll.up process and to calculate

the centroid of the leading-edge vortex system.
Next, the leading- and trailing-edge vortex segments
are replaced by smaliler segments. Then, the ftera-
tive cycles proceed.

In a typical tterative cycle, each free-vortex
Tine of the leading-edge vortex system is allowed
three-dimensionally to rotate around the most
recently caiculated centroid a prascribed portion
of 2 turn (1/4, 1/2, 3/4, or 1 turn). This fs
done by continuously checking the coordinates of the
fres-vortex segments (as they are adjusted) with the
lecation of the calculated centrofd. Once this 13
achieved, the remaining free-vortex segments of each
1ine are dumped into the calculated centroidal line
af the vortex system. The {terative technique 13

follTowed until the circulation distribution con-

verges.

Figure 7 shows typical solutfons at different
iterative cycles. [t can be seen that after one
iterative cycle, the system of freg-vortex lines
shows good roll-up. The converged solution, indi-
cated by ITERs§, shows the leading-edge core and
1ts feeding free-vortex lines. It can also be seen
that the free-vortex lines continues to feed the
LEC beyond the trailing edge. The trailing-edge
core is also indicated on the figure. This u!?l
be clearly seen in the cross-flow planes discussed
in the next section.

Figures 8 and 9 show converged solutfons .. ag
8 12 x 12 bound-vortex lattice for 1/4 and 1/2 turng
of the free-vortex lines.

I1.4. Numerical Cx#ﬂ? and Cangur'lsons with
g xg!r &ﬂ esutts

The calculated circulations arnund the free-
vortex lines emanating from the wing trailing edge
was found to be of opposita sign to that of the
fres-vortex lines emanating from the wing leading
edge. This is in agreement with Hummel's measure-
ments. The difference in the signs can be explained
as follows:

The primary-vortex cors creates large suction
pressure peak and hence the pressure continuously
rises in the sparwise direction from the wing axis
to the location of the suction pesk (this s com-
plataly opposite to the sranwise variation of
pressure for wings with lurge aspect ratio and small
angles of attack.) Consequently, the circulation of
the spanwise bourd-vortex segments increases in the
sparmise direction. In order to satisfy the spatial
conservation of circulation at the nodes of the
bound-vortex lattice, the spamwise increase of
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circulation requires the circulation of the chord-
wise bound-vortex segments to be of opposite sign.
In the present model, the leading-edge vortex
system originates from sparwise-vortex segmants at
the leading edge while tha trailing-edge vortex
system originatas from chordwise-vortex segments.

According to the difference in sign of the
circulation of the trailing-edge vortax system from
that of the leading-edge vortex systes, one expects
the tratling-edge vortex system to roll uwp in an
opposite sense to the roil-up of the leading-edge
vortex system.

In reference 46, the results of the MNOV-
method using 1/4 and 1/2 turns only for the leading-
edge vortex lines were presented. In this paper,
we add to these caset the results of the 3/4 turn.
The latest results clearly show the capability of
the MNDV-method in mroducingsand confirming the
experimental results of Humme!™.

Figures)0 -12 show comparisons between the
experimental and numerical results for leading- and
tnﬂing-odqn vortex sheets and flow directions in
cross-flow planes perpendicular o the wind direc-
tion, The numerical results are drawn at the same
scale as that of the exper.wental results. The
predicted sizes and locat ' ns of the leading- and
trailing-edge vortex shee:’ are in excellent agree-
ment with the measured oroi. The results of the
3/4 urn show the the correct roll-up of the traile
ing-edge vortax sheet and the correct locations of
the LEC and TEC. This fs exactly what we expected
when we incressed the roll-up from 1/2 to 3/4 tuyrn.
With the 3/4 turn of the leading-edge vortexsystem,
the roll-up tightens and larger velocities are
induced at the trafling-edge vortex sheet which
cause it to deform upwards and leftwards. DOue to
the large curvature of the tratling-edge vortex
sheet (Figure 12, 3/4 turn case), one can see a
small leapfrog at the TEC location. This s
attriduted to the insufficient number of vortex
lines used to mode) this large curvature.

Figure 11 shows the results for an aspect
ratfo of 1.45. It {s seen, by comparing these
results with the corresponding results for the
aspect ratio of one, that the TEC develops eariier
than that of the aspect ratio of one.

Figure 14 shows comparions between the pre-
dicted and messured ctatic-pressure contours in
different cross-flow planes. The predicted sizes,
locations, and levels of the pressure contours are
in good agreement with those of the measured data.

Figure 15 shows comparisons 7f the predicted
and measured sparmise net surface pressurevarfation
at difference chordwise stations. It is seen that
the resylts of the 3/4 turn are more accurate than
that of the 1/2 turn. With 3/4 turn, the roll-up
of the leading-edge vortex system tightens and
produces better predicted distridution than that of
the 1/2 turn.

The developed computer program of the MNOV-
method is computationally efficient. Ona CYBER-17§
saching, 8 typical solution using a 12 x 12 lattice
and including the cross-flow planes calculation
takes 10 minutes of CPU time.

Currently the technique is modified for
accurate near-field calculations by replacing the

concentrated vortax segmants with vortex panels
having 1inear vorticity distributions. The vorticity
functions are expressed in tarms of the unknown
circulations of the original concentrated vortex
segments. This {3 the opposite process cuu-ontly
used in the Nonlinear Mybrid-Vortex Mathodi®,4§,

ady ¥ 1of Vgr

E

grid aspect ratio = AE/Ax

fr;:tiun of the step size in the x-direction
L] -8
charactaristic length

radial velocity in the computational domain =
w /A
swirl velocity 1n the computational domain =
Alv
axial station number
_ radial station number
pressure
e b/a
Reynold's number -
stretched radial coordinate » rﬂ.
radial coordinate
stratched outer core radius at any axial
station
stretched outer core radius &t the {nitial
axial station
freestream velocity

axial velocity

swirl velocity

stretched radial velocity = wR
redfal velocity

axial coordinate

axial step size

shape factor = 'o(“)/'o("i)

radial coordinate in the comg-:tational domain
outer radius in the computational domain

radial stap size

~ T pos »
-
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[11.2. Formulation of the Problem

Starting with the nondimensional Navier-Stokes
equations for incompressible axisymmatric steady
flow, using a boundary-layer-iike stretching trans-
formation and performing an order of m?ﬂitu«
analysis, one obtains the nondinnuom equations
for quasi-cylindrical vortex flows®®,

™ W
LR 3
2
v 3 (2)
rak
au g_-?,azu,;au 3)
i T T X a? r o
.avo"_v.o 2!'_55\' ¢i;—v-v (4)
A T il rar 7
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This 1s a parabolic set of equations and hence &
finite difference marching technique proceeding fn
the axfal directfon fs applicable to this set. A
basic di fference between these equations and the
first order boundary-layer equations is the
pressure term. [n the boundary-layer equations,
the pressure across the boundary-layer thickness s
constant while in the present equations the pressure
is uryinz in the radial direction as given by
equation (2).

The viscous regficn diverges in the downstresm
direction due to the twirl induced adverse pressure
gradient. [f the finfte-difference grid is con-
structed 1n this physical domain, one needs to
fncrease the number of grid points in the radial
direction as one proceeds downstream. For computa-
tional efficiency and convenience of applying the
finite-difference marching techniqua, it 1s desir-
able to transform the physical diverging domain
into a rectangular computation domsin. [n this way,
equal number of grid points can be used in the
radial direction at each statica of the axtal
direction (see figure 16). This s eastly ﬁM"“
by adopting the transformation used by Hall%®,

€ = r(x)/x(x) (5)
A(x) ® ro(x)/ry(xy) (€)
I::‘.:h: :umz::‘:gmury £° at any axfal station

€y * To(x)/A(x) = ro(x;) = constant (7

Moreover, the swirl velocity v is transformed into
a varfadle proportional to the circulation k, while
the radial velocity 1s scaled by the shape factor

k(x,5) = rv(x,r) » igv (8)
nx,g) = wix,r}/a (9)
Using the transformation equations of equations

(5), (6), (8) and (9) into equatians (1) - (4), we
get

agh 3 212 (10)
bl e iR
2
-0 (1)
¢
2
w_ 13 1 -
e ofoe b
2
Ak
-;5?-‘;?; (12)

"

2 '
u%%--f!a—%’(h-}r we oo (1)

Equations (10) - (13) are the erning equations
{n the compytationa) dcmein. Equations {10) - (il)
are first order equations in h and p; respectively,
while equations (12) and (13) are parabolic
equations in u and k; respectively. Therefore, the
bounaary concitions on h and p must be specifiea

on only one boundary; either on the axis or on the
boundary Gg * const, while the boundary conditions
on u and k'must be specified on the axis and the
outer boundary.

Along the core axis, ¢ = 0, the following
boundary conditions are imposed:

X ™ . ‘e
i!{-c-aﬂ k(x,0) * h(x,0 » 0

The first condition expresses the fact that the
axial velocity 1s symmatrical about the axis. The
second condition requires the circulation %o vanish
on the axisy i.e., &4 rigid body motion exists in
the 1imit as the axis is approached. The third
condition requires the radial velocity to vanish in
the absence of sources or sinks on the axis. On
the outer surface, the following boundary conditiom
must be specified:

(14)

ulxigy) ® uglx), k(x,g) @ ko(x), px,5,) © py(x)
(18)

The ‘unctions uo(x). k. (x), and p_(x) are provided
by the fnviscid®solutiBn of the ofter flow obtained
1n Section 1.4,

The initial conditions at the fnitial station
x, are given by

ulxgg) = uy(z)y kixg,8) = ky(c) (16)

Thase profiles are obtained from experimental dats
or from previous approximate solutions. Alterns-
tively, they may be obtained from the three
dimensional viscous flow solution on the wing
surface.

111.3. The Finite Difference Techni and

as near on

In this section, we develop the basic dif-
ference dquations required to determine a function
or its derivatives along the axfal and radfal
directions with second-order accuracy. Next, we
develop & “quasiiinearization technigque" to
l1inearize the nonlinear terms fn the equations.

Figure 17 shows a rectangular computational
domain covered by a grid system consisting of
constant x and ¢ lines. Subscript m refers to
the point number in the x direction while subscript
n refers to the point number fn the ¢ direction.
The deveioped equations are evalusted at the x

locatian which {s defined as follows: ¢

Xo SR v AL 8x wx va(X - x,) (17)
where a + b e 1

Expanding the furctions Gu.n and G, . about point

(c,n), adding and neglecting terms of 0(ax)? or
higher, we Jet

+ O(Al)z

Subtrarting the two expansions G and G .
we get m,n A+l .n

[ > BG *
B .n = %6y 4 a6,

sl ,n (18)
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ﬁiﬂ a slﬂ.nk_iﬂ R gl(bcc) ;-l-ziﬂ + 0(ax)?

8y latting b-a-Oéu). the second term on the right
becomas of O{ax)é and the equation can de truncated
there and we get

1] - :
"g,n . il ,nu ‘n.n . o(u)z

Expanding 3"",' and tc"m about point (c,n),
lubtncein? and adding the squations, vz obtain
the following equations; respectively

1] ] 1

- ¢
cc.n a Sa 0t - €al=l o o(ac)?

2 P

- 26 * 6
SI“ [ ] g,ﬂ" ZQ,IL €. fal . o(“)l (z‘)
(1 (ac)

(19)

(20)

Substituting eq. (18) 1nto eqs. (20) and (21), we
get

OGS pe .(E!gL nel - &1]‘”.,) * b(ﬁ.ﬂi" - h_])
2

13 (14

+ 6lac)? (22)
'zeg.n . 4Gy el o ;f.:l,n * Glﬂ.n-;) .

(14 (a8)

bm_lhﬂol - z‘l.ﬂ * Gn,n-l)’ o(“)z (23)

(s)

Next, we consider the "Quasilinearization Tech-
ntque.® Equations (10) - (12) include nonlinear
terms, €.9.; W W etc. which produce

. UTE. “ e
nonl inear a'gebraic terms in the finite differencs
form. Sinca the solution of nonlinear equations fs
time consuming, one needs to linearize these terms.
For this purpose, we consider Taylor's expansions

of two functions G, , and N ,, . about G,  and

L. respectively, and form the Tinsarized expres-
’

sion of a typicil nonlinear term G.ﬂ n “ml "

Gyel ,n "mel ,n ® Saet n Pacn * Guin Hest 0 °
2

Gu.n “l.ﬂ + 0(ax)

Since the rnrnin equations are evaluated at

point (c,n), & typical nonlinear term at this point

is 1inearized as follows

{24)

Gt:,ﬂ "c.n * 'tcvl A "n.n * Gl.n "ml,n *
(81) 6, , Hy ]+ 0ten)? (2%
where Red/a (26)

It should be noted that eqs. (18) and (24) are used
to derive eq. (2%).

i 1gns of the Governing
n

Continuity € 1on

1s evaluated at point (<,.n-h),
Usfng the difference expressions developed in the
preceding section, one obtains the following
equation:

Mol o ® (Aot Mot net ¢ '“:-:"') Pa,net ° L

A A, 20e3) # 1) 4, - [N, (203)

-1} Vgl * (vg (20-3) - 1] Upel 0 = [v. (2n-3)
* 1] Ut a1 e
where

\ . * ’ A ® (“)
ScMomentym Couation

Equation (11) s evalustad at point (c,n-t).
Using the difference expressions devalcped {.a the
preceding section, one obtains the foilowing
equation:

- ’u.n-l)

F{ N ] 2
’ (Zn-J)! ["kl-ﬂ ¢ Ill.ﬂ-l) ¢ (klﬂ.n * kaﬂ.n—x”
(29)

’u-ol =l - ’ml.n * "’l,ﬂ

where

8, = -0 st + ) (30)

ntum tion

Equation (12) {5 evalusted at point (c,n).
Using Che difference expressions developed in the
preceding section, one obtains the following
equation:

A boe1n-1 * Bn Kol n * Cn *ae1ne1 " 0% (1)
where

A, a8, +v,) (32)
B,"a,- s, {33)
Cpoals, -v,) (34)
Up = SR8, * v) Ky ey * (30 * 20 800

-aR(8, - v, )by oo (38)
s s U /ox (36)

n a,n
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i (RMgp *

- -2-% {n-1) Vm(Rum.n

mﬂ.n

* Upap,n) By (n-11] (37)

x-Momentum Equation

Equation (13) is evaluated at point (c,n).
Using the difference expressions developed in the
preceding section, one obtains the following
equation:

Ao ast,me1 * 8o Umiron * Gy Geeiaer 00 (39

where

R, =as, t ) 0 (39)

§n *a, - 28, + 8 (uy he - Up 1) (40)

C“-ae <y, -8y, g (1)

0y * ——3— - 1) (20) o ka,n * (R-1) k, ]

= {Poe1,n = Pu,nl/0x

* o, + 208 = (R-1)(uy 0 =0y 10T

= BB, + %) g ey - DBy = ¥) Uy 1 (42)
AlE Rhy o+ he )+ 8/ (0eD)] (43)

o, = -k (44)

I1.5. Method of Solution, Implementation, and
uter Program

111.5.1. Inftfal Axial Station

Once the axial- and swirl-velocity profiles are
specified, equation (16), the initial pressure and
initial radial-velocity profiles are calculated from
equattons (10)-(13). For the initial pressure,
equation (11) is evaluated at point (1,n-4) and we
obtain

2
eyt %y pay)

40z% (n-3/2) (45)

Pia-1 " Pion

This equation is used to calculate the initial
pressure.

For the initfal radfal velocity, we eliminate
the axial derivatives in equations {10)-(13) and
obtain the following equation

azu

3H
e

ul::

4
e B l1a (46)
2 0

r

....,,
3
f

where 2
2k 3%k 1 ak

Hszhand [ = (= - & (Hel) =] (47)
%3 We L T3

To obtain the difference equation of eq. (46), we
evaluate the egqiation at point (1,n-3). The fnte-
g-al on the right-hand side {s evaluated by using
the tripezoidal rule. The resulting equation is

H -

1,0 % he1 Y10 = Y10 * Yp 0l

ul n-1

- 4n-3/2)(uy o - U pep)]

ul.n-i +
2
n-3/2
» 257 (n-3/2) [éi. ([1 el

Y) n-1 L n-i)nzz

n-2
*F 01 e e 2 J Iilead (O

111.5.2. Subsequent Stations

Hers, iterstion must be used to obtain the

solutfons for A iy hoyy e Poer,n® Kper,n 20

Ypel 0’ The shape factor )\.ﬂ which signifies the
expansion of the viscous core in the downstream
direction can be determined by fteration or by
assuming that the outer boundary is a stream sur-
face. If the shape of the outer boundary is
prescribed, then x.ﬂ is already known. Next, we

describe the steps used to proceed in the downstream
direction using equations (27), (29), (31) and (39).
i. Equation (27) is used to calculate h.ﬂ,n.

Starting at n = 2, weuarchtmrdn-N+x On
the right hand side h 1,01’ . n-1° h n Y

®,n
Up nep 3Nd v, are known whi le Un+l,n and u

@+l ,n-1
are unknown. The latter values are initially

extrapolated from the preceding station values Ya.n
and up o .- (Ouring the iteration cycles, they are
assuned equal to the recently calculated values of
the preceding iteration.)

11. Equation (31) is used next to calculate kwl.n'

Following the Tridiagona) Algor{thm, we obtain the
following recurrence equations.

c1 -A
I = r—-c"—J-'l:L— yu, = -E—-E—J-—— (49)
n h * n N n n * n n-}
Iy =9, =0 (50)
kml N * Iﬂ * "n kml N+l (s1)

Starting at n s 2, we march toward n s N
calculate I_ and Iy using eqs. (49) and (50). Since
the value Bf km1 N+l is known from the boundary

conditions, we march backward fromn s N ton = 2
to calculatc L) using eq. (51). The unknown
value of Unel,n, éa (37) is fnitially extrapolated



from the preceding station value (Ouring the
{teration process, theyare ass ual to the
r:cnn;ly calculated values of the preceding ftera-
tion.

tit. Equation (29) is used next to calcuylate
pl‘l.ﬂ-l starting from n = N + | and marching toward

ne2,

fv. Equation (38) is used next to calculate
Unel " The following recurrence equations are used:

0 -8 L -A
Ly I i ) LI _n (52)
'n * cn "n—l Bn * cn "n-l
.
L =0 M 1 (53)
Ugel,n = tn * My Ymel nel (54)

Here, we march ypward and baciward in the same way
as step ii{ using equations (S2) - (54).

v. Steps f-iv are repeated until the calculated
values converge.

vi. Next, we march to the next axial! statfon. It
should be noted that if convergence failed at any
or took large number of iteration cycles, this
indicates that the breakdown point may be reached.
The boundary-layer-like equations are not valid

fn this region and one has to resort to the Navier-
Stokes equations.

[11.5.3. Computer Program

A computer program is written to implement the
developed method of solution. The Main Program
reads the boundary conditions and initial conditions
either in the form of discrete values or in the
form of analytic expressions. [t also reads the
step size AZ, aspect ratio of the grid A , number

of steps N in the  direction, the parameter 3,
and the ratio R. The main program interacts with
several subroutines.

Two subroutines are devoted to the initial
conditions; the first calculates the initial
pressure profile P, . while the second calculates

the profile of 1Mt1'|l radial velocity hl a°
1]

Another five subroutines are used to calculale

‘w1, "ee1.n’ Kmel,nt Pmel neg N Ugyy ,  These
subroutines are succassively calied in the main
program within a continuous iterative locp until
the values of h, k. p and u converge at two succes-
sive cycles of iteration. If convergence is not
reached at any downitream station aftara prescrided
number of iterations, the program stops. This is
an indication that this station is closely upstream
cf the breakdown station. [f the program converges
at all stations, it is stopped after a prescribed
distance in the axial direction. In the case of
the ‘eading-edge vortex core, the program stops
after a distance equals to one and one-hald the
wing root chord.

A Plotting Subroutine is also included to
plot the profiles h, k, p and u at any desired
station.

Figure 18 shows a flow chart of the main fea-
tures of the computer program,

111.6. Numerical Examples

Preliminary numerfcal examples have been con-
sidered to check the developed computer program.
In this paper, the results for a trailing-edge
vortex core calculations are presented. Typical
velocity profiles for the initial viscous-core flow
are ; This example was considered earlier by
Hal1%S, The application to a leading-edge vortex
core, with boundary conditions obtained from the
inviscid model, is currently considered. The DEC-
10 Computer of the 01d Cominion University Computer
Center is used to carry out the calculations.

For the trailing-edge vortex core, the follow-
ing initial conditions are used:

At x; 0.25, we have
u(xg,2) = 1-0.25 exp (-cz).
k(x, <) = 0.5(1-exp(~c2)]

for the boundary conditions, the following
conditions are used:

At ¢, = 6.0 and for 0.25 < x < 1.0, we have
ulCy.x} = 1.0, k(c ,x) =68, p(g .x) = 1.0

The shape factor of the outer boundary is
considered constant; i(x) = 1.0. In the axial
direction, 15 stations are taken (ax = 0.0S),
while in the radial direction, 80 stations are
taken {(4¢ = 0.075). The factor R is taken to be
1.0. Figure 19 shows the axial- and swirl-velocity
profiles at x = 0.25, 0.5, 0.75 and 1.0. One can
see the strong interaction between the axial and
swirl velocities. As the swirl velocity decreases
in the downstream direction, the axial-velocity
deficit 1-u decreases too. These results agree
exactly with those of reference 48. The results

of the linear tl'tem"lessz’s3 are also included in
the figure. The computational time for this case
took 4.0 seconds of CPU time.

IV. Concluding Remark

Integrated aumerical methods are developed for
the inviscid and viscous solutions of highly swept-
back wings at large angies of attack. The resylts
of the MNDV-method are remarkably successful in
predicting Humel's experimental data. The devel-
oped viscous program, based on the first order
bouncary-layer-1ike equations, successfully repro-
duces hall's numerical resuits. Currently, accurate
near-*ield calculations of the inviscid mode! are
develcped to provide the boundary conditions reeded
for the viscous solutions of the leading- and
trailing-edge cores.
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Figure 3. Typical solution of the leading-edge
vortex sheet, AR = 1, 12 x 12 lattice:
Kandfl, et.al. (Ref. 36).
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trafling-adge vortex sheets, AR = 1,
7 x 7 lattice, NOV-Method.
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Figure 7.

Typical solutions at different
iteration steps; ITER = 6 {s the con-
verged solution showing the leading-
and trailing-edge cores in two- and
thrte-d1gensioncl views; AR = 1,

a = 20.57, 10 x 10 lattice, 1/4 turn,
MROV-Method.
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STEADY AND UNSTEADY INCOMPRESSIBLE FREE-WAKE ANALYSIS

Dr. Osama A, Kandil, Associate Professor
Department of Mechanical Engineering and Mechanics
0ld Dominion University, Norfolk, Va. 23508, USA
Tel. 804-440-3720

ABSTRACT

The first part of this lecture covers detailed descriptions of the
flows around highly sweptback wings and bodies of revolution at high
angle of attack. Next, inviscid model approximations and mathematfcal
formulation of the problem are given for steady and unsteady incompres-
sible flows. A general presentation of the methods of solution is
given with emphasis on the modern computational techniques. Detailed
descriptions of the nonlinear vortex-lattice and vortex-panel techniques
are presented to show how the boundary conditions are enforced using
fteration,

Typical numerical results are compared with the available experi-
mentai data. The lecture ends with concluding remarks regarding the
existing computational techniques and the outstanding problems in
this ares,
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IN RECENT YEARS, accurate analysis and reliable prediction of vortex
flows have hecome extremely 1mportant to aerodgnamicists dealing with
modern designs of fighter aircrafts,! missiles? and helicopters.3
Modern fighter aircrafts fly at high angles of attack during take-off,
offensive and defensive maneuvering, approach and landing. In this
range of angle of attack, vortex flows develop around the aircraft

with dominant effects on its aerodynamic characteristics and controlla-
bility. Modern designs of missiles require high launch angles of attack
and high maneuverability within which a very complex vortex flow
develops. For helicopters, the interaction of a blade with the vortex
wake of another blade affects its operating performance, vibration and
nofse characteristics. In forward speeds, blade slap, a predominant
source of external noise, occurs due to the rapid time rates of change
of the blade pressure developing from its passage through a tip vortex
of a preceding blade. Examples of these vortex flows are given in
Figure 1.

For all these applications, one has to deal with strong nonlinear
aerodynamics. Compressibility and separation of the flow are the main
sources of the strong nonlinear effects. As the flow Mach number changes
from low subsonic to transonic and supersonic, the flow undergoes
several qualitative changes and shcck waves (detached or attached) 6.7
appear in the flow. As the angle of attack increases from low to
moderate and high values, the 1ift- and pitching-moment coefficients
become nonlinear functions of the angle of attack. This nonlinear
behavior of the total loads is atirib "ed to flow separations, from
the wing edges (side and leading edge. 'nd the body leeward side, in
the form of vortex sheets that roll up into strong vortex cores.

Prediction of the coupled effects of noniinearities; compressible
and separated flow nonlinearities, is currently receiving considerabie
efforts from researchers working in the computational fiuid dynamics
area, but it is far from being complete. In the supersonic flow regime,
a few successful attempts based on the vinite difference solution of
Euler's equations exists.2.9 In the transonic flow regime, nothing is
available yet and several erforts have just started.

In the present lecture, I am going to discuss the nonlinearity due
to flow separation only. Compressibility effects will be presented
using the Prandtl-Glauert transformation. The full nonlinear com-
pressibility effects will be presented in the next lecture using the
integral equation formulation (Gre?n's function solutions). In this
regard, the lecturer has presentediO a steady nonlinu:-= vortex lattice
technique which accounts for the full nonlinear compressibility terms
in the nonlinear potential equation. Flow compressibility in this
technique is modeled by volume-source distribution within a finite
volume around the body. The technique has not been numerically tested
yet but work is underway using a similar technique which includes
??ock capturing using the artificial compressibility method of reference

The first part of this lecture covers a description of the flow
based on the available experimental measurements. This is followed by
the inviscid model approximations and the mathematical formulation of -
the steady and unsteady problems. A general presentation of the methods
of solutions is given with emphasis on the modern computational techni
ques. Detailed descriptions of the nonlinear vortex-lattice and vortex-
panel techniques are presented to show how the boundary conditions are
enforced using iteration. Typical numerical results are compared with
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the available experimental data. The lecture ends with concluding
remarks regarding the existing computational techniques and the out-
standing problems in this area.

Major portions of this lecture are based on earlier published
papers, reports and theses!90,12-22 by the lecturer, his collaborators
and his students. :

DESCRIPTION OF THE FLOW FIELD

In the low-subsonic to transonic speed range, numerous experimental
data are available for vortex flows about highly swept back wings23-38
and bodies of revolution39-51 at an angle of attack.

HIGHLY SWEPT BACK WINGS-The fluid flow past such wings is charac-
teri- ¢ by flow separations from side and leading edges due to strong
cross - iows. The flows from the pressure and suction sides of the wing
leave at the side and leading edges to form free-shear layers. The
separatad free-shear layers roll up spirally and form two vortex cores
which are continuously fed by vorticity shed from the attached boundary
layers on the wing surfaces through the free-shear layers. This type
of flow separation is known as the "primary separation." It has a
dominant effect on the aerodynamic characteristics due to the large
strength of its vortex core and its prximity to the upper surface
of the wing. It generates a large suction pressure peak on the upper
surface under the primary vortex core.

The primary separation lines nf wings with sharp leading and side
edges are fixed along these edges and hence they are known a priori.

In the case of rounded edges, the sepa~ation lines are inboard of the
edges and are not known a priori. Hence a viscous model or perhaps an
empirical formula is needed to locate these lines.

The adverse pressure gradient outboard of the suction peaks affects
the boundary layer flow on the upper surface and "secondary separation"
from the wing surface occurs. The secondary separated flow forms either
an additional free shear layer or a bubble depending on the angle of
attack. In the range of moderate to large angles of attack, the secon-
dary free-shear layer rolls up spirally in an opposite sense to that of
the primary shear layer and forms a secondary vortex core with a
strength much smaller than that of the primary core and of opposite
sense. The effect of secondary separation depends on the type of
boundary-layer flow on the upper surface. For a laminar boundary layer,
the secondary core produces another lower pressure peak between the
secondary and primary lines of separation. For a turbulent boundary
layer, such a pressure peak is hardly noticed, and the primary pressure
peak is slightly higher than that of the laminar boundary-layer flow.4

A third type of flow involving a "tertiary" separation may occur
between the lines of secondary and primary separation due to the adverse
pressure gradient created by the secondary vortex core, Figure 2 gives
a schematic of these flow separations.

The free-shear layer emanating from the trailing edge is of oppo-
site strength to that of the primary free-shear layer. Within a short
distance behind the trailing edge (a distance of a 1/4 root-chord
length for a delta wing of aspect ratio of one at 20.5° angle of attack),
the trailing free-shear layer rolls up spirally in an cpposite sense to
that of the primary free-shear layer and forms two counter rotating
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vortex cores. The trailing-edge vortex core has the same sense of
rotation and almost the same spanwise location as those of the secondary
vortex core, although each originates from a different phenomenon.

The former is due to an edge separation while the latter is due to a
surface separation. Hummel4 concluded from his latest experimental
measurements for turbulent boundary layers at the trailing edge that

the secondary-vortex core decays rapidly behind the trailing edge

and its remains roll up into the trailing vortex.

Predicting the correct formation of the trailing-edge vortex core
is essential for predicting the correct aerodynamic loads near the
wing trailing edge due to its proximity to this dege. Mareover, a
correct prediction is of paramount importance to problems involving
high-angle-of-attack asrodynamics for the canard-wing configurations.

The size of the primary-vortex core and viscosity of the flow with-
in a narrow region around the core centerline play important roles in
the aerodynamic characteristics of low-aspect ratio wings at large
angles of attack. For these types of wings, it is well known that the
1ift coefficient increases nonlinearly with the increase in the angle
of attacKk. This is attributed to the increase of the strength of the
primary vortex core. However, the increase in the 1ift coefficient
is limited by the occurrence of vortex-core breakdown over the wing and
hence there exists a maximum angle of attack corresponding to the maxi-
mum 1ift, Figure 3.

The phenomenon of vortex-core breakdown is defined as an abrupt
increase in the core diameter. It occurs due to the adverse swirl-
induced pressure gradients along the core axis. Using the radial com-
ponent of the momentum equation of the boundary-layer like equations
(for quasi-cylinderical vortex cores), one can show that an increase
in the swirl velocity of the flow, due to an increase in the core
strength, inc-eases the axial pressure gradient along the core axis.
Therefore, the flow near the core axis loses its axial momentum and
swelling of the vortex core develops.

For moderate angles of attack, vortex-core breakdown develops far
downstream from the wing trailing edge. As the angle of attack
increases, vortex-core strength increases and the breakdown point
travels upstream toward the trailing edge. As the breakdown point
approaches the trailing edge, the slope of the 1ift versus angle of
attack curve decreases until the maximum 1ift is reached. Thereafter,
the 1ift coefficient drops sharply, the breakdown point crosses the
trailing edge and the wing stalls.

SLENDER BODIES-Three distinct patterns of flow separa:ion develop
on the leeward side of a slender body as it is pitched through three
ranges of angles of attack.

At Tow to moderate angles of attack (6°-25°), two symmetric vor-
tices appear on the leeward side which consist of two counter rotating
vortex cores with increasing strength and size in the downstream direc-
tion. Vorticity from the boundary-layer flow on the body surface is
shed from the separation lines and feeds the vortex cores through roll-
up free-shear layers. This type of flow separation is also known as the
primary separation. The separated flow has a dominant effect on the
pressure distribution on the leeward side. Similar to the flow around -
delta wings, secondary-flow separation develops also inboard of the
primary separation line.
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Above the 25° angle of attack, the two continuous feeding free-
shear layers break-up asymmetrically at points along the two separation
lines and multiple pairs of asymmetric vurtex cores form over the lee-
ward side of the body. Each vortex core originates from a separate
point on the separation iine. Ericsson and Reding52 conclude that both
the "vortex crowding" near the body nose and the degree of freedom of
the separation point may contribute to the formation of asymmetric
vortices. The resulting asymmetric pattern of vortex cores produces
large side forces which can be larger than the normal force.

At very large angles of attack, above 60° angle of attack, the
crossflow becomes dominant and unsteady vortex shedding starts. The
separated free-shear layers are shed in the form of a Karman vortex
street.

APPROXIMATIONS FOR INVISCID ANALYSIS

The experimental results given above show that we are dealing with
highly cumplex flow fields. For highly swept back wings, four different
vortex cores (primary, secondary, tertiary, and trailing-edge) have been
found and apparently their origins are well understood. For bodies of
revolutions, two different vortex cores (primary ard seccndary) have
been found and three different modes of flow separation (steady sym-
metric, steady asymmetric and unsteady asymmetric) have been identified.
For inviscid analysis, certain approximations are adopted so that the
resulting potential flow model represents the main features of the real
flow to a good degree of accuracy.

For wings, the effect of the tertiary vortex core is very small and
can be neglected. The effect of the seccndary vortex core is small in
symmetric flows particulary when the boundary layer on the suction side
is turbulent. Hence, its effect on surface pressures and integrated
forces can be neglected without appreciable error under the conditions
stated. Thus, we are left with the primary flow separation and the
trailing-edge flow separation. For an isolated wing, the effect of
deformation of the primary and trailing-edge vertex cores and their
feeding free-shear layers is neglected after a distance of about 1/2
to 1 root chord since it is a far field effect. For canard-wing,
wing-tail and strake-wing confiyurations, this effect must be tuken
into account.

In most inviscid analyses, the attached boundary layers are
replaced with bound-vortex sheets while the free-shear layers are
replaced with free-vortex sheets. Accordingly, the inviscid region
representing the vortex core should be represented by a conical sprial
vortex sheet which ends with a concentrated vortex line along the core
centerline. Although this theoretical representation of the vortex-
core is ideal for the inviscid model, the usage of many turns within
the core region creates numerical problems in a three-dimensional model
which does not assume slender-body approximations. The numerical
problems arise due to the proximity of the vortex layers of the spiral
and due to the large number of small-size panels needed to accurately
model the turns. However, it was found, according to the numerical
results and their excellent comparison with the experimental datz,
that oniy one turn of the spiral need to be accurately modeled while
the remaining turns of the spiral are replaced uy a cut ending with a
concentrated vortex line along its edge (Figure 4.)
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Since one does not know a priori where the trailing-edge vortex core
originates, one has to obtain it as a part of the solution. This h%s 15
been successfully accomplished, for the first time, by the lecturerl3,l15,

In all inviscid wing models, the wing edges are assumed to be
sharp so that the separation lines are known a priori anq hence viscous
modeling is not needed to determine the lines of separations. However,
for wings with round edges, viscous modeling is needed to determine
these lines. Moreover, vortex-breakdown points are assumed to be far
downstream so that the variations in the size of the primary-vortex
core can be neglected. In fact, this assumption limits the large
angles of attack at which inviscid modeling is applicablg. With the
vorticity confined to the inner boundary of the flow region (bound-
and free-vortex sheets), the resulting model is a potential-flow mgdel
governed by Laplace's equation (in i:compressible flows) and certain
boundary conditions.

For bodies, the effect of secondary separation is also small and
can be neglected. Unlike the primary separation of wings, the primary
separation lines are not known a priori and hence viscous solutions
are needed to locate these lines :nd :intermine the strength of shed
vorticity (this is a separation from a smooth surface and hence Kutta
condition is not applicable). In this regard, the reader is referred
to the work of Mendenhall, Spangler and Perkins.53 Since we are
dealing with inviscid analyses only, this problem will not be discussed
anymore in the present lecture. The rest of the lecture addresses the
steady and unsteady problems of wings with vortex flows.

MATHEMATICAL FORMULATION OF THE GENERAL PROBLEM

The problem is formulated relative to a wing-fixed frame of refer-
ence xyz. The x-axis is the wing centerline and the xy-plane is the
wing plane of symmetry. The wing_is rotating at the angular velocity
& and the freestream velocity is U,. The general orientation cof the
wing is described using the Eulerian angles a, 8, and y, Figure 5, which
refer to the angles of attack, yaw and roll; respectively. In terms
of these angles and their time rate of change, the dimensionless
freestream velocity and the angular velocity are expressed by

é_ = cosa cosB 1 + (-sina cosy + cosa sing siny)j + (sina siny
+ cosa sing cosy)k _ (1)
@ = (-asing +v)i + (a cosB siny + B cosy)j + (a cosg cosy
- 8 K T+qa3 +ak
8 siny)k 20 + Q] sz (2)

where i, j and x are the base unit vectors of the xyz-frame of
reference.

The unsteady irrotational ideal flow in the region outside of the
wing and its separated vortex sheets is governed by the Laplace's
equation
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92 = 0 (3)

where ¢(r,t) is the perturbation velocity potential. The no-penetra-
tion condition on the wing s(r,t), relative to the wing fixed frame
of reference, is given by

QL

4 (8, + v - AxF)vs = 0 on s(F,t) =0 (4-a)

For a rigid wing, %% = 0 and equation (4-a) reduces to
(8, + 7 - ﬁxF)-ﬁs =0 on s(r) =0 (4-b)

On the separated free-vortex sheet w(r,t), the no-penetration condition
is given by

%¥_+ (8_ + v - xr)e%w =0 on w(r,t) =0 (s)

The no-pressure jump condition on w(r,t) is obtained from the unsteady
Bernoulli's equation

Co(Fot) = -ve[v0 + 2(2, - )] - 2 3% (a)
where C_(F,t) is the pressure coefficient at any point r and at any
time t.P Forming the pressure jump from equation (a) and equating the
result to zero, we obtain

Acp = cp] -G T -(voy - V4,)e[v4, + Ve, +2(e, - Qxr)]
2 ﬂ¢ - ¢ ) =
-2 3% 1 2" =0 (b)

where the subscripts 1 and 2 refer to the upper and lower surface of
the wing; respectively. Rearranging equation (b) and setting

¢y = ¢y = 8¢ (c)
one obtains
= a— v ) = Q(—A¢ ) -
ACp -2(at + v, v)(ag) = -2 ot =0 (d)

where vy = velocity of a wake element relative to the xyz-frame of
reference

1 - - -
= E-(v¢1 + v¢2) +e_ - Qxr

Equation (d) represents the theorems of Klelvin and Helmhotlz
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g%.- g?’ JfG-nydA=0 on w(r,t) = 0 (6)

of conservation of the circulation and the outflow of vorticity;
respectively. In equation (6), ny is a unit normal to the surface A
bounded by a closed curve around which the circulation I' is calculated.
Equation (6) simply states that the rate of change of circulation around
a closed curve or the rate of change of outflow of vorticity through the
surface bounded by this closed curve is zero (following the same fluid
particles. )

For uniqueness of the solution, one has to impose the Kutta condi-
tion along the edges of separation. Here, Kutta condition is repre-
sented by

ac, | =0 (7)
TE,LE,SE

Finally, the infinity condition requires that
V¢ - 0 away from s and w (8)

Equations(1) - (8) are the required equations for the general unsteady
flow problem.

For steady and unsteady symmetric flows, equations (1)-(8) are
simplified as follows: -

STEADY-SYMMETRIC FLOW-For this problem, we set =0, 8=y=0 and
drop the time dependent terms. The resulting equations are

Eﬂ'COSG;-Sinai (9)
v% = 0 (10)
(e + v¢) * ﬁs =0 ons(r) =0 (M)
(& +Vs) - ﬁw =0 on w(r) =0 (12)
ACp = -Z(ENxB) - (e_ +9)=0 onw(F) =0 (13)
aC, | =0 (18)
TE,LE,SE
¢ » 0 away from s and w (15)

UNSTEADY-SYMMETRIC FLOW-For this problem, we set B=y=é=§=0 and
the resulting equations are

é_ *cosa i-sinaj (16)

§=a_k=ak (17)



ORIGINAL PASE
is
OF POOR QuALITY

w2 = 0 ' (18)

(&, + ¢ - ﬁsz) . is =0 on s(r) = 0 (19)

A (8, +% - 8xF).c w0 onw(F,t)=0 (20

g% .0 onw(r,t) =0  (21)

ACp l =0 (22)
TE,LE,SE

V% + 0 away from s and w (23)

EXISTING METHODS OF SOLUTION

Before the Nonlinear Vortex-Lattice [Nonlinear Discrete-Vortex (NDV)]
and Nonlinear Vortex-Panel [Nonlinear Hybrid-Vortex (NHV)] methods are
discussed in detail, a brief discussion of the existing mathematical
models is presented. The literature contains several steady and unsteady
inviscid-flow models with various degrees of limitations and drawbacks.
These models can be divided into four main groups. Each group is
presented and evaluated in the next subsections.

SLENDER-BODY MODELS-This group of models uses slender body and
conical flow assumptions.54-61 Modeling of the primary-vortex core and
its feeding sheet was first introduced by Brown and Michael.55 However,
the feeding sheet in their model was taken as a planar surface and hence
it did not represent the real rolled-up vortex sheet. Mangler and
Smith56 introduced the first realistic model of the primary-vortex core
and its feeding sheet. However, this model does not account for the
feeding-sheet deformation in the chordwise direction due to the slender-
body assumption. These models satisfactorily predict the pressure
distribution on the front portion of the wing surface. In the rear
portion, the models fail to predict satisfactory pressure distributions
because Kutta condition cannot be satisfied at the trailing edge. Such
models were limited to slenderde1ta?lanforms.

OLD NDV-MODELS-In these models,!0,17-22,62-66 the bound-vortex
sheet and the free-vortex sheets are approximated by a set of concen-
trated vortex lines. The bound-vortex sheet is replaced by a bound-
vortex lattice, while the free-vortex sheet is replaced by segmented
free-vortex lines (in the case of steady flow) or by a growing free-
vortex lattice (in the vase of unsteady flow). The boundary conditions
are satisfied at certain control points on the bound- and free-vortex
system using an iterative technique. Excellent agreement was found!10,22
between calculated and experimental total aerodynamic characteristics,
and the cgreement between calculated and experimental total aerodynamic
characteristics was satisfactory for wings with only side-edge separa-
tion. For wings with leading-edge separation, however, the agreement
was less than satisfactory for some cases. Although the discrete-
vortex model has for many years worked very well for attached-flow
problems,67 when vortex-type separation from leading edges and/or tips
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occurs, the free-vortex system lies close to the lifting-surface and
the results are found to be sensitive to the model of the primary
separated flow. The most obvious drawback of the old model is the
lack of a realistic model of the primary vortex core and its feeding
vortex cheet.

Although the old NDV-method was almost abandoned in predicting the
flow details and the distributed aercdynamic characteristics, the
modified NDV-method!3,15 pinpointed and cured most of the problems
encountered with the old method. It cajoyed a remarkable success in
predic&ing, for the first time, the latest experimental results of
Humme 1%,

DOUBLET-PANEL MODELS-This group of models employs doublet-pane1568'75.
In this method, the wing and its free-vortex sheets are divided into
networks of quadrilateral panels. Each panel of the networks repre-
senting the wing has a biquadratic local doublet distributions and a
bilinear local source.distribution. The panels of networks representing
the free-vortex sheets have biquadratic local doublet distributions.
Source and doublet splines are used to express the distributions of
singularities on the networks in terms of discrete values of singularity
strength at certain standard points on each network. The boundary
conditions and continuity of singularity strengths across abutting
networks are enforced 9t ;ertain standard points on network. The
results of this method/3,/4 are generally good when the solution con-
verges. Apparently, the difficulty in obtaining convergence is due to
the failure in satisfying the continuity of the derivatives of the
doublet strength across aLutting networks. This is equivalent to the
existence of concentrated vortex lines between abutting networks.

The doublet panel method was extended’5S to include the effect of
entrainment of the primary vortex cores through an empirical approach.
The results indicated that the entrainment increased the normal-force
coefficient substantially over the experimental values.

This group of models do not account for the chordwise deformation
of the primary-vortex sheet. Consequently, the primary vortex sheet
cannot be fed three-dimensionally with the shed vorticity. Moreover,
the trailing-edge free-vortex sheet was represented by a "fixed design
wake."

NHV-MODELS-This group of models employs a nonlinear hybrid vortex
method12.14,16_  In this method, continuous-vorticity and vortex-line
representations of the wing and its separatad free-shear layers are
used. Continuous vorticity is used in the near-field calculations
while discrete vortex-lines are used in the far-field calculations.

The wing and its free-shear layers are divided into planar quadri-
lateral panels having first-order vorticity distribution. The aero-
dynamic bouncary conditions and continuity of the vorticity distributions
are imposed at certain nodal points on the panels. To satisfy these
conditions, a~ iterative technique is followed which alternatively yields
the local vorticity distribution on the bound-vortex paneis and the
shape of the free-vortex panels. This method has been used to calculate
the steady distributed and total loads on planar-low-aspect-raio rectan-
gular wings. The results have shown that the spanwise variations of the
load coefficients are in good agreement with the experimental data.
Comparisons of the results with those of the NDV-method have shown that
the hybrid method requires less number of vortex panels for the same
accuracy.
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NONLINEAR DISCRETE-VORTEX (NDV) METHOD

In this method the basic unknowns are the circulation distribution
and the shape of the free-vortex sheets. The following sub-sections
give the details of the method.

CONSTRUCTION OF THE DISCRETE-VORTEX METHOD-Figure 6 shows how the
discrete vortex model is constructed for a delta wing. Although the
example discussed here is for a thin, flat, delta wing, the method is
general and is not restricted by the geometrical parameters of the wing;
e.g. camber, aspect or thickness ratios or wing planform,

The first step is to divi‘e the wing into rectangular and cropped-
delta winglets as shown by the dashed lines in Figure 6.a. A rectan-
gular winglet is aerodynamically represented by a spanwise bound-
vortex segment of constant circulation ri. This segment is placed at
the quarter-chord length of the winglet (the chord length of the
rectangular winglet is the characteristic length of the problem).

In addition a control point is placed at the three quarter-chord lergth,
The choice of these positions is suggested by thin airfoil theory.

It can be shown that the bound-vortex sheet representing the two-
dimensional flow around a fat plate a= an angle of attack can be
replaced by a point vortex of the same strength as that of the continuous
vortex sheet under the following conditions: a) the point vortex is
placed at the cuarter-chord length and b) the flow tangency condition

is enforced at only one point at the three-quarter-chord length.

On the other hand, a cropped-delta winglet is aerodynamically
represented by a bound-vortex segment of constant circulation. Thic
vortex segment is directed along the perpendicular from the midpoint
of the winglet root chord to its leading edge. With this choice it can
be seen that the vorticity of this vortex segment does not have a
component along the leading edge and hence the Kutta condition is
approximately satisfied along this edge.

Chordwise bound-vortex segments arise due to the differences in
the strengths of the neighboring spanwise, bound-vortex segments. In
this way, a bound-vortex lattice which replaces the continuous, bound-
vortex sheet is constructed. The model is completed by adding free-
vortex lines, representing the continuous free-vortex sheets at the
ends of the bound-vortex lattice along the edges of separation ; the
leading and trailing edges. Each line is divided into a series of
small, straight segments (near-wake regicn) and one semi-infinite
vortex line (far-wake region). The upstream end of each segment
represents a control point of the wake surface where the kinematic and
dynamic boundary conditions are satisfied. The initial positions and
shapes of these lines are prescribed. The resulting model is shown in
Figure 6b. This model has an unknown circulation distributicn and a
wake that can be deformed to satisfy the boundary conditions.

The mode) described above is used to solve the steady-flow problem
by satisfying the corresponding boundary conditions. On the other hand,
if the problem under consideration is for an unsteady flcw which starts
from a steady flow situation, then the solution of the steady-flow
problem serves as an initial condition to the unsteady problem. Further-
more, if the problem under consideration is for an‘unsteady flow which
arises from an impulsive motion of the wing, then the ir:%ial condition
corresponds also to the solution of the model given above, but with the
wakes removed from the model.
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CALCULATION OF THE VELOCITY FIELD-To satisfy the boundary conditions
on the wing and its wake and to calculate the surface pressure distri-
bution, one needs an accurate method to calculate the velocity at any
field point rj at any time step tg. If the field point is off the wing
and its wake, then the velocity is given by

Tt = Wt + 3, - At x 7y (24)
where )
. n(ty) . .
vo(rj.tk) = ? [r,(tk)/4nhi(rj.tk)][cosex,(rj.tk)
- °°s°21(Fj’tk)]éi(Fj’tk) (25)

is the induced velocity from all the vortex segments of the model. The
parameters on the right-hand side of equation (25) are those of Biot-
Savart's law/8. The number of vortex segments n(ty) is a function of
the time step tx due to the growing vortex lattice in the wake in the
unsteady-flow problem. To account for the near-vortex velocity, equa-
tion (25) is modified by an artificial viscosity which is obtained

from reference 77,
: When the field point is on the wing surface or on the wake surface,
one has to account for the self-induced tangential velocity due to the
local strength of the vortex sheet. Figure 7 shows the parametars
involved in calculating the components of the induced tangential velo-
city in the x and z direction at a point p for a rectangular vortex
element in the xz-plane. With linear interpolation, it is easy to .how
that these components are given by

(172 )0 (x + 11 = xy) + T3lx, - x)]&  (26.2)

H

vy I0+ =
‘tx(y 0-)

(172 22)[T(z + 15 = 71) + Tolzy - 2)]62  (26.b)

+1

v '0+ =
Ve ly ® o-)

where the arguments y = 0" and y = 0" correspond to the upper surface
and the lower surface of the wing, respectively. Equations (26) must
be added to equation (24) if one-is to calculate the pressure distri-
bution on the upper and lower surfac2s by using Bernoulli's equation.
Extension of equations (26) to a general, quadrilateral vortex element
is straightforward. ‘
BOUNDARY CONDITIONS FOR THE STEADY PROBLEM-The boundary conditions
on the wing surface s(r) and the wake surface w(r) are satisfied by an
iterative process. To initiate the iterative process, one needs to
prescribe an initial geometry of the wake surface. It has been found
from several numerical tests that the number of iterative cycles
required to achieve the solution can be reduced by an appropriate choice
of *he initial geometry. This initial geometry depends on the problem
under consideration and thus it varies from one problem to the other.
For instance, the number of iterative cycles for the steady,
symmetric-flow problem is reduced by about 20% when the free-vortex
lines emanating from the leading edge are prescribed to be straight
lines pitched at one half the wing angle of attack. In addition,
those lines emanating from the trailing edge are assumed straight lines
pitched at one third the wing angle of attack. Here, the comparison is
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made with respect to the number of iterative cycles required for tne
same problem when all the free-vortex lines are prescribed to be
straight 1ines pitched at an angle equal to the wing angle of attack.
In the case of a steadily, rolling wing at zero angle of attack,
an appropriate initial guess is found to be related to an angle 8(r) =
t 1/2 tan=!|{xr|/Us. Here, we specify the free-vortex lines emanating
from the edges «f the advancing and receding sides t be straight lines
pitched at the angles +6 and -8; respectively. '
Next, the flow-tangency condition and the spatial conservation of
circulation are satisfied at the control points and node points,
respectively, of the bound-vortex lattice. Thus, we obtain a set of
linear algebric equations which yeilds the circulation distribution Iy.
With the circulation distribution fixed, the kinematic and dynamic
boundary conditions at the control points of the free-vortex lines are
satisfied. For steady flows, these two conditions are combined into a
simple condition in which we require that each vortex segment in the
wake be aligned with the local velocity at its upstream end (a control
point on the wake surface). This means that each vortex segment is a
segment of a streamline (kinematic condition). Moreover, it means
that the force on each vortex segment is zero according to Kutta-
Jawkowski theorem in the small (dynamic condition). This process is
carried out by calculating the downstream end of each vortex segment
" according to

Fiap = Ty # V521V (27)

where r; and FJ+1 are the position vectors of the_upstream and down:tream
ends, rgspectively, 25 is the segment length and Vj is the velocity at
its point [equation (24) for steady flows%

The iteration sc.eme moves back and forth from the control points
of the bound-vortex lattice to the control points of the free-vortex
1ines until convergence is achieved. We consider the iteration scheme
converged when the variation in the circulation distribution or the
displacement of the downstream ends of the free-vortex segment between
two seccessive iteration cycles does not exceed a certain prescribed
tolerance. Once convergence is achieved, we calculate the pressure
distribution and the total load coefficients.

BOUNDARY CONDITIONS FOR THE UNSTEADY PROBLEM-Here, we consider the
problem of unsteady flow which starts from a steady flow situation. The
continuous motion of the wing is discretized into a series of impulsive
changes occuring at discrete time steps. At each time step ty, a set
of starting vortices develops along the edges of separation and are shed
with the local velocities to restore the smoothness of flow at the edges
(Kutta condition). In the same time, the starting vortices shed in the
wake at earlier time steps are convected downstream with the local
velocities without changing their strengths. This process satisfies
the kinematic condition on the wake (a wake element moves along the
direction of the local velocity) and it also satisfies the dynamic
condition on the wake (a wake element satisfies Kelvin-Helmholtz
theorem).

The position of any shed vortex Fj at any time step ty is determined

by
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Filt) = Fylt, 1)+ (8 = 6 WV Gyw by ) (28)

where ty.1 is the preceding time step and V? is given by equation (24).
The strength of any newly shed vortex is related to the change in the
bound circulation. Hence, with the positions of the shed vortices

known from equation (28) and with the strength of the newly shed

vortices given in terms of the change of the bound circulation, the

flow tangency condition at the control points of the wing yields the
unknown circulation distribution. Tg account for the error in equation
(28) (because of using the velocity Vj (Fjostg-1) at the preceding time
step ty.) rather than the current time s%ep tc), an iteration procedure
similar to that of the steady-flow problem is performed.

In both the steady and unsteady flows, the only difference between
the symmetric and asymmetric problems is the longer computational time
required for the latter problem as compared to that of the former pro-
blem. In the former problem, we need only to use half the wing to
obtain the solution because of the flow symmetry. In the latter problem,
the whole wing must be used to obtain the solution.

CALCULATION OF THE PRESSURE COEFFICIENT-The distribution of the
pressure coefficient on the upper and lower surfaces of the wing is
calculated by using Bernoulli's equation in terms of a wing-fixed frame
" of reference.

C(Fpaty) = - [VFL801° + 2V(F ) - [A(y) x 7y - 8]

3¢(F uty)
-2 — (29)
where
VEE) = m(Fpat) + T (Rt ) + 3, (7Lt (30)

Fi is the position vector of the control point, the positive and nega-
tive superscripts refer to the upper surface and lower surface of the
wing, respectively, and V¢, vy, and v¢z are given by equations(25),
(26.2) and (26.b), respective%y The pressure is calculated at the
control points of the bound-vortex lattice because these are the points
where the flow tangency condition is enforced.

In the steady-flow problem, the last tarm of the right-hand side
of equation (29) is zero and all the other terms are time independent.

The net presrure coefficient is given by

aC (rj.t ) = 4[Vtx(F;.tk) + Gtz(F;,tk)] - [Alt,) x FJ -

* v’(l.'J.tk)] ® z[r(FJvtk) = r(Fjotk_])/(tk - tk_])] (3‘)

The total-load coefficients are obtained by integrating the net pressure
coefficient on the wing.

NUMERICAL EXAMPLES; NDV-METHOD-Figures 3-15 show typical solutions
of free-vortex sheets emanating from side, leading and trailing edges
of isolated wings, a canard-wing configuration and a wing-body combina-
tion for steady symmetric and asymmetric flows and for unsteady symme-
tric flows.
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In figure 8, the arrangement of the bound.vortex lattice used for
rectangular wings is alse shown. It is noticed that the tip vortex
covers about 13% of the wing semi-span and hence its effect on the
spanwise pressure distribution is confined in this region,

In figure 3, Rehbach's solutionbd for & delta wing of aspect
ratio of 1 15 shown. Starting with the solution of @ rectangular
wing, he progressively deform the wing leading edge to obtain the
solution of the delta wing; a time consuming process. The present NDV-
method solves the probliem directly without going through this deforma-
tion process, Although the arrangement of the bound-vortex lattice
of the present method differs from Rebach's (compare Figure 6.0 and
9.4), the final shapes of the leading-edge vortex lines are the same.

Figure 10 shows the solution for a delta wing of aspact ratio of
0.7. Figure 11 shows the soluticon for the same wing which is now
steadily rolled at zero angle of attack, Notice the antisymmetric roll
up of the leading-edge vortex lines.

Figure 12 shows the solution for a yawed delta wing and the
retative sizes of the leading-edge vortex sheets emanating from the
windward and Teeward sides,

In Figure 13, it is seen that the vortex trail of the canard {s
deflected inboard of the main wing toward its plane of symmetry. It
alsc moves downwards toward the surface of the main wing. This pro-
duces a downwash on the central part of the main wing and an upwash
on its tip region.

In Figure 14, the solution of the leading-edge vortex for a wing-
body combination without leeward-side separation from the body is
given.

Figure 15 shows the development of the leading- and trailing-edge
vortex system for a delta wing undergoing a sinusoidal pitching motion.

Figures 16-21 show samples of the computed total and distributed
loads for the cases considered above.

It is seen from figure 16 that the section-1ift peak near the
wing tip moves inboards as the angle of attack increases. In the linear
case, indicated by the dotted lines, the tip vortex is not taken into
account and one can see the substantial effect when the tip vortex is
included (indicated by the solid lines).

Figures 17 and 18 show the spanwise variation of the pressure
coefficient. The suction peak of the pressure coefficient exists
almost at the same spanwise location of the center of the leading edge
vortex,

Figure 1S shows the pitching-moment coefficient versus the 1ift
coefficient and the 1ift coefficient versus the angle of attack for
a wing-body combination. Aithough the leeward-side separation from
the body is nct taken into account, the computed results are in
good agreement with the experimental data.

Figure 20 shows the well-known hysteritic behavior encountered in
unsteady flows as the angle of attack increases to a maximum, then
decreases to its initial value.

Figure 21 shows the variation of the normal-force and pitching-
moment coefficients with time for the delta wing considered in Figure 15.
Notice the phase lag between the loads and the wing motion,
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THE MOOIFIED NONLINEAR-DISCRETE VORTEX (MNDV)-METHOD;LEADING- AND
TRAILING-EDGE VORTEX CORES (LEC & TEC)

Figure 22 shows a recent converged solution of the system of free-
vortex lines with a long deformed wake. It can be seen that the trace
of the trailing-edge vortex system in cross planes indicates that the
sheet tends to deform upwards showing a tendency to form a trailing-
edge vortex core. However, the cross-flow planes taken further down-
stream show that the free-vortex lines leapfrog. This does not repre-
sent the real flow. Figure 23 shows four of thesecross-flow planes
taken perpendicular to the wind direction.

It is cleary seen from the example given above, that the existing
model of the NDV-method does rnit realistically model the leading- and
trailing-edge vortex cores. Therefore, the model and the numerical
technique must be modified in order to obtain realistic vortex-core
-modeling.

In the MNDV-method 2 realistic 1.odeiing of the primary-vortex core
region is introduced. The old NDV-method is only used in the first
fterative cycle to initiate the roll-up process ana to calculate the
centroid of the leading-edge vortex system. Next, the ledding- and
trailing-edge vortex segments are replaced by smaller segments. Then,
the iterative cycles procead.

In a typical iterative cycle, each free-vortex line of the leading-
edge vortex system is allowed, three-dimensionally, to rotate around the
most recently cdiculated centroid a prescribed portion of a turn
(174, 172, 3/4, or 1 turn). This is done by continuously checkin
the coordinates of the free-vortex segments (as they are adjusted?
with the location of the calculated centroid. Once this is achieved,
the remaining tree-vortex segments of wach line are dumped into the
calculated centroidal line of the vortex system. The iterative
technique is followed until the circulation distribution converges.

Figure 24 shcws typical solutions at different iterative cycles.
It can be seen , after one iterative cycle, that the system of free-
_vortex linesghows goodroll-up. Theconverged solution, indicated by ITER=€
shows the leading-edge core and its feeding free-vortex lines. It can
also be seen that the free-vortex lines continue to feed the LEC
beyond the trailing edge. The trailing-edge core is also indicated
on the figure. This will be clearly seen in the cross-flow planes
discusscd in the next sub-section.

NUMERICAL EXAMPLES-Figures 25-27 show comparisons betwcen the
experimental and numerical results for leading- and trailing-edge
vortex sheets and flow direction in cross-flow planes perpendicular to
the wind direction. The numerical results are drawn at the same scale
as that of the experimental results. The predicted sizes and locations
of the leading- and trailing-edge vortex sheets are in excellent agree-
ment with the measured ones. The results of the 3/4 turn show
the correct roll-up of the trailing-edge vortex sheet and the correct
locations of the LEC and TEC. This is exactly what we expected when
we increased the roll-up from 1/2 to 2’4 turn., With the 3/4 turn of
the leading-edge vcrtex system, the roll-up tightens and larger velo-
cities are induced at the trailing-edge vortex sheet which cause it to
deform upwards and (eftwards.
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Figure 28 shows comparisons between the predicted and measured
static-pressure contours at £ = 1.066. The predicted sizes, locations,
and levels of the pressure contours are in good agreement with those of
the measured data.

Figure 29 shows comparisons of the predicted and measured span-
vwise net surface-pressure variation at difference chordwise stations.

It is seen that the results of the 3/4 turn are more accurate than that
of the 1/2 turn. With 3/4 turn, the roll-up of the leadingedge vortex
system tightens and produces better predicted distribution than that of
the 1/2 turn.

The developed computer program of the MNDV-method is computationally
efficient. On a CYBER-175 machine, a typical solution using a 12x12
lattice and including the cross-flow planes caiculation takes 10 minutes
of CPU time.

THE NONLINEAR HYBRID-VORTEX (NHV-MEZTHOD)

In this method, vortex panels with first-order vorticity distribu-
tion is used in the near-field calculations. In the far field calcula-
tions, the distributed vorticity over each far-field panel is lumped
into equivalent concentrated vortex lines. In this way, accuracy is
satisfied in the near field while computational efficiency is maintained
in the far field. The coupling of a continuous vortex-sheet representa-
tion and a concentrated vortex-line representation for soiving the non-
linear lifting-surface problem is called the "Nonlinear Hybrid-Vortex
(N4V)*® method.

STEADY-FLOW PROBLEM-Equation (12) requires the flow to be tangent
to w while equation (13) reguires this tangential flow to be parallel
to the vorticity direction. Therefore, if the flow direction is forced
to be parallel to the vorticity direction on the surface w, the boundary
conditions of equations (12) and (13) are automatically satisfied.

Next, we outline the method of solution.

Once the wing and its free-shear layers are represented hy vortex
sheets, equations (10) and (15) are automatically satisfied. The basic
unknowns in the present problem are the vorticity distribution @ and
the free-vortex sheet w. They are determined by satisfying the remaining
boundary conditions, equations (11)-(14), through a finite-element type
approach.

In this approach, the bound-vortex sheet (representing the wing) is
divided into quadrilateral bound-vortex panels while the free-vortex
sheets (representing the free-shear layers) are divided into triangular
free-vortex panels, see Figure 30, On each vortex panel (bound or free),
a local vorticity distribution with undetermined coefficients is defined
in a local-coordinate system (Figures 31, 32). The local distribution
is selected such that the solenoidal property of vorticity is satisfied.
The continuity of vorticity (a compatibility condition) is enforced at
certain nodes on the interelement boundaries of adjacent panels.

The remaining boundary conditions, equations (11)-(14), are enforced
at certain nodes of the vortex panels to obtain the undetermined coef-
ficients of the local vorticity distribution and the shape of the
free-vortex panels. Kutta condition, equation (14), is enforced at the
nodes of the bound-vortex panels along the edges of separation. The no-
penetration condition, equation (11}, is enforced at the average points
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of the bound-vortex panels. The no-penetration and no-pressure-jump
conditions, equations (12) and (13), are simultaneously satisfied at
the nodes of the free-vortex panels, Figure 33.

To satisfy these conditions, an iterativc technique is followed
which alternatively yields the local vorticity distribution on the
bound-vortex panels and the shape of the free-vortex panels, Figure 34.
During a typical iterative cycle, an overdetermined set of algebraic
equations are solved for the undetermined coefficients of the local
vorticity distributions. This is followed by adjusting the surface w
such that w and (e, - V¢) at the nodes of the free-vortex panels become
parallel. The overdetermined set of equations consists of the equations
obtained from the continuity of vorticity condition, Kutta condition,
the no-pen~*-3ati-» condition on the wing, and a symmetry condition
applied at (he nouos 2long the line of symmetry, This set is solved by
a least-sguare technioue.

Once the iterative technique converges, the pressure distribution
is calculated and this is followed by calculating the total aerodynamic
characteristics. convergence of the technique is expedited by using an
ifnitial guess for v« provided by NOV-method. More details of the method
are given in reference 12.

UNSTEADY-FLOW PROBLEM-The source of flow undsteadiness can be a
time dependent angle of attack or a time-dependent freestream speed.

In this time-domain approach the function of angle of attack is divided
into discrete changes in the angle of attack corresponding to discrete
changes in time; i.e., at t=ty, a=ag and at t=to + At, agtsa etc. The
problem is then solved at each time step where the solution of each step
serves as the initial condition for the next discretetime step. The
case of an impulsively started wing frum rest is.considered for the
purpose of explaining the details of the technique. In this case, we
set a=0 and replace e, by -é, in equations (16), (17) and (19)-(22).

The following steps explain the procedure to enforce the boundary condi-
tions of equations (19)-(22) to obtain w(F,t) and w(F,t):

a. The initial condition, at t=t,, is considered to be a wing withou!

a wake surface having a velocity of -8-. At this instant, we assume
that not enough time has passed for the vorticity to be convected from
the separat1on edges. The initial vorticity distribution on the wing
w(r,t) is obtained from the least- -square solution of an over-determined
set of linear algebraic equations in the unknown coefficients describing
the vorticity distribution. The set of equations consists of the no-
penetration conditions, the continuity of vorticity conditions, the
Kutta conditions, and the symmetry conditions.

It should be noted that the initial vorticity distribution on the
wing is such that the circulation around any closed curve embracing a
wing section or equivalently the outflow of vorticity from a surface
enclosed by this curve is zero. Consequently, a starting vortex of
opposite strength to that of the vorticity on the wing develops at the
edges of separation. Hext, the starting vortex is convected downstream
with the local particle velocity, the flow existing at the preceding
instant is disturbed, and the vorticity distribution on the wing changes
creating a new starting vortex to be shed downstream,

) This process continues and by the end of the first time-step, at
tst,+at, a free-vortex strip, consisting of triangular free-vortex panels
attached to the separation edges, is created. The free-vortex strip
obeys the conditions given by equations (20) and (21) and its upstream
edge satisfies Kutta condition at the separation edges, equation (22).
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b. At tat,+at, one needs v(r,ty+at) to determine the width of the vortex
strip. Since this velocity is unknown so far, a good estimate is taken
as the velocity at the preceding time step v(r ty), which is completely
known from the solution corresponding to the 1ni%ia1 condition. Within
the time step at, the displacement Ar of any panel node is found from

oF = F(t, +at) - F(t ) = at - V(F,to) (32)

Equation (22) is the same as equation (28) of the NDV-method.

At t=t,+at, one also needs the vorticity of the triangular vortex
panels forming the free-vortex strip, ay(r,to+at). For each triangular
panel, we express its five unknown coeff1cients,descr1b1ng its linear
vorticity distribution, in terms of the five unknown coefficients of
the adjacent bound-vortex panel, at the separation edges, at t=tg
(the coefficients of the bound panel are already known) and at txto+at
(the coefficients of the bound panel are still unknown). This is
achieved by satisfying the following conditions. At t=ty+at the vorti-
city is continuous at the global rodes (on the separation edge) between
the bound- and free-vortex panels. Also, at t=tg+at, the fluid particles
along the downstream edges of the triangular panels are the same parti-
cles which existed at the edge of separation at t=ty. According to
Helmholtz theorem [Dw/Dt = (w-V)v], the vorticity of these particles
changes as they are convected downstream, But according to Kelvin
theorem (Dr/Dt = 0), the circulation around these particles remains
constant and hence additional equations are written tc satisfy Kelvin
theorem between t=t, and t=tgp+at.

Next, the vorticity distribution n the wing w(r,ty+at) is obtained
from the overdetermwned set of algebraic equations.

c. At t=ty+2at, a new free-vortex strip is created along the separation
edges, the first shed free-vortex strip is convected downstream under
the condition Dr/0Dt = 0, and step (b) is repeated to find locations of
the free-panels nodes and w(r,tyt2at).

d. The steady state is reached once the change in the vorticity distri-
bution is less than a prescribed error.

To calculate the net pressure coefficient at any point on the wing
surface r at any time ty = ty + tk- At, we apply the unsteady Bernoulli'‘c
equation -
3se(r,t,)

8Co(Faty) = -2V (Fat,) + [Ta(Fat,) + (&, + akxi)] - 2—5

(33)

where V (F,tk) is the jump in the tangential velocity across the wing,
w?1ch ;s completely known from the vorticity vector at this location,
o(r,t

NUMERICAL EXAMPLE FOR A STEADY-FLOW-The developed computer program
of Figure 34 is used to solve for the steady flow past a rectangular wing
having side-edge separation. The wing is of aspect ratio of one at 9.7°
angle of attack. The wing is divided into 6x6 quadrilateral bound-
vortex panels, the trailing edge free-vortex sheet is divided into 6x6
quadrilateral free-vortex panels, and the side edge free-vortex sheet is
divided into a 6 vortex strips and each is divided into a different
number of quadrilateral free-vortex panels such that the last panel in
each strip occupy the same chordwise station as that of the last panel



of the trailing-edge free-vortex panel.

Figure 35 shows a typical converged solution of the spanwise and
chordwise components of vorticity at the local nodes of the quadrila-
teral vortex panels. At any node, the upper number is the spanwise
component w, and the lower number is the chordwise component w
is seen tha% the continuity of vorticity condition, Kutta cond$t1o
and the symmetry condition are satisfied at the common nodes, at the
nodes of the trailing and side edges, and at the notes of the line of
symmetry; respectively.

Figure 36 shows the spanwise variation of the section normal-
force coefficient at three iteration steps. The solution converges in
the third 1tera§10n step and is in good agreement with the experimental
data of Scholtz The figure also shows the solution of the same case
ol.:ained by the NDV-method with 6x6 bound-vortex lines. One can con-
clude that the NDV-method underestimates the normal-force coefficient
near the wing tip. If the number of bound-vortex lines of the .DV-
method is increased to 9x? (Figure 16), the solution agrees with that
obtained by the NHV-method with 6x6 bound-vortex panels. This clearly
shows that a less number of vortex panels gives the same accuracy as
that obtained by a large number of bourd-vortex lines.

Figure 37 shows the converged solution of the spanwise variation
of the section pitching-moment coefficient for the wing. The results
of the NDV-method with 6x6 and 9x7 bound-vortex lines are also included
in the figure.

Figure 38 shows the spanwise variation of the net-pressure coeffi-
cient at different chord stations with different number of panels for
a rectangular wing at 15° angle of attack. The corresponding results
of the NDV-method are also shown in the figure.

The present computer program is computationally efficient when it
is compared with other existing codes which use high-order doublet
distribution. The CPU time on the CYBER 175 for this case is about
200 seconds.

NUMERICAL EXAMPLE FOR AN UNSTEADY FLOW-The same computer program
is also used to solve for the unsteady flow past impulsively strated
wings from rest without side edge separation. In the two examples,
the winj is divided into 5x5 quadrilateral bound-vortex panels with a
sine distribution in the chordwise direction and a cosine distribution
in the spanwise direction. In the present cases, the dimensionless
time step is equivalent to 0.48 wh ie the root-chord length is 5 units.

Figure 39 shows the distribution of the 1ift coefficient for a
rectangular wing of aspect ratio of three at 5° angle of attack for t=2
and t=22., The present results are compared with the steady numerical
data of reference (83) where 196 panels of constant potential function
are used. It is also compared with the experimental data cf Reference
(82). Although we used 25 panels in the present case, the results
compares well with the given data.

Figure 40 compares the growth of indicial 1ift for the same wing
considered above with the numerical data of reference (84) where 100
panels of constant doublets are used.

Figure 41 shows the distribution of net pressure coefficient for
a rectangular wing of aspect ratio of two at 20.5° angle of attack for
t=2, 10, 21 and 22.

On the CYBER 175 computer, the CPU time for each case with 5x5
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bound panels and 22 time steps is about 10 minutes.

Currently, work is underway to increase the number of panels,
use the efficient far field calculations, and calculate cases with
side- and leading-edge separations.

CONCLUDING REMARKS

Steady and unsteady, incompressible free-wake analysis has been
presented in detail. In the first part of the lecture, the motive behind
the problem is established. Some of the existing experimental measure-
ments and data are discussed and the approximations for the mathematical
model are deduced. Using the model, the general formulation of the
problem and special steady and unsteady cases are developed. The
existing methods of solution are divided into four main groups;
slender-body methods, nonlinear vortex lattice methods, doublet-panel
methods, and nonlinear vortex-panel methods.

Two specific methods (one from the second group; the NDV-method
and the other from the fourth group; the NHV-method) are presented in
detail with numerical examples showing their capabilities and success.

I would like to emp-asize that the nonlinear discrete-vortex method should
not be abandoned in\v‘iwof the success of the MNDV-method. It is simple,
accurate, and efficient. For more accuracy, all we need is to replace

the neer-field calculations by continuous vortex panels instead of the
vortex lines.

The solution of the free-wake problem is far from being complete.
The problem of compressibility effects in high subsonic and transonic
flow needs considerable efforts in the future. In the transonic regime,
the problems of shcck capturing and shock-free wake interaction will
require careful analysis and bigger computing machines. Currently,
several researchers are approaching the present problem using the
finite difference method. It remains to be seen how successful this
approach is. -
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c. Vortex Flow of a Hovering Rotor (Reference 5)

Figure 1. Examples of Vortex Flows
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DRIZMAL PALT 13 -
OF PCUR QUALITY,

Figure 5. Space-Fixed Coordinates XYZ, Wing-Fixed
Coordinates xyz, and Eulerian's Angles a, B, Y.
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Figure 6. Construction of the discrete-vortex system in the NDV-method.
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Figure 7. Self-induced tangential velocity in the NOV
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the side-edge vortex sheet,

Typical solution of
6x6 lattice, NDV-method.

Figure 8.
steady flow, AR=1, a=15°,



CIUGINAL PAGE 18
UF POOR QUALITY

]

B Swamms

I3 R
\

/
| ‘ f/ Y \‘fk‘ !Ui&‘(
0 1 2 3 4
64

Figure 9. Rehbach's" progressive deformation of rectangular wing.

.....................

Figure 10. Typical solution of the leading-edge vortex sheet,
steady flow, AR=0.7, a=15°, 8x8 lattice, NDV-method.
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Figure 11, Typical solution of the leading-edge vortex sheet,
steady rolling motion, AR=0.7, a=0°, 9;-0.2, 8x8 lattice,
NDV-method.

Figure 12. Typical solution of the leading-edge vortex sheet,
Yawed wing, AR=0.7, a=15°, 8=10°, 3x8 lattice, NOV-method.
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Figure 13. Typical sclution of the free-vortex sheetis for a canard-
wing configuration, steady flow, AR=1,66, a=15°, 5x5 and
8x8 lattices for the canurd and main wing; respectively,
NDV-method.

==

Figure 14. Typical solution of the leading-edge vortex sheet for a
wing-body combination (mo leeward separation), AR=2,

f29.86, a=12.15°, 9x9 lattice for wing, 25x16 lattice for
the body.
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Typical solution of the unstead
AR=1, a=15°+4 sin = t, 6x6 lattice, NDV-method.
6

y wake for a delta wing,
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Figure 16. Spanwise variation of section normal-force coefficient, AR=1,
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Figure 17, Net spanwise pressure distribution on a delta wing, AR=0Q.7,
a=15°, 8x8 lattice, x/c.=0,395.
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Figure 18. Uppér and lower, spanwise pressure variation on a steadily
rolling delta wing, AR=0.7, a=0°, nxs-O.Z, 8x8 lattice,

x/cr=0.778.
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Figure 19. Lift and pitching-moment coefficients for a wing-body

combination, AR=2, f=9.86, 9x9 lattice for wing,
25x16 lattice for body.
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Variation of the normal-force and pitching-moment
coefficients with increasing and decreasing angle of
attack, rectangular wing, AR=1, a=1, 4x4 lattice,
NDV-method.
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Figure 21.

Variation of the pitching-moment and normal-force
coefficients for a delta wing in pitching oscillation,
AR*1, a=15°+4 sin w t, 4x4 lattice, NDV-method.
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Flgura 22 Typical solutfon of the lesding- and
trailing-edge vortex sheets, AR = 1,
7 x 7 lattice, NOV-hathod.
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Figure 24 Typical solutions at different
iteration steps; ITER « & (5 the con-
dicular to the wind direction, AR = 1, verged solution showing the leading-

a 177, 7 x 7 lattice, NOV-Methad, and trailing-edge cores in two- and
w«-ditmnuul views; AR ¢ 1,

figure2s. Leading- and trailint-edse sheets
behind a delta wing in pfnnu perpen-

£ =%b(ongnmre) w ® 20,57, 10 x 10 lattice, 1/4 turn,
MROY -Methad.
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Figure 3a. Boundary Conditions and Arrangement of
Bounde and Free-Vortex Panels,NHV-MeTHOD.
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Figure 33,
" the Steady-Flow Problem.

47

Global
Coordinates

{rectfon Cosin

Local Coordinateq

t't°
.r'.’.::]:'n. Steady | B.C. on Bound
N(F,t ) pcag——{ _Panels
! o no- “(r'to)

Newly Shed
Yortex Strip

Convection of 0ld
Vortex Strips

8.C. on Bound
. . Panels
”‘rvtk)

'\ Stop

Loads

Figure3d4. Flow Chart of the Computer Program For
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Aparoach) Flow Problems,NHV-METHOD.
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Figure 40, Growth of Indicial Lift for a -

Rectangular Wing, ARs3, qe5°,
$x5 Bound Panels, zero Thick-
ness, No Tip Separation.
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