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ACRONYMS
 

Abbreviations and acronyms used frequently throdghout the Satellite Services 

System Analysis Study (SSSAS) are defined as follows: 

ACS - Attitude Control System 

AFD - Aft Flight Deck 

ASM - All Sky Monitor 

AXAF - Advanced X-Ray Astrophysics Facility 

CCTV - Closed Circuit Television 

C &DH - Command & Data Handling 

C & DL - Command & Data Link 

C/O - Checkout 

DDT&BE - Design, Development, Test & Evaluation 

DoD - Department of Defense 

DOF - Degrees of Freedom 

EMU - Extra-Vehicular Mobility Unit 

EVA - Extra Vehicular Activity 

FSS - Flight Support System 

GAC - Grumman Aerospace Corporation 

GEO - Geosynchronous Earth Orbit 

GRAVSAT - Earth Gravity Field Survey Mission 

GRO - Gamma Ray Observatory 

GSE - Ground Support Equipment 

HEAO - High Energy Astronomy Observatory 

HPA - Handling & Positioning Aid 

IR - Infrared 
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IRAD - Independent Research and Development 

IUS - Inertial Upper Stage 

IVA - Internal Vehicular Activity 

JSC - Johnson Space Center 

KSC - Kennedy Space Center 

LAPC - Large Area Proportional Counter 

LASS - Large Amplitude Space Simulator 

LASSII - Low Altitude Satellite Studies of Ionospheric Irregularities 

LEO - Low Earth Orbit 

LOS - Line-of-Sight 

MDF - Manipulator Development Facility 

MFR - Manipulator Foot Restraint 

MMS - Multimission Modular Spacecraft 

MMU - Manned Maneuvering Unit 

MRV - Manned Reconnaissance Vehicle 

MTV - Maneuverable Television 

NOSS - National Oceanic Satellite System 

OAO - Orbiting Astronomical Observatory 

OBC - Onboard Checkout 

0CC - Operations Control Center 

OCP - Open Cherry Picker 

OMS - Orbital Maneuvering System 

PAM A - Payload Assist Module (type) A 

PAM D - Payload Assist Module (type) D 

PIDA- - Payload Installation & Deployment Aid 

PM I/II - MMS Propulsion Module I & II 

POCC - Payload Operations Control Center 

x 
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FOREWORD
 

This study was conducted for the Lyndon B. Johnson Space Center and directed by 
Contracting Officer's Representatives (COR), Mssrs. Reuben Taylor and Gordon 
Rysavy. Grumman Aerospace Corporation's study manager was Mr. John Mockovciak Jr. 

This final report is presented in seven volumes: 

Volume '1 - Executive Summary 

Volume 2 - Satellite and Services User Model 

Volume 2A - Satellites and Services User Model - Appendix 

Volume 3 Service Equipment Requirements 

Volume 3A - Service Equipment Requirements - Appendix 

Volume 4 - Service Equipment Concepts 

Volume 5 - Programmatics 

Volume 4 contains the analysis and conceptual design efforts conducted to define 

the complement of satellite service'equipment. 
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I - METHODOLOGY
 

The approach used to develop service equipment concepts is illustrated in Fig. 1-1. 

This process was initiated using inputs from selected reference satellites and Level 1 

On-Orbit Operational Scenarios (Refer to Volumes 3 & 3A). The operational scenarios 

identified generic equipment needs for deployment, revisit, and earth return service 

mission events. Bjoth nominal and contingency situations were considered. 

LEVEL I OPERATIONAL EXISTINGIPLANNED
 
SCENARIOS (180) EQUIPMENT
 

EQUIPMENT 
NEEDS CNET O 

ASSESSMENT MODIFICATIONS TO 
OFEXISTING EXISTING EQUIPMENT 

EQUIPMENT 

REFERENCE SATELLITES 

1472-401(T) 
I1117-1SOW 

Fig. 1-1 Methodology 

A list of existing equipment or equipment under development/ study was compiled to 

relate equipment concepts that may be available in the time frame of interest; the list is 

documented in Appendix A of this volume. An assessment was made to evaluate the 

acceptability of this existing/planned equipment to satisfy the satellite service equip­

ment needs identified in the Level 1 On-Orbit Operations Scenarios. Reference satellites 

representative of a class of satellites were used in the evaluation process. Where 
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*existing/planned equipment satisfy these operational needs, they were retained in the 

service equipment complement. Where existing/planned equipment required modifica­

tion, or where new equipment items were required, concepts were developed to satisfy 

the operational needs. 

Figure 1-2 presents a summary of the status of service equipment identified in the
 

180 on-orbit operations scenarios (initial launch, revisit, and earth return) considered
 

in the study. A total of 27 service equipment items could satisfy all equipment needs of
 

the scenarios considered. Of the 27 equipment items identified, their status is as
 

follows:
 

Existing 6 

Under Development/Study 5 

Modifications 3 

New 12* 

Unique 1 
Total 27 

(*Four are optional) 

In tigure 1_-2, equipment identified with connecting'lines denotes equipment needs 

that ',buld bd satisfiedsbyi ngle'uAits'df service hardware, adapted Wth appropriate kit's­

to perform the needed service functions. 

.ervice.equipment identified previously can be conveniently grouped within the
 

folld\ing" mi'ial satellit& .efr.i d'er .. tiori&.
 

* Payload Deployment 

* Close Proximity Retrieval 

* On-Orbit Servicing 

* Backup/Contingency 

"" Fe'"O.Ou~sor)' '1 a s 3 ...... 

I -­



UNDER 
SUPPORT STRUCTURE EXISTS DEV OR MODIF NEW UNIQUE 

STUDY 
" RETENTION STRUCTURES 4 

" SPECIAL RETENTION 	STRUCTURE 

ON-ORBIT EQUIPMENT
 
" REMOTE MANIPULATOR SYSTEM (RMS)
 

" TILT TABLE (FSS, IUS, PAM-A) S
 
" OPEN CHERRY j TILT TABLE WORK PLATFORM
 

PICKER (OCP) OCP/RMS
 
" MANIPULATOR FOOT RESTRAINT/RMS
 

" PAYLOAD INSTALLATION/DEPLOYMENT AID (PIDA) S
 
" HANDLING & POSITIONING AID (HPA) 0
 
" SPIN TABLE (PAM-A, PAM-D) 0
 
* EQUIPMENTSTORAGE 	 ON-ORBIT SUPPORT 

EARTH RETURN
 
" FLUID TRANSFER SYSTEM 0
 
" NON-CONTAMINATI NG ATT CONTR SYS 0
 

" AFT FIT DECK 	 W/RMS CONTROL 0
 
WISTD SAT C/O
COTDL 


1 W/CLOSE PROX CONTR
 
FREE-FLI GHT SYSTEMS
 

" MANEUVERABLE TELEVISION (MTV) S
 
" PROXIMITY OPS MODULE- MTV ADAPTATION 0
 
* 	 PROXIMITY OPS MODULE- MANNED VERSION
 

W/END EFFECTOR
" MANNED MANEUV 	UNIT/ IWORK RESTRAINT UNIT W/STABILIZER(MMUIWRU) 	 W/PAYLOAD HNDLG (MMU)
U PROX OPS MODULE 

W/DELIVERY, RETRIEVAL 
* VERSATILE SERVICE RENDEZDOCKING 

STAGE 	(VSSI W/END EFFECTOR KIT
 
I W/DEBRIS CAPTURE KIT
 

OPTIONAL EQUIPMENT
 
" SUN SHIELD S
 
" ORBITAL STORAGE 

* ATTITUDE TRANSFER PKG 0
 
" LIGHTING ENHANCEMENT 0
 
ADVANCED CAPABILITIES
 I W/RMS 	 0 
* DEXTEROUS MANIPULATORS I W/HPA 	 0 

TOOLS 

o HANDLING/EQUIPMENT REMOVAL 0 
1472402(T) 

Fig. 1-2 Service Equipment Status , 

1-311-4
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2 - PAYLOAD DEPLOYMENT EQUIPMENT 

Satellite service equipment items associated with payload deployment operations 

involve the following: 

e Retention Structures 

-w Remote Manipulator System (RMS) 

* Tilt Tables 

" Payload Installation/Deployment Aid (PIDA) 

* Handling &Positioning Aid (HPA) 

* Spin Tables 

* Aft Flight Deck Controls/Displays. 

Subsequent sections will discuss and illustrate the service equipment concepts. 

2.1 PAYLOAD SEPARATION 

As part of nominal satellite deployment operations, satellites must-be separated 

from the Orbiter with a relative velocity that provides satisfactory separation distances 

for subsequent satellite operations. These separation distances vary, depending 

primarily upon the satellite's final destination. For example, satellites deployed by the 

Orbiter at their operational mission altitude (direct delivery satellites) require 

separation maneuvers that allow the satellite to remain within reasonable proximity to 

the Orbiter during initial operation (up to 24 hours), and thereafter to maintain a safe 

separation distance during the Orbiter's on-orbit stay time. This requirement suggests 

a satellite separation maneuver that enables the satellite to slowly drift away from the 

Orbiter, so as not to require large Orbiter maneuver requirements in the event it is 

called upon to revisit or retrieve the satellite. 

On the other hand, satellites attached to propulsion stages and destined for higher 

LEO orbits, or geosynchronous orbit, require separation maneuvers that will provide 

Orbiter with safe separation distance from propulsion plume oontaminatidn, or propul­

sion system malfunctions such as catastrophic explosions. Because these propulsion 
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system maneuvers are usually performed at fixed times after separation (e.g., 45 min­

utes for GEe solid upper stage firings), the Orbiter may be required to maneuver after 

payload separation to achieve the required separation distance. 

To help in understanding payload separation characteristics and the capabilities of 

the Orbiter to provide these functions, an analysis was performed of relative payload-

Orbiter separation trajectories. Techniques for executing separation maneuvers include 

stored energy release mechanisms (such as spring loaded devices) and use of the RMS. 

Although the RMS snare end effector is designed to release a satellite with zero 

velocity relative to the Orbiter, it may be possible to impart a separation impulse with 

the RMS. Figure 2-1 illustrates a potential "push away" operation using the RMS. 

During this study, Grumman requested SPAR Aerospace (the RMS contractor) to 

investigate the prospects for this separation maneuver. Illustrated in Fig. 2-2 are 

simulation results provided by SPAR that indicate that achievable velocities could vary 

up to about one ft/sec, as a function of satellite mass. 

L F.L.J 

PROVIDING PAYLOADS WITH 
RELATIVE SEPARATION VELOCITIES 

1472-403(T) 0247-260P 

Fig. 2-1 RMS - Potential Payload Separation 

Figure 2-3 shows relative payload/Orbiter separation trajectories as viewed from a 

local vertical coordinate system centered on the Orbiter. In this example, the separ­

ation AV is applied in an orbit posigrade direction (V-bar) causing'the payload to move 

upward and aft, and separating further from the Orbiter during each full orbit. Shown 

in the figure are separation trajectories for A Vs of one and two ft/sec for one orbital 

period. Figure 2-4 shows separation with 6 ft/see AV, which is characteristic of 
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pOOR QUALITY. 

NOTE: IN ALL CASES, MAXIMUM VELOCITIES ACHIEVED ARE LIMITED BY ELBOW JOINT RATE LIMITS 

[ ,3LMASS 1 

VEL OF 2FT/SEC 
POR IN E/E 

FINISH -41 SEC START 

-VEL FT/SECI I I I r I I I I I I I I I 
0.08 0.24 0.4 0.50 0.72 0.84 0.96 1.04 

S10,000 LB MASSI 

VEL OF 2FT/SEC
POR IN E/E 

FINISH 44.5 SEC START 

VELFT/SECI I I I I I I I I I 
0.04 0.24 0.4 0.56 0.72 0.84 0.88 . 0.9 0.4 

VELOF 2, LB MASS 
POR IN E/E 1FTISECREFFRAM
 

FINISH 47.5 SEC START 

VELFTISEC I I I I I I I 
0.1 0.32 0.48 0.64 0.72 0.76 0.8 0.72 0.56 

VELOF IFTISEC 
FOR IN E/E 

FINISH 52 SEC START 

VELFT/SEC I I I I I I I I I I I I 

0.08 0.2 0.36 0.52 0.64 0.7 0.76 0.72 0.64 0.56 

1472-404[T) 

Fig. 2-2 RMS Release Velocities for Different Mass Payloads 
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ORBITER/SATELLITE SEPARATION TRAJECTORY 

SEPARATION VELOCITY = 2'FT/SEC'
 

SEPARATION VELOCITY = 1 FT/SEC
 

10 VSEP = 2 FT/SEC 
RADIAL 
DISTANCE 
(FT X 103 )1 35 

T 1450 

5 T =2450 T- 3450 VsEP l FT/SEC T 5400 

T =5400 

III 

0 5 10 15 20 25 30 

AFTDISTANCE - FTX103 

ORBITAL 
0247-261P VELOCITY 
1472-405(T) 

Fig. 2-3 Orbiter/Satellite Separation Trajectory - Separation Forward in Direction of Velocity Vector 

SEPARATION VELOCITY = 6 FT/SEC 

45 

RADIAL 
DIREC-
TION 
(FT X 103) 

30 
T =2450 

T =3450 

15 30 45 60 75 90 105 

AFT DISTANCE -FT X 103 

ORBITAL 
MOTION 

1472-406(T) 81-0128-010(T) 

Fig. 2-4 Orbiter/Satellite Separation Trajectory - Separation Forward in Direction of Velocity Vector 

-2-4 
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ORIGINAL PAGE RS
OF POOR QUALITY 

separation velocities for solid propellant stages. the one ft/sec trajectory is represen­

tative of an RMS separation maneuver whereas the two ft/sec trajectory is typical of 

separation with stored energy release mechanisms. 

Both trajectories satisfy the minimum safe separation distance within 45 minutes. 

Retrograde separation maneuvers (i.e., 6V applied opposite to the velocity vector) 

would result in similar shaped trajectoiies, except that the payload would move below 

and in front of the Orbiter. 

Figures 2-5 and 2-6 show relative payload/Orbiter separation trajectories for AVs 

applied along the Orbiter radius vector (toward earth) over one orbital period. For 

these radially-applied separation maneuvers, the payload separates over one-half an 

orbit and then returns to the immediate vicinity of the Orbiter. These separation 
trajectories may be used if subsequent payload/Orbiter maneuvers are initiated within' 

one-half an orbital period. 

SEPARATION VELOCITY = 1 FT/SEC 

10
 
T= 3450 

RADIAL 

DISTANCEORBITAL 
VELOCITY FT X 102 

35 30 25 20 15 10 5
 

FORWARD DISTANCE- FT X 102
 

T = 2450 5 

10
 
1472-407(T) T 1450
 
,1-0128-012(T) 

Fig. 2-5 Orbiter/Satellite Separation Trajectory - Separation Radially Down 
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SEPARATION VELOCITY = 6 FT/SEC 

SEPARATION VELOCITY = 2 FT/SEC 

2 

• 	 . VSEP = 2 FTISEC T=1450 2 

VSEP FT/SEC-6 

1472-408(T) T 1450 	 6 
81.-0128-009(T) 

Fig. 2-6 Orbiter/Satellite Separation Trajectory - Separation Radially Down 

Radially upward separation trajectories provide similar separation characteristics 

except with the payload separating upward and aft of the Orbiter over one-half the 

orbit, and returning to the Orbiter over the ,second half of the orbit. 

2.2 RETENTION STRUCTURES 

Three types of retention structures are applicable and are illustrated in Fig. 2-7. 

They are: 

* 	 Flight Support System (FSS) - adaptable to MMS-Type payloads and/or those that 

require some form of supplementary structural support in the payload bay 

* 	 Integral - satellite is sufficiently large to enable direct attachment to the 

Orbiter's longeron and keel fitting tiedowns. This form of integral retention 

structure will likely become more prominent since the minimization of Shuttle 

user charges favors payload shapes that occupy minimum lengths of the payload 

bay 

* 	 Pallet mounted - compatible with small sortie-type payloads that can be flown in 

the immediate vicinity of the Orbiter, or positioned outside the Orbiter payload 

bay on the end of the RMS and reberthed to the pallet for earth return. 
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INTEGRAL
 

FSS 

"'".. _PALLET *'= 


1117-102W 

1472-409(T) 

Fig. 2-7 Retention Structures 

The FSS consists of three cradles (A, B, and A') that can be used individually, or 

as an integrated set, and can accommodate both vertically or horizontally-mounted 

satellites. Although the baseline FSS represents a versatile retention structure that can 

be readily adapted to a large number of future satellite users, an advanced version 

offering additional benefits is currently under study. The advanced version is a light 

weight'system made of composite materials. 

Figure 2-8 illustrates a UARS packaged within the FSS. The total mass of the 

satellite + (baseline) FSS is over 15,500 pounds. Since length and weight cost factors 

are used to determine Shuttle launch costs for the UARS-FSS launch configuration, it is 

clear that system weight is the dominant criteria for this example. A light-weight FSS, 

therefore, would reduce the weight factor and offer significantly lower launch costs to 

many FSS system users. 

2.3 REMOTE MANIPULATOR SYSTEM (RMS) 

The nominal capabilities of the RMS are shown in Fig. 2-9. Of particular interest to 

a satellite user are the standard RMS elements: the snare end effector and its compat­

ible grapple fixture. These elements have been designed to release a satellite with essen­

tially no differential velocity during deployment. Note, however, that our operational 
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LAUNCH MASS:
 

UARS = 8140 LB A
 
FSSCRADLES 7400 LB {
 
TOTAL LAUNCH MASS - 15,540 LB
 

1E,540
 
WEIGHT FACTOR - 640 =0.27
 

60.0LENGTH FACTOR- 10. FTFT 0.17 
0247-267D 
1472-410(T) 

Fig. 2-8 Light Weight FSS (Composite) 

scenarios call for satellites to be released by the RMS with a AV (of about 1 ftlsec), 

identifying a service capability need for which the RMS has not been nominally designed. 

As discussed previously, however, Grumman requested that SPAR Aerospace 

investigate RMS potential for "tossing" a satellite with a AV during deployment. 

Preliminary conclusions indicate that AVs from 0.1 ft/sec to approximately I ft/sec 

might be achievable, depending upon satellite mass. 

RMS
 

* 	 PAYLOAD HANDLING CAPABILITY: 65,000 LB 

" 	POSITIONING ACCURACY: 21NCHES+1O
 
WITHIN REACH ENVELOPE
 

" 	PAYLOAD RELEASE: +50 ATTITUDE<0.015o/SEC
 

RELATIVE 

STANDARD ELEMENTS 

GRAPPLE 
FIXTURE 

SNARE END
 
1117-103W EFFECTOR
 
1472-411(T)
 

Fig. 2-9 Remote Manipulator System (RMS) 
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Figure 2-10 shows the RMS deployment of dual Gravsat-A satellites. The cradle 

structure, which serves as the satellite retention system during Orbiter boost, is de­

ployed from the payload bay and the separation A V is provided by the cradle structure. 

The two satellites are separated from the cradle in the same orbit at a separation dis­

tance of 100 to 300 km. 

GRAVSAT A
 

'117-104W
 
1472-412(T)
 

Fig. 2-10 RMS - Payload Deployment 

During RMS operation, constraints are imposed upon on-orbit Orbiter control (see 

Fig. 2-11). Present planning forbids any RCS firing when the RMS is moving, with or 

without a load. Primary RCS operation is permitted for a stationary RMS with payloads 

less than 32,000 lb. but only using minimum impulse firing. These restrictions place the 

control burden on the nonredundant Vernier RCS for operations with a stationary RMS. 

2.4 	 TILT TABLES 

Two types of tilt tables are presently available in the satellite service inventory: 

* Flight Support System (FSS) Adaptation 

* Inertial Upper Stage (IUS) Adaptation 

The FSS adaptation utilizes cradle A' and has the following features: 

* Rotates payloads to upright position 

* Provides interim tilt positions 
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RCS 

RMS PRIMARY VERNIER 

OK
UNLOADED MIN IMPULSE ONLY* 

STATIONARY, <32K MIN IMPULSE ONLY* OK 
LODE >32K, 	 OK 

MOVING UNLOADED 	 PR8/;///
 

0247-263P * 80 MILLISEC PULSE 
1472-413(T) *FREE DRIFT MODE 

Fig. 2-11 Orbiter Control - RMS Operations Constraints 

* 	 Provides full 3600 roll capability 

* 	 Utilizes a universal Berthing/Umbilical System 

* 	 Provides signal and power interfaces with satellite. 

Figure 2-12 illustrates the FSS cradle A' With the Berthing and Positioning System 

Assembly adapted to the AXAF reference satellite. The Berthing and Positioning System 

is used to. raise the AXAF clear of the payload bay for subsequent checkout and deploy­

ment operations. For this application, a modification is needed to the Tilt Table to align 

the centerline of the AXAF to that of the Berthing and Positioning System. To pick up 

cradle A' and the berthing platform, an extension structure whichallows the attachment 

points of the berthing platform to swing to a lower position on the cradle A' would 

appear adequate. 

The Inertial Upper Stage, which is currently under development, comes equipped 

with forward and aft retention frames, to retain the satellites!I US to the Orbiter payload 

bay. Included within the aft frame is a tilt table to raise the payload /IUS out of the 

payload bay (see Figure 2-13). A stored energy release system is also included to 

provide separation AV. All IUS satellite users. will be compatible with this system. 

2.5 -PAYLOAD- INSTALLATION & DEPLOYMENT AID (PIDA) 

The PIDA, a mechanism that would be of benefit to the large satellite user class, is 

illustrated in Fig. 2-14. Currently under development at NASA/JSC, the mechanism 

provides automatic deployment and stowing 6f satellites having minimum clearance 

envelopes with the Orbiter payload bay. The PIDA has the following features: 

* 	 Moves payloads between stowed and deployed positions automatically, without 

using the RMS 
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HPAD
 

* 	 RETENTION FITTINGS UNLOCKED * SYNCHRONIZED DRIVE ARMS 
RELEASE AXAF & AXAF/PIDA INTERFACES ROLL AXAF OUT OF BAY TO 
RIGIDIZED FULLY DEPLOYED POSITION 

" 	HPA RETENTION FITTINGS UNLOCKED * HPA DEPLOYED TO 
SERVICE POSITION 

* 	 AXAF GRAPPLED BY RMS 

* 	 AXAF/PIDA INTERFACES UNDOCK 
eRMS BERTHS AXAF TO-IPA FORTA
CHECKOUT

1117-106W
 
1472-416(T)
 

Fig. 2-14 Payload Installation & Deployment Aid (PIDA) 

- Operates within 3 in. clearance envelope of payload bay 

- Provides 19.5 in. clearance between payload and Orbiter in deployed position 

" Mechanism stows under closed payload doors without interference with large 

payloads (15 ft x 60 ft) 

" Incorporates energy absorption at docking interface to absorb relative 

payload/Orbiter motion during engagement 

* 	 Allows 3-axis payload movement during stowage to accommodate thermal 

deflections in payload bay. 

Figure 2-14 shows the PIDA lifting the AX&F out of the payload bay, and berthing 

of the AXAF to the HPA using the RMS. 

2.6 HANDLING & POSITIONING AID (HPA) 

Figure 2-15 shows the concept of the Handling and Positioning Aid (HPA) and 

illustrates its capability to fully deploy UARS satellite appendages prior to Orbiter 
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ADV X-RAY ASTRON FACILITYCRADLE A' (AXAF) 

BERTHING LATCH (3) 

TILT TABLE UMBILICAL
 
EXTENSIO CONN (2)"
 
STRUCTR
 

BERTHINGIPOSITIONING 
PLATFORM 

FLIGHT SUPPORT SYSTEM (FSS) 
CRADLE A' 

1472-414(T) 

Fig. 2-12 Tilt Table - FSS Adaptation 

, SATELLITE 

0 

• TILT TABLE 

0247-240W
 
1472-415(T)
 

Fig. 2-13 Tilt Table - IUS Adaptation 
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ability to translate along the arm of the HPA, as well as vertically along the length of the 

satellite. For deployment situations, the HPA would contain provisions for imparting a 

AV to satellites to effect Orbiter separation; it would also provide an altitude/state 

vector transfer capability for all satellites. Additionally, a spin table capability could 

be accommodated on the HPA platform. 

2.7 SPIN TABLES 

Spin Tables are utilized to deploy spin-stabilized upper stage satellites. Illus­

trated in Fig. 2-16 are the PAM-A and PAM-D spin tables/cradles that have been adapted 

from unmanned launch vehicles for Orbiter payload deployment. These equipment items 

currently exist and have application to a large number of future satellite users. 

1117-108W 

1472-418 (T) 

Fig. 2-16 Spin Table - PAM A, PAM D Solid Stage Adaptations 

Figure 2-17 is an adaptation of a spin table to the HPA. The spin table would be 

equipped with a stored energy device to impart a separation a V for deployment. The 

HPA platform can also be rotated to direct the separation AV in a desired direction. 

Orbiter attitude requirements are, therefore, unconstrained in meeting separation AV 

requirements. 
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UPPER ATMOSPHERE RESEARCH 
SATELLITE UARS) 

AMS WORK 
STATION 

HNDLING & POSITIONING AID-

RETENTION UMBILICAL BERTHING 
STRUCTURE CONN (2) L H 

STANDARDIZED 

SATELLITE 
114-17TW 	 INTERFACES
1472-417(T). 

Fig. 2-15 Handling & Positioning Aid 

separation. Features of the HPA are: 

* 	 Provides a platform clear of Orbiter obstructions for satellite appendage 

deployment, spacecraft checkout, and "best zone" of RMS operation 

* 	 Movable platform (translation and rotation) provides total access to all 

spacecraft locations 

* 	 Readily incorporates 

- Stored energy release deployment mechanism
 

- Spin table for SSUS-type payloads
 

- Improved attitude transfer alignment
 

- Integrated fluid transfer system
 

.	 Provides a standardized interface (berthing/umbilical) for all spacecraft for 

initial launch, revisits, and earth return operations. 

The HPA would contain a standardized berthing/umbilical interface for both initial 

checkout prior to deployment and for servicing missions. Servicing can be accommodated 

by rotating turn-table provisions in the HPA and via a movable work station that has the 
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Fig. 2-17 Spin Table - HPA Adaptation 
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3 - CLOSE PROXIMITY RETRIEVAL EQUIPMENT
 

Satellite service equipment items associated with close proximity retrieval 

operations involve the following: 

* Remote Manipulator System (RMS)
 

*- Maneuverable Television (MTV)
 

* 	 Proximity Operation Modules 

- MTV Adaptation 

- Manned Maneuvering Unit/Work Restraint Unit (MMU/WRU) Adaptation 

* 	 Aft Flight Deck Controls/Displays (AFD C&D). 

3.1 	 REMOTE MANIPULATOR SYSTEM (RMS) 

To enable the capture and retrieval of satellites, an RMS-compatible grapple fix­

ture must be mounted to the spacecraft. The characteristics of the grapple fixture and 

the 	grapple target are shown in Fig. 3-1. 

RMS capabilities for capturing satellites require the following conditions: 

e Maximum Satellite Weight = 32,000 lb 

* Maximum Satellite-Orbiter Relative Velocity = 0.1 ft/sec.
 

Additionally, for capture of actively-stabilized satellites, the following conditions
 

are 	required: 

" Attitude Dead Band less than ±10 about all axes 

" Angular Rate Limit less than 0.10 /sec about all axes 

" Maximum Grapple Point Motion less than ±3 in. 

Similarly, the following are necessary for passively-stabilized satellites: 

* 	 Allowable Grapple Point Motion iS to be less than 15 in. 

* 	 Allowable Grapple Point Velocity is to be less than 15 in./sec. 
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-TIP 	 OF GRAPPLE 
SPAR 	 TARGET ROD
 

IS4 IN. FROM
 
FACE OF 

BASEPLATE
 

GRAPPLE TARGET 

GUIDE RAMP ASSEMBLIES 

RANGING & 
ROLL LINES 

GRAPPLE CAM ARM 

BASEP LATE 
(14.5 IN. TO 22.5 IN. DIA) 

ELECTRICAL CONNECTOR 

GUIDE RAMPS 

1472-420(T) 

Fig. 3-1 Grapple Fixture/Target Assembly 
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Applying these groundrules to a passively-stabilized satellite such as LDEF (with 

its size, geometry, and grapple fixture location), results in the stability conditions 

shown in Fig. 3-2 to affect capture by the RMS. 

Figure 3-3 shows the RMS grappled to the Low Altitude Satellite Studies of 
Ionospheric Irregularities (LASSII) satellite. The satellite is to be lifted from a pallet 

and deployed for free flight in the vicinity of the Orbiter. The satellite subsequently 

returns to the Orbiter (during the same flight) where it is grappled and reberthed to the 

pallet for earth return. Many LASSII missions are expected to be flown at about six 

month intervals. 

YAW AXIS 

~ROLL AXIS 

SATELLITE ROTATION LIMITS: 

" YAW AXIS- MAX ANGLE = -9; 

-MAX RATE =O.O 03/SEC 

" ROLL OR PITCH AXIS - MAX ANGLE =±300 

- MAX RATE =0.1°/SEC 

VELOCITY 

PITCH AXIS 

1117-0340 
1472421(T) 

LOCAL 

VERTICAL 

Fig. 3-2 Stability Requirements for RMS Capture of LDEF 

3-3 



ORIGINAL PAGE IS 
OF pOOR QUALITY 

LOW ALTITUDE SATELLITE STUDIES OF 
IONSPHERIC IRREGULARITIES (LASS II) 

1117-11W
 
1472-422(T)
 

Fig. 3-3 RMS Retrieval 

3.2 MANEUVERABLE TELEVISION (MTV) 

The MTV shown in Fig. 3-4 will have a high utilization rate in satellite service 

operations and is expected to have the following features: 

* Remote observation of Free Flying Payloads at stand-off distances up to 1 mile 

* Fly or support sortie experiments in vicinity of Orbiter 

* Small-lightweight system easily stowed in Orbiter 

* Uses non-contaminating cold gas propulsion system 

* Mission duration is 3 - 8 hours of free flight 

* AV capability of 150 ft/sec 

* On-Orbit refueling 

* Flown remotely from Orbiter Aft Flight Deck 
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THRUSTER 0
 

TRIAD (8) 

0 0 

ANTENNAS 

DOCKING CAMERAS 
INTERFACE (3) c~'~' T AEA 

TV LIGHTS 

" DEPLOYED TO REMOTELY EXAMINE SATELLITES PRIOR TO FINAL CLOSURE/RETRIEVAL VIA ORBITER 

" DEPLOYED TO VIEW/RECORD PROPULSION STAGE FIRING
 
1472-423(T) 1117-112W
 

Fig. 3-4 Maneuverable Television - (MTV) 

Currently under development at NASA/JSC, the MTV is used to remotely examine 

satellites prior to Orbiter retrieval, to view or record satellite upper stage firing, and 

to support numerous STS experiments in a free-flying mode. The system is flown 

remotely from the Orbiter Aft Flight Deck via translational and rotational hand 

controllers. Video and telemetry data recorded by the MTV is transmitted back to the 

Orbiter. 

3.3 PROXIMITY OPERATIONS MODULES (POM) 

The retrieval of cooperative satellites for either servicing or earth return is 

nominally accomplished by the Orbiter actively approaching the target satellite, 

grappling the satellite with the RMS/snare end effector, and berthing the satellite to 

either a work platform for servicing, or to a retention structure for earth return. In 

reviewing this scenario, however, several issues have surfaced which suggest that alter­

nate approaches be considered. During close proximity operations, major issues are: 

* Orbiter maneuvering limitations with the RMS unstowed 

* Satellite attitude rates compatible with grappling by the RMS 
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" 	 Allowable Orbiter plume impingement on the satellite within its
 

contamination /over pressure sphere
 

* 	 Orbiter RCS propellant consumption required for close proximity operations. 

These issues have prompted consideration of the use of Proximity Operations 

Modules for satellite retrieval. 

3.3.1 MTV-POM Adaptation 

The Orbiter can readily rendezvous with a satellite to within a 1000 ft separation 

distance. Unmanned retrieval of satellites within 1000 ft of the Orbiter can be accom­

plished by a Proximity Operations Module (POM) that is an adaptation (or outgrowth) of 

the MTV (See Figure 3-5). Controlled by the crew in the Orbiter, the POM would be 

dispatched to capture the satellite and return it to within the reach distance of the RMS. 

The POM would be flown via TV (essentially using MTV equipment) to effect satellite 

capture by an RMS end effector on an extendable grapple fitting. TV visibility is used 

during the satellite capture phase; return to the Orbiter is via remote command/control 

from the AFD crew station. 

* RETRIEVAL OF SATELLITES WITHIN 1000 FT OF ORBITER 
" FLIGHT CONTROL VIA CREW IN ORBITER AFD 

THRUSTER MODULE (4) 

-	 tLANDSAT 

MODIFIED 
MTV 

1117-113W 
1472-424(T) 

EXTENDABLE BOOM 
WITH RMS SNARE 
END EFFECTOR 

Fig. 3-5 Proximity Operations Module (POM) - MTV Adaptation 
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The POM could be designed to retrieve satellites of varying size/mass. It -uses a 

non-contaminating, cold gas propulsion system that provides three axes of translation 

and rotation during free-flight and towing operations. 

A layout drawing of the MTV-POM is shown in Figure 3-6. The drawing shows the 

position of the thruster booms in both the extended and stowed positions. The snare 

'0:,, 

-,.S-/tFf CST/,MAT 

6$00*1 ,SZ~,' A1C./, ­'/ -


A 7e 0 

1472-425 (T)
 

Fig. 3-6 Proximity operations Module (POM)- Configuration Layout MTV Adaptation - SSSAS
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end effector is attached to the underside of the MTV by an extendable mast. This ver­

sion of the MTV-POM is sized to tow satellites up to 10,000 lb using a clean, cold gas 

propulsion system. The estimated weight of the vehicle is 305 lb. 

3.3.2 Manned Maneuvering Unit/Work Restraint Unit (MMU/WRU) - POM Adaptation 

Figure 3-7 illustrates the MMU/WRU Proximity Operations Module (POM) concept 

that could be used to retrieve satellites such as the Solar Maximum Mission satellite. 

The POM is an adaptation of the WRU and can be used in conjunction with an MMU to 

retrieve moderate-sized satellites of the Multimission Modular Spacecraft class. The 

WRIU was developed by Grumman to support a potential on-orbit Orbiter tile repair 

mission and the hardware is presently in storage at JSC. 

In this concept, while station-keeping with the satellite at ranges up to 1000 ft, the 

Orbiter guides the MMU/WRU-POM to the target satellite using voice link commands. The 

commands are in the form of nulling Line-of-Site (LOS) rate and adjusting range rate 

maneuvers, but related in terms of timed thrusting commands. At satellite arrival, the 

MMU/WRU-POM examines the satellite using "fly-around" maneuvers and engages the 

target satellite using a snare end effector attached tb the WRIU on the end of an extend­

able mast. After reducing the satellite attitude rates to nearly zero, the POM transports 

the satellite back to the Orbiter. In the return trajectory, the POM performs only range 

rate or braking maneuvers; LOS rate corrections are performed by the Orbiter. 

A layout drawing of the MMU/WRU-POM is shown in Fig. 3-8. Note that the WRU 

SOLAR MAXIMUM 
MISSION SATELLITE 

MANNED MANEUVERING 

!wERVNI'T~u (M iEU 


REVISED WORK
 
RESTRAINT UNIT
 
(WRUI
 

j EXTENDABLE BOOM/SNARE 

472-#26(T) SWIVEL BASE END EFFECTOR
 

Fig. 3-7 Proximity Operations Module (POM)- WRU Adaptation
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To help understand the capabilities and limitations of the Orbiter and the enhance­

ment offered by the alternative methods, reference is made to the retrieval of the Solar 

Maximum Mission (SMM) spacecraft. This satellite was selected as one of the reference 

satellites and is 	used here to illustrate typical retrieval operations. 

Figure 3-11 illustrates the SMM which is currently residing in a 28.50 inclined 

orbit, at an approximate altitude of 300 n mi, and with degraded attitude control 

capability. Failure of three of the four on-board reaction wheels and inactivation of the 
fourth has necessitated control of the spacecraft by magnetic torquing. The spacecraft 

is,therefore, oriented with the X-axis toward the sun, but coning at ±10 degrees and 

rolling at approximately 0.95 deg/sec. 

Consideration has been given to revisiting the SMM in 1984 (or earlier), retrieving 

it, and repairing the failed components, or retrieving it for earth return. Obviously, 

the ability to stabilize the SMIM to attitude rates that are consistent with Orbiter RMS 

capture capability is an issue of major importance. 

In evaluating SMM retrieval operations, analysis has indicated that spacecraft rates 

can be nulled to near zero about all axes by reactivating the remaining reaction wheel. 

XSMM INERTIAL 

REFERENCE
 
UNIT 

-'SMM CURRENT ORBITAL STABILITY 

* CONING ABOUT X-AXIS AT 
+ 100 (PITCH AND YAW) 
AND ROLLING 0.95 0 /SEC 
(CONTROLLED BY MAGNETIC 
TORQUING) 

* RATES MAY BE REDUCED TO-0.0 1°SEC IFREMAINING 
REACTION WHEEL IS ACTIVATED 

"c/Vt,** FOR SHORT DURATIONS. RATES
A 	 MAY BE REDUCED TO 0.01°/SEC 

USING MAGNETIC TORQUE 

GRAPPLE 
V81-0625-001 D FIXTURE 

1472"430(T) 

Fig. 3-11 Solar Maximum Mission Spacecraft 
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Concern has been expressed, however, as to whether this can be operational in the time 

frame in which retrieval operations are planned. 

Another alternative that has been successfully demonstrated in actual flight opera­

tions, is to reduce spacecraft rates to near zero using only magnetic torquers. This can 

be accomplished only for short durations, however, since it requires pointing the X-axis 

in non-solar looking directions. 

It appears, therefore, that SMM can be nulled to near zero attitude rates for 

retrieval operations. The ability to maintain near-zero rates in the presence of on-orbit 

disturbances such as Orbiter thrust impingement is, however, questionable. 

The information presented in Refereence 1* was used to understand the effects of 

Orbiter thrust impingement on satellite retrieval operations. Figure 3-12 shows several 

approach trajectory profiles that have been simulated for Orbiter closing to within RMS 

% AHEAD 20010FT 

1000 FT 

Q= V-BAR ALLTHE WAY TO GRAPPLE 

20D FT
 
V-BAR TO200 FT AND THEN INERTIAL® 
(IN-PLANE) TO GRAPPLE 

) 	 INERTIAL (IN-PLANE) ALL THE WAY 
TO GRAPPLE BELOW 

-BAR ALL THE WAY TO GRAPPLE 

R-BAR TO 200 FT AND THEN INERTIAL 
(IN-PLANE) TO GRAPPLE 1000 FT 

V81-0625-004D 
1472-431 (T) 

Fig. 3-12 SMM Retrieval In-Plane Approach Profile 

Ref 1: NASA/JSC Report NASA-TM-81104-Proximity Operations Analysis - Retrieval of 
Solar Maximum Mission Observatory - April 1980 
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grappling distance of the SMM. Approach trajectories labeled 1, 2, and 3 are initiated 

assuming the Orbiter is station-keeping at a range of 1000 ft on the V-bar vector. 

Trajectories 4 and 5 assume that the Orbiter is station-keeping on R-bar. Combinations 

of V-bar, R-bar, and inertial approach trajectories have also been considered. 

Results of the Orbiter closing trajectory simulations are summarized in Fig. 3-13. 

For each of the trajectory profiles considered, Orbiter maneuvers were executed using 

either normal or low-Z braking maneuvers. The data includes overall trajectory time to 

SMM grapple, the total momentum imparted to the SMM spacecraft about each axis as a 

result of Orbiter plume impingement, and the total Orbiter RCS propellant consumed. Of 

major significance is the control authority of the SMM compared to the disturbance 

momentum imparted by Orbiter thrust impingement. When the disturbance momentum 

exceeds the control capability, tumbling the SMM spacecraft results. 

With the SMM reaction wheels operating, the control authority of the SMM about the 

Y and Z axis is approximately 14 ft lb/sec. In a degraded mode (i.e., with magnetic 

torquers and one remaining reaction wheel active), the control authority of the SMM is 

significantly lessened. 

As shown in Fig. 3-13, the trajectory profiles result in impingement momentum in 

excess of the SIM nominal control capability. These are indicated in the figure by the 

blocked values of the SMM plume disturbance. All trajectories that utilize normal-Z 

braking impart a plume impingement in excess of the SMM nominal control capability. 

ORBITER SMM PLUME DIST 

PROFILE 
BRAKING 

MODE 
TIME 
(MIN) 

(ABS CUM): X, Y, Z)
(FT-LB SEC) 

ORBITER RCS 
PROPELLANT,(LB-MASS) 

V-BAR NORM-Z 30 6, 18, 78 315 
LOW-Z 28 1, 4, 8 635 

V.BAR/INERTIAL NORM-Z 35 8, 12, 69 330 
LOW-Z 28 3, 8 705 
LOW-Z 24 1, 1 520 

R-BAR NORM-Z 33 20 65 350 

LOW-Z 29 2, 4 570 

R-BARINERTIAL NORM-Z 37 7, 3 350 
LOW-Z 29 1, 2, 5 530 

INERTIAL 
V81-0625-005D 

LOW-Z 35 "1,1, 5 760 
1472-432 (T) 

Fig. 3-13 Simulation Results for SMM Retrieval - Orbiter Direct 
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This analysis suggests that Orbiter-direct retrieval of the SMM, with reduced 

control authority, can be accomplished using low Z braking only; if it can be accom­

plished at all. As the figure shows, this also requires a significant amount of Orbiter 

RCS propellant to effect SMM retrieval. This may preclude using the direct ascent flight 

mode (the Orbiter launched directly into the SMM orbit) because of overall propellant 
limitations. 

Issues that also must be addressed when considering satellite retrieval with the 

RMS are the operational constraints imposed by use of the RMS during Orbiter maneu­

vering. Figure 3-14 summarizes the conditions under which the RMS can be operated 

safely. For -example, it is shown that the RMS cannot be unstowed and held in a ready 

position until the Orbiter has completed all major approach trajectory maneuvers; only 

small, corrective minimum impulse maneuvers are permitted after it has been unstowed. 
Since it takes approximately 10 minutes to activate and unstow the RMS, approach 

trajectory relative conditions must be accurately achieved before unstowing the RMS. 

These conditions must be maintained for that interval using, minimum impulse maneu­

vering only. The position of the satellite grapple fitting with respect to the Orbiter 

approach path is, therefore, an important consideration to affect RMS capture. 

RCS 

RMS PRIMARY VERNIER 

STATIONARY 
LO

UNLO

ADED 

ADED 

<32K 

>32-

MIN IMPULSE ONLYt 
MIN IMPULSE ONLYt 

OK 

OK 

OK 

UNLOADED 
MOVING 

LOADED 

t 80 MILLISEC PULSE0625-0070 
1472-433(T) * FREE DRIFT MODE 

Fig. 3-14 Orbiter Maneuvering Constraints-with RMS Active 

After unstowing the RMS, it cannot be operated during any type of Orbiter RCS 
maneuver, including minimum impulse maneuvers. This requires that the Orbiter/ 

satellite relative conditions be properly established so that adequate time is available 

for actual RMS grappling without further Orbiter maneuvers. Although these con­

straints for RMS operations appear workable, the crew activities, Orbiter RCS pro­

pellant usage, and overall timeline considerations must be further evaluated before 
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Orbiter-direct retrieval of the SMM can be considered acceptable. Implications of a 

"stiffer RMS" are yet to be determined. 

Another issue related to Orbiter direct retrieval of satellites is the capability of 

the RMS in grappling satellites within the reach envelope. The following requirements 

and conditions must be achieved by the satellite at the time of RMS grappling: 

" 	 Spin-stabilized payloads must be de-spun 

* 	 Passively-stabilized payloads must have grapple point motion less than ±15 in. 

and less than 0.05 in. /second
 

" Actively-stabilized payloads must have
 

-	 Attitude dead-band less than ±1, degree about all axes 

-	 Angular rate limit less than 0.1 deg/see about all axes 

-	 Maximum grapple point motion less than ±3 in. 

* 	 Maximum allowable relative velocity of payload and Orbiter at capture less than 

0.1 ftlsec 

" 	 Payload should have sufficient control authority to damp out and return to local 

vertical/horizontal (LVLH) attitude within two minutes after direct RCS plume 

impingement at 35 ft from thruster. 

For actively stabilized satellites such as the SMM, the maximum angular rate must be 

less than 0.1 deg/sec. 

Although it appears that the SMM satellite rates initially can be nulled to very low 

values, it is questionable that they can be maintained with the SMM's limited control 

authority in the presence of Orbiter thrust impingement. 

If it is assumed that the remaining skewed reaction wheel is operable during re­

trieval operations, and used to null the momentum imparted by Orbiter thrust impinge­

ment about a given axis, in doing so it also applies a torque about the other two space­

craft axes, in proportion to the direction cosines. This suggests that the SMM would 

probably realize a rotational motion about at least one axis which is greater than the RMS 

grappling capability during Orbiter approach to SMM, even with an Orbiter low Z axis 

approach.
 

If it is assumed that only magnetic torquers are used to null disturbances from 

Orbiter thrust impingement, it is estimated that they are not capable of nulling the 

Orbiter thrust impingement resulting from the low-Z approach. 
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3.4.2 Proximity Operations Module - Retrieval 

An alternate approach to Orbiter-direct retrieval of satellites is *retrievalwith the 

assistance of a Proximity Operations Module (POM). In this concept, a small module 

(either manned or unmanned) is dispatched from the'Orbiter, which is station-keeping 

at 	ranges up to 3000 ft, to capture the target satellite and return it to the immediate 

vicinity of the Orbiter. The Orbiter RMS would then grapple, the satellite while it is 

positioned and stabilized by the POM. 

In developing this concept, emphasis was placed on both near-term needs (such as 

the SMM retrieval) and the potential operational needs of future satellites in the 1980 

and 1990 time frames. Consequently, several POM concepts were developed from exist­

ing or planned systems to meet both near-term and long-term requirements. 

Functional requirements for both a POM/WRU adaptation and a POM/MTV adaptation 

follow. Note that the operation range for the unmanned POM/MTV is 3000 ft, whereas 

the manned POM/WRU is limited to 1000 ft. 

For the SMM retrieval mission, it is expected that Orbiter stand-off range will be 

less than 1000 ft. The minimum acceptable range, where Orbiter plume disturbances 

would be negligible, is yet to be determined. Functional requirements include: 

* 	 Translate to payloads station-keeping at ranges up to 1000 ft (POM/WRU); or 

3000 ft (POM/MTV) 

* 	 Inspect payloads at close proximity (25 - 50 ft) 

o 	 Attach to quasi-stabilized satellite, rotating at rates up to 1/sec 

" 	 Stabilize satellites to rates less than 0.01/sec 

o 	 Translate payloads (up to 10,000 lb) to vicinity of Orbiter (RMS reach) 

o 	 Fly system using manual remote commands (POM/MTV) 

Figure 3-15 shows the POM/WRU adaptation that can retrieve satellites such as~the 

-SMM and return them to the vicinity of the Orbiter. It consists of a frame support 

structure interfaced with a modified WRU. Attached to the frame support is a snare end 

effector which'is mounted on the end of an extendable mast. The WRU can be rotated 

relative to the frame support to allow an astronaut to assume forward-facing or aft­

facing positions for fly-in or towing operations (see Fig. 3-16). The system is fabri­

cated using existing flight qualified components and could be made operationally 

available for early retrieval missions such as the SMM. 
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Fig. 3-15 POMIWRU Adaptation 
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Fig. 3-16 POM/WRU Adaptation Capture & Retrieve 

3-19 



ORIGINAL PA(E iS 
OF POOR QUALITY 

Figure 3-17 shows a design constraint reqfired for thrust vector/tow force 

aligtment during satellite tow operations.- A large misalignment between the fore and aft 

trahslational thrust vector and the tow force vector results in unwanted applied torques 

during translational maneuvers. These torques can only be nulled by downward firing 

thrusters, which then incur large increases in propellant usage. 

ACCEL ACCEL ACCEL
 
VECTOR 'VECTOR FJ VECTOR
 

TOW -FORCE TOWRCE
 
FORCE 
 -TOW
 

FORCE
 

I L 
 C 
T E NOT ACCEPTABLE 

ADDITIONAL 

FORCE REOD 
TO COUNTER­

. THRUST VECTOR - TOW FORCE VECTOR MUST BE CLOSELY ALIGNED ACT MOMENT 
0625-009D TO ENSURE MINIMUM PROPELLANT USAGE FOR AXIS OF TRANSLATION 
1472-436(T) 

Fig. 3-17 POM/WRU Adaptation - Satellite in Tow Design Constraint 

Figure 3-18 shows POM/WRU adaptation performance characteristics when towing 

satellites in the 5000 lb weight class. Translation is limited to one axis, the fore and aft 

direction, which is used for towing the satellite to the Orbiter and braking at arrival. 

Capabilities for three axes of rotation are provided by translating in the upward­

downward direction for pitch, and the lateral direction for yaw. The large moment arm 

provided by the extendable mast ensures that only small translational effects are 

experienced during rotational maneuvering. Roll is accomplished using balanced 

couples. 

Figure 3-19 illustrates a design feature incorporated into the POM/WRU adaptation 

for towing payloads such as SMM. The snare end-effector is attached to an extendable 

mast and is allowed to- pivot relative-to the mast centerline so that the payload can align 

itself with the thruster axis/tow force vector. In the case of SMM, the payload cg is 

displaced from the grapple fitting by approximately 50 in. Without this capability, the 

og would remain misaligned from the thrust vector and a rotation would be induced 

daring translational maneuvering. This could only be nulled by downward firing 

thrusters and the resuilt is an almost two-fold increase in MMU propellant usage. The 

pivot mechanism also locks the payload in the newly aligned position so that the payload 

does not rotate out of the aligned position during braking. 
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Fig. 3-18 "POM/WRU Performance Characteristics 
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Fig. 3-19 POM/WRU. Adaptationr- Thruster Axis Alignment
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Figure 3-20 illustrates the POM/MTV adaptation that can be used to retrieve 

satellites of varying mass /size. It consists of a basic core module containing a tele­

vision system, lights, and communication and control system electronic packages' 

Attached to the corners of the core module are four extendable masts which support the 

thruster quads and associated propellant tanks for a clean-burning gaseous thrust 

system. Propellant tanks are located with the thruster quads to-eliminate propellant 

transfer through rotating joints. Attached to the underside of the core module is a 

snare end effector mounted on an extendable mast that is used to grapple satellites 

during retrieval operations. 

THRUSTER MODULES (4) 

MODIFIED
 

FOLDABLE BOOMS (4)
 

EXTENDABLE BOOM
 
WITH RMS SNARE END EFFECTOR
 

()247-278D 

1472-439tT) 

Fig. 3-20 POM!MTV Adaptation 

The POM/MTV is dispatched from the Orbiter, which is station-keeping at an offset 

range from the target satellite. -Maneuvers are executed by remote commands initiated 

from the Orbiter AFD using both visual and recorded data transmitted to the Orbiter 

from the POM/MTV. 

Figure 3-21 illustrates the pure translational performance capability of the POMb 

MTV about all three axes when faced with a satellite og offset from the thrust axis. 

X-axis translation is accomplished by continuous thrusting of the lower thrust quads (or 

upper) while the upper (lower) thrusters are pulsing (see Fig. 3-21). This results in 

pure X-axis translation while maintaining nulled attitude rates. 
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Fig. 3-21 Thruster Firing for 3-Axis Translation 

Similarly, for Y-or Z-axis translation, pure translation is achieved by applying 

balanced couples to null rotational acceleration caused by satellite cg offsets. 

Procedures used by the POM/WRU adaptation to translate from the Orbiter to the 

target satellite are: 

" Orbiter station-keeps at a = 1000 ft with Z-axis to target (Orbiter on V, R, 

Inertial, or Local Horizon LOS) 

" POM/WRI-adaptation translates to target in accordance with predefined range 

rate-LOS rate schedule along LOS 

* 	 Orbiter tracks POM/WRU using any of the following sensors: 

Rendezvous Radar
 

COAS
 

CCTV Keel Camera
 

Star Tracker
 

* 	 Orbiter relates thrust commands to POM/WRU (via voice link) until satellite 

range of approximately 50 - 100 feet 
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* POM/WRU flies direct from p = 50 ft on in. 

Similar procedures are used for translating the POM/MTV adaptation except that 

maneuvers are executed remotely from the Orbiter rather than directly. They require 

control of the inertial LOS rate and range rate in accordance with a predefined schedule. 

Operations are initiated after the Orbiter has completed rendezvous with the target 

satellite to a range of approximately 1000 ft (3000 ft for-the POMJMTV) and has achieved 

station-keeping. Station-keeping could be performed on the R-bar or V-bar vectors, or 

on an inertial or local horizon LOS vector. The POM-WRU is translated along the LOS, 
correcting LOS rates and adjusting range,rates until it arrives within a few hundred feet 

of the target. 

LOS rate is determined by Orbiter tracking of the POM/WRU relative to the target 

satellite using one of several available sensors. Thrust maneuvers are related via a 

voice link in terms of timed thrusting maneuvers. 

As the POM/WRU arrives within approximately 100 it of the target, the pilot 

assumes full maneuvering control using visual cues only. Man-in-the-loop simulations 

have shown that a pilot can readily fly a closing trajectory from a range of 100 ft in with 

reasonable propellant expenditures using visual cues only. 

Figure 3-22 illustrates the POM/WRU LOS approach trajectory. The Orbiter effects 

station-keeping on the LOS prior to releasing the POM. 

V APPROACH LC O ZNAPOC 

V81-0625-026) 
1472"441(T) 

Fig. 3-22 SMM Retrieoval - Translation to'Satellite Stand-off Distance 
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The LOS vector may be either the R-bar or V-bar vectors, an inertial line of sight, 

or a local horizon LOS vector. Similar trajectdries are flown by the POM/WRU and the 

POM/MTV; LOS rates are controlled along the entire approach trajectory. 

Figure 3-23 shows a typical approach trajectory for the POM/WRU adaptation 

translating to a target satellite in a 300'n mi orbit. For this example, it was assumed the 

Orbiter was station-keeping on a reference vector that was aligned with the target 

satellite and the local horizon. This guides the POM/WRU to approach the target 

satellite along the local horizon vector and also allowsthe POM/WRU to use the local, 

horizon as a reference path. 

A maneuver schedule, to guide the POM/WRU to the satellite, follows: 

RANGE RANGE RATE LOS RATE LOS RATE ERROR 

(ft) (ft/sec) (mrad/sec) (mrad/sec) 

1000 5 1.11 ±0.5 

700 4-6 1.11 ±0.5 

400 4-6 1.11 ±0.5 

200 3-3.5 1.11 ±0.5
 

100 2-2.5 1.11 ±0.5 

Operational procedures required the POM/WRU first to correct the -LOS rate at each 

of the range check points, and then adjust the range rate if required. In this example, 

it was assumed that the desired LOS rate could be controlled to within an accuracy of 

*0.5 mrad/sec to reflect accuracies in both measuring and executing LOS rate 

corrections. 

Figure 3-23 shows time histories (in terms of range-rate and inertial LOS rate) of 

the MMU/WRU approach from an initial range of 1000 ft to the standoff range of' 25 ft. 

Also shown is the value of LOS rate required to maintain an approach along the initial 

local horizon line-of-sight vector (LOS rate - 1.11 millirad-/sec).- Solid lines were used 

to represent thrusting maneuvers, and dashed lines for coasting flight. Range rate, for 

example, is shown to increase from zero to a closing velocity 6f 5 ft/see at an initial 

range of 1000 ft. Thereafter, range rate remains fairly constant to a range of -200 ft 

where braking is initiated. LOS rate corrections are required, however, at each of the 

range check points to maintain control-of the approach trajectory. It is assumed that, 

for the last 100 ft of closing; -the POM/WRU flies direct using only visual cues without 

tracking assistance from the Orbiter. 
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Fig. 3-23 POM/WRU Adaptation - Outbound Trajectory to SMM 

The POM/WRU a Vrand propellant requirements are also shown in Fig. 3-23. From 

these representative trajectory simulations, it was concluded that the POM/WRU can 

readily translate up to 1000 ft to retrieve satellites without the need of additional 

on-board sensors. 

At target satellite arrival, the-POM/WRU and, similarly, the POM/MTV adaptation 

come to a halt at a standoff range of approximately 25 ft where fly-around maneuvers are 

performed to inspect the satellite. 

Figure 3-24 illustrates a typical fly-around maneuver. In this example, (SMM 

retrieval). it was assumed that two fly-around maneuvers are performed about two 

normal planes. The tabular data gives estimates of the AV and propellant requirements 

to perform satellite inspection, rotational synchronization, and target satellite 

grappling. The total time for these operations is estimated at 16 minutes. 

After satisfactorily examining, the target satellite and-closing the capture, the 

POM/WRU returns to theOrbiter. Operational procedures used to return the target 

satellite to the immediate vicinity of the Orbiter are as follows: 
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FUNCTION MANEUVER AV (FT/SEC) WT OF GN2 TIME 

INSPECTION 2 FLYAROUNDS IS 25 FT) 6.3 2.9 LB 10 MIN 

SYNCHRONIZATION WITH 112 FLYAROUND 0.6 0.3,LB 5 MIN 

APPROACH AND SAT TRANSLATE 0.6 0.3 LB 1 MIN 
ENGAGEMENT I I 

TOTALS 7.5 3.5 LB 16 MIN 

1472-443(T) VBI-0625-016D 

Fig. 3-24 Initial Standoff to 5MM Capture 

POM/Satellite orients thrust axis along LOS 

* 	 POM thrusts along LOS to achieve desired closing rate 

* 	 Orbiter tracks POM/Satellite using any of the following sensors (rendezvous 

radar, COAS, CCTV - Keel Camera, Star Tracker) 

* 	 Orbiter performs LOS rate cdrrections 

* 	 POM performs braking maneuvers using Orbiter tracking data (voice link) 

* 	 Orbiter aligns POM approach trajectory with payload bay 

* 	 POM brings satellite to zero relative velocity in vicinity of payload bay (10 - 20 

ft) and releases satellite grapple fitting 

* Orbiter RMS attaches to satellite grapple fitting. 

Procedures are similar for both the POM/WRU and POM/MTV adaptations except that 

LOS rate corrections are applied. For the POM/WRU, because of its poor translational 

capability normal to the LOS vector while towing, the Orbiter tracks and nulls the LOS 

rate. The POM/WRU performs only initial range rate and braking maneuvers. For the 
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POM/MTV adaptation, because of efficient translational maneuvering both on and normal 

to the LOS vector, it performs both range rate and LOS rate corrections. 

Figure 3-25 illustrates the difference in POM/WRU and POM/MTV satellite return 

trajectories. The Orbiter executes all LOS rate corrections for the POM/WRU return. 

Typical characteristics of the POM/WRU trajectory when towing a satellite to the 

Orbiter are shown in Figure 3-26. A reference maneuver schedule was devised for the 

return trajectory as follows: 

RANGE RANGE RATE LOS RATE LOS RATE ERROR 
(ft) (ft/sec) (mrad/sec) (mrad/see) 

1000 2.0 0 0o.2 

600 1.5-2.5 0 ±0.2 

300 1.5-2.5 0 ±0.2 

150 1.0 0 ±0.2 

50 0.5 0 ±0.2 

25 0.1 0 ±0.2 

All POMRU RETURN 

KING 

TRANSLATION 

':''"" ' IPOM/MTV RETURNI 

BRAKING TRANSLATION 

LOS CORRECTIONS 
1472-444(T) 

Fig. 3-25 SMM Retrieval -'POM Return to-Orbiter 
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Fig. 3-26 POM/WRU - Return Trajectory to Orbiter 

-In this simulation, it was assumed that the Orbiter nulled the 'LOS rate, to within an 

error tolerance of 0.2 mrad/ ee. 

Summarized in Figure 3-26 are the AVs expended by the POM/WRU and Orbiter. The 

overall time was estimated to be approximately 10 minutes. 

Figure 3-27 summarizes overall performance characteristics and propellant utili­

zation of the POM/WRU and Orbiter during SNIM retrieval. These results are based on 

FOM/WRU 
PROPELLANT 

MANEUVER TIME (MIN) V (FT/SEC) (LB) ORBITER PROPELLANT (LB) 

POM TRANSLATION TO 4.1 13.2 6.2 5 (STATION-
STAND OFF RANGE (25 FT) KEEPING) 

FLY-AROUND INSPECTION, 160 7.5 3.5 20 (STATION-
TARGET GRAPPLING, KEEPING) 
ALIGNMENT FOR RETURN 

POM TRANSLATION TO 
ORBITER - RMS GRAPPLE 

10.5 3.9 11.8 12.5 + 67 (LOS RATE' 
'NULLING& STATION-
KEEPING) 

SUB-TOTALS 33.6 24.6 21.5 104 

UNCERTAINTIES (10%) 3.3 2,6. 2.5 12 

TOTALS 36.5 28.3 24.0 115 

1472-446 (T) I I 

Fig. 3-27 POM/WRU Flight Profile Summary 
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trajectory simulations that included nominal error tolerances in sensing, and maneuvers 

executed during the approach to satellite and return to Orbiter trajectory paths. A 10% 

contingency was included to account for other uncertainties. 

These results indicate that SMM retrieval using the POM/WRU adaptation is a feas­

ible alternative to Orbiter-direct retrieval. Favorable comparisons can be made in terms 

of retrieval trajectory time, MMU propellant capacity available, and Orbiter RCS propel­

lant usage. POM/WRU propellant is estimated at 24 1b, well within the MMU User's Guide 

capacity of 40 lb (Reference 2)*. 

A comparison of the propellant requirements and mission event times for Solar Max 

retrieval, using the Orbiter direct mode and the POM/WRU and POM/MTV adaptations, is 

presented in Fig. 3-28. Although Orbiter RCS propellant is only one of many criteria to 

.be used in comparing these respective rmodes, the-results suggest that significant 

savings in Orbiter RIS propellant consumption can be realized for satellite retrieval 

operations using a'POM. This can be an important factor on long missions when rendez­

vous -and satellite retrieval is only one of many events in the mission flight plan. 

POM TIME 
RETRIEVAL MODE ORBITER PROPELLANT (LB) PROPELLANT (LB) (MIN) 

ORBITER - DIRECT *650 - 28 
(LOW Z THRUSTING) 

POMJWRU 115 24.0 33.5 
ADAPTATION (STATION-KEEPING & 

LOS RATE CORRECTION) 

POM/MTV" 40 20 30 

ADAPTATION 

1472-447(T) *AVERAGE 

Fig. 3-28 Summary of Orbiter RCS Propellant Consumption 

Minimum propellant is incurred for retrieval with the POMJMTV adaptation although 

,significant savings are also shown for the POMIWRU adaptation. These savings can be 
realized with little effect on overall mission event time. 

3.4.3 MMU/PoweredWinch Retrieval 

Another concept that appears feasible for effecting satellite retrieval is the 

MMU/Powered Winch concept (see Fig. 3-29). This concept features use of a tether to 

*Ref. 2: "Manned Maneuvering Unit, User's Guide", May 1978, NAS9-14593 
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0 REPLACE/REPAIR FAILED 
REACTION WHEELS 

1472-448(T) 0679-027D 

Fin. 3-29 Manned Maneuvering Unit/Powered Winch Retrieval 

translate the satellite to the immediate vicinity of the Orbiter. The tether is payed out 

,to the satellite by EVA using the MMU. 

Also shown in Fig. 3-29 is the operational sequence of events required for SMM 

retrieval using this concept. If necessary, satellite attitude rates are nulled using MMIU 

thrusting and maintained during reel-in of the tether.. MMU thrusting would also 

maintain the tether taut during this operation. 
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This concept offers advantages similar to the POM Mode in that the Orbiter transi­

tions to an initial offset distance from the satellite (nominally about 300 ft) and station­

keeps at that range. This avoids much of the Orbiter plume impingement on the satellite 

that is normally experienced during very close range maneuvering. It also reduces 

Orbiter RCS propellant requirements; the extent of these savings, however, is yet to be 

determined. 

Figure 3-30 illustrates a concept for modifying the FSS to assist berthing the 

spacecraft to the FSS tilt table. The concept consists of adding a cable guide to the tilt 

table latching mechanisms to align the spacecraft latching pins with the latching 

mechanisms as the tether lines are reeled in. 

Tether lines are attached to the spacecraft latching pin by inserting pip pins into 

each of the spacecraft latching pins. D-rings are mated to the attachment fittings to 

secure the three tether lines to the pip pins. 

After attaching the tether lines to the spacecraft, retrieval is accomplished by 

reeling in the tether using a powered winch. Astronaut assist is required to maintain 

the tether taut during reeling operations. 

MMS STRUCTURAL FRAMEPPPINR 1 PPPNAS 3 

PIPPNIPY 3 

PIN ACTUATOR 
i 

I 

LAT( (TOATTACHTO 
LATCH PINS ON 
MMS) 

BERTHING PLATFORM 

DRING , 

TAPERED PLUG 

CABLE GUIDE To MOTOR -

SNYLON DRIVEN
 
COVERED TAKE-UP DRUM' /
 

CABLE (BACK-UP HAND OPERATIONAL FSS 
CRANKI IN PAYLOAD BAY3 PLACES (SAME AS 

(TYPICAL) RETURN LINE 
V81-0625-024D TETHER) 
1472-449(T) 

Fig. 3-30 Manned Maneuvering Unit/Powered Winch Retrieval 
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3.4.4 Conclusions & Recommendations 

After completing a review of the baseline close proximity operations and analyzing 

alternative concepts for effecting satellite retrieval, the following conclusions have been 

drawn: 

* 	 The.practicality of retrieving satellites via the Orbiter Direct Mode requires 

further assessment. The major issues to be i'esolved are:
 

- Effect of Orbiter thrust impingement on satellite's attitude stability
 

-	 Orbiter maneuvering limitations after RMS is unstowed 

-	 RMS capability to grapple satellites 

-	 Orbiter RCS propellant requirements 

" 	 The use of Proximity Operations Modules (POMs) to assist the Orbiter in satellite 

retrieval appears to be a viable alternative. A manned POM, an adaptation of the 

Work Restraint Unit, could probably be developed to assist the SMM retrieval in 

the 83-'84 time period. An unmanned POM, an outgrowth of the Maneuverable 

TV, could be developed for later retrieval mission needs 

" 	 Orbiter retrieval of satellites with the aid of a powered winch may also be a 

viable alternate, however, further evaluation is needed to fully understand the 

issues related to this concept. 

To ensure that a satellite retrieval capability will exist in the time frame required by 

the user community, the following recommendations are offered: 

* 	 Perform early demonstration of satellite retrieval to convince the user community 

of STS capabilities; SMM retrieval appears to be the most viable opportunity 

available 

" 	 Continue in-depth evaluations of Orbiter-direct satellite retrieval mode and 

compare potential readiness/practicality with close proximity alternates 

* 	 Initiate development of the POM/WRU adaptations as a prime backup to
 

Orbiter-direct SMM retrieval
 

* 	 Study and develop other alternate concepts (such as POM/MTV adaptation) to 

ensure STS readiness to demonstrate satellite retrieval in an early time frame. 
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4 - ON-ORBIT SERVICING EQUIPMENT
 

Satellite service equipment associated with tn-orbit servicing operations involves 

the following items: 

* Open Cherry Picker/Remote Manipulator System (OCP/RMS) 

* FSS Tilt Table/OCP Work Platform 

* Handling and Positioning Aid (HPA)
 

e Equipment Storage
 

e Fluid Transfer
 

e Non-Contaminating Attitude Control System (ACS)
 

* AftFlight Deck (AFD) Controls/Displays. 

Subsequent sections will discuss and illustrate the service equipment concepts. 

4.1 OPEN CHERRY PICKER/REMOTE MANIPULATOR SYSTEM (OCP/RMS)
 

The Open Cherry Picker (OCP) shown in Fig. 4-1 is a movable work station 

controlled by an astronaut on the tip of the RMS arm. Features of the OCP include: 

* Work platform interfaces with the RMS 

* Enables RMS control from the work platform 

o Work platform provides 

- Lighting 

- Tool storage 

- Payload handling mechanisms 

- Stabilizer to dampen RMS motion 

- Rotating foot restraint. 

Figure 4-2 depicts an astronaut replacing an equipment module on a representative 

Multimission Modular Spacecraft (MMS). The OCP's movable foot restraint reduces the 
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physical effort required-to perform EVA and, with its control station, allows the 

astronaut to fly himself to the most convenient position to perform service functions 

within the Orbiter payload bay. 

4.2 	 OPEN CHERRY PICKER - FLIGHT SUPPORT SYSTEM (FSS) WORK.PLATFORM 

ADAPTATION 

A concept that can further enhance the servicing of satellites in the-Orbiter Pay­

load bay is illustrated in Fig. 4-3. An OCP is interfaced to the FSS Cradle A' Berthing 

and Positioning system with extension and lift booms that allow the work platform to be 

positioned at variable offset and height distances from the satellite base. A full 3600 

satellite rotation within the berthing system provides total access to all locations on the 

satellite. 

LAND SAT 

n/
 

-FSS
 

CRADLE A' 
BERTHING/POSITIONING 
PLATFORM
 

EXTENDABLE
 

1117-118W BOOM 
1472452(T) 

Fig. 4-3 Open Cherry Picker - FSS Work Platform Adaptation 

Equipment racks mounted on the Cradle A' provide stowage for components and. 

modules needed for servicing. This concept provides all the features of an Open Cherry 

Picker within the immediate area of the satellite work site, while freeing the RMS for 

supporting operations. The illustration shows application of the system to servicing of 

LANDSAT.
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A layout drawing of the FSS work platform adaptation is shown in Fig. 4-4. As 

shown, its estimated weight is 395 lb. 

4.3 	 HANDLING AND POSITIONING AID (HPA) 

The HPA will support satellites outside the confines of the payload bay and, with 

its "over-the-side" features, could enable full deployment of satellite appendages (if 

desired) prior to release from the Orbiter (see Fig. 4-5). For initial launch missions, 

the HPA contains a standardized berthing and umbilical interface for checkout prior to 

deployment. It also has provisions for transferring attitude/state vector information to 

the satellite from the Orbiter navigation system, and provides the means to impart a 

separation velocity between the satellite and Orbiter during deployment. A spin table 

capability can also be accommodated. 

On-orbit servicing is accommodated by rotating turn-table provisions in the HPA 

and via a movable work platform that incorporates an 0CP. The work platform has trans­

lational and vertical motion capability which, in conjunction with the HPA turntable 

features, enables total access to all satellite locations. The standardized berthing and 

umbilical interface also contains a fluid coupling interface to transfer propellants during 

servicing missions. 

A layout drawing of the HPA is shown in Fig. 4-6; its estimated weight is about 1800 

lb. Figure 4-7 details the concept and operation of the OCP movable work station on the 

HPA. 

Figure 4-8 depicts a two-astronaut servicing capability. One astronaut is shown 

servicing a segment of the satellite via an OCP that is mounted to the end of the RMS 

arm. The second astronaut utilizes the OCP work platform on the Handling and 

Positioning Aid. 

Although not shown in the illustration, the OCP with its stabilizer feature could 

attach itself to the satellite, release from the RMS, and enable the RMS to transport 

equipment from the Orbiter payload bay to the respective work stations. 

4.4 	 EQUIPMENT STORAGE 

As identified in the Level I operational scenarios (Ref: Volume 3A), a need exists 

for equipment stowage canisters to transport components, replacement modules, instru­

ments, and other equipment used in satellite servicing support, refurbishment, and re­

configuration. Figure 4-9 shows three concepts that have been developed for 

positioning/ deploying the canisters during their use. The side swing concept utilizes a 
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Fig. 4-9 Equipment Stowage Concepts 
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Figure 4-12 is a conceptual layout of a propellant fluid transfer system as it inter­

faces in the Orbiter payload bay. An aluminum tubular weld assembly, which attaches 

to the Orbiter with two longeron trunnion fittings and a keel attachment fitting, serves 

as the overall structural support. Features of this concept are: 

* 	 Pressure regulated, bladdered fluid trantsfer system capable of delivering up to 

5000 lb hydrazine 

" Off-the-shelf tankage 

- Propellant system uses five TDRSS tanks at 370 psi 

- Pressurization system uses two Viking Orbiter gaseous nitrogen tanks at 4000 psi 

* 	 PVT gauging system with loading accuracy of ±1/2% full load; flow meter backup 

* 	 Gaseous and liquid transfer provisions with associated mechanical and electrical 

hardware for control, self-check, and servicing 

* 	 Support structure capable of handling various sized tankage depending on 

mission need 

" 	 Potential for integrating fluid.transfer within HPA service functions and
 

standardizing propellant transfer interface.
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QUICK DISCONNECTS 
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Fig. 4-12 Orbital'Refueling System 
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4.6 NON-CONTAMINATING ATTITUDE CONTROL SYSTEM (ACS) 

Orbiter servicing of contamination-sensitive satellites can be accomplished by 

providing a non-contaminating ACS package in the payload bay. The package would 

provide precision, long-term attitude control without the use of the Orbiter's primary or 

vernier reaction control systems. Alternatively (and if acceptable), the Orbiter could 

be placed into a free drift mode. 

Figure 4-13 shows a non-contaminating ACS concept of Skylab-type CMGs located in 

the payload bay with cold gas thrusters/N 2 propellant mounted on extensible arms to 

serve as momentum unloading devices. 

An arrangement of the CMG/N 2 control augmentation system concept, as packaged in 

the Orbiter payload bay, is shown in Fig. 4-14. The CMGs are mounted to a structural 

pallet located immediately aft of the forward bulkhead. The extendable masts, which 

house the nitrogen propellant tanks, are stowed directly above the CMGs. The total 

system volume (stowed) is confined to that occupied by one spacelab pallet. 

* SERVICING OF CONTAMINATION SENSITIVE SATELLITES 

DEPLOYED COLD GAS
 
THRUSTERS/N 2 PROPELLANT
 

ADV X-RAY ASTRON FACIL (AXAF) 

POSITIONING
 

PRECISION LONG DURATION CONTROL WITH!
 
MINIMUM PLUME IMPINGEMENT EFFECTS &
 
NO CONTAMINATION
 

1117-122W 
1472-462(T) 

Fig. 4.13 Non-Contaminating Attitude Control System 
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Fig. 4-14 Orbiter Control Augmentation Package 

The system provides momentum management control of the Orbiter and 

features:
 

* 	 Reliable, long term Orbiter attitude control without the use of the primary 

or vernier reaction control systems 

- Four skylab-type CMGs
 

- Nine GN 2 tanks (40 lb each)
 

-	 Six redundant pairs of deployed thrusters 

-	 Minimized cargo bay volume 

* 	 Minimum contamination environment for orbital operations
 

- CMG momentum management
 

-	 Periodic jet unloading 

* 	 Reduced Orbiter propellant consumption on-orbit with precision, low torque 

control. 

Six redundant pairs of thrusters are deployed well forward of the Orbiter's nose 

(to maximize moment arms and minimize plume effects) by two rotating arms which are 
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stowed along the cargo bay sill. The nitrogen is stored in a tank pod which integrates 
the thrusters and tankage into a module mounted on the deployed arms. 

An alternate non-contaminating attitude control concept -is the -Annular Momentum 
Control Device (A-MCD) shown in Fig. 4-15. The AMCD provides momentum bias 
stabilization for long-term attitude holding without thruster firing. The AMCD features, 

are: 

. Long-term attitude stability without use of RCS 

- Large X-axis momentum wheel 

- Pitch/Yaw stability 

- Roll orientation capability 

* Laboratory version built and tested. 

The AMCD consists of a large diameter, magnetically-suspended wheel which is spun­
up about an axis parallel to the Orbiter's longitudinal (X) axis. The large momentum of 
the wheel provides gyroscopic stiffness which resists the disturbing effects of external 
torque. The normal Orbiter-attitude for the use of this device would be with the X-axis 

perpendicular to the orbit plane and the payload bay oriented toward the earth. 

1472-463(T) 0247-267W 

Fig. 4-15 Annular Momentum Control Device (AMCD) 
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5 - BACKUP & CONTINGENCY EQUIPMENT 

Satellite service equipment associated with backup/ contingency operations 

includes: 

* 	 Manipulator Foot Restraint/Remote Manipulator System (MFR/RMS) 

* 	 Manned Maneuvering Unit/Work Restraint Unit (MMU/WRU) adaptations 

- End effector for satellite deployment 

- Stabilizer for mechanical hangup situations 

- Payload handling for on-orbit servicing support. 

5.1 	 MANIPULATOR FOOT RESTRAINT/REMOTE MANIPULATOR SYSTEM (MFR/RMS) 

The Manipulator Foot Restraint (MFR) is mounted on the end of the RMS arm and 

used to support contingency operations in the payload bay which require EVA. The 

MFR/RMS serves as a backup for potential hangup of retention latches, mechanical 

hangup situations associated with satellite appendage deployment, and EVA support of 

sortie missions. 

Figure 5-1 shows an astronaut being deployed on the MFR to manually release a 

retention latch. This concept features the following: 

* 	 Rotating foot restraint mounted to RMS using standard end effector 

* 	 Stores in forward cargo bay in area reserved for EVA support systems 

* Includes rotating tool bin and hand hold to carry supporting tools
 

" Reduces on-orbit EVA time
 

* 	 Simplifies tether management
 

* Reduces physical effort required to perform EVA tasks.
 

In addition to providing the astronaut with a foot restraint which reduces physical
 

effort required to perform EVA tasks, the MFR includes a tool bin to carry supporting 

tools that may be needed for backup operations. 

5-1
 



ORIGI14AL PAGE IS 

OF 	pOOR QUALITY 

RAY~GAMMA 
OBSERVATORY 

RMS 

MECHANISMSPACELAB 

SORTIE
 
1117-125W SUPPORT
 
2472463(T) 

Fig. 5-1 Manipulator Foot Restraint (MFR) 

Figure 5-2 presents a comparison of typical EVA times needed for servicing the 
Plasma Diagnostics Package (PDP) using standard EVA procedures and the Manipulator 

Foot Restraint. As indicated, using the MFR reduces EVA time by a factor of 4. 

5.2 MANNED MANEUVERING UNIT/WORK RESTRAINT (MMU/WRU) ADAPTATIONS 

Three variations of MMU/WRU adaptations that have been identified in this study 

are shown in Fig. 5-3. The WRU adaptations feature: 

* 	 "Kit" adaptations that are applicable in all situations when the RMS is 

inoperative 

* 	 Lifts-out/ deploys payloads for RMS inoperative modes 

* 	 Provides portable work station (in and about payload bay) for planned and 

contingency servicing operations 

* 	 Enables transport of equipment/components to work sites 

* 	 Utilizes existing, space-qualified components. 
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Fig. 5-2 Timeline Comparison - Major Time Savings in Foot Restraint Operations 
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Fig. 5-3 Manned Maneuvering-Unit/Work Restraint Unit (MMU/WRU) Adaptations 
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An adaptation of a WRU, used in conjunction with an MMU, would serve as a backup 

for satellite deployment if the RMS is inoperative or malfunctioning. The WRU is adapted 

with an extensible mast and an IMS snare end effector that is compatible with the satel­

lite's grapple fixture used for deployment. Figure 5-3 shows an astronaut within the 

MMU/WRU in the process of attaching to the satellite's grapple fixture. Following. attach­

ment, the astronaut would "fly" the satellite out of the payload bay. The astronaut 

would then orient the satellite for deployment and, with the MMU's propulsion system, 

impart a separation velocity of about 1 ft/sec to the satellite. 

Figure 5-4 shows a side view of the MMU/WRU end effector adaptation. As shown, 

the WRU is modified to accommodate a snare end effector attached to an extensible mast. 

All components are space-qualified equipment items that exist or are currently under 

development. In addition, this WRU adaptation (which is applicable to RMS inoperative 

situations) is identical to the MMU/WRU - POM adaptation discussed in Section 3.3.2. 

Once again, if the RMS is inoperative or malfunctioning on a satellite deployment 

mission, an adaptation of the WRU (in conjunction with an MMU) would also serve as a 

backup for hangups of spacecraft retention latches. The WRU is adapted with a stabili­

zer to position the astronaut rigidly to a work site. Figure 5-3 shows an astronaut 

within the MMU/WRU with the stabilizer attached to hand rails along the payload bay. 

The astronaut is preparing to manually release a payload retention latch. 

FLOODLIGHTS (2) 

MMU 
'SNARE END EFFECTOR 

* 	 MMWIWRU 
INTERFACE 

EXTENDABLE MAST 

BATTERY .,6 	 IN. HT ADJUSTMENT 

0247-2730 MODIFIEDWRU
 
1472-466(T)
 

Fig. 5-4 MMU/WRU - End Effector Adaptation 
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The same adaptation of the WRU (with stabilizer) could also serve as a backup for 

hangups of spacecraft appendages that might occur during deployment of satellites by 

the RMS. The WRU, adapted with a stabilizer, would enable the astronaut to intercede 

in a mechanical hangup situation. For example, with the stabilizer attached to a "hard 

point" on a satellite, the astronaut could manually release a solar array mechanism. 

The WRU stabilizer adaptation, therefore, is applicable for both RMS operative and 

inoperative situations. 

With appropriate adaptations of the WRU, a revisit service missibn could also be 

performed with the RMS inoperative. A WRU adapted with an RMS snare end effector 

could retrieve payloads within the local vicinity of the Orbiter and position the payloads 

on a Tilt Table, or on an HPA for on-orbit servicing. Furthermore, a payload handling 

adaptation of the WRU could transport replacement equipment/modules from the payload 

bay to the work platform at the service site. Figure 5-3 shows an astronaut using the 

MMU/WRU to transport an equipment module to a second astronaut who is servicing a 

satellite mounted on the HPA. 

The three illustrated adaptations of the WRU (RMS snare end effector, payload­

handling, and stabilizer) are implemented in terms of "kits" that are adaptable to a 

single "core WRU" carried on the service mission. 
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- DELIVERY/RETRIEVAL OF HIGH ENERGY PAYLOADS 

(LEO/PROPULSION CLASS) 

Satellite service equipment associated with the delivery and retrieval of 

LEO/Propulsion class payloads includes: 

" Versatile Service Stage (VSS) 

- Delivery, rendezvous, docking, and retrieval capability 

- End effector kit for noncooperative satellite stabilization 

* 	 Aft Flight Deck Controls and Displays (AFD C&D). 

6.1 VERSATILE SERVICE STAGE - SATELLITE PLACEMENT & RETRIEVAL 

A Versatile Service Stage (VSS) is used to transport And retrieve satellites from 

higher energy LEO orbits that are not directly accessible by the Orbiter (see Fig. 6-1). 

INITIAL LAUNCH 	 SATELLITE 

// 	/ " -SATELLITE 
OPERATIONAL 
ORBIT 

I / 
EARTH
 

SRETURN
 

REVISITSI
 

4 V 	 *CLOSE PROXIMITY FLIGH-T 
- \ft-- ORBITER CONTROL VIA ORBITER CREW 

/ ,.:/ "/ "DELtVERV 

11171W ORBIT 

Fig. 6-1 Versatile Service Stage (VSS) - Satellite Placement and, Retrieval 

The VSS features: 

* 	 Reusable propulsion stage for delivering/retrieving payloads to/from Orbiter,. 

to/from higher energy LEO orbits 
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* 	 High performance main propulsion system for large AV maneuvers 

* 	 Non-contaminating propulsion system for satellite/Orbiter close proximity 

operations 

* 	 On-orbit refueling capability 

* 	 Docking/berthing to cooperative satellites 

* 	 Stabilizing and berthing to large uncooperative satellites/debris 

* 	 Controlled re-entry of satellites/debris 

* 	 Remote inspection of satellites 

" 	 Execution of automatic and manual remote commands. 

The VSS is equipped with a high performance propulsion system to perform large AV 

maneuvers and a clean-firing, cold gas propulsion system for close-in satellite retrieval 

and Orbiter proximity operations. The VSS contains a television system for satellite 
examination and to support remote control of the VSS-to-satellite docking/capture 

operation. 

For initial launch applications, the VSS deploys from the Orbiter at the standard 

Orbiter altitude, mates with the satellite to be delivered to higher LEO Orbit, and 

boosts the satellite to its operational altitude. Transfer maneuvers include Hohman­

type transfer trajectories and small plane changes. At completion of payload delivery, 

the VSS returns to the Orbiter for subsequent reuse or earth return for ground refur­

bishment and reuse. 

For use with revisit or earth return missions, the VSS is deployed by the Orbiter to 
transfer and rendezvous with a payload in a higher energy LEO Orbit. Upon success­

fully berthing or docking to the payload, the VSS/satellite returns to the Orbiter and 

achieves rendezvous within about 1000 ft. Close proximity flight control of the VSS/ 

satellite is remotely controlled by the Orbiter crew. The crew "flies" the VSS/satellite 

to within reach distance of the RMS arm where it is grappled with the Orbiter RMS and 
placed onto the HPA for servicing, or in the Orbiter cargo bay for earth return. Servic­

ing of the satellite takes place on the Orbiter. Following servicing, the VSS/satellite is 
deployed from the Orbiter. The VSS then delivers the satellite to its operational orbit 

and returns again to the Orbiter. 

To satisfy a wide assortment of mission needs, the VSS is designed to operate with 

several front end attachments. The VSS is shown in Fig. 6-2 "snaring" a satellite that is 
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Fig. 6-2 Versatile Service Stage (VSS) - Non-Cooperative Satellite Retrieval 

A special
known to be oscillating at rates higher than acceptable for direct docking. 

on the VSS, consists of an extensible mast and RMS snare endfront-end "kit" provided 
extend the end

effetor. The VSS would synchronize its motion with the satellite, 

effector to capture the satellite's RMS-compatible grapple fitting, and stabilize it for 

docking. The operation is remotely controlled via a TV link to the Orbiter (or the 

ground). 
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7 - EARTH RETURN EQUIPMENT 

Satellite service equipment associated with earth return operatibns includes: 

" Special retention structures 

* Equipment storage 

* Versatile Service Stage (VSS) 

- Debris capture kit 

o Debris retrieval/return to Orbiter 

o Debris deorbit 

* Aft Flight Deck Controls and Displays (AFD C&D) 

7.1 SPECIAL RETENTION STRUCTURES 

Figure 7-1 illustrates the specialized type of retention structure required for 

Orbiter return of satellites (such as OAO-1) that were launched by an unmanned launch 

vehicle. The satellite is attached to a cradle structure by a clamp ring identical to that 

used for interfacing OAO with the Atlas/Centaur (it's original launch vehicle) inter­

stage assembly. An equipment stowage rack is also included for storing solar arrays 

and other satellite appendages removed prior to satellite placement in the payload bay. 

ORBITING ASTRONOMICAL 
OBSERVATORY (OAO)

~EQUIPMENT° / STOWAGE
 
SPECIALuR
 

EARTH RETURN OF SATELLITES
 
PREVIOUSLY LAUNCHED BY
 
UNMANNED LAUNCH VEHICLES
 
REQUIRES UNIQUE RETENTION
 
STRUCTURES DUPLICATING
 
ORIGINAL LAUNCH VEHICLE'S
 
SUPPORT INTERFACE
 

1117-134W
 
1472469(T)
 

Fig. 7-1 "Special" Retention Structure 
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Because of the various attachment fittings and satellite configurations used prior to 

Shuttle-launched satellites, the prospect of standardizing a generic retention system 

that is compatible with a number of satellites appears poor. Unique retention systems 

designed specifically for each debris satellite appear necessary. 

7.2 VERSATILE SERVICE STAGE - DEBRIS CAPTURE KIT 

Figure 7-2 shows the Versatile Service Stage (VSS) adapted with a special front­

end "kit" to capture space debris for deorbit or return to the Orbiter. The "kit" 

consists of dexterous manipulator arms mounted to a rotating platform. 

GRAPPLE 
FIXTURE 

TV/LIGHT­

[SODCONFIGURAIOROTATING PLATFORM 

DEXTEROUS MANIPULATOR 

[DEPLOYED CONFIGURATION 
1117-135W
 
1472470(T)
 

Fig. 7-2, Versatile Service Stage (VSS) - Debris Retrieval 

Capture operations are remotely controlled via a TV link to the Orbiter (or the 

ground). After refidezvous with the debris element, the VSS TV monitors its tumbling 

motion and is maneuvered to a position where the plane of the VSS rotating platform 

parallels the tumbling motion. The platform is then spun-up to synchronize with the 

debris tumbling rate. Manipulators engage the satellite and gradually de-spin it via a 

clutch mechanism in the rotating platform. The debris satellite is then "cinched-up" 

against bumper stops and held for propulsion maneuvering. Figure 7-3 shows the VSS 

engaging a tumbling OAO-1. Note the manipulator reach which is capable of engaging the 

satellite at its structdral hard points. 
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Fig. 7-3 Versatile Service Stage (VSS) - OAO Retrieval 

The VSS could return to the Orbiter or perform a propulsion maneuver to place the 

debris element in a desired reentry trajectory, then release the debris to deorbit while 

the VSS returns to the Orbiter. Figure 7-4 shows the VSS engaged to an element of large 

orbital debris in preparation for a controlled-reentry propulsion maneuver. At com­

pletion of the maneuver, the VSS separates from the debris and returns to the Orbiter. 

0247-287P 
1472472 (T) 

Fig. 7-4 Versatile Service Stage (VSS) - Large Object Deorbit 
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8 - AFT FLIGHT DECK - SERVICING CONTROLS & DISPLAYS
 

Controls and displays will be provided in the Aft Flight Deck (AFD) to support 

several man-in-the-loop servicing operations that will be performed or monitored from 

the AFD stations. Included are: 

* 	 RMS control (existing) 

* 	 Standardized satellite checkout 

* 	 Close proximity flight operations
 

- Maneuverable Television (MTV) system control
 

-	 Unmanned Proximity Operations Module (POM) control 

-	 Manned proximity operations flight monitoring 

-	 Versatile Service Stage (VSS) control. 

Figure 8-1 shows where the controls and displays could be located for each of the 

service functions discussed. RMS control panels exist and are arranged as shown in 

Fig. 8-2. They consist of displays and controls mounted on a panel immediately below 

the port side, aft-looking window. This panel, AS, contains switches to activate moni­

toririg and checking of the RMS. Two hand controllers are provided for RAMS translation 

and rotation. They are positioned on each side of, and immediately adjacent to, the 

window to provide a direct, out-the-window view of the cargo bay while the crewman 

operates the hand controllers. Closed circuit TV monitors are also located nearby to 

help operate the RMS when a direct view is obscured. 

A control console for standardized satellite check-out could be located on panel 

L12. It would consist of appropriate displays to support spacecraft activation! 

checkout, and the controls and displays needed to deploy spacecraft from the Orbiter. 

As illustrated in Fig. 8-1, panel Lii could be used to monitor and control all close 

proximity flight operations. Displays to fly the MTV, the unmanned POM, and the VSS 

(when in close proximity to the Orbiter) are also shown. These spacecraft would be 
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Fig. 8-1 Aft Flight Deck - Servicing Controls & Displays 

TRANSLATIONAL 
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T)I CCTV MONITORS 
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.. 
-RHC 

HAD CONTROLLER 

CONTROLS . (Includes manual 
. capturerelease, 

rate hold, and 

R81-O1e1-087(T) 
vermer rateselect) 

1472-474(T) 

Fig. 8-2 RMS Operator Station 

flown by the crew to within reach distance of the RMS for retrieval by the Orbiter.
 

Although controlled by the crewman flying the system, the manned POM is directly depen­

dent upon monitoring and voice link commands that are initiated from the Aft Flight
 

Deck.
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9 - OPTIONAL SERVICE EQUIPMENT 

Satellite service equipment that is associated with optional on-orbit service 

operations and that can be provided at the discretion of the satellite user includes: 

* 	 Sun Shield 

* 	 Orbital Storage 

* 	 Attitude Transfer Package 

* 	 Lighting Enhancement. 

9.1 	 SUN SHIELD 

This optional item of service equipment provides solar impingement protection to a 

satellite when the Orbiter's payload bay doors are open. Figure 9-1 illustrates the con­

cept in which the sun shield is in retracted position during launch and with the payload 

bay doors closed on-orbit. As the payload bay doors open, the shield automatically 

closes to envelope the payload. This concept.has the following features: 

* 	 Protects sun sensitive payloads with payload bay doors open without constrain­

ing Orbiter attitude requirements 

* 	 Stowed during launch - deploys when payload bay doors open and minimizes 

system weight to accommodate launch loads 

* 	 Shield is comprised of multilayer, thin-film insulation 

" 	 Provides solar shield over top, front, and back 

* 	 Design is adaptable to varying length payloads. 

As presently conceived, the large-area surface of the sun shield would be composed 

of thin-film insulation and could be modularly adaptable to accommodate varying length 

satellite payloads- The deploy-on-orbit approach was selected to minimize the system's 

weight by eliminating the need for the shield to accommodate structural/vibration 

loadings during launch. 
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Fig. 9-1 Sun Shield 

Figure 9-2 shows a layout drawing of the sun shield; its estimated weight is about 

700 lb to enclose a satellite of about 28 ft in length. 

9.2 ORBITAL STORAGE 

The Orbital Storage mode provides the satellite user with the option to leave the 

spacecraft on-orbit for subsequent revisit/repair if a malfunction is detected (prior to 

deployment) that would categorize the satellite as non-operational. Orbital storage 

eliminates the need to carry backup spares, etc, and to return a satellite to earth for 

repair and subsequent relaunch. Both would incur additional user charges. 

The Orbital Storage enclosure concept is illustrated in Fig. 9-3. Outside the 

enclosure, an RMS-compatible grapple fixture enables transport from the payload bay to 

the satellite mounted on the HPA. Inside the enclosure, an RMS snare end effector 

captures the satellite's grapple fixture and provides the enclosure's hard-point attach­

ment to the satellite. The next step involves the release of the satellite from the HPA 

and raising it above the HPA platform to allow the storage enclosure to close. From this 
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Fig. 9-3 Orbital Storage 

position, a gravity stabilization boom is activated to provide sufficient on-orbit stability 

to enable subsequent retrieval of the satellite for repair/refurbishment. Following this 

sequence, the satellite is deployed by the RMS in the Orbital Storage mode. 

Features of the Orbital Storage concept are: 

* 	 Avoids unnecessary satellite earth return
 

- Saves user relaunch costs
 

- Eliminates relaunch scheduling delays
 

* 	 Provides gravity gradient stabilization during orbital storage period
 

- Stabilized for retrieval
 

- Predictable thermal environment
 

" 	 Provides spacecraft with controlled thermal environment
 

- Thin film enclosure designed for standard a /
 

- Adjusted with aluminized tape coatings
 

- Passive heat pipes can be added for finer temperature control
 

* 	 System is stowed in a small volume container for Orbiter integration. 
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The thermal enclosure concept employs thin-film insulation with the end bulkheads 

and the enclosure shell being activated by inflation. This concept can also be 

modularly adaptable to accommodate varying length satellite payloads. 

Preliminary studies indicate that the Sun Shield function and the Orbital Storage 

mode might be accommodated by a single service equipment design. 

9.3 ATTITUDE TRANSFER PACKAGE 

Before deploying from the Orbiter, some satellites may need an attitude reference 

update which could be transferred from the Orbiter's navigation base. Two attitude 

transfer approaches have been investigated: 

* EPA mounted 

* Payload Bay mounted. 

Figure 9-4 illustrates an optical Attitude Transfer system concept utilizing the HPA. 

to transfer accurate attitude reference data to satellites, or experiment packages that 

require accurate alignment prior to deployment. This approach will compensate for 

variations in orientation within the Orbiter payload bay due to temporal changes. The 

electro-optical system uses a combined projector-receiver to transmit and receive beams 

of collimated light. Transmitted beams are reflected from passive reflectors mounted on 

the HPA berthing platform. As adapted to the HPA, the concept standardizes reference 

alignment of payloads at a fixed location relative to the Orbiter navigation base. 

REFLECTOR ON HPA 

HANDLING & 

1117-141W 

1472-478(T) 

Fig. 9-4 Optical Attitude Transfer System - HPA Mounted 
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Another adaptation of an optical Attitude Transfer system is shown in Fig. 9-5. In 

this application, passive reflectors are mounted at various stations along the payload 

bay to measure corresponding misalignments along the length of the payload bay. This 

Attitude Transfer approach could be applied to support pallet mounted instruments 

during Orbiter sortie missions. 

Features of the respective Attitude Transfer concepts are: 

" 	 Provides 3-axis measure of misalignment between Orbiter navigation base and 

certain positions in or outside, of payload bay 

-	 Optical head {IR source and detector) 

-	 Retro-reflectors 

* Payload bay misalignment measurement by sill mounted reflectors and bulkhead 

mounted optical heads
 
- Direct pitch and yaw measures
 

-	 Differential roll measure 

* FIXED FOR CARGO BAY ALIGNMENTS 

ALIGNMENT 
LOCATIONSALONG LENGTH OPTIONAL TRANSFER 
OFCARGO AY DIRECTLY TO PALLET 

INSTRUMENT 

1117-140W 
1472-479(T) 

Fig. 9-5 Optical Attitude Transfer System - Payload Bay Mounted 
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* HPA - Transfer alignment 

- Provides single location for attitude transfer to all payloads
 

- Retro-reflectors on HPA-Payload mount
 

- Closed loop HPA control. 

9.4 	 LIGHTING ENHANCEMENT 

Wide variations in the intensity of natural lighting sources (sun, moon, and albedo) 
inside and above the cargo bay make additional lighting sources necessary. The lighting 
range varies from orbit night to direct sunlight which causes severe shadowing and high 
contrast ratios. Standard payload bay lights and auxiliary lights provide additional 
lighting in and about the cargo bay. Additionally, lights are added to other payload 
support equipment (e.g., the RMS, Open Cherry Picker), and the astronaut's helmet as 

illustrated in Pig. 9-6. 

SWITCH BUTTONS 	 >; 
BULB ASSEMBLY 

VISOR ACTUATOR , 

* 	 LIGHT-ADAPTING VISION SYSTEM 
AMPLIFICATION OR ATTENUATION 
OF VIEWED SCENE VIA MILITARY 
NIGHT VISION GOGGLEISCOPE 
TECHNOLOGY
 

IHELMET LIGHTS 
1117-142W 
1472-480(T) 

Fig. 9-6 Lighting Enhancement for EVA-Operations 
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Also illustrated is a new device for the EVA astronaut: the Light Adapting Vision 

System which is an adaptation of military flight vision/goggle technology. This system is 

suggested to greatly reduce the requirements for artificial lighting during satellite 

servicing operations. 

The Light Adapting Vision System Csee Fig. 9-7) is a helmet-mounted electro­

optical device that automatically amplifies (or alternates) the light intensity of the scene 

viewed by the astronaut. As a result, the scene appears to be uniformly lighted despite 

changing external lighting conditions. The need for additional artificial lighting during 

orbit night, or in shadows, is greatly reduced. Also, Orbiter attitude restric­

tions to provide natural lighting are eliminated. 

This system permits EVA operations under any lighting conditions and increases 

productivity when performing satellite servicing functions. Features of this approach 

are: 

* Provides ability to discern objects in the dark 

* Nearly uniform lighting of objects throughout orbital daylight/darkness cycle 

* Minimizes need for artificial lighting above the payload bay 

* Provides full field of view, including peripheral "see-around" vision 

* Expands timeline scheduling for planned or emergency EVA. 

AIDED
UNAIDED VISION GOGGLE 
WITHOUT GOGGLES-" VISION DIFFRACTION 

IMAGE OBJECTIVE -.--:::::::::-. OPTICS 
ICI INTENSIFIER LENS INTENSFIE ELEMENT 

PRISM .iiFOCAL PLANE IAM ELE EN 

;-..:" -'PO SITIVEFOLDING.: COLLIMATING..: 
PRISM LNSES .iiii 

* DIECT:?~/ ~NEGATIVEIMAGE LENS ASSEMBLY-*'.-:. 
SUPER- FOLDING :':..... 
IMPOSED MIRRORU.: .:.±t--ON

DIRECT&/:;ERPRA -

ENHANCED PERIPHERALN ROOF .:: "SEE-AROUND 
IMAGES ~~~"SEE-AROUND" IRR:':~iVSO 

. ROOF VISION IMAGING 
SINGLET LENS ... .. 

EXIT PUPIL EXIT PUPIL 
LEFT EYE RIGHT EYE 

(NOTE' DEVELOPED BY HUGES FOR US. ARMY) 
0247-298W 

1472-481 (T) * SUPERIMPOSES DIRECT AND INTENSIFIED IMAGES FOR NIGHT VISION 

Fig.9-7 Lighting Enhancement - System Description 

MIRROR 
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10 - ADVANCED CAPABILITIES EQUIPMENT 

Satellite service equipment with the potential to come on-line within the next 

decade, and which relates -to on-orbit servicing involves: 

e Dexterous Manipulators 

- With the Remote Manipulator System (RMS) 

- With the Handling and Positioning Aid (HPA) 

10.1 DEXTEROUS MANIPULATORS 

Dexterous manipulators for remote servicing operations can be expected as soon as 

the technology has been suitably developed. 

Figure 10-1 shows two dexterous manipulators, mounted on the end of the RMS arm, 

operated, and controlled by a master unit on the Aft Flight Deck. Dexterous manipu­

lators can duplicate the motions of a human arm and shoulder, including sensing forces, 

and feed them back to the master. This concept enables remote, hazardous operations 

within the payload bay, as well as servicing tasks. 

MASTER CONTROL INAFD 

RM
 

,1472482(T) 

Fig. 10-1 Dexterous Manipulator 

Figure 10-2 summarizes the overall features of the dexterous manipulator system 

including the master unit in the aft flight deck, and the slave unit on the RMS. 
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11 - SERVICE EQUIPMENT SUMMARY 

Service equipment hardware items that are considered as key generic elements in 

the Satellite Services System and needed early in the program to provide viable services 

to the user community are: 

* 	 Backup/Contingency Equipment
 

- Manipulator Foot Restraint (MFR)
 

- Work Restraint Unit (WRU) Adaptations
 

* 	 Close Proximity Retrieval Equipment
 

- Maneuverable Television (MTV)
 

- MTV-Proximity Operations Module
 

-	 WRU-Proximity Operations Module 

* 	 On-Orbit Servicing Equipment
 

- Open Cherry Picker (OCP)
 

- Flight Support System - OCP Work Platform
 

- Handling and Positioning Aid (HPA).
 

As discussed in Volume 5 (Section 5-2) of this report, initial "core service 

equipment" elements could be brought on-line in a four or five year period within a 

nominal annual funding ceiling of approximately $50 million. 

The generic "core service equipment" should be developed as soon as possible to 

enable satellite users to effectively plan for its use. Early flight demonstrations of the 

service equipment (and its operation) is recommended to provide proof-of -capability to 

the satellite user community. 

Figure 11-1 repeats the equipment status presented previously (see Fig. 1-2) and 

summarizes the recommended actions that should be taken to amplify and develop service 

equipment. Our recommendations are presented in terms of the following actions: 

* 	 Continue development 
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" A separate study is warranted to define equipment requirements/concepts more 

thoroughly
 

* 	 Amplification of these equipment concepts could be undertaken in follow-on
 

satellite services efforts.
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FUNCTION SIZE (IN.) 
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Fig. A-1 EXISTING/PLANNED EQUIPMENT (CONTINUED) 
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PROVIDES SHIRT SLEEVE ACCESS BETWEEN 
ORBITER CABIN AND HABITABLE PAYLOAD 
IN CARGO BAY 

84L x 63DIA 

PROVIDES MEANS OF TRANSFER FROM 
SHIRT SLEEVE ENVIRONMENT OF ORBITER 
CABIN TO THE VACUUM ENVIRONMENT OF 
SPACE 

83L x 63DIA 
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FUNCTION SIZE (IN.) 
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USED WITH MMU AS A BACK-UP MEANS FOR 
RETURN TO PAYLOAD BAY IF MMU MAL-
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FUNCTION SIZE (IN.) 
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2500 EXISTING 

Fig. A-1 EXISTING/PLANNED EQUIPMENT (CONTINUED) 

A-6
 

ORIGINAL PAGE 1s 
OF POOR QUAUTW, 



EQUIPMENT DESCRIPTION 

ORIGINAL PAGE S 
OF POOR QUALITY ,TRNNION 

6PL 

- CRADLE "B" 

QADLEA 

NIN1FACE- FWD& AFt 

- ELECTRONIC CABLES &
 
MISCELLANEOUS
 

a SPACELAB PALLET 

* SPINNING SOLID UPPER 

-SSUS "A" sTA rws~n 4-CRADLE ASSY ...
 

- SPIN TABLE
 

,=tRAC-flW 

7L26GEft1l 

1472-486(7/$)(T) 6­



FUNCTION SIZE (IN.) 

S/C RETENTION, ON-ORBIT, 
RE-ENTRY 

54L X 178W X 150H 

SUPPORTS EXPERIMENT EQUIPMENT 113L X 172W X 103H 
FOR DIRECT EXPOSURE TO SPACE 

CAPABLE OF LAUNCHING S/C TBD
 
WEIGHING UP TO 2750 LB INTO 270.
 
GEO TRANSFER ORBIT FROM THE
 
SHUTTLE ORBIT SSUS 'A' -4400 LB
 
SIC INTO GEO
 



ORIGINAL PAGE IS 
OF POOR QUALITY 

WT(LB) STATUS 

3700 EXISTING 

500 

1464 EXISTING 

TBD EXISTING 

Fig. A-1 EXISTING/PLANNED EQUIPMENT (CONTINUED) 

A-7 6 



--OF pOa " 

EQUIPMENT DESCRIPTION 

- SSUS "'D" 
- CRADLE ASSY 
- SPIN TABLE 

o INERTIAL UPPER STAGE si 

liusi 

- FORWARDFRAME
 

AFT FRAME
 -

GRArLE FIXTUIE
TELEVISION 


SYSTEM (MTS) (nor SHOW11
 
o MANEUVERING 

ELECTRONICS
• TIIRUSTER 

NA I - MANEUVERABLE TELE-

VISION (MTV)
 

- FSS 

TA1AERIER
 

RADAR
 

OCK(ING 

TVLfur ____T$____ 
1472"48{6/)CT AME 

11472456(8/5)(T)­



__ __ 

FUNCTION SIZE (IN.) 

USED FOR LARGER SPACECRAFT: PAY-
LOAD BAY INSTALLATION IS HORIZONTAL 
UP TO 450 ATTITUDE FOR DEPLOYMENT 80L X 180W X 106H 
SPIN TABLE 45-66 RPM. SEPARATION 
VELOCITY= 1.5 FPS 

ASE PAYLOAD SUPPORT FOR STS TBD 
LAUNCH, POSITIONS & DEPLOYS 
PAYLOAD 

TBD 

TBD
 

ON-ORBIT REMOTE'OBSERVATION
 
OF ORBITER OR RELEASED PAYLOAD
 

44L X 36 SW X 36.5H 

-TBD
 

A-74 



ORIGINAL PAGE US 
OF POOR QUALITY 

WT (LB) STATUS 

2340* EXISTING 

4042** EXISTING 

1780 

1780 

PLANNED 

650
 

175 

* INCLUDING AVIONICS WT 

** WT FOR PLANETARY (3-STG) 
PL-09A & PIONEER (4-STG) 
PL-22A 

Fig. A-1 EXISTING/PLANNED EQUIPMENT (CONCLUDED) 

A-8 1 



GRUMMAN
 

14721V-81 


