
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



i

t

(NASA-CH-169119) LONGITUDINAL CONTHCL
EFFECTIVENESS AND ENTRY DYNARICS OF A
SINGLE-STAGE-TO-ORBIT VEHICLE (Michigan
unir.) 94 p HC A05/8F A01	 CSCL 228

N82-27351

Unclas
G3/18 24532

t	
LONGITUDINAL CONTROL EFFECTIVENESS

AND ENTRY DYNAMICS
OF A SINGLE-STAGE-TO-ORBIT VEHICLE

Nguyen X. Vinh and Ching-Fang Lin
The University of Michigan

Ann Arbor, Michigan

h N

Prepared for Langley Research Center
Under Grant NAG-1-86



TABLE OF CONTENTS

NOMENCLATURE

LIST OF FIGURES

SUMMARY

I. INTRODUCTION

II. EULER'S EQUATIONS OF MOTION

Equations of Motion Over a Flat Earth

Longitudinal Equations of Motion Over a Spherical Earth

III. CONTROLS EFFECTIVENESS

Effectiveness of Reaction Control System

Effect of the Aerodynamic Center

Hypersonic Trim

IV. PHUGOID OSCILLATIONS

Cruising Flight

Ballistic Entry

Glide Entry

V. ANGLE OF ATTACK OSCILLATIONS

Cruising Flight

Ballistic Entry

Glide Entry

APPENDIX A. CHARACTERISTICS OF THE ATMOSPHERE

APPENDIX B. VEHICLE CHARACTERISTICS

REFERENCES

?age

iv

ix

xi

3

3

6

12

12

13

21

33

33

41

54

58

59

65

73

79

82

-3

iii



NOMENCLATURE

a constant, Eq.(86); parameter in the confluent
hypergeometric equation, Eq.(236); parameter in the
hypergeometric equation.

A square matrix, Eq.(16); constant of integration,
Eq.(153).

b parameter in the confluent hypergeometric equation;
parameter in the hypergeometric equation.

b(T), b i ( T) varying coefficients in the equations for the angle-
of-attack.

B inertia parameter, Eq.(194).

C flight path angle parameter, Eq.(126).

c(T), C I (T) varying coefficients in the equations for the angle-
of-attack.

c mean aerodynamic chord.

CO drag coefficient.

CL lift coefficient.

CN normal aerodynamic force coefficient.

Cm aerodynamic pitch moment coefficient.

Cm pitch moment coefficient about the aerodynamic center.
ac

Cm thrust moment coefficient.
t

C total pitch moment coefficient.
mtot

CO	= a CO/a a slope of drag curve.
a

CL	= a CO a slope of lift  curve.
a

Cm	= aco a static stability derivative.
a

Cm _ (V, /c)(a CmP a) downwash effect stability derivative.
a

Cm	= (V,/—c) (a C0 q) damping in pitch stability derivative.
q

0 drag force.

E lift-to-drag ratio.

f average thrusters force.

iv



FN normal component of the combined aerodynamic and
propulsive force.

FT tangential component of the combined aerodynamic
and propulsive force.

_ total force applied to the vehicle.

g acceleration of the gravity.

total moment of force.

h constant parameter, Eq.(224).

h,
hac: location in fraction of c of the center-of-gravity

and mean aerodynamic center, Fig. 5.

N altitude.

angular momentum of vehicle.

I x , Iy ,	 I  moments of inertia about body axes.

I xz product of inertia.

k constant parameter, Eq.(224).

k l , k Z ,	 k 3 constant coefficients, Eq.(223).

kv, ks constant coefficients, Eq.(256).

k dimensionless pitch moment of inertia, Eq.(194).

K stability static margin.
i

K approximate value of K.

R body length.

^t lever arm of thrusters force.

L lift force.

m mass of vehicle.

M Mach number.

M aerodynamic pitch moment about the center-of-gravity.

-	 M 
ac

aerodynamic pitch moment about the mean aerodynamic
center.

Mt thrusters pitch moment.

v



MX , MY , MZ

n

N

P

P

q

q

r

R

R*

4

t

T

u

U

v

v

V

7

w

W

(x, Y. z)

(X, Y, Z)

x

xac

xcg

projections of total moment on body axes.

load factor; pitch frequency. Eq.(205).

number of oscillations.

roll rate; atmospheric pressure.

period.

pitch rate.

dynamic pressure.

yaw rate.

radial distance fro , :enter of the Earth.

gas constant.

speed parameter, Eq.(72).

reference area.

time.

power plant thrust magnitude; absolute temperature.

velocity component along x-body axis.

dependent variable, Eq.(125).

velocity component along y-body axis.

dimensionless kinetic energy, Eq.(177).

speed.

velocity vector.

velocity component along z-body axis.

weight of vehicle.

Cartesian coordinates.

components of combined aerodynamic and propulsive
force on body axes.

speed variable, Eq.(115).

distance from nose tip to aerodynamic center.

distance from nose tip to center-of-gravty.

vi



y density dependent variable, Eq.(135).

y angle-of-attack dependent variable, Eq.(224),
Eq.(266).

Y dimensionless atmospheric density, Eq.(115).

z dependent variable, Eq.(181).

a angle-of-attack; also denotes its perturbation.

s sideslip angle.

S inverse of atmospheric height scale, Eq.(116).

Y flight path angle.

d dimensionless atmospheric density, Eq.(67).

S
e

elevon deflection angle.

d F body-flap deflection angle.

E small perturbation, Eq.(93).

coefficient of proportionality, Eq.(60); speed
independent variable, Eq.(146), Eq.(168), Eq.(260).

n damping term, Eq.(205); density independent
variable, Eq.(224).

8 attitude.

a longitude; characteristic root.

u speed independent variable, Eq.(185), Eq.(266).

u density independent variable, Eq.(228).

E constant, Eq.(79).

P atmospheric density.

a density gradient, Eq.(72).

T firing time; dimensionless arc length, Eq.(65).

0 bank angle.

flight path angle variable, Eq.(115).

heading; functions as defined in Egs.(161), (164).

w phugoid frequency, Eq.(79).
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f

w	 modified phugoid frequency, Eq.(110).

angular velocity of vehicle.

Subscripts

reference condition; initial condition.

i	 initial condition.

g	 relative to ground system.
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SUMMARY

The classical theory of flight dynamics fcr airplane longitudinal
stability and control analysis was extended to the case of a hypervelocity
reentry vehicle. This included the elements inherent in supersonic and
hypersonic flight such as the influence of the Much number on aerodynamic
characteristics, the effect of reaction control system and aerodynamic
controls on the trim condition through a wide range of the speed.

Phugoid motion and angle-of-attack oscillation for three typical cases
of cruising flight, ballistic entry and glide entry were investigated. In
each case, closed form solutions for the variations in altitude, flight path
angle, speed and angle-of-attack were obtained. These solutions displayed
explicitly the influence of different design parameters and trajectory
variables on the stability of the motion.

Aerodynamic and inertia characteristics of a Single-Stage-To-Orbit
vehicle (SSTO) were used in the numerical application but the basic analytical
theory developed can be used to assess entry dynamics of any lifting vehicle.

xi



I. INTRODUCTION

A new Earth orbital transportation system could be required beginning in
the last decade of this century provided that such system offers clear and
significant cost/performance advantages over the existing system.

A proposal for such system is a Single-Stage-To-Orbit vehicle (SSTO)
capable of performing space missions similar to that of the current space
shuttle. After a direct ascent into orbit and completion of its space mission,
the vehicle must sustain a reentry into the Earth's atmosphere at hypersonic
speeds with lifting capability for a crossrange of 1100 n.mi., and perform
a horizontal landing at speed not exceeding 170 knots.

Studies associated with the entry dynamics of this vehicle are now being
conducted. Several excellent analyses have demonstrated the applicability
of the control configured design approach to Advanced Earth Orbital Trans-
portation Systems. It has been shown that, for the control-configured
vehicle (CCV), the major design criteria are the hypersonic trim, the location
of the center-of-gravity, the control surfaces heating and the mass of the
system. Applicability and potential performance gains of CCV design concepts
as applied to the development of a SSTO were globally analyzed in reference 1.
One of the most significant applications of CCV concept is the reduction of
the required vehicle static margins which can be used to reduce stabilizer
and fin size, reduce trim drag, reduce wing size because of more favorable
balancing tail loads. This may lead to significant weight savings. This
problem has been analyzed by Freeman and Wilhite (ref. 2) using modern design
analysis techniques (refs. 3-4). Starting with a baseline venicle with
positive level of longitudinal stability, the vehicle was configured with
the conventional stability requirements relaxed. The control-configured
vehicle has an estimated gross lift-off mass 10 percent less than that of
the baseline vehicle design. The largest single component weight reduction
is a 33 percent reduction in the wing weight due to the 43 percent reduction
in exposed wing area. Because of this, for the CCV, the ratio of body-
planform to wing-planform area increases and the aerodynamic center is much
more dependent on Mach number. From the aerodynamic characteristics deduced,
it has been shown that the control-configured vehicle can be trimmed hyper-
sonically over an acceptable angle-of-attack range, from 10° to 60 0 , by a

combination of a body flap and elevon deflection.

On the other hand, for the SSTO vehicle, an aft center-of-gravity loca-
tion resulting from large engine mass at the rear of the vehicle has created
new stability problems during entry. The effect of center-of-gravity loca-
tions on hypersonic trim has been analyzed in reference 5. The results of
this excellent study predict that control configuring of the reentry vehicle
is definitely a requirement, and a combination of aerodynamic controls and
reaction control system (RCS) would be adequate. While the location of the
center-of-gravity can be easily evaluated, and by averaging, the RCS charac-
teristics can be accurately modeled, the aerodynamic characteristics, and in
particular, the aerodynamic center, can only be projected from wind tunnel
tests before definite results can be obtained from flight tests data. This
results in uncertainties to be incorporated in any analysis of dynamic
stability and control of advanced transportation systems. These are analyzed



for the space shuttle orbiter in references 6 and 7 and can be extended to
the SSTO design.

In this report, we shall extend the classical theory of flight dynamics
for airplane stability and control analysis to the case of a SSTO vehicle.
This will include the elements inherent in supersonic and hypersonic flight
such as the influence of the Mach number on aerodynamic characteristics,
the effects of RCS and aerodynamic controls on the trim condition through
a wide range of the speed. Another important aspect of stability and control
in hypersonic flight such as in the case of a SSTO vehicle which is not
present in the case of airplane dynamics is the strong influence of the
trajectory variables. While at law speeds one can always assess the stability
dynamics using small perturbations theory about a steady reference flight
path, reentry dynamics is an unsteady phenomenon in which the effects of the
deceleration, the atmospheric density gradient and the curvature of the
Earth are all important.

The organization of this report is as follows. 	 After this introductory
chapter, the classical Euler's equations of motion for airplane stability
analysis are !derived in Chapter II. For entry dynamics, these equations
must be modified to include the effect of the variation of the vector
acceleration of the gravity. As a first step, we introduce the modifying
term to obtain the ?quations for longitudinal dynamics to be used for the
analysis in this report. The effectiveness of reaction control system and
aerodynamic controls on the trim condition during entry is analyzed in

Chapter TII. Entry dynamics of the SSTO is the subject of investigation in
the following two chapters. In Chapter IV the phugoid, or trajectory
oscillations for the three typical cases of cruising flight, ballistic entry
and glide entry are investigated. In the analysis the important effects of
atmospheric gradient, curvature of the flight path and deceleration -ire
displayed explicitly. Chapter V investigates the angle-of-attack oscilla-
tions during entry for these cases. Resonance phenomena are analyzed and
criteria for dynamic stability are established.

This study benefits from the wealth of aerodynamic data for the control-
configured SSTO vehicle generated in references 2 and 8 and because of that
it provides further understanding of the dynamic behavior of this advanced
transportation system although the basic analytical theory can be used to
assess entry dynamics of any lifting vehicle.

2



II. EULER'S EQUATIONS OF MOTION

The best description of the dynamic forces and moments connected with
a rotating rigid body is given by Euler's dynamical equations based upon an
axis system that remains rigidly fixed at the center-of-gravity of the moving
body. On the other hand, the motion of the center-of-gravity is generally
described by a differential system written with respect to inertial system.

In this chapter, we shall discuss the relationship between the two
systems of equations.

Equations of Motion Over a Flat Earth

For a non rotating flat Earth, the variables involved are

a) Position of the center-of-gravity with respect to a Cartesian
ground system Gxgygzg considered as inertial system

G	 _X
x

v

raz 0 •H

Notice that H is the altitude and subscript g hAs been omitted for convenience.

b) Components of the velocity vector I along the body axes
u

^	 v

w

c) Euler's angles

s

d) Components of angular velocity i of the vehicle along the body axes

P

q

r

3
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With respect to the body axis system, the velocity vector V is defined
in direction by the angle-of-attack a and the sideslip angle a with the
relations (Fig. 1)

u = V Coss Cosa

v = V sins

w = V Coss sina

V = u Cosa toss + v sine + w sina Coss 	 (i)

= 3 u +v TTw

tana = w/u

tans = v/3 u —+ w

where V is the magnitudeof the velocity vector and u, v and w are the
components of t' along the body axes.

Using the body axes as reference system, the two vector equations

i
m(dt + six^i) _ I	

(2)

dt + QX9

for the forces and moments have projections

m[u + qw - rv] = X - mg sine

m[v + ru - pw] = Y + mg core sink
	

(3)

m[w + pv - qu] = Z + mg rose cosh

and

I xp - Ixz(r + pq ) + (I z	 - Iy) gr	 = MX

Iyq + (Ix -	 I Z )rp + I xZ (p 2 - r 2 )	 = MY	(4)

I Zr - I xz( p - rq ) + (Iy - Ix) pq	= MZ

-	 In	 Egs.(3), X, Y and Z are the components along body axes of the combined
F	

aerodynamic and propulsive forces. In Eq.(4), it is assumed that, by
symmetry the products of inertia Ix 	 Iyz = 0. The three moments of force
MX , MY and MZ are about the roll, pitch and yaw axes respectively.

We have, in addition, the kinematic relations

4
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Fig. 1. Body axis system.
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6 - q coso - r si no

$ = p + (q sino + r coso)tane

The body system CXYZ is obtained from the ground system Gxyz by three
rotations: ^ about z to Cx ly l z, then a about y l and then 0 about X,
(Fig. 2). Hence, we have the transformation

x cony -si n^ 0 rose 0 sine 1	 0	 0 X

y = sin*	 cos* 0 0	 1	 0 0 coso -sino Y

z 0	 0	 1 -sine 0 cose 0 sino	 coso Z

Carrying out the matrix multiplication

x	 cosecosiy (sinesinocos^p-cososin*) (sinecos0cos*+sin0sin*) 	 X

y	 =	 cosesin* (sinesinosinq,+cosocos^) (sinecos^sin^-sinocos*) 	 Y

z	 -sine	 cosesino	 cosecoso	 Z

Putting (X,Y,Z) = (u,v,w) and (x,y,z) _ (u 9 ,vg,wg), we deduce the projections
of the velocity vector on the ground inertial axis system

i g = if  = u cosecos* + v(sinesinocos* - cososin*)

+ w(sinecosocos* + sinosinO

yg = vg = u cosesin^ + v(sinesinosin* + cosocos*)	 (6)

+ w(sinecososin* - sinocosv)

i g = -M = wg = -u sine + v cosesin^ + w cosecos^

The equations (3), (4), (5) and (6) completely describe the motion of
the vehicle in the case of airplane dynamics.

The aerodynamic and propulsive forces and moments are functions of the
control input, the speed and altitude. On the right-hand-side, we have 9
variables

H. u, v, w, e, 0 9 p, q, r

It suffices to integrate the equations concerning these variables. Once they
are known as functions of the time, the additional equations in x, y and
can be integrated.

Longitudinal Equations of Motion Over a Spherical Earth

For airplane dynamics, the equations above are adequate. For any vehicle
configuration with known mass and engine properties, it suffices to tabulate

(5)

6
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Fig. 2. Rotation of coordinate axes.
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the aerodynamic characteristics for a simulation study to assess the dynamic
response under any flight condition. This approach is illustrated in
reference 9 where stall and post-stall characteristics of a high-performance
fighter airplane, the F-16, with relaxed 1!+ngitudinal static stability were
analyzed.

For long-range hypervelocity vehicle, as in the case of the present
SSTO vehicle, a flat Earth formulation is clearly inadequate because of the
fact that the gravity acceleration changes its magnitude, and more importantly,
its direction along the flight path.

We assume that the Earth is spherical but non-rotating and consider the
fight in the plane of a great circle (Fig. 3). We first start with the
equations for flight over a flat Earth by considering the relevant variables
H, u, w, a and q.

m[u + qwj - X - mg sine	 ( 7 )

m[w - qu] = t + mg cose	 ( 8)

Iyq = my	 ( 9 )

8 = q	 (10)

A = u sin g - w cose	 (11)

The original inertial ground system Gxgzg is now moved by translation to the
geocgntric inertial system Oxz with the origin at the center of the Earth.
Let R be the position vector of the center-of-gravity with respect to the
system Oxz. For airplane motion, the equations have been derived on the
basis that the vector g is always directed along the ground axis Gzg. In
reality, this vector has rotated by an angle a equal to the variation in
the longitude. Let y be the angle between the local horizontal and the
velocity vector. This angle is termed the flight path angle. We have the
kinematic relations

dR/dt = V sing	 (12)

da/dt = (V/R)cosy 	 (13)

Since the position vector ^ rotates with angular speed a, the angular rate e
for the rotation of the body axes, referred to the fixed axes is

8 - q + (V/R)cosy	 (14)

This equation replaces Eq.(10) and reduces to it in the case of flat Earth,

R ; M. Since k - H, by comparing Egs.(11) and ( 12), we have

V sing - u sine - w cose

From Egs.(1) for the case of zero sideslip angle, we have trivially

u - V Cosa

(15)

(16)

w - V sins

8



Fig. 3. Effect of the curvature of the Earth.
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To this, we add the geometric relation

e - y + a	 (17)

By taking the derivative of Eq.(15), using Eq.(14)

V sing + yV cosy - u sine - w cose + (u cose + w sine)9
(18)

- (u sine - w cose) + (u cose + w sine)(q + ! cosy)

Now combining Egs.(7) and (8)

m[(u sine - w cose) + q(u cose '+ w sine)] - X sine - Z cose - mg

Using Eq.(18) we write this equation as

m[V sinY + YV cosy - (u cose + w sine)! cosy] - X sine - Z cose - mg

But

u cose + w sine w V cose coca + V sine sina

- V COs ( e-a) - V cosy

Hence

m[:' sing + YV cosy - 
R2 

cos 2A - X sine - Z cose - mg 	 (19)

On the other hand, by eliminating q between the Egs.(7) and (8)

m[uu + ww] - Xu + Zw - mgu sine + mgw cose

Therefore, since V 2 = u 2 + w 2 and 0 - uu + wW, we have

mO - XV Cosa + ZV sins - mgV(sine cosa - sina cose)

or

A - X cosa + Z sina - mg sing	 (20)

By observing that

FT - X cosa + Z sina 	 (21)

is the projection of the combined aerodynamic and propulsive force on the
tangent to the flight patn,we have the force equation along the tangent to
the flight path

mV - FT - mg sing
	

(22)

Furthermore, using Eq.(20) in Eq.(19) and solving for Y

10



Sa

na

(26)

I

2
mYV COSY m I 

COS 2 Y + X sine - Z cose - mg

• X cosa sinY - Z sina sinY + mg sin 
2Y

Hence
z

mVY - X sina - Z Cosa - m(g - R )COSY

Observing that

FN - X sina - Z Cosa	 (23)

is the projection of the combined aerodynamic and propulsive force along the

normal to the flight path, we have

mVY - FN - m(g - R2) cosY	 (24)

In summary, for longitudinal motion of a hypervelocity vehicle, the
variables are conveniently selected as

R, V, Y, q, s

with equations

dR
dt=V sinY

F
dV

dt 
UT g sinY

F

V dt = m - ( g -
 12 )COSY
	 (25)

Iyd - My

de
dt = q + R cosy

The auxiliary variables are a, u, and w with the relations



T

'f

0 t

Mt = Tt f 
o 

f(t )dt	 (28)

III. CONTROL") EFFECTIVENESS

In the pitching moment equation in system (25), the total pitching moment
is represented by

MY = M + Mt - R (I x - I Z )sin2e	 (27)

where M is the aerodynamic moment, Mt is the pitching moment due to reaction
control system and the last term expresses the gravity torque. A complete
discussion of gravity torques has been given by Roberson (ref. 10) and
Beletskii (ref. 11). Because R is large, the effect of this term is small
whenever aerodynamic and thrusting moments are effective. But the term should
be retained in the case of orbital flight when M -* 0.

Effec tiveness of Reaction Control System

The thrusting moment is an arbitrary function of the time. If f(t) is
the thrust magnitude applied at a distance i t from the center-of=gravity, for
the duration T of the firing it can be represented by an average constant
value (Fig. 4)

a 161

Fig. 4. Average thrusters force.

This average value accounts for the effects of thrust built up with time and
thrust loss due to back pressure increases with decreasing altitude.

The total pitching moment coefficient is defined as

M.	 M	 3g(I - I )sin2e

Cm	
= 

p'SYV^ = 
Cm + ^*t pC -	 RpSV c-	

(29)
tot

where Cm is the aerodynamic moment coefficient and the reference length c
used is the mean aerodynamic chord. To trim at Cm of = 0, the use of
thrusters (RCS) is effective at high altitude, while at high dynamic pressure,
aerodynamic moment is the main ingredient for control. Let f be the average
constant thrusters force. The thrust moment coefficient is

12
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M

Cmt = ^E _ (Xt/c)(fA aSV 2 )	 (30)

Introducing the load factor

pSV 2 C
L
 qSCL

n = W =—Tw —= W	 (31)

where q is the dynamic pressure, we write Eq.(30) as

Cm = (I /c)(f/W)(C^/n) 	 (32)
t

This formula makes explicit the effectiveness of reaction control system.
On the right-hand-side of the equation, the first ratio is obviously a design
parameter while the second term, which is simply the thrust-to-weight ratio,
concerns the sizing of the engines. The last term depends on the trajectory

to be flown. As a rule, in an optimum fashion, jet firings can be used as
an effective means of pitch control whenever the load factor, or proportionally
the dynamic pressure, remains small. For a reentry trajectory, RCS jets can
be used to supplement pitch control during the early part of the entry at
low dynamic pressure, but under severe trim condition their use may also be
mandatory at lower altitude with significant penalty in fuel consumption.
Also for a skip trajectory, at high load factor, the use of RCS requires
high thrusting force if aerodynamic pitch control is constrained by
aerodynamic heating consideration.

Effect of the Aerodynamic Center

For the aerodynamic moment, consider a wing-body combination (Fig. 5)

L

CG
D	 0­ 1 z  c

^ , " -^	 ( h-  h act 
c

V 	 hac	 _

c	 ,

Fig. 5. Aerodynamic forces and moment.
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The force system acting in symmetric flight can be represented as a
lift L and a drag D acting at a reference point, the mean aerodynamic center,
together with a pitching moment Mac. Then, the aerodynamic moment about the
vehicle center-of-gravity is

M = Mac + (L Cosa + D sina)(h - hac )c + (L sina - D cosa)zc	 (33)

where h and h C , expressed in fraction of the mean aerodynamic chord c,
indicate the focation of the center-of-gravity and the aerodynamic center,
respectively. If the last term which is small is neglected, the aerodynamic
pitching moment coefficient is

Cm = Cm	+ (h - hac )CN	 (34)
ac

where

C  = CL Cosa + CD sina
	

(35)

is the normal aerodynamic force coefficient.

The inviscid theory of thin wing at small a predicts that Cm	 is

invariant with a, but in general it varies with both the angle-o ?-Sttack
and the Mach number. Likewise, the location of the aerodynamic center
which is here expressed as hac in fraction of the mean aerodynamic chord is
a function of the angle-of-attack and the Mach number. It is particularly
sensitive to the variation of the Mach number in the case of the CCV
because of the large ratio of the body-planform to wing-planform area.

For small angle-of-attack, and considering that CDa « CL, we have
the classical formula for use in the case of airplane dynamics

Cm = Cm	+ (h - hac)CL
ac

	 (36)

Hence, on the basis that Cmis independent of the angle-of-attack, and in
the case where hac is also insensitive to variation in a we have the formula

Cm	(h - hac)CL
	

(31)

a	 a

which provides an excellent way of finding hac from test results, that is
from measurements of the stability derivatives Gnu and C a. Since CLa > 0

and for static stability, Cma < 0, the quantity (h - hac, in fraction of
the mean aerodynamic chord E. is meaningfully called the stability static
margin.

Since in the case of hypersonic reentry, in the early part of the
trajectory, the angle-of-attack is large, we retain the more rigorous
expression %34 ) and measure the stability static margin according to

K = h - hac = a CmP C,i	(38)

14
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Since CN is a positive and increasing function of a and at the trim condition
* 0, a Cm < 0 provides the condition for the vehicle to be statically

stable, a positive K denotes a level of static instability. An aft shift of
the center-of-gravity, or during an entry a shift forward of the aerodynamic
center will increase this level.

Equation (37) is only appropriate for the computation of the value of
K at low angle-of-attack and low Mach number when K is insensitive to the
variations of these variables. In general, from Eq.(341, we have the equation

K Cm
	

C
 mac
	

(39)

which shows that, at a given Mach number, K is a function of the angle-of-
attack through the functions Cm(a), and CN(a). These functions can be
modeled based on wind tunnel test data but the small and nearly constant
value Cm,, can only be estimated with certain degree of arbitrariness. As
a first approximation, we can neglect this term and take

K 2 K s Cm/CN	(40)

Typical plots of K and K are shown in Fig. 6.

K = h -hoc

K

u n stall•

0
	

ao a
	 a

Fig. 6. Maximum shift of the aerodynamic center at
hypersonic speeds.
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The difference K - K Cmac/CN becomes small at high angle-of-attack

with large values of CN. It is seen that for both K and 7 there exists
angle-of-attack providing the maximum shift forward of the aerodynamic center
yielding the maximum level of static margin. This leads to the following
procedure for evaluating Cmac. On the basis of the invariance of Cmac and
by taking the successive partial derivatives of the equation

Cm n Cm + KCN 	(41)
ac

with respect to a we have

Cm 	K a C N + KC N	 (42)
a	 a

and

Cm = 
KaaCN 

+ 2KaCN + KCN	(43)

as	 a	 as

At the point a where K is maximized, Ka = 0, and we have

Cm

K = C 
a	 (44)

Na

and hence, combining this equation with Eq.(43)

Cma = Cmaa _ KaaCN	 (45)

N—
a	 as	 as

At the point a, where K is maximized we have

(Cm' CN ) a =ae	 (Cma/CNa )a=a,	 (46)

The partial derivatives can be evaluated if Cm(a) and CN(a) are accurately
modeled as continuous functions of a. EIu,tion (46), up^n solving, provides
a, but not the value a where K is maximized. Since the ©ifference Cmac /CN
between the two curves 'K and K is small, we can assume that the
behaviors of the two curves, respectively near the two stationary values
are the same, that is they have the same slope and the same curvature.
Since ICa(a.) = Kj a) = 0, we have the condition for the same curvature

Cm 	CmCN

Kaa (a) _ ^aa ( ae) n ( M. - 
C 2 	 'D

)a,ae

N	 CN

Upon substituting this approximation in Eq.(45) we have the equation for
evaluating a where K is maximized

(47)

16



Cma a 
Cm 
a* - ( Cmac _ Cm_Naa )	 CN

a	 as	 1,	 m	 as

	

yN	 =	 q asap

	
(4$)

Once this value of a has been computed, we obtain from Egs.(41) and (44) the
constant value

Cm

Cmac - C
m -	 CN
	

(49)

Q

For a typical reentry profile, a constant and high angle-of-attack is
maintained through the hypersonic range. Since at hypersonic speeds, the
aerodynamic characteristics are pearl independent of the Mach number the
value of K is nearly constant (ref. 5T and can be kept at a low level of
instability by selecting a high enough angle-of-attack (Fig. 6). Below
Mach 5.0, the aerodynamic characteristics are strongly influenced by the
Mach number. This, coupled with the rapid decrease in the angle-of-attack
for a transition from entry to glide configuration may create unsteady
phenomena resulting in large static instability. The function K is now
function of the two variables a and M. Since it is not convenient to
analyze a three-dimensional plot we consider the intersections of the surface
K - K(a, M) by the planes a - constant.

Aerodynamic data for the example CCV are taken from references 2 and 8.
The reference dimensions are given in Fig. 7 with the center-of-gravity
located at 0.69 of the body length. Aerodynamic forces and moment are
controlled by a combination of a body flap and an elevon system. With
d F - 0, and se - 0 and for different values of the angle-of-attack, the
variations of CL and CN as functions of the Mach number are shown in Fig. 8.
At low angle-of-attack, CN can be approximated by % but at high angle-of-
attack especially in the vicinity of sonic speeds, due to a sharp rise in
the drag, the two curves can be quite distinct. Hence, we continue to
evaluate K through the use of Eq.(39) but now with an estimate value for Cmac
based on the assumption that at each Mach number, it is independent of
the angle-of-attack. Hence, we can take Cm - Cm when CN - 0. But this
evaluation has to be used with care becausea he point corresponds to nearly
zero angle-of-attack where the aerodynamic center is not well defined. The
value for Cm obtained is compared with the value of C^,,, esti^rated by using
Eq.(49) at 186 angle-of-attack (a - 2.5°) and this proviB^s excellent agree-
ment. The result is plotted in Fig. 9 in dashed line as function of the
Mach number. In the same figure, we have plotted the variation of Cm for
different values of thr angle-of-attack. From the data in Figs. 8 and 9,
the location of the aerodynamic center, now expressed in percentage of the
body length is evaluated through the formula

x	 - x
	

(Cm

ac
 - Cm)	

(50)

N
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With a xcg/R - 0.69, the location of the aerodynamic center as function of the
Mach number is shown in Fig. 10 for low angle-of-attack and in Fig. 11 for
high angle-of-attack. These figures make explicit the influence of the
Mach number on the longitudinal stabi l ity characteristic.

During entry, the vehicle is slightly unstable at hypersonic speeds.
It can even be made slightly stable with the selection of high angle-of-
attack for entry. Below Mach 5.0, the aerodynamic center shifts forward
and the vehicle becomes more unstable. Then at lower Mach number, the aero-
dynamic center begins to shift aft and the neutral point, defined as xac = xcg,
is reached at a Mach number slightly above 2.0. For all the angles-of-
attack considered, the maximum level of stability which corresponds to the
maximum aft-location of the aerodynamic center occurs in the transonic
region. This is due to a sharp rise in transonic drag. At Mach number in
the vicinity of 0.7, the vehicle becomes much less stable and remains slightly
stable at the lowest Mach number. This behavior is a characteristic of
hypervelocity vehicle and the quantitative results agree with the results
obtained from a simulation study presented in reference 5.

The Mach number for neutral point, K = 0, is evaluated from Fig. 9
at the intersections of the dashed line representing the variation of Cmac
and the solid lines for the variations of Cm at different angles-of-
attack. The evaluation of the Mach numbers which correspond to the stationary
location of the aerodynamic center can be easily achieved if the aerodynamic
characteristics are modeled as functions of the Mach number for each angle-
of-attack of interest. By taking the derivative of Eq. (41) with respect to
M, we have

C = C	 + KMCN + KCN
MM	 macM	M

When KM = 0, substituting back into Eq.(41), we deduce the equation

Cm - 
Cm

ac = CN	 (52)
m - Cm ^M

ac	 M

which can be solved for two values of M, one near 0.7 and one near 1.2. The
first value corresponds to a relative minimum level of stability while the
second value corresponds to the absolute maximum level of stability.

Hypersonic Trim

During entry, the trajectory is controlled by the angle-of-attack.
With only the aerodynamic moment involved, longitudinal trim at Cm = 0 is
effected through body-flap and elevon deflections, denoted by aF and de
respectively, with positive value when the trailing edge is down. For the
example CCV, aerodynamic characteristics at hypersonic speed, M = 20.3,
are presented in Figs. 12-14. Figure 12 plots the normal force coefficient
CN as function of the angle-of-attack for various body-flap and elevon
deflections. The variations of the moment coefficient as function of the
angle-of-attack are presented in Fig. 13. To show the trimmable condition

21
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as function of the location of the center of gravity, the values of Cm are
evaluated for a center-of-gravity at 0.715 of the body length. For any given
angle-of-attack, with different location of the center-of-gravity, the new
Cm curve can be deduced by using the relation (50) written as

Cm2 - Cml = 
(x2	 x1) ( 

X )

 
C N	(53)

where x i/i and x 2/1 denote any two locations of the center-of-gravity in
percentage of the body length with corresponding moment coefficients Cm, and
Cm . It is seen in Fig. 13 that at xcg/t = 0.715, with 6F = 10 0 , a
smell elevon deflection, negative when a > 42.5 0 and positive when a < 42.50

is sufficient for hypersonic trim. Based on Eq.(53), if the center-of-gravity
is moved further aft, a positive nose up increment oCm is introduced, propor-
tional to CN and hence large at high angle-of-attack. This will require
larger positive deflections of both 6 F and 6 On the other hand, a move

forward of the center-of-gravity can result Tn a negative pitching moment
coefficient and a negative elevon deflection is required for trim. For any
allowable deflections of the control surfaces, in both positive and negative
limits, there exists trimmable center-of-gravity range, function of the
angle-of-attack in the hypersonic range and also function of the Mach number
In the transonic and supersonic range.

In general, in the hypersonic range, at any angle-of-attack, for a
specified location of the center-of-gravity, the function Cm(a, 6F, de) can
be linearized and we have

ac

acCm	
e

= Cm(a, 0, 0) + ( a6m )0 6 F + ( a6m )0 6e
F 

The stability derivatives (aC36F) 0 and O Cm/a6e) 0 are evaluated for
x gA = 0.715 and plotted in Fig. 14 as functions of the angle-of-attack.
A any angle-of-attack, for any selected body-flap deflection, 6F, the
elevon deflection', .se, required for trim is computed from Cm = 0, and
subsequently the trinmed lift coefficient is deduced from

aC	 aC

CL	 - CL (a ' 0 ' 0) + ( a6L 
)0 6 F + ( a 6 L )0 6e

trim	 F	 e

Similarly, the corresponding normal force coefficient is obtained from

aC	 aC
CN	 2 CN(a. 0, 0) + ( a6N )0 6 F + ( a6N )0 

6e
trim	 F	 e

The stability derivatives in Egs.(55) and (56) are positive and using
positive 6F and 6e for trim increases the lift coefficient and the normal
force coefficient.

(54)

(55)

(56)
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For a SSTO vehicle, an aft center-of-gravity location resulting from
large engine mass at-the rear of the vehicle creates challenging problems
for the designer. Due to thermal and structural constraints, both the body-
flap an d ilevon deflections have allowable limits. With these limits, as
mentii	 above, there exists trimmable center-of-gravity range. To
asses: :.his range, we follow Freeman and Powell (ref. 5) and consider the
plot of CO) versus CN for x 	- 0.715, in Fig. 15. The lowest curve
corresponds to maximum pos^L^ive deflections of the control surfaces, with
SF - 10°, ae - 20 0 . In general, at any location of the center-of-gravity,
for any aF and s the equation of the Cm versus CN curve is obtained by
eliminating a beUeen the two equations

Cm - Cm(a, a F , ae)	
(57)

CN - CN (a. 6 F . ae)

which results in

Cm - Cm(LN , a F , ae )	 (58)

From Fig. 15, in the range of angle-of-attack of interest, since at maximum
control surfaces deflections, Cm < 0, while Cm > 0 for zero deflection
angles, the vehicle is trimmable at this location of the center-of-gravity.
For another aft location, from Eq.(53), we have an increment oCm such that

nCm
 = cc 	

(59)

where the constant factor is given by

s Rx (^ )	 (60)
c

with ox/i expressing the shift in percentage of body length of the center-
of-gravity. With ox > 0, all the Cm curves move upward according to the
increment given in Eq.(59). It suffices to analyze the shift of the lowest
curve for the determination of the most aft of the center-of-gravity for
trimmability. This is done in Fig. 16 from which the assessment for the
example vehicle can be made.

In general, for any vehicle having similar behaviors for the aerodynamic
characteristics, consider the interval of angle-of-attack of interest
ae[a i . a 2 ] which corresponds to the interval CNE1C NN	CN2]. The critical
center-of-gravity is reached when, with maximum defections of the control
surfaces, either Cm - 0 for a - a i cr when Cm curve has a maximum value
Cm = 0 at a certain angle-of-attack.

The first case occurs when

Cm(a l) + cCN (ai) = 0	 (61)

where Cm(a l ) denotes the pitching moment coefficient evaluated at a,, with
maximum control surfaces deflection at reference center-of-gravity location.
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From Eq.(61) we deduce c and then the critical location of the center -of-gravity.
Beyond this position, the vehicle is trimmable only at high angle-of-attack
and fir each c beyond this critical value, the lowest value of the trimmable
angle-of-attack is obtained by solving Eq. ( 61) with a l replaced by a. Of
course the absolute limit for trimmability is obtained when this a reaches aq.

The second case occurs when the following conditions are satisfied
simultaneously

Cm(CN , 8 F, ae ) + RCN = 0

(62)
ac +^=o

N

for a value CN within the interval [CN CN 2 3. In this system of equations
aF and a have their maximum values, a^ld hence the equations can be solved
for c A CN. We then deduce the critical location of the center-of-gravity,
through z, and the critical angle-of-attack, through CN. Beyond this position,
the vehicle becomes trimmable either at high angle-of-attack or at low angle-of-
attack. For each c, beyond the critical value, the two limiting angles-of-
attack are obtained by solving Eq.(61) with a i replaced by a.

Graphically, since for any percentage variation in the center-of-gravity
resulting in a value ;, the increment eCm from maximum deflection is given
by Eq.(59), we can plot this equation as a straight line, with a change in
sign for ; and measure the new value of Cm for maximum deflection from this
line (Fig. 17). Figure 17-a for a hypothetical vehicle corresponds to the
first case. At xc - 0.135,, the vehicle becomes just trimmable at a - 20°.
As the center-of-gravity,  moves further aft, it is trimmable only at higher
angle-of- attack. Figure 17-b corresponds to the case of the present example
CCV. At xcg - 0.739., the vehicle becomes just trimmable at CN - 1.350,
a - 33.1 0 . As the center-of-gravity moves further aft, the vehicle becomes
trimmable either at high angle-of-attack or at low angle-of-attack.
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IV. PHUGOID OSCILLATIONS

With the static stability assessed, we now investigate the dynamic
stability in longitudinal motion.

In low speed flight, when perturbed from a reference flight condition,
longitudinal dynamics is characterized by a phugoid oscillation with long
period and an angle-of-attack oscillation with short period. The phugoid
mode is a trajectory mode along which the angle-of-atttack remains nearly
constant while the center-of-gravity of the vehicle oscillates about a
reference flight path through an exchange between the potential energy and
the kinetic energy. By extension, we shall use this decoupling to analyze
the first order effect of density gradient and centrifugal force on phugoid
motion at nearly constant angle-of-attack.

The phugoid, or trajectory oscillations for the three typical cases of
cruising flight, ballistic entry and glide entry are the subjects of
investigation in this chapter. In Chapter V we shall analyze the angle-of-
attack oscillations during entry for these cases.

Cruising Flight

The simplest motion can be envisaged when the vehicle is perturbed from
a steady-state condition. From Eq.(25), at very high altitude, this can
be achieved by using a small thrusting force to balance the drag and maintain
a constant orbital altitude. With the thrust aligned with the velocity and
considering a cruising flight at constant angle-of-attack a, resulting in a
lift and drag coefficients, CL. and CD , , we have the equations of motion

dt =VsinY

m dt = T -	 P SCDoV 2 - mg sing	 (63)

2

mV dt 
= 

11 PSCLoV2 - m(g -	 )cosY

At the reference constant-altitude cruise

R = Rog V=Vo,Y=O

T =	 aoS CDo Vo	
(64)

2
i PoSCLoV2 = m(go -	 )

It is convenient to use a time transformation

T - 
R, f V(t)dt	 (65)
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to rewrite the equations. We notice that this new independent variable
denotes the dimensionless arc length. Then, with the prime denoting the
derivative with respect to T, the systemof equations (63), with the constant
thrust replaced by its expression in Egs.(64), becomes

R' = s i ny
R,

	

= 6,CDo	- 6CDo - (9R_ )sirny	 (66)
V	 V

Y' = 6C^ o- ( ^ - R )Cosy
V

where we have defined the dimensionless atmospheric density

a =PSRO
=M(67)

From the reference steady-state orbital cruise, we have the small perturba-
tions

R = R. + AR

V=V,+AV
	

(68)

Y = 0 + Y

The gravity acceleration g(R) and the density 6(R) are functions of R. For
an inverse-square force field we have the linearized acceleration of the
gravity

g = g,(1 - 2 RR )
	

(69)

The density function 6 is more complex. In general, by Taylor's series
expansion

d = 6 0 + R o( dR ). 
R + ...	 (10)

where (d6JdR), is the first order density gradient. The system (66) can be
linearized and using the reference condition (64) for simplification, we
have the equations for the perturbations AR, AV and y

e R'
R Y

0

AV' -
C R.( d6 ), AR - 26,C ° V - 

IA-R1 
Y	 (71)

V,	 D,	 dR	 R,	 D. V,	
Vo

AV
Y' _ [C^oRo( dR )o + 

292Ro - 
l] RR + 

292Re Vo

,V	 V,
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Any merit of an analytical study results from the fact that certain parameters
governing the physical phenomena can be displayed explicitly. From the
linearized system (71), it is seen that the characteristic roots depend on
the constant parameters

p,SR ,CDo
6 ,C0C	

2m

2

46
2 = 

g°Ro
	 (72)

Rs' d	 R.(dd)°

The first term is the drag parameter at the reference altitude. It is function
of the angle-of-attack selected and the orbital altitude. The parameter a
is the ratio of the reference cruising speed V. to the orbital speed in the
vacuum g3g; at the reference altitude. We notice that 46 -* 1 as p -> 0 at
very high altitude. The parameter a is termed the t. ,.orpheric density
gradient. From the reference condition ( 64) we deduce the relation

6OC	
= 1 - 2462	 (73)

^.	 b

Hence, ultimately, phugoid oscillation, for any vehicle considered, depends
on the flight altitude, which provides the values a and 6 „ and the trimmed
angle-of-attack a „ which gives the values CD C and Ci e .. The speed parameter
46 is deduced from Egg.(73). The effect of the altitude is entered through
both the values p. (or 6,) and the density gradient a which is not negligible
at orbital flight. The effect of the orbital speed is due to the fact that
Egs.(73) account for the effect of the curvature of the Earth.

Using the vector perturbation

X = [ RR , Vo -) YET

we can write the linear system (71) in matrix form

dX = AX
dt

with the constant square matrix A being

0	 0	 1

A =	 -6.0Do
	 - 26.0 D C 	- 12

b
1 -46 2

Q+ 2_ 1	 2	 0
6 2	462	 462

(74)

(75)

(76)
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The resulting stability characteristic equation is a cubic equation which
can be obtained by expanding the equation

det. [A -AI] -0
	

(77)

We have
2a °C

a 3 + 2a oC0OA + 
14 [(I_.62) _'6

	-	
200 [2-4 2 -4 2a]	 0	 (78)

A	 4

For reason which will be clear later, we define

W 2 = [(1-4 2 )(2-4 2a) + 4 4 ]
44

(79)
^2 = 2-42-42a

42

Numerical values for the density gradient, a, as function of the
altitude are given in Appendix A. In the altitude range of interest, a is
oscillating in the vicinity of the value -900. On the other hand, the speed
parameter 4 varies in the range 0 < 4 < 1, close to zero at low altitude and
tending to unity in orbital flight. Hence, the positiveness of the parameters
w 2 and C2 is assessed. With the definition (79), we rewrite the
characteristic equation as

a 3 + 26 ° CD°a 2 + w 2a - 26°CD°^2 = 0
	

(80)

This stability cubic equation for the trajectory mode has three roots, one
real and small root and one pair of complex conjugate roots. The real root
is obtained by observing that the last term of the cubic equation is small.
Hence, we have approximately

spiral = 2a
° CD° ( W )2
	

(81)

Since this real root is positive, hence unstable, the name of spiral mode
is justified. The exact root, to any order of accuracy, is obtained through
series expansion by putting

spiral = 2a°CD (
	 ) 2 a
	

(82)

where a is a constant near unity to be determined. By substituting into
Eq.(80) we obtain

2s °C
a = ? - (	

w 
D ° ) 2 ( ^ ) 2 a 2 [1 + ( w ) 2 a]	 (83)

The equation is in the form

e = p + cf(a)	 (84)
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where, with a small e, Lagrange expansion

a , p + n! ( dp ) n-1 [f(p)] n	 (85)

nl

is dictated. Here, the small term (26 °C0°/w) 2 plays the role of e. Hence,
we have explicitly

2d °C
a = 1 - (	 Oe)2 ( w ) 2 [1 + ( w )2]

26 °C
+( W O°) 4 (x)4[1+(x)2][2 +3(x)2]

26 oCpo 6
	 6	 2	 2	 € 2

Since a = 1 already gives a good approximation, this explicit series solution
is very accurate. Next, by factorizing the cubic equation, Eq.(80), using
the real root (82), we have the equation for the remaining pair of complex
conjugate roots

a 2 + 2 6 ° CO° [1 + ( w	

W2
) 2 a]a + a = 0
	

(87)

where, of course, the value of a is given by Eq.(86). From this equation we
have for the phugoid mode which is a damped oscillation

Real (a phugoid ) = 
- 6 ° C O° [1 + ( w ) 2 a]	 (88)

and

gOC

Im(a phugoid ) = m
	 a - (	 W O ° )2 [1 + (^ ) L a] 2	(89)

Using Eq.(83), we have another form for the phugoid frequency

Im(X
phugoid )	W	

1 - ( b^W D° ) 2 [1 + (^ ) 2a][1 - 3(	 ) 2 a]	 (90)

Returning to the dimensionless time, T, as defined in Eq.(65), if the small
speed perturbation is neglected, it is simply

T = R t	 (91)

Then, the time to double for the spiral mode is

(86)
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f
r:

tdouble .
	 log2

	
( C ) 2	(92)

The spiral mode is a new mode inherent in near orbital flight. Since we
assume a small constant thrust which exactly balances the drag in cruising
flight at constant altitude, any perturbation causing an increase in the
altitude with smaller drag will create an excess of thrust which has the
effect of increasing the radial distance, hence sending the vehicle into an
outward spiral. The reverse effect is true for any decrease in the altitude.

Now, since the phugoid mode is a damped oscillation, we consider the
spiral effect on the change in the flight path angle and the speed. We
start with the solution for the radial distance

oRaT
R,

where a is the spiral root and a is the initial perturbation with e > 0 for
an outward spiral. From the first equation in the linear system ( 71), we

have

Y = exe XT 	(94)

which shows that y varies as AR. On the other hand, from the last equation
of the system, we have

VQ ° 2 [^ 2^5 2 - ( 1 -4 2 )a + 42 - 
21ea'	

(95)

Since X2 is small and a = -900 (see Appendix A) while 3 a 1 when p -* 0, the
bracketed coefficient is negative at very high altitude and is positive at
low altitude. Hence, at very high altitude, the speed varies in the opposite
direction as the radial distance, that is the speed decreases along an out-
ward spiral and increases along an inward spiral. At lower altitude, the
speed varies in the same direction as the radial distance. Neglecting the
small term X 2.6 2 , the condition for the speed to vary in the same direction
as the radial distance is

-(1-6 2 )cr + 42 - 2 > 0	 (96)

In terms of w 2 , as defined in Eq.(79), we rewrite this condition as

w 2 A 4 > 2	 (97)

In a more explicit form, using Eq.(73) to calculate the speed parameter .6

we rewrite the condition (96)

-(2+a)6.C
Lo

 > 1

Since -a is large, we simply have

WS	 <-2.aRa.R.(^)o	 (98)
Cho	 2	 dR

(93)(93)
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If the equality sign is used in this equation, upon solving we have the
altitude where the speed inversion occurs. Graphically, since the right-
hand side of the condition (98) is purely a function of the altitude, for
any planetary atmosphere, the function can be plotted versus the altitude.
Then, for any wing loading condition (W/S), and lift coefficient, CL. , the
altitude for speed inversion for the corresponding vehicle can be assessed.

Concerning the phugoid oscillation, from Eq.(88), we have for the
damping, in real time

t	 22m l o 2 X	 1	 ( 99 )hal f	 P 'Sc Do V, 1 + (	 )2 a
w

The period of oscillation is

P = 27r
	 {1 - (	 L_ ) [1 + (w ) 2a ] [1 - 3( w ) 2 a]} -	(100)

Expliciting for w, we obtain

w = ( A )	 (V'-)2+L"[2- V'o R2 ( -dk	 (101)
Vo	 9oRo	 m90	 9oRo p o 	 dR

where L ° is the lift force in reference cruise. Then, the period of
oscillation in phugoid motion has the final form

P = 29 { (g R ) 2 + m [2 _ ^ O R° (d ]} 2X

	9 	 goRo po dR^°
(102)

{1 - ( 60
wD

°) 2 [1 + (i) 2 a][l - 3(W)2a]}-^

If we neglect the small term (doCD) 2 , and take the second bracketed term as
unity we obtain an expression that°is identical to Laitone and Chou's
(Ref. 12). Eq.(102) which takes into account the effect of the density
gradient and the centrifugal force correctly predicts the phugoid period in
the entire range of cruise altitude from low altitude for airplane dynamics
to high altitude orbital flight. Asymptotically, in orbital flight with
d ° -^ 0, L. -* 0, VO -► go R° the period tends to

P (orbit) _ ?g = 2w RR g	 (103)
o

which is precisely the orbital period along a circular orbit at distance R°.

The relative balancing effect between the speed and the density
gradient on phugoid period can be displayed by considering the simplified
formula
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or

P (airplane) =	
27r

^_ldp)
9	

Ve	
p dH

(107)

P (airplane) = 3 27N.
go

(108)

P = 2 ^o {( v2) 2 + Lo [2 - (_ 20 )Q1}-h
go	 goRo	 mgo	 goRo J

(104)

For flight at very high altitude in the near vacuum, V;/g,R, is near unity
and, although -a is large, because L,/mg, is near zero, the effect of
orbital speed is predominant. At medium altitude, as V. decreases and Lo
becomes larger, the effect of the density gradient becomes more pronounced
and should be included. At lower altitude, for airplane-type dynamics, we
write the bracketed term

mgo	 goRo	 goRo	 mg*
	 (105)

At sonic speed, taking V. = 340 m/sec, 3 g,R, - 7919 m/sec, we have V2,/g,R,
1.843 x 10- 3 while L,/mg, is near unity. Hence, for all practical purpose,
we can take

2

mg O	 goRo
	 (106)

Then, by setting L, = mg, as condition for equilibrium steady - state flight,
a condition which can be deduced from the last equation in system (64) by
using the same approximation, that is with Vo / g,R, << 1, Eq. ( 104) becomes

P (airplane) =	
21rV,

V^
g o 	 2- g,R.Q

It is shown in Appendix A that the density gradient term is equal to
-1.577 x 10- 4 /m for an isothermal atmosphere while for sonic speed, M = 1,
V o = 295 m/sec in the stratosphere we have 2g./V 2o - 2.255 x 10- `'/m. The

speed and density gradient effects are now of the same order of magnitude.
For very low speed, the density gradient effect can be neglected and we have
the classical formula

which, as well known, gives the phugoid period within 10% of the value
obtained by considering the full set of linearized equations taking into
account the coupling between the phugoid and the angle-of-attack modes.

From the physical discussion above, we have seen that the density
gradient effect is most pronounced at the intermediate range of speed.
Mathematically, since
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2
La -1 - ^a -1 -b2
mgo	 goRo

we express the bracketed term in Eq.(104) as

We have seen that near orbital flight, we have asymptotically

{ }4 - W1 - b2

while at very low speed we take

{ } _ ^2 - V2

(109)

(110)

(111)

(112)

The three functions w above are plotted versus the speed parameter

b - VoN g o Ro in Fig. 18 using an average value -a - 900. It is seen that
the influence of the density gradient is important and has the effect of
shortening the phugoid period. The approximation M 1 and M2 can only be used
near the limiting cases either near orbital flight or at very low speed.

Ballistic Entry

We now consider the important case of ballistic entry. With T - 0 and
Cho - 0, the system of equations (66) is reduced to

R' - si ny
Ro

Y - -BCOo - (^)siny
V

Y' _ -pR - k )COSY

(113)

In the second equation of this system, the drag force during entry is large
as compared to the small component of the gravity along the tangent to the
flight path. Furthermore, we shall use the approximation Ro/R = 1 in the
last equation. Then, we have the simplified system

R'
RR, - sing

V' _ -6C DO	 (114)

Y' - 0 - IA)COSY
V

It has been verified in reference 13 that the numerical solution of this
system is accurate as compared to the solution obtained from the integration
of the exact equations. Following the analysis in that reference, we use
the Chapman-Yaroshevskii variables
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Y = 
pSC
m^° 3 R^ - 26C0e/YTR—o

0 _ - 3W, s i nY
	

(115)

x - log (gR,/V2)

where 7 is the inverse of the scale height in a locally exponential atmosphere,

that is

dP - -'^pdR
	

(116)

Then, we have the equation for the altitude which is here represented by the
new dimensionless density Y

Y' = -SR,Ysiny
	

(117)

For the flight path angle which is represented by the variable (P, we have

(118)

V2

Changing the independent variable to V and then to x, we have successively

av-'v^
T.

- YV (1
	 -qRA)COS2y
	 (119)

and

dY
ax

d( - (ex - 1)cos2y	 (120)
dx	 Y

Because of the physical constraint on the deceleration during entry, ballistic

entry is generally effected at small flight path angles. Hence, we have the

dimensionless equations for ballistic entry at small and medium angles by

taking cos 2Y = 1, that is

dY
TX

0 = ex - 1

	 (121)

dx

For ballistic entry from circular speed, the independent variable x increases

from the initial value zero to about 6.3 when the speed has decreased to the

order of the speed of sound at low altitude. On the other hand, the altitude
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variable Y, which is proportional to the density, starts with near zero value
at the top of the sensible atmosphere. For most vehicle physical parameters,
the value of Y at sea level is near 60. Expressed in the change in the
altitude, we can consider the change in an exFonential atmosphere

®H log Y (lag)
i

where Yi is the initial value of Y and AH = H - H is the variation in the
altitude from the initial height. This formulation is convenient in that it
is independent of the physical characteristics of the vehicle.

Accurate series solutions for the system (121) have been given in
reference 13. For the case of ballistic entry from a decaying orbit such as
the case of the reentry of the Skylab, we have the initial condition

Y(0) = 0,	 '+(0) = 0	 (123)

with the solution

Y °	 x312 [1 + 3 (4) + 6 ( 4 )2 + 
Z
iT 4) + 60

2

	

0^- 	(4).1	 (124)

3 3

and

_ 3 3 x
47

 + 9(4) + 1- 4)Z	 s (4)' + 16^a -(4)'I	
(125)

For entry with non zero initial flight path angle, we have the initial
condition

Y(0) = 0,	 0(0) m - V S O siny i = c	 (126)

where y i is the initial flight path angle. From the definition of o in
Eq.(72), with a locally exponential atmosphere as defined in Eq.(116), it is
seen that TR. _ -a. 'Hence, as shown in Appendix A. we. take the average
value sR. = 900 for evaluating the initial parameter c.

Fcr the solution in this case, we write the system (121) in the form of
Yaroshevski' non-linear equation

Yd2Y	 ex - l =x+ x2 +-7	...
dx2

and evaluate the formal solution

Y =	 a 
k 
X k

k=1

satisfying the initial condition (126). It is found that

(127)

(128)
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AYy = -_
3 x

(135)

a t n c,	 a 2 =	 a,(1- ^2),	 a,,(1- z+ 	 )
C	 c	 C

I
O (129)

To the same order, we have

0 = k7O b k 
x k	 (130)

where

bo a c. bi ' ^	 b2 n ^ 0 - c2 ), b3 _ ^ (1 - c2 + C»)

by = 96c 0 - 10 + 20 _ L	
(131)

)
3c 2 	3c"	 3c6

'he variations of the flight path angle for entry at circular sped
with different initial flight path angles are presented in Fig. 19. The solid
lines indicate the exact numerical solutions of Egs.(121), while the dashed
lines represent the present analytical solutions. Solution for entry from a
decaying orbit is very accurate. On the other hand, for non-Zero initial
angle, the solution is only accurate when-y i , 1.5 0 . For very small initial
angles providing small values of c, because of small radius of convergence
of the series solution, the solution is restricted to the high speed range.

We now investigate the small perturbations from a reference solution
Y„ t,. Let

Y = Y, +AY
(132)

t n t, + Am

By substituting into system (121) and simplifying, we have

d- = At

dAt _ _ ex - 1 AY	
(133)

dx	 Y, Y, + AY

Hence, the perturbation in altitude Is obtained from the non-linear
differential equation of the second order

d 2 AY + ex - 1 AY = 0	 (134)
dx2	

Y. (Y, + AY

where the function Y,(x) used is the reference solution, t"st is the solution
(124) for entry from decaying orbit and solution (128) for entry with non-
zero initial angles. By the change of variable

45



ORIGINAL PAGI

OF POOR tZU^

-79 dog.
18°

16

14

12

10

8

6

4

2

I

v

0	 0.2	 0.4	 0.6	 0.8
	

1.0

Fig. 19. Variation of the flight path angle

for ballistic entry at circular speed.

46



t

we obtain the new non-linear equation

d 2 
Y + z dx - -

y + 2ex - 1)y 	 0	 (136)
dx	 4x	 Yo0 +y 3 x/Yo)

Going back to the initial system (121), it is seen that for large x,
ex - 1 = e x and the asymptotic solution for Y is

Y = 2e x/2	 (137)

If this solution is used for Yo in Eq.(136), we have, with the same
asymptotic approximation

d 2 +	 - y +	 y	 = 0	 (138)
dx2	 x dx 4x

2 40 +y 3 x/2ex /2)

Hence, it appears that y is a damped oscillation, and in the linearized form

we have

d_y + 1 ^j + .1 	
--I- ) y = 0	 (139)

dx2	
x dx	 4	 x2

This is a special case of Bessel equation and the general solution is

obviously

y = X [C l cos 2 + C 2 sin 2)	 (140)

where C 1 and Cz are two constants of integration. In general, since y is a

damped cscil^dtion, Eq.(136) can be linearized and we have

d_.Y+1^y
+[(ex -1) - 1 ly=0

dx2	
x dx	 Y2	 4x2

0

(141)

For phugoid motion, perturbed from entry from a decaying orbit, we use
Y o as given by Eq.(124) with three terms

2	
3/2 x 	 xz

vo = _x
,/3

[1 +12+96 (142)

Substituting into Eq.(141) and expanding the coefficient of y for small x,

we have

z
+ 1 ^+ 1 (2+x+ X )y=0

dx2	
x dx	 4x2	 4

(143)

It can be shown that this equation can be transformed into a confluent hyper-

geometric equation (ref. 14). If the term x 2 /4 is neglected, we have the

equation
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'y + I dy + 2±x	 = 0	 (144)
dx2	

x dx	 4x2

which can be transformed into a Bessel equation of imaginary order (ref. 15).
For very small x, if we consider the coefficient of y as simply 1/2x 2 , we
have obviously an Euler equation with general solution

y = C lcos( 3- 2̂ log x ) + C 2 sin ( 2? log x )
	

(145)

where C, and C2 are constants of integration. It is enlightening to derive
this solution by considering the general equation (144). By the transforma-
tion of variable

X = ^2	 (146)

the eauation becomes

d

2

	

2 + ^ d^ + (1 + _L) Y = o	 (lay)

with general solution

y	 C1 J i 3 2 (3 x) + C2 
J-i 3 2 (3 x)	 (148)

where the functions Jn(x) are Bessel functions of order n and argument x.

Jn
(x) = 2nxni [1 - 2 2n+2 + 2 . 4 2n+ 4 2n+	

- •••]	 (149)

n.

To obtain the solution in the real form,,, we consider the two linearly
independent solutions, putting n = ±i 3 2 , and changing x into 3 x in the
expression (149)

Yi ti Xi,/2/2 [l -	 x	 +	 x2

	

4(1+i v/ 2 )	 32(1+i 3 2 ) (2+i 3 2 )

	

x3	 + ...^

384(1+i 3 2 )(2+i 3
_
2 )(3+i 3 2 )

Y2 ti x
-i 3 212 [l -	 x _ +

4(1-i 3 2 )

x2

32(1-i 3 2 )(2-1 3 2 )

_ x3 _	 _ + ...]

384(1-i 3 2 )(2-i 3 2 )(3-i 3 2 )

After some manipulations

48



Yi ti x
i 3 

2/2 Lfi(x) + igi(x)]
_	 (150)

Y2 ti 
x-i 3 2/2 [fi(x) - igi(x)]

where

3

(151)
a

91( x ) _ 3—M (1 - 16 + ^ - ...)

Since a linear combinrtion of solutions is a solution, we combine linearly
the solutions (150) to obtain new solutions in the real form

yl = fl(x)cos( 32 log x) - gl(x)sin( 2? log x)
(152)

yZ	 fl(x)sin( 
3
^ log x) + gl(x)cos( 

32 
log x)

The solution (145) is obtained using the approximation f l (x) = 1, g l (x) = 0
for small x. Using the two linearly independent solutions (152), with the
definition (135), we obtain the solution for the perturbation AY in the form

AY = A 3x [fl(x)cos( 32 log Xo ) - g l (x)sin( 32 log Xo )]	 (153)

where A and x o are now arbitrary constants of integration. By the first of
the equation (133), we obtain the perturbation 0O in the form

A( = A [f2 (x)cos( 32 log Xo ) - g2(x)sin( z2 log	 Xo )]	 (154)
2 3 x

where

2	 3
f2(X)	 1 - I7 + 96 + 3x68

9 2 (x) _ 3
2 (1 + 6 - 192 + 5344)	

(155)

The solutions (153) and (154) with the functions fi(x) and gi(x), i = 1, 2,
not only provide the solution for the phugoid oscillations for entry from a

decaying orbit but at the same time yield accurate analytical solutions for

entry at very small angles. We recall that, as stated above, the existing
solutions (128) and ( 130) cannot be used when the value of c is small.

It is now seen that, with a misalignment in the entry angle, Yi # 0,
the difference in the altitude of the perturbed m3tion, as compared to
entry at Yi = 0, increases. This is to be expected since entry at non-zero
initial angle has the effect of drasticdlly decreasing the range, providing
a large difference in the altitude. On the rather hand, the variation in the

49



.	 c

flight path angle, as shown explicitly in Eq.(154), is a damped oscillation.

Hence, in this sense, phugoid oscillation for nearrazing ballistic entry

is stable. To show this quantitatively, we use Eq.(154) to compute the
perturbation from the reference solution as given by Eq.(125). The constants
of integration A and xo in Eq.(154) are evaluated using the initial condition
(126). Because of the singularity at x = 0, the constants are evaluated at
a certain point beyond the entry point. By convention, we take this point at
x = x,. For the computation at this arbitrary initial point, we refer to

the definition (132) and use the following approximations:

Since in this case c # 0, the functions Y and 0 are initially given by
the solutions (128) and (130) which are valid for small x, even in the case
of small c. The functions Y. and (D, are given by E s.(124) and (125) and
the functions AY and A(D are given by Egs.(153) and 154). Then at the point
x = x„ and to the order of x 3 , we have

3/2	 2

v/ 3 x	 (1 
+ 12 + 96 ) + A 3 x f 1 (x) = cx + Zc x2 + 12c (1 - C2 )x 3	(156)

and

3 3 x^(1 + 36 + 288
) + A 

f, (X)
	 c + ^x + 4c (1 - 12 )x 2	 (157)

2 3 x	 c

where, from the expressions for f l (x) and f 2 (x), it suffices to take

f l (x) = 1	 x
12

f2(x)1
	 5x

- 12

(158)

In these equations, subscript zero in xa has been omitted for convenience.
Then, by solving the system of equations (156) and (157), the initial value
x, is obtained from

i	 2	 3

33 (4 + x 
+ T 288 ) = c(1 + 4 ) + 2c (3 + 12)

(159)

+	 (1
12c - 2)(5 - 12)

c

and subsequently the constant A is given by

A = 12 
(1 + x + x 2 ) - 3 E  + 3x + 5x2 (1 - 1 )]

	 (160)
3 3	 6	 32	

V/ x
	 2c	 12c	 c2

where we recall that, in the two equations above, c = - VTR, sinYi =

-30 sinYi, and x = x a . The solution for 0, computed for -y in the

interval from 0° to 2°, displays, as expected, a damped oscillation with
long period. Furthermore, when added to the nominal value Do(x), it gives
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accurate solution for shallow ballistic entry. The result is plotted in
Fig. 19 and is indistinguishable from the exact numerical solution.

Half of the period of oscillation can be defined as the interval
between two consecutive zeros, x l and x2 of At, as given explicitly in
Eq.(154).	 Let

tan[ip(x)] - 9 2 (x)/f2 (x)	 (161)

Then, the zeros of At are also the zeros of the function

TT = cos[^2 log x, + 1p(x)]	 (162)

Hence, if x l is the first zero and x 2 is the next one, we have

^2 log ^ + ^(x2) - ^(xi) - IT	 (163)

Similarly, we define

tan[T(x)] = fi(X)	 (164)

For the oscillation in the altitude, if x l and x 2 are the first and the
second zero of the function AY, respectively, we have the relation

3
2 log Xi + ^(x2) - V(xi) = Tr
	

(165)

Figure 20 plots x 2 versus x l for the Egs. ( 163) and (165). The value x1
increases from zero as -yi increases from zero. Since the practical range
of x is between 0 and 6, except for near zero values of x i , which correspond
to very small values of yi, the value o-f x 2 is large. Hence practically the
plots of the variations of the flight path angle for yi # 0 cross the plot
for the case of orbit decay, y i = 0, only once (Fig. 19).

Next, we consider the phugoid motion as perturbed from entry at medium
and large angles. As seen in Fig. 19, with an initial perturbation

0O(0) =	 (sinyi - siny io ) = Ac	 (166)

where yi o is the initial reference angle and y i = yio + Ayi is the initial
perturbed angle, the function - Ay, and hence A^, is a slowly decreasing
function. Again, in the ( -y, V) space, the two neighboring trajectories
cross each other once at low speed. Hence, the phugoid motion is a slowly
damped oscillation with long period. Since accurate analytical solution has
been given in Egs.(130) and (131), it suffices to take the difference

between two neighboring solutions to obtain the solution for phugoid motion.

To display the damping characteristic of the phugoid motion, we consider
the linearized perturbed equation ( 141), with the reference solution YO(x)
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given by two terms of the series (128). Then we have the equation, to the
same order as Eq.(143)

qL 4LIL

d2y + 1dy + c 2 - 2 + 1 - 1
C	 JY = 

0
dx2	

x dx	
2c"	 c2x	 4x2

(167)

Again, this equation can be transformed into a confluent hypergeometric
equation. For medium and large initial entry angle, c 2 is relatively large
and we can neglect the constant term, which is small, in the coefficient of
y. Then, by the transformation of the independent variable

=2cx	 (168)

we obtain a Bessel equation of order 1

d

2Y + ^ d^ + (1 - 2 )y = 0	 (169)

From the definition (135), we have the solution

4Y = 3 x [CiJ1(2c x ) + C2Y1(2c x)J	 (170)

where the general Bessel function J n (x) is given by the series (149) and
Y,(x) is Neumann's Bessel function of the second kind of order 1. By
considering the relation

Y 1 = J i log x - X - 1 J i + 4 J 3 - ...
	

(171)

and from the condition AY(0) = 0, it is clear that C 2 - 0. From the first
of the equations (133) we have the solution for A(P. Using the relation

vl(d = - JIW + v.(d
	

(172)

for the derivative of the Bessel function with respect to its argument, we
have

M = e J, ( 2 ^ x )
	

(173)

Using the initial condition (166), we have the final solution for the
perturbation in the flight path angle

A@ = Ac J. ( 2 x )	 (174)

Since Bessel function of order zero is a damped oscillation, the charac-
teristic behavior of phugoid motion perturbed from ballistic entry is
established. Furthermore, Eq.(174) ives accurate solution for (D( x) when
added to the reference solution ^,(x^. Since the first zero of J,(^) is
;1 = 2.40482... two neighboring trajectories, in the (-y, V) space cross
each other for the first time at the value
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— V2
v=

9Ro
(177)

x l = 1.4458 c 2 	(175)

For medium and large entry angles, this corresponds to a very low speed.

Glide Entry

For glide entry, we consider the system (66) with T = 0. By neglecting
the small component of the gravity alone the tangent to the flight path and
using small angle approximation we have

R'
Ro =Y

I^

V1.6C _ - 6CDo

Y' = 6CLo - ( A - 1)
V

(176)

In the last equation, the approximation Ro/R = 1 has been made. Then, using
the density function Y as defined in Eq.(115) and the new speed variable 	 .

as the independent variable, we obtain the equations for glide entry at
small flight path angle

dY = 3R,

	

dv	 v	
(178)

	

v y	 (p)+	 1

	

dv	
3TRo Y v

For small flight path angle, the dimensionless arc length T, as defined in
Eq.(65), is the same as the longitudinal range. From the second equation in
system (176), we have

	

dT	 1
	

(179)

	

dv	
3TRo Y v

For the value of the lift-to- drag ratio, L/D = 1,1.5, the equations are
integrated for glide entry from circular speed, V = 1.0, and an entry altitude
which corresponds to Yi = 0.001 with an initial angle Y = -P P. The varia-

tion in the altitude during the glide is shown in Fig. 21. The figure
displays the oscillatory character of phugoid motion. For an average value

of the altitude, we can use the equilibrium solution which expresses the

fact that the variation in the flight path angle is small, that is dY/dv = 0.

Hence, from the second equation in system (178), we have
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-	 •	 F

Y =

	

	 2(1-v)
	

(180)

3'R, (L/D) v

This average solution is plotted in dashed line in Fig. 21. To have an
explicit solution of the deviation from this line, we use the new dependent
variable

Z = 
3ER A (L/D)Yv - 1	

(181)
2(1-v)

As a result of this definition, except at the beginning of the entry
trajectory where z can be large, the perturbation in z is a small quantity.
By substituting into the system (118), we have the equations

dz. = "3R	 L D Y + (z+l

dv	 2(1-v)	 v(1-v)
(182)

Al = _ L 0 z

dv	 2v(z+l)

By eliminating y between the two equations, we have a second order non-linear
differential equation for z

v(1 -v) d2z
 - (1+v)dz + 13R 2 (L/D) 2 z + (z+l	 0
	

(183)
dv 2	dv	 4(i+1)	 v

The equilibrium solution (180) does not provide the oscillation in the
altitude but gives an average value with good accuracy. Hence, the function
z gives this correct oscillation and tends to zero near the end of the
trajectory. By linearizing Eq.(183) we obtain

v(1-v)d?z _ (l+v ) dz + L$R L D 2 + _ ]z =—	 (184)

dv 2	dv	 v	 v

Since _aR, = 900 is large, in the homogeneous equation, when v is not too
small, we can neglect the term 1/V and obtain a hypergeometric equation.
In general, with the change of variables

z =	 U	 v = cos 2u	 0 < u < 'f	 (185)
(tanu)3/2

the linear equation (184) is transformed into

d2U + ^R, ( L ) 2 +	 1 - 4 cos 2 u ^ U = _ 4 sine (tanu)^	
(186)

due	
0	

4 sin cos 2u	 cos'u

In the homogeneous equation, the non-constant term in the coefficient of U
is

55



1 - 4 cos 2u	 1-4v	 (187)
4 sin 2Vcos 2 1j	 4v(1-v)

In the range of speed of interest, when v decreases from 0.95 to 0.01, this
coefficient increases from a negative value -14.737 to a positive value
24.242. On the other hand, the term 'TR,(L/D) 2 is very large. Hence, the
solution of the homogeneous equation in z is practically

z =	 l	 tC, cos[3TR, (o)u] + C 2 sin VW. (o)0)	 (188)
(tanu)3/2

7o this equation, we add a particular solution of Eq.(186). Considering the
solution (188), when v - ► 0, tams i - and z + 0 as expected. Furthermore, z,
and hence the altitude Y by Eq.(181), has an oscillatory motion in u with
frequency 33R, (L/D). Actually, this should be viewed as an oscillation
about the average altitude as given by the equilibrium relation ( 180) which
has been used as the reference solution in the linearization. When u varies
from 0 to Tr/2, theergument of the trigonometric functions in Eq.(188)
varies from 0 to 3IR, 7r(L/D)/2. Hence, the number of oscillations is
approximately

N =	 (^}
	

(189)
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Fig. 21. Oscillations in altitude during glide entry.
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V. ANGLE OF ATTACK OSCILLATIONS

For the angle-of-attack oscillation during entry, we consider the full
set of equations, rewritten here for convenience

dR
= V siny

dV TPSCDV2

3t m - —'£m — - g sinY

d	
oSCLV2	

V2VF • --,^--- (9- R )cosy

(190)
pScC v 2	 I - Idq —^Im - R ( x I - z) sin 29

dt
de

 ' q + W 
COSY

8 n y + a

The elimination of 6 and q results in the following exact equation for
the angle-of-attack a

d?a SCLV ddASV dC
L pScCmv2 3	 IX-IZ

dt 2 + -'fm dt + 2m ^t - -- y 
+	 ( -?-- ) s i n2 (Y+a)

pSC
+ (W- ^)g sinY cosy - = g cosy - ( M C LCpV2	(191)

V2

T PSCL
+ m (= + -1 cosy) = 0

V

In deriving this equation we have used an inverse-square gravitational
attraction to preserve the correct behavior of the motion in orbital flight.
If the time transformation (65) is applied, we have

d 	 /	

(192)

T(	 9
dt	 R,

where the prime denotes de.ivative with respect to T. Then, upon using in

Eq.(191) we have the non-linear equation for a
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Sc mRap + V a' + R— - gi p' + -TM— 	(t^)Cm
Y

+ 3gR; (
I- x z)sin2(Y+a) + (3R -	 )(^)siny cosy	 (193)

2RV	 y
	 v2	

V

R,pSC	 R,pSC
-(--,2m V2 cosy - (_7m C^Cp + mYv (- m + a cosy) 0

V	 Y

By the display of this equation, it is natural to use the following
dimensionless variables and parameters

b	 0 _'F 9 B= 3 ( I—xf-?)	 ky	 (194)
K	

Y	 OF

Notice that the density d and the kinetic energy v are the same as have
been defined in the equations (67) and (177), respectively. Then, we have
the equation in the final form

C
a" + v a' + 6 1 C

L
 + 6CL - 6(-R-L) m + 8 (R )sin2(y+a)

2v	 c	 y 2v

ac
+ (3R - 2 )(^ )siny cosy - ^^ cosy - 62C12A (195)

v	 v	 v

+ T m (dCL 
+ coss) = 0

v	 v

It is more enlightening to linearize this equation separately for the

different cases of reentry considered.

Cruising flight

To show the correct behavior of the ang'ie- 3f-attack oscillation in the
asymptotic case of orbital flight, we consider the case of circular orbit

in the vacuum with T = 0, 6 = 0, y = 0, V = 1. Then the non-linear equation
(195) is reduced to

a" + -1-1 sin 2a = 0	 (196)

This is the equation of a compound pendulum, and while in orbit, in its

stable equilibrium position, the vehicle points its axis of minimum moment
of inertia toward the center of the Earth. The equation is integrable by
the use of elliptic integral. Since in this case, z = V,t/R„ the period of
oscillation, in real time, is

P = 
27rR.	

(1 + I a2 + II a; + ...)	 (197)

V, 3T7B

s9



where a, is the initial, perturbed angle-of-attack. Neglecting order of a,
and higher, and noticing that V, - /-g-,IT,- , upon comparing with the expression

for the phugoid orbital period as given in Eq.(103), we see that the ratio
of the two periods is

P orbit _ '/^-	 (198)
N pitch

Depending on the inertia characteristic 1,B, the period for the angle-of-
attack mode can be greater than the period for the phugoid mode. Hence,
the names of long and short period modes, traditionally employed in air-
plane longitudinal dynamic stability analysis, are no longer appropriate in
reentry dynamics. For the example SSTO vehicle with physical characteris-

tics given in Appendix B, we have JBI = 2.3596. Hence, the period of
oscillation for the angle-of-attack is equal to 65% of the orbital period.

For cruising flight at lower altitude, aerodynamic moment is restored.

Using a thrust to balance the drag and the lift to maintain constant

altitude flight, we recall the equilibrium condition (64), now written as

2
Sd 2  = 1 -4 Z	 e' = ^_mg = db = CDo ,	

L,	 9o R o
(199)

On the other hand, with a perturbed angle-of-attack a, we have the

linearized expressions

C D = CD. + C D a
a

CL=CL,+CIa
La

(200)

while for the pitching momemt coefficient Cm, experience has shown that we

must express it as

Cm = Cm a+Cm. a+Cm G4)
	

(201)
a	 a	 q

where q is the vehicle pitch rate referred to the local horizontal. In all

the cases considered,.either cruising flight, ballistic entry or equilibrium

glide, the condition y = 0 is enforced. On the other hand, the stability
derivatives Cma and C written in dimensionless form are based on the body
length or wing chor^ q c as reference length. Hence, from the term in Cm
in Eq.b 95) and using the time transformation (192) for the derivative
we consider

ac
(^) Cm Z. ( 1A) Cm a + (^)	 m ( )a' + (^) a

ac 
m (Ro )a'

c	 c	 a	 c a s°	 c	 q

Changing notation, we write

( RA) Cm = ( Ro ) Cmaa + Cmaa' + Cm a'
q
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Rop	
x

6(I -I 
z )= 

ScCm
a

(207)

with the definition

_ V a Cm 	 _ V a Cm

Cma c 3a	 Cmq - a q	
( 2031

Using the equations above in the basic non-linear equation ( 195), and
noticing that v = b 2 , R = R„ Y = 0 and linearizing a, we have the equation
for the angle-of-attack oscillation in circular orbit

a" + 2na' + n 2a = 0	 (204)

where

(C 	 Cm )

n = 2[C^ -	
a

a	 y	 (205)

n2 	
B - 6(2- ,6 2)

 C	 - (^_) 6 C
A 

2	
b 2	 Oa	 c 1 ma

The viscous damping term is always positive. Hence the condition for
stability of the angle-of-attack mode is that n 2 is strictly positive.	 By
inspection of this term, for slender type vehicle B < 0 such as in the case
of the present SSTO vehicle. On the other hand, as has been ana l yzed in
Chapter IV, for cruising flight the speed parameter a is in the range [0, 1],
with near zero value for airplane flight mode at low altitude and close to
unity near orbital flight. Hence, the negative effect of the second term
is diminished with smaller drag curve slope CO a . Finally, the stabilizing
effect is due to the static stability derivative Cm, , which must be negative
for stability in cruising flight. Otherwise, thrusters control must be
introduced. With a negative value for Cma, a smaller pitch moment of
inertia, ky, contributes more to stability. It is obvious that a large
value of 6 contributes to the positiveness of the term n 2 . Physically, this
means that, at low altitude a restoring aerodynamic moment overcomes the
pitch down effect of the gravity gradient. The altitude, below which the
vehicle is stable, is obtained by solving the equation n 2 = 0, that is

B_ 6(2-.62 C
	 -( e 6 C	 = 0

.6	 b 2	 Oa	 c ky ma
(206)

This altitude s very high so that we can use the approximation 6 = 1, and
also neglect the small term in CO OL to rewrite the equation as

which separates vehicle and atmospheric characteristics. For the vehicle to
be stable at nearly all altitudes, that is for very small value of p in
this equation, this requires large negative value for Cm a and small difference
in moments of inertia about the axes in the plane of symmetry. The left-
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 - 2[3(Ix-Iz)-Iy]
R20 P -

Sc Cm
n

(211)

hand-side of this equation is plotted versus the altitude in Fig. 22, while
the right-hand-side is used to locate the limiting altitude for stability
for any vehicle. The small circle in the figure represents the present
example vehicle.

In the altitude range where the vehicle is stable, from the damping
term n and with the definition of *r, we have the time to damp to half

t	 4m log 2
half(C

m. + Cm

PISV I [CL -	
a 
k 

Q

C1	 y

(208)

It is seen that small wing loading, low altitude, high lift curve slope,
strong damping in pitch and small pitch moment of inertia, all contribute
to shorten this time constant.

At high altitude where n is small, the frequency for the angle-of-attack
oscillation is practically n. Hence, we have for the period in real time

P = 7	 (209)
Von

With the approximation 
4 2 = V;/g.R, = 1, we have the expression

P =	
2Tr 

V.	 (210)
ga[B - dCD - ( _ F Cm ]

a	 c y a

As a consequence, near the altitude where the vehicle becomes unstable,
n = 0 and the period for the pitching mode is infinitely large. Since the
period of oscillation for the phugoid mode is finite, with the limit being
the orbital period, and the period oscillation for the angle-of-attack mode
is short at low altitude, there exists an altitude where the two periods
are equal. Cruising a this altitude, the vehicle is subject to unstable
resonance effect. The resonance altitude was detected by Etkin (ref. 16)
and the resonance effect was discussed by Vinh and Dobrzelecki (ref. 17).
It has been shown in Chapter IV that the phugoid frequency in cruising
flight is w as given by Eq.(79). Hence, the resonance altitude is obtained
by setting n = w. This altitude is high so that we can use the approximation
A = 1. This amounts to simply using w = 1. Neglecting the term CDa in the
expression for n, and separating vehicle and atmospheric characteristics as
has been done in the case of limiting stable altitude, we obtain the equation

Plotting the right-hand-side of this equation in Fig. 22, we have the
resonance altitude. It is obvious that this altitude is below the limiting
altitude for stability. If a strictly exponential atmosphere with height
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scale 1 / _^ is considered, by taking the ratio of the two equations ( 207) and
(211), we have the difference between the resonance altitude and the
limiting altitude for stability

TA H = log ( BB l )	 (212)

This is quite an interesting formula since the altitude difference is purely
a function of the inertia property B. For the example SSTO vehicle, we have
S0 H = 0.3533. Using Chapman's approximation for the atmosphere, SR, = 900,
we can write the equation as

DH = 09 0log ( BB 1 )
	

(213)

With an average value R. = 6467 km at the flight altitude, for the vehicle

considered, we obtain A H = 2.539 km.

A final note to close this section is in order. For the phugoid mode,
as has been discussed in detail in Chapter IV, the period, customarily
called the long period, increases from small values, of the order of a few
minutes, for airplane-type cruise at low altitude and tends asymptotically
to the orbital period when the atmospheric density tends to zero at very
high altitude. On the other hand, for the angle-of-attack mode, the period,
mistakenly called the short period, also increases from very small values,
of the order of a second, to infinity at the unstable altitude where the
gravity torque and the aerodynamic moment are equal. This altitude is
above the resonance altitude, where the two periods for phugoid and angle-
of-attack modes are equal, by an altitude difference as given by Eq.(213).
The notion is unstable above the limiting altitude but after a pitch down
to point the x-axis along the vertical, the gravity gradient torque becomes
predominant and the pitch motion is again stable with the asymptotic period
being finite as given by Eq.(197). The motion during this whole range of
transition altitude is non-linear and a separate study should be undertaken
to analyze all the inherent phenomena. This would include the frequency
resonance and the eccentricity effect of the orbit. One simplifying aspect
which significantly alleviates the difficulty in the analysis is that, at
high altitude, the motion is nearly Keplerian. Hence, this leads to the
pitch motion subject to gravity gradient and aerodynamic moments along an
elliptic orbit.

It should also be noticed that, if the orbit is strictly circular,
then from the linear equation (204), resonance effect is riot detected.
But, if the orbit is perturbed, it becomes slightly elliptic. In this case,

by going back to Eq.(195) and expressing d, v, y and R,/R as periodic func-
tions in T, with period 27r, in the linearized form, we obtain a Mathieu's

equation with a periodic forcing function having a period exactly equal to

the pitch period. This will create resonance phenomenon which would

ultimately build up larger amplitude for the perturbed angle-of-attack if

the motion is uncontrolled.
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Ballistic Entry

Unlike the case of cruising flight, in which the speed either remains
constant or has a periodic variation with small amplitude, for ballistic or
glide entry, effective entry is being made and as a consequence the speed
decreases along the trajectory. In addition, the atmospheric density in-
creases. This creates unsteady effects and, in the linearized form, the
equation for the angle-of-attack oscillation is a linear second order
differential equation with varying coefficients.

We shall simplify the basic equation (195) to a form valid for both
cases of ballistic and glide entry. First, we observe that the gravity
gradient term in B and the following term in sing cosy are of the same order
of magnitude. On the other hand, during effective entry, gravity gradient
is small as compared to aerodynamic moment. Hence, with T = 0 and neglecting
the two small terms mentioned, we are led to the equation

V.—	 C	 SC
a" + v a' + S'C^ + SCE - S(^) m - _0 cosy - S 2 C^C 0 = 0	 (214)

2v	 c	 y	 v

Of the last three terms in this equation, because of the large factor R, c,
the moment term is larger than the drag term. Therefore, we have the
resulting equation

—,	 C
a

ll

 2v 
at + S'C

L
 + SCE - S[(C) km + SC

L
Cp] = 0	 (215)

Y

Using the linearized expressions (200) and (202) for Cp, CL and Cm we have

the linear equation governing the variation of the angle-of-attack

a" + b(T)a' + c(T)a = - VC  + 6 2 C^ .0 0o	(216)
0

where

	

(Cm• + Cm )	 —

b(T) = d[C
L
 -	 a k	

] + v'

	

a	 y	 2v
(217)

C(T) = S'C^ - k (^) Cm - S 2 (C
L

CO	o+ CpCU )

	

L
ot
	 y c	 a	

o 

a	 a

are two coefficients to be evaluated as functions of the independent variable

T depending on the type of reentry trajectory.

For the present case of ballistic entry, C ho = 0. On the other hand,
from Eq.(114)

V' _ ^^ _ -SC Oo	(218)

2v
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Furthermore, from Eq.(117)

Y , 	8 , ' -
7^R. siny	 (219)

where TR. = -a - 900 for the Earth's atmosphere. Hence, from Eq.(217) we
have

(Cm* + Cm )
b(T) - S[C L - Cpo -	 d,k---S-

a	 y
(220)

Cm

C(T) = S[CL o siny - (Ro k a - SCpo CL ]
a	 c	 y	 a

For ballistic entry at medium and large flight path angle, during the rain
portion of the reentry trajectory where the effect of deceleration is
important, it has been shown in c hapter IV that the flightath angle remains
nearly constant, that is siny = sin y,. Hence b(T) and c(T) are purely
function of the dimensionless atmospheric density S. This naturally leads
to the change of independent variable from T to S through Eq.(219). Upon
using this transformation we have the linear differential equation of the
second order governing the angle-of-attack

z
d a + bl(S) dd
dS	

+ c l (S)a = 0	 (221)

.**t

where

b l = d + kl

C] = a2 + k3

with

(222)

( Cm + Cm )
_	 1	 [	 a	 q

kl	
a siny,	

C^a - C00 -	
ky	

] > 0

Cm

k 2 =	 1	 [CL a sin-y. - ( RO ) k a ] > 0	 (223)

	

(Q s iny .)
2
	 a	 c	 y

CDoCL

k 3 = -	 a	 < 0
(a sin-Y.)'
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Concerning the signs of the constant coefficients ki, it is trivial that k3
is negative. Since for entry a sing, - -900 sinyo is positive, the coefficient
k l is usually positive unless the damping in pitch Cm , which is always
negative, is negligibly small and the lift curve slop CL a is also small.
For the coefficient k 2 , a negative Cma assures its positiveness but an
unstable, positive Cma can make this coefficient negative.

Since the linear differential equation (221) has varying coefficients,
the positiveness of b l (6) and c l (6) is not sufficient for the stability of
the motion. To derive criteria for stability the recommended procedure is
to transform the equation into a well known equation in mathematical physics.
In this respect, Allen has considered a type of reentry missile such that
upon some simplification the equation is reduced to a Bessel's equation of
order zero (ref. 18). On the other hand, Vinh and Laitone have transformed
the equation into a more general form of a confluent hypergeometric equation
(ref. 19). In both these references the independent variable used is the
altitude variable which necessitates the introduction of exponential function
into the equation as an adequate representation for the atmospheric density.
This inconvenience has been removed in the present formulation. Furthermore,
we shall now use a general transformation of both independent and dependent
variables to globally discuss the stability of the angle-of-attack made
during ballistic entry for different aerodynamic characteristics. For this
purpose, we consider the transformation

a = ek6y(n)	

(224)
6=hn

where k and h are two constants to be selected such that the resulting
equation has the desired form. Upon substituting into Eq.(221), we obtain

d2y + [h(2k+k l ) + 11 ^ + [h 2 (k 2 +kk^+k 3
) + h k+k2 

]y = 0	 (225)
dn 2 	 n do	 n

By selecting

k = - 2
	

(226)

we have the equation

d1+n do + [h2(k3- 4)+ 	 (k2 - 2) na y =0 	 (227)

If -C% is not too small, the coefficient k2 is much larger than k l and -k3.

In this case, by neglecting the constant term in the coefficient of y in

Eq.(227), and using the transformation

n=u 2
	

(228)

we are led to the equation
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d_Y + 1 ^X + 2h(2k 2 - k i)y - 0	 (229)
du e u du

By taking h such that

2h(2k 2 - k i ) - 1	 (230)

we have a Bessel's equation of order zero. Hence, for the type of ballistic
entry bodies such that k2 >> k l , -ks, the approximate solution for the
oscillation of the angle-of-attack is

a(6) - 
e- k i 6/2

[C1Jo(2 
3 [k2	 kl

/2 6 )
	

(231)

+ C2Yo(2 3 k2 - ki/2 6 ) ]

where k i and k2 are given in Eq.(223) and Jo and Yo are the zero order
Bessel's functions of the first and second kind, respectively.
Since the Bessel's functions of order zero are oscillatory functions with
decreasing amplitude and the density 6 increases during ballistic entry, the
condition for stability is kz > 0, that is

(Cm , + Cm )

CL - COo - %.	 Q > 0	 (232)
a	 y

Going back to the more general equation (225), we now select the
constants k and h such that

h(2k + k l ) _ -1
(233)

V+k l k+k 3 -0

The second equation in k has one positive and one negative root. We choose
the negative root yielding

k = - 2 [1 + 3 l - 4( k 3 / k 71
(234)

I = k i v/1 - 4 k3/k

The resulting linear equation for the angle-of-attack is a confluent hyper-
geometric equation

TI d^Y + (b-n)d - ay = 0 	 (235)
dn2

where b = 1 and

a	 1 -	 _ k^ - ki	 (236)
2 2 3 k	 03
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is a constant parameter, usually negative and large. The solution of (235)
that will lead to a physically valid angle-of-attack variation as defined in
Eq.(224) is given by the Kummer's function

y(n) - iF1(a, b. n) 	 1 + b + b lb+	 ! + ...	 ( 237)

which in this case where b - 1, is

y(n)	 1 + an + a a+1 n2 + 
a(a+1)(a+2) nj + ...	 (238)

(21) 2	(3!)2

Figure 23 shows the variation of the function y(n) for several values of the
constant a. The function becomes more oscillatory for large negative value
of a. From Eq.(236), and neglecting the small term k 3 , we have

a - 1 - (k2/kj)
	

(239)

Hence. in general the ratio k 2 /k, influences the oscillatory character of
the angle-of-attack, while from Eq.(234) with k - -k i and, from the definition
(224), the damping is provided by the positiveness of the constant k l . We
are led to the same condition (232) for stability. If we consider Eq.(238)
as defining a family of curves depending on a parameter a, the best way to
detect the oscillatory character of the function is to select integer values
for -a - n, with n - 0, 1, 2, ... Then we have

Yo=1

yi - 1 - n	 (240)

y2 - 1 - 2n + I n2

or in general

Yn (n) 	 1 ( -1)m m j m(241)
m-0 

where

(n l a n(n-1)(n-2) ... (n-m+l) 	
(242)

m J	 m.

is the binomial coefficient. The solution is a Laguerre polynomial, and as
such, a higher order polynomial provides more zeros to the function. On the
other hand, using h = 1/k l , we have n - k 1 6. The largest value of 6
corresponds to sea level. Since the range of n is large for large value of
k l , the number of oscillations also increases with kj.

In summary for a general type of entry body the solution for the
variation in the angle-of-attack is given by
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a - a,e-k161Fi[1-(k2/ki).

where k i and k 2 are given by Eq.(223) and the small effect of k 3 has been
omitted. The fact that this solution tends to the Bessel's solution as given
by Eq.(231) in the case where k 2 >> k i can be seen by using the asymptotic
form for Kummer's function for large a

i F i( a . b, n) - en/2 (1n-an)(1-b) /2
 Jb-1( 

3 2bn-4an)	 (244)

In the present case, b - 1, n -k,6 , a n 1-(k 2 /k i ). Upon using this
asymptotic approximation in Eq.(243), we have the solution (231).

To verify numerically the analysis above, we integrate the linear
equation (221) using the following data.

- 3.6498 x 105

This provides the basic numerical values

k i - 0.0022 ,	 k2 - 0.010261 ,	 ki - -1.099 x 10-5

The initial conditions are a, - 3% ao - 0, at an initial altitude such that
6,CD, "0.015. This value is the initial deceleration in g's, due to the
drag force at circular entry speed. This basic solution is plotted in
dashed line in Fig. 24. Several other solutions have been generated for
different values of k 2 . While the damping per cycle remains essentially the
same, the fact of increasing k 2s that is the effect of the static derivative
C% , produces more oscillations during the descent. This, in turn, shortens
thl period and leads to a stronger convergence in the angle-of-attack. For
very large value of k 2 the limiting curve tends to the Bessel's solution as
first derived by Allen (ref. 18).

From the definition (223) of k 2 , because of the large ratio R,/c, this
coefficient is very sensitive to change in the static derivative 

Cm. , 
that

is to the location of the center-of-gravity. We have seen that k 2 mainly

governs the oscillatory character while the damping is provided b the
positiveness of the coefficient k l as expressed in condition (232. This in
turn, depends on the damping in pitch Cm which, in this case of the SSTO
vehicle, in the absence of a horizontal 2tabilizer, must come entirely from
the wing.

To show that we still have convergence in the angle--of-attack while
relaxing the condition on C% , we consider two special cases with a positive
value for Cmo, . First, we consider the case where k 2 - k i . This corresponds
to the value C% - 3.64 x 10- 4 . Neglecting kj, we have a - 0 in Eq.(235).
With b - 1, the exact solution of this equation is





y(n) - C,Ei(n) + Cs

where Ei(n) is the exponential integral

n
E1(x) -Y+ log x+£ x

n-1 nnT

with Y - 0.57721... being the Euler's constant. From Eq.(224), with k a -ki,

n - k i 6, the solution for the angle-of-attack is

a - e- 
k16 

[C i Ei(k;6) + C2]

This, of course, is a damped solution for k i > 0.

The second case corresponds to k 2 - 0, which occurs for Cm, - 7.92 x 10-4.

In this case a - 1 in Eq.(235) and we have the exact solution

y (n) - en [C,Ei(n) + C23

where the exponential integral is now

^_ l^n^xn
E l (x) _ - Y - log x -	

nn!
n-1

The solution for the angle-of-attack is

a - C i E i (k,6) + C2	(252)

Since the function E 1 (x) is decreasing, the pitch mode is convergent but non
oscillatory.

Glide Entry

The coefficients b and c and the forcing function in the basic linear
differential equation (216) are now evaluated for the case of glide entry.

As shown in Chapter IV, for equilibrium glide, we use the approximation
YY0and

V' 
71 	 -	 dC = 1-v

V	
2v	 aCD°	 LO	 v

Hence, we deduce

6 1 C	 -v- =26C
^°	 v	 D°v 

It appears that if the speed is not too small, d' is of the order of 6 and
from Eq.(217), for the coefficient c(T) we can simply retain the moment term



because of the large.	 io R,Jc. This assumption is co,.:,istent with the
assumption of equilib	 n glide since from the general equation (219) for
the variation of the o, ity, when the speed is high, the flight path angle

is negligibly small and 6' Is small. Then, we write Eq.(216)

a" + k 4 8a' + k 5 6a - -6'C L, + 6 2 CL, CD.	 (255)

where

(Cm. + Cm )
4

ay	
(256)

Cm

k 5	 ka
r	 y

When Crrja is not negligibly small, the coefficient k 5 is large while the
damping term k 4 remains small. By Egs. ( 253) and ( 254) it is possible to
change the independent variable to d as has been done for thr case of

ballistic entry. But, in order to have a comparative analysis with the phugoid

mode for gl ide entry obtained in Chapter IV, we shall use the kinetic energy
V as the new independent variable. The transformation is done through the

first of the equations (253) written as

v' 	 2 ( 1 - v )	 (257)
E

where

E = CLo/CD"	 (258)

is the lift- to-drag ratio used for the glide. Upon performing this change
of independent variable in Eq.(255) and expressing d and b' in terms of v,

	

_	 we obtain the linear differential equation of the second order governing the

I
perturbation of the angle -of-attack during equilibrium glide

— d2a k 4	da	 Ek 5 	E(1+v)	 G
v(1-v) — - [v + 2C (1-v)] — + 4C a = -	 (259)

dv 2	Do	 dv	 Da	 4v

By the change of variable

=1 -v	 (260)

with c increasing from zero for a starting glide at circular speed, we have

the equation
d 2	 k4	 da	 Ek 5 a	 E(2-^)

	
(261)

Identifying the homogeneous equation with the hypergeometric differential

	

-T

	 eque tion
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2
a + [c - (a+b+1)C] d^ - aba - 0	 (262)

d,,

we see that

a+b=-^—
2CDo

ab = - 4C 5
	

(263)
Do

c=1

A physically valid solution of the equatio-,i is given by Gauss series with
c=1

F(a, b; 1	 1 + a • b ^+ a(a+l)b(b+1) ^2 + ...	 (264)

(1!) 2	(2!)2

In general, both k 4 and ks are positive with ks >> k 4 . Then a and b are
nearly equal with opposite sign. Hence, w4th the approximation -b = a > 0,
we have the solution for very large value of a

F(a, -a; 1; C) = 1 - a2
	

^ + a4
	

C 2 + ...
	

(265)

( 1 !) 2	(2!)2

= Ja(2a 3^)

We recall that ^ varies in the range [0, 1]. The Bessel's solution is a

damped solution and the number of oscillations increases proportionally with

a = 3 Eks/4CD,. Hence, as in the case of the phugoid mode, higher lift-to-

drag ratio provides more osci l lations. Here, the main influence comes from

a strong positive value of ks requiring a stable negative val ,le for Cm..

For the case of glide entry, if the static stability derivative is relaxed

thrusters reaction control must be supplemented to provide adequate stability.

To display explicitly the damping and the oscillatory characteristics,
we can perform a transformation of variables in Eq.(259), in a similar way
as has been done in Eq.(184) f-r the phugoid mode. With the change of
variable

a	 y	 v = cos2	
O < u < Tr

u	 _ _ T

Vtanl,/

(266)

the linear equation ( :59) is transformed into



i	 •

d---Y + { Ek5_	 1[(2 + k̂ "— sin zu) 2 - (1 + 4 cos2
C	

u)]} Y =
du z	Do	 4 sin 2u cos 2u	 D,

_ E 1 + cos 2	tan jl

	 (267)

Cos au(cosu) 4/ CDo

If CMOL is not negligibly small, ks is large. Then during the hypersonic
portion of the glide ::here the speed i s not small we can neglect the non-
constant term in the coefficient of y and obtain the solution to the
homogeneous equation in the form

a =	 1	 [Ci cos	
Cks 

u) + C 2 sin (	 ^k6 u)J (268)

V tams/(cosu)k4/CDo
	 Do	 Do

To this equation, we add a particular solution of Eq.(261) to have the
_jeneral solution. For small C we can consider the forcing function of this
equation as a constant. Then it appears that the particular solution is also
a constant and is very small'for large k 5 . Hence, for all practical purposes,
the angle-of-attack oscillation during equilibrium glide entry is given by
Eq.(268). The pitch mode is os:illatory and when v varies from 1 to 0, u
varies from 0 to n/9 and the number of oscil l ations is approximately

N = 4 
F	 (269)

C,

As for the damping, if k 4 > 0 the denominator of Eq.(268) increases during
the descent and the amplitude of oscillation of the angle-of-attack decreases.
When k 4 < 0, this function increases if the only if

1 + IL sin 2u > 0	 (270)

[P,

Then, depending on the negative value of k 4i when u is large, that is at low
speed, the condition may not be verified and a can increase after an initial
convergence.

ro verify numerically the analysis above, we choose a low angle-of-attack
for glide with the following aerodynamic data

CDo = 0.301

C D = 0.186
a

Cm =-0.012
a

Clo = 0.452 ,	 Cm, = 0
CE

C
L
 = 0.397
a

C M, _ -1.72

q

(271)
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This provides the basic numerical values

k 4 = 1.6195 , ks = 3.879 x 10 3 - = 34.779	 (272)

D,

The last number is the estimated number of oscillations if the glide is
effected until sea level. Equation (261) is selected for the integration
r:ith the initial value a, = 3% ao = 0 at ^ = 0.005 which corresponds to a
slightly subcircular speed. The solution is plotted in Fig. 25 in dashed
line. We notice the strong oscillatory character and damping of this pitch
mode. They come mostly from the effect of Cma in the coefficient ks. As
seen from condition (270), we still can have convergence of the solution
with small and even negative value of k 4 . This means that if the location
of the center-of-gravity is not far aft we can relax the effect of the
damping in pitch Cmq in the hypersonic glide mode. To test this assessment
we have generated a numerical solution, plotted in solid line in Fig. 25,
with k 4 = 0. According to the analytical solution (268) when ^ has hincreased
from 0.005 to 0.4, which corresponds to a decrease of the speed (v) =
V,/V--g-F. from 0.9975 to 0.7746 the amplitude of oscillation is reduced to
0.2947 of the initial amplitude. This is in complete agreement with the
numerical solution.
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APPENDIX A

CHARACTERISTICS `F THE ATMOSPHERE

In analytic formulation, there are two basic equations governing the

density of the atmosphere as a function of the altitude. The first is the

familiar equation of state for the atmosphere relating its pressure p,

density p and temperature T

p = pR*T	 (A.1)

where R* is the gas constant (R* = 287.053 MKS for air). The second basic

equation expresses that the rate of change of pressure must equal the increased

weight of the atmosphere supported, as the altitude changes

dp = -pg dH	 ^A.2)

From the equation of state

dp = dp _ dT	 (A.3)
P	 p	 T

which, combined with Egs.(A.1) and (A.2), gives

AL
P - -[	 T + T dH	 dH	 (A.4)

The density gradient has been defined as

Q = p ( dp ) = p ( dH )

or from Eq.(A.4)

Q = -R[
T
 + T dH
	

_	

(A.5)

For the Earth, at altitude below 120 km, -a, which is a dimensionless

quantity varies from 750 to 1350 with a weighted average of 900. Fig. A.1

plots the value of -a as function of the altitude. The discrete values are

obtained from numerical differentiation of the tabulated U.S. Standard

Atmosphere, 1962, while the smooth continuous curve is generated by using
the approximate inverse polynomial representation of the atmospheric density

as given in the U.S. Standard Atmosphere Supplements, 1966. It appears that

the average value of -a = 900 as proposed by Chapman in the analysis of

reentry trajectories can be used.

At low altitude, the density gradient is used in the form

I ^p=p=- 1+dT
p dH	 R	 T [ R*	 dH

(A.6)

Using the standard atmosphere, in the troposphere, up to 11 km, dT/dH is

equal to -6.5 x 10- 3 degrees/m and a"-.e 11 km, in the stratosphere,

dT/dH - 0. Hence we consider the .slues
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kte44w

H < 11,000 m	 1 dp _ - 0.0276632
p dH	 T

(A.7)
H > 11,000 m p d	 `'H = -1.57688 x 10-

with T expressed in degrees Kelvin.

f
f
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APPENDIX 8

S	 - 6000 ft 2 (557.42 m2)

Z	 = 219.12 ft (66.79 m)

i	 c	 = 58.14 ft (17.72 m)

t	 W	 = 429,613 lbs

I X = 8,510,000 slug-ft2

I y = 50,970,000 slug-ft2

I
t
 = 48,600,000 slug-ft2

IxZ = 566,499 slug-ft2

Dimensionless Ouantities

8 = 30 X - I Z )/Iy = -2.359623

ky = Iy/mc 2 = 1.129

R,/cc = 3.6498 x 105

Aerodynamic. Characteristics

As provided in reference 8, with typical values given in
Egs.(245) and (271).
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