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PREFACE

The progress of research on "Three Dimensional Flow Field Inside a
Compressor Rotor Blade Passage, Including Blade Boundary Layers" (NASA Grant
NSG 3266) for the six-month period ending June 30, 1982, is briefly reported
here. Two papers were pres;nted and published during this period. These

are listed in section 5 of the report.

B. Lakshminarayana
Principal Investigator
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NOMENC .ATURE

iv

fourth order tensor in pressure strain correlation model

ujul 1 5
2k 3 1]

chord length

modeling constants

dumping func ic°. for low Reynolds number flows
metric tensor

turbulent kinetic energy

length scale

distance normal to blade, normalized by blade spacing
pressure, fluctuating pressure

mean pressure

turbulence production

radial distance to the axis in equation 39
vector of unknowns

radial distance normalized by the tip radius

local Reynolds numbers

generalized gradient Richardson number

strain tensor
shear stress
fluctuating velocity

mean contiavariant velocity



Subscripts
i,] ,k,l,m,n

e

Reynolds tensor
local freestream (or edge) velocity
streamwise relative velocity normalized by Ue

velocities in radial, tangential, and axial direction,
respectively

contravariant and covariant coordinates variables
streamwise, normal, and radial directions (orthogonal to
each other shown in Fig. 12, z = 0 at leading edge, n = 0
on the blade, r = 0 at the machine axis)

distance along and normal to cylinder (Figs. 2-12)
chordwise distance normalized by the blade chord
boundary layer thickness

Kronecker tensor

turbulent dissipation rate

permutation tensor
molecular viscosity
U+ UT

turbulent viscosity
Yu'2/y

e
W2/

e
density
modeling constants
angular velocity

contravariant component of angular velocity

indices

edge



1. TURBULENCE MODELLING: REYNOLDS STRESS MODEL (RSM)

A literature survey on both the analytical and the experimental work
on effects of curvature and/or rotation was given in ref. 1. Some of the
important conclusions of that survey were:

1. Only few calculations are available for the prediction of the
three dimensional boundary layer in rotating frames.

2. No complete Reynolds stress model is available for rotating turbulent
flows. Very few attempts have been made to account for the rotation effects
in the k-¢ model and those are not based on a logical analysis.

3. There are very few detailed measurements providing information on

the effects of both the Rossby and the Richardson number on turbulence.

It was emphasized in ref. 1 that new experimental results would be of
great interest, particularly if the rotation effect can be isolated from the
other effects. It was also noted thata major effort should be given to
the analysis of the dissipation rate equation and to the Reynolds stress
equations.

In the previous report [1], modelling of the rotation effect and the
low Reynolds number effect in the digsipation and the kinetic energy equa-
tions were described, with major emphasis on the equation for the dissipation
rate. It was also noticed that, in the case of a k-t£ model, the assumption
of the existence of an eddy viscosity concept could not account for the
anisotropy of the turbulence which exists in the boundary layer around a
blade. The best way to avoid this problem would be to solve the complete
set of Reynolds stresses equations along with the momentum equations.

However, the calculation procedures for three-dimensional viscous flows
require large memory storage and large computer CPU time to solve the three

momentum and continuity equations. The resolution of tie six Reynolds stress
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equations simultaneously with the three momentum equations, the continuity
equation, and an equation for the dissipation rate is a very complex problem
and can still be considered as an unresolved one. It is hoped that the

rapid progress in computers and also the progress made in develonping calcula-
tion algorithms for three-dimensional viscous flows will allow such calcula-
tions to be done in the very near future.

A two-equation model is a compromise between a full Reynolds stress
model and the empirical models which fail to rep..sent the turbulence
properties in such complex flows as rotor blade boundary layer. However,
the anisotropy of turbulence which exists in flows cannot be represented
by the usual isotropic eddy viscosity formulation. In its more general
form, the eddy viscosity is a fourth order tensor which depends on many
parameters such as the Reynolds tensor, the strain tensor, the curvature
and the rotation. It is therefore, a very complex formulation, which evidently
represents very complex phenomenon. At this stage of the discussion it
appears that the eddy viscosity tensor could be as difficult to handle as
a Reynolds stress model, For the cases which are of interest to us, e.g.
blade boundary layers, an algebraic model of the Reynolds stresses hased on
the complete model, together with the dissipation equation might be a
compromise between a detailed description of the turbulent stresses (full
Reynolds stress model) and the very crude eddy viscosity hypothesis.

It is not necessary to solve the complete set of equations for the
Reynolds stresses, it is, however, necessary to analyze the Reynolds stress
equation to find out which terms have to be modelled or neglected and then

derive gsome propositions to model the remaining terms.



1.1 Reynolds Stress Equation

The equations of the mean and turbulent quantities for an incompressible
flow in the generalized tensor formulation aregiven in ref. 1. The Reynolds

stress equation which is of interest in the discussion that follows is

given by:
(PR +oTTw B,y = - @ISy + BTy 8] + 0 wjuput - uF - wED,
+ Py S * 7 Yk, j GJ ) °“i“'j(ﬁk,j +ZQP€kPJ) ) °“i“'j(ﬁi.3 * ZQPeipj
My - Pu Fip = 24 Sy (1

k'1,] 1k,] ik

It is evident that the Reynolds stresses appear to be affected explicitly by
the Coriolis forces, but they are also implicitly affected by the rotation
through the triple velocity correlatiuns, the pressure velocity correlations,
the pressure strain correlation, the production by the stresses themselves,
and the dissipation.

In the case of a Reynolds stress equation model, the second order terms
are handled exactly, then only dissipation, pressure strain correlation and
diffusion terms need to be analyzed and modelled.

These quantities must be represented as empirical functions of the
mean velocities, Reynolds stresses, and their derivatives and the rotation

and curvature. These terms will be analyzed and modelled separately.

1.2 Pressure-Strain Ccrrelation

o 5] L oo . -
PTul y S+ RTuRy y Sy = RTul L RTYy

Following Chou [2], the explicit appearance of the pressure may be eliminated
by taking the divergence of the equation for fluctuating velocity u;. thus

obtaining a Poisson equation for the fluctuation p'.
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The fluctuating Navier-Stokes equation is:

v P ,r r
(ou )"'(puz“ T pu;tU + O\xi L Pugu t'),r + 2£2prpn u' = .(pbjl - Fl ),

let us then take the divergence of equation 3

fm, *, fm, = ,r oL 4 e . 1T fm P .,r
g (pu L)’m + 8 (pUlu + puzv +pulu'” - punu )'rm + 2g (egprpn u )’m

L
UL 0 PSSR
g (p 61 F2 ),rm

and with the continuity equation: ﬁ%i =0 ; uy - 0
we may re-write this equation.

a) the time and space derivative are commutable, then the time derivative

disappears

b) the viscous term also disappears.

Vz ! e (BT SRS S - = o (T m P, ,r
-;2- ', - e, 2(u’?r + eprn Yuj (4)

which is the Poisson equation for the pressure fluctuation
Then following Chou, the pressure fluctuation may be expressed in

the following form for a position x in the flow.

' (x L =B ,T dv;
( f]fvol { i 1 ) mr, - (ul Y1 )’mrl} ]TE?T
Ly, (B el

+€ —~
l,rl prl 1,m1 |l5||
3p. 1,117
1 3 {I]gll
+ 70 II { - 5} }as (5)

‘ nl anl 1

where terms with and without an indice 1 relate to values at xl aad x,

respectively (the integration being carried out over x; space) (E = ;1 -%.



An expression for the pressure strain correlation which sppears in the
equation of Reynolds stresses can be derived as follows. We calculate the
correlation at point x, then u) ., and ui are independent of point x, and

i,k i 1

may be considered as constants for the volume and surface integrals.

Then we may write:

p'u
1.k ) % % %
5 R PR TR PR

p

Yk, 1 % L L
TR A TR R T T UAT AP (6)

with:

| 4v!
L -1 |, T W X 1
¢ k,1 47 If;vol (“1 ui )’mrl Yoy I’Ell

L § fm n P
ok,2 27 ijvol {Ul.r1 + eprgl} e

L 1 1 pl ' —1—1—31/H§H
% " s b3 vy - PO } €)
p‘’S du K 1%,k 9n
Hell 1
Equation 6 suggests that thers are three distinct kinds of interaction giving
rise to the pressure strain correlation; one involving fluctuating quantities
¢i 1 another arising from the presence of "external effects" such as mean
*
L
strain rate and rotation ¢ k.2 the last one is a surface integral which
1]
will be negligible away from the vicinity of a solid boundary [3].
Some of the proposals for closing the Reynolds stress equation have

assumed that ¢ is the only significant contribution to pu N [4-6].

ik,1 i
However, Reynolds (7] has shown that prediction of a range of even homogeneous



free turbulent flows demands the inclusion of mean astrain rates in the

pressure-strain terms. Moreover, both Townsend [8] and Crow [9] have shown

that under conditions of rapid distortion the effect of °ik 2 far outweighs
1]

that of ¢1k,1'

It 1s then necessary to model ¢ik,2 as well as Qik.l'

1.2.1 Modelling of ¢y 2: "Rapid Term"

OQur practice in simulating ¢1k 2 and ¢ki 2 takes its direction
1 4 L]
from Rotta's analysis and more recently Launder, Reece, Rodi (3] and Lumley

{11]. It is easy to show that the rapid term can be written as (Appendix A)

» ) 4 r
Usp Cpgp ¥ %py

Se,2 ¥ %yg,2 t
where

dv'
Ll R o AP r '
U U?t + eptﬂ and a (8)

1 T L N
% 3 mik 2m vol 11 mlk ”EH

Equation 8 is a rigorous consequence of equation 6 when all second der.iva-

tives of the mean velocity are negligible and the turbulence field is

homogeneous. It is of course only approximately true in more general flows.
In the case of a cartesian coordinate system, Rotta [10] has commented

that the fourth order tensor a should satisfy the following conditions:
Tmik

symmetry: &rmik - *tark ° ‘ramik | “rkim (%0)
inccmpressibility: & gt " 0 (9b)
normalizatio~: & .. = 26:3; (9¢)
isotropic turbulence: & ik " (4 61L£r1 - Gri Gnk - Grk éﬂi)i%- (9d)




The spectrum of the Reynolds stress completely determines the form of & ik’
If we assume that the spectrum has an equilibrium form, we may expect the
form of this fourth order tensor to be expressible in terms of the Reynolds
stresses. There are 10 linearly independent combinations of the anisotropy
tensor which satisfy the symmetry conditions, incompressibility, normsliza-
tion, and isotropy condition. In practice, the first two linear terms are
used (11]. However, Lumley has shown that this approximation does not
satisfy the realizability condition. It is necessary to go at least to
second order terms before this can be achieved. A model 1is said to be
realizable if it guarantecs that quantities which should be non-negative

(like variances) will remain non-negative, and that correlation coefficients

will never exceed unity in absolute value.
Lumley's Model (11

§ 8. -6.6 )/3

L == Sk " Gribnk)/s + (“risnk T "ra ik rk mi

raik bti nk

+ C(bméik + binsrk + brkéim + biksm )

with
“rui 1
bry ” qz =36, W4 Ay " Wy

and only one constant to adjust.

Launder, Reece and Rod{'s Model [3)

These wthors approximated the tensor a X by a linear combination of

ol
Ryenolds stresses. Their method is very similar to Lumley's; the symmetry

constraints imply that the fourth order tensor msy be written as:
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atm:lk Eskn urui + F(Gki urum + 6&1 uruk + 6kr “1um + 6mr uiuk) + c26r1 ukum
+6 GriGmk + n(skiam + Gmdu)k (11)

where E, F, G, C, are constants. The application of equations 9b and 9c

2

enables four of thege constants to be expressed in terms of the fifth: in

terms of C2
E=4C2+10 I::-2+3cz
11 ’ 11
c - Soc2 + 4 . " zoc2 + 6
55 ’ 55

In cartesian coordinates, equation 8 may be then written in the following

compact form: (Launder, Reece, Rodi [11]; Cousteix, Aupocix {13])

C. +3 30c, - 2 au* ou*
. _2—.- * - —2. * - 2 k i kl
%2t %2 1 Ph - 5 Syt 55 {3xk + ax,
8c. -2
-2 [k - 2 * 1
- 11 {Dik 3 §ix P } (12)
with
SU* Uk Jux U*
P = - Y ETHE Sry pry S S E S ry £ Sy rry U
ik 1¥5 ax, ~ "k"y ox, * ik 1y 3x %Y ax
h| h i
UK Jux 30
X - oo T U —-—E . ——k- = k
P Yk B, P Ty TR, ket &

It is interesting to note that equatiom 12 has been derived mainly from
kinematic arguments, for the case of isotropic turbulence subjected to

sudden distortion, equation 12 reduces to:

aﬁi aﬁk‘
(¢1k + ¢k1)2 = .4kf§;; + 5;;) irrespective to the constant C2

which is the exact result derived by Crow [9].



However, it appears that equation 11 together with relations 9 cannot
be generalized to any kind of coordinate system. In fact, if we go back to
equation 8 it is easy to show that the fourth order a:1k
conditions 9b and 9c. A detailed analysis is then necessary to derive

does not satisfy

a general formulation for relation8. While we await the final resolution of
this problem (the study is under development) it is interesting to point
out some features of this problem.

It appears from equations 10 and 12 that the '"rapid term" of the
pressurc strain correlation might be expressed in terms of the Reynolds
stresses or the anisotropy tensor and what we will call here the "external
effects", e.g. mean strain rate, rotation. Moreover, one of the essential
properties of the pressure strain correlation is its character of redistribu-
tivity (e.g. this term vanishes under contraction of indices). It also
tums ouc, looking at equation 12, that the 'rapid part" of the pressure
strain correlation, is a turbulence production like term, e.g. the term
may be approximated by a similar expression to the production by the
turbulence through the "external effects.”

Then a simple way to express the "rapid term" may be given as follows:

2
= ® —_— ®
¢ik,2 + ¢ki,2 Cp(Pik + 3 P 6ik) (13
where
* - - 'j * 'j *
Pik uiu U uku U
E *1 »i -1 i.p
X = - +
P u u' U’k and U,k U’k epkﬂ

In order to be sure that the expression will behave properly in all coordinate
systems, it is necessary that the constant be a function of the invariants
of the anisotropy tensor, and the local Reynolds number of the turbulence.

These invariants are defined as:
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{ Jok 4
Ky 5Ip5p
I --—iz-15 ; 111--—%—1-3 (14)

A formulation of the coefficient Cp is under survey, some directions towards
this end have been proposed by Lumley (11].
According to equation 13, ¢ + ¢ tends to isotropize the turbu-
ik,2 ki,2
lence production tensor. However, it is interesting to note that if the
production due to the mean strain is following this trend, it is not true

for the terms involving the Coriolis force effects.

1.2.2 Modelling of ¢ikll: "Return to Isotropy"

Let us first present some basic features about this term:

1 X .m ' dav'
q’ik,l — j”vol (u)"uj )’Qmui,k EI

1 |!‘- 'm v dV'
tei,1 ™ gor 100 e 141 e

This term involves only the fluctuating quantities and is respomnsible for

the retum of anisotropic turbulence to isotropy, in the absence of other
disturbing effects. Rotta [10] pointed out that ¢1k,1 + ¢ki,1 is a symmetric
tensor with zero trace, which vanishes if the turbulence is isotropic. Since
thig term acts to interchange energy among the components when the turbulence
is anisotropic, and vanishes when it is isotropic, it is natural to express
it in terms of the anisotropy tensor of the turbulence, which is also a
symmetric second rank tensor which vanighes if the turbulence is isotropic.
It is also easy to show that, for a flow without mean strain and rotation

and initially non isotropic the Reynolds stress equation may be written

as (cartesian tensors)
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-
i‘.‘-i—u—k-¢ +¢ -368
at ik,1 ki,1 3 "1k
which leads to
T _
B(uiuk 2/3 Gikk) -e .o
at ik,1 ki,1

Therefore, as the f{low must return to an isotropic state, the following

assumption is made:

¢ ¢

ki, 1 - €

u.u

€ (orr _2
1k e -3 ¢

k) (16)

k,1 ¥ 1k

where % is the rate of time at which the energy is mainly transmitted from
big eddies to dissipative ones. The value of the constant has been originally
set to about 1.4 by Rotta. Different authors have then used a value of ¢,

of about 1.5.

According to equation 16, the sign of ¢ is always such as

1,1 * %i,1
to promote a change towards isotropy, its magnitude being proportional to

the local level of anisotropy. This term is called "return to isotropy’

term, and this model gives acceptable behavior in most situations of practical
importance. However, it does not take into account the variation of the co-
efficient C; with the local Reynolds nuuber of turbulence, or the variation

with anisotropy. It is found experimentally that C. is larger when the

1

turbulence is more anisotropic. Consequently, the coefficient C. appears

1
to be a function of the Reynolds number and of the anisotropy. This
anisotropy is generally created by "external effects'", such as shape of the
boundaries, rotation, mean strain. In fact, these effects mainly influence
the time of return to isotropy. Then we may write that the tensor

¢ + ¢ is a functional of the anisotropic tensor, but also depends
ik,1 ki,l

on the Reynolds number, the "external effects'" explicitly. In fact, we
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may divide these effects in three main categories:
the gross turbulent structure effects: through anisotropic tensor
the dissipative effects: through Reynolds number of turbulence

the "external effects': through mean strain, rotation, curvatures

It is shown in Lumley [11l) that, even though in many flows the turbulence

does not become sufficiently anisotropic to make realizability a necessary
*ondition, there are, however, some situations where the “urbulence does

become nearly two dimensional. The constant C1 should then reduce to 1.

It is clear that in order to be sure that the expression will behave properly
in all corodinate systems and situations, it is necessary that C1 be a function
of the invariants of the anisotropy tensor, the Reynolds number and the
"external effects'".

Lumley [11] proposed a formulation of the constant Cl' In his paper

the constant is 2C1. Then the formulation is:

zc1 - c2 -2 4+ F(Rp, II, ITI)(1/9 + 3I1I + II) an

2
where Rz = ;2 /9%v and II and III are the invariant of the anisotropic

tensor.
F is then expressed as

1/7

F= exp(-7.77/R1 1/2

O +80.1 Ln(l + 62.4 (-II + 2.3 1ID)}} (18)

y{72/R

Equation 18 is simply an interpolation formula to connect the known value
in a certain number of experiment. However, this proposition gives certain
directions which could be followed to establish a formulation of the constant

Cl.

C1 = Cl(nT, I1, III, Ric) (19)

where RT is the local Reynolds number and R1c is the local Richardson
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number of the rotation. The formulation of the quantity C1 is under survey.
It is not known now whether all these effects are really necessary to be
taken in account. However, it is certain that the Reynolds number is to

be important in the evolution of the coefficient C At this stage arguments

ll
concermning the expansion of C1 in a power series remains one of the

directions to follow to derive an expression for the coefficient.

1.2.3 Modelling Near the Wall

Near the wall, the surface integral in equation 5 appears to

become important in magnitude and must not be neglected. In fact, Bradshaw [14]
demonstrated that the surface integrals Cik and Cki would make a significant
contribution to the pressure-strain correlation as long as the typical size
of the energy containing eddies was of the same order as the distance from
the wall. As he remarked, this condition is always satisfied in near wall
flows.

If we refer to Launder, Reece, Rodi [2], for a plane wall (with X,

normal to the surface) the pressure strain correlation may be recast in the

following form, from which the surface integral is eliminated:

5' 20! ' 7 r"_g""
p_'ﬁ._l.; [f._"’fﬂl Eﬁ+2(wj(“2) “1}[ 1,1 )dv
- - gk
p 3x, 47 ‘vol 3x13mel e 1 19% ) X [x =yl 7 |x - y*]| 20)
where y* is the image of the point Y in regard to tha wall.
This form again suggests that there should be two contributions to the

near-wall effect corresponding to the reflecting wall influence of ¢ik 1 and

$ Therefore, they proposed a formulation of the wall proximity effect

1k,2°

on the pressure strain term as follows:
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a0
€ (= X oped mk'}
g * 09, = 10§ G - 50,0 + 5 ax, (ogs * G“i 1)

where £ denotes the length scale of the energy containing eddies, thus

In the general case, the two surface integrals are:

sp

= 1 l 1 L] / E

“tk " m s {l‘§|‘ Bn, L.k - PT9 an, pas (22a)
sp IIIEII

C - 1 { l 1 u' - | Y (ZZb)

ki 4mp ‘S ”E” anl k,1 1 k i nl

where the quantities with subscript 1 correspond to point Py and others

to point p. 3/3n1 is the normal derivative and dS1 is a surface element.

The value of this {ntegral is to be evaluated at point p. Following Raj [15],
a series expansion would indicate that, to a first order approximation,

equation 22a can be written as:

]

L ds = F
1

1 9p

— e !
Aﬂllgll Yk Is n deviatoric, external effects} (23)

“1k * k|

It is clear that near the wail the deviatoric of the Reynolds stress and

the "external effects" should have some contribution to the surface integrals.
Unfortunately, the experimental results very near the wall are extremely

rare, particularly on curved surfaces, and it is therefore very difficult

to derive a specific modelling of the surface integral in the case of

highly curved flows. However, for flows over mildly curved surfaces we

may hope that the only important length scales are the local turbulen t
3/2

length scale and the normal distance to the wall y. Moreover, it is
also hoped that the predictions will be less sensitive to assumptions made
to third order correlations, handling the second order ones exactly. Then,

following an analysis close to Launder, Reece and Rodi's one, the effect of
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the surface integral is modelled through the introduction of a function

of the turbulence length scale and the normal distance to the wall y, in

1] 1
the general model for (ﬁhi’k + ﬁhk’i).

T

k,i

tpu Lofec, E@aT-25,,10 - c(pr - 256, P} f—%p (24)
““1% Y% T3 i P ik ~ 3 “ik nii'f

p

A PV ]
PYy K

where FC——&I) must veduce to one away from the wall.
n
4X

1.2.4 Summary
A model for the pressure strain correlation has been proposed,
which includes the effects of rotation and curvature explicitly. However,
, C_ and F( L
1 P nix
to be defined. Some directions have been given, but further work is needed.

this model is still under study as three functions C 7) have

The pressure strain correlation model is presented above @quation 24).
The coefficients C1 and Cp are functions of the local Reynolds number, the
Richardson number and the invariants of the deviatoric of the Reynolds stress
tensor, while F(-&I) is function of the length scale and the normal distance

nix
to the wall.

1.3 Diasipative Terms and Diffusion

Referring to equation 1 for Reynolds stress, two kinds of terms remain
to be modelled--the diffusion term, which included viscous terms as well
as pressure velocity correlations and triple velocity correlation, and

the dissipation terms. Let us examine the dissipative terms.
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Dissipative 'lerms

D w -F'u! where F, 6 = “(“1,3 + uj'i)' 2usi_1 (25)

J '
k1,] 1k, 13

in incompressible flows, only the fluctuating quantities remain in equation 25

then,

'3 130 '.lv *
D = -u(s; u oy Sy uk.j) where S, Z[ui’J + uj’i) (26)

'J [ ] 7
K%,y 9857y

it has been shown that we may write:

Terms like s have been derived in the previous report and

|j' :_e_ _\3—

®k ui.J v {Gik t a8 v/ € ik} (27a)

J.oo L& TV

8 %,3 " v {8 + 1 /2 I (27b)
Therefore equation 26 may be approximated by

D = -pE 3{51k*“’e O, (28)

A dimensional analysis, using similar approximations as the ones used in
the previous report shows that the term involving the mean strain is of
order R;llz, and therefore is negligible in high Reynolds number flows. In

that case the decay rate D reduces to:
D= - 2 §.. pe (29)
3 ik

which is the form proposed by Launder, Reece and Rodi [3] who assume the
dissipative motions to be isotropic. Several experimental studies have
shown that turbulence does not remain locally isotropic in the presence of
strong strain fields [8, 16]. Nevertheless, equation 29 seems to be enough

for most of the flows studied by Launder et al. In the case of low Reynolds
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number flows, the energy containing and dissipation range of motions overlap

and the dissipation rate is then commonly approximated as [10)

Ty
Y% ¢
X

(30)

Equations 29 and 30 have led a number of workers to propose that in general

the correlation may be approximated as:

.2 uiu
D= -3o0e {a ¥yt F'} (31)
k2
where Fs is a function of the turbulent Reynolds numbex "%

A detailed asnalysis of equation 31 has been proposed by Hanjalic and

Launder (17]. However, equation 30 is not asymptotically valid. In fact,

as the Reynolds number increases the equation 30 should reach continuously
the form obtained for very high Reynolds number (equation 29). It seems that
equation 28 should not present this problem, therefore we may re-write

equation 28, including the Reynolds number of the turbulence
2 k — _=1/2
D=-3 pe{6ik ta o Ry } (32)

where a is a constant of order 1. Some numerical calculations are needed

to derive an "exact" value for the constant a.

Diffusion Terms

There are two kinds of "diffusion" terms, the viscous ones and

the third order correlation ones. The diffusion terms in equation 1 are:

it = -(FTaged + 7yl + oupuped),, + (o ¢ wed),

triple correlation viscous
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A dimensional analysis, again shows that the viscous terms are of order
R:l and smaller than other terms. Therefore, it is evident that these terms
will be important only for low Reynolds number flows, very near a wall. The
triple correlation terms need to be modelled so that the complete set of

Reynolds stress equations is closed. This work is presently under survey.
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2. TURBULENCE MODELLING: k-¢€ MODEL

2.1 1Introduction

An snalysis of the kinetic energy and the dissipation equations have
been presented in the previous report [1]. At that time, we made the following
remarks.

The rotation does not appear explicitly in the kinetic energy equation,
but is present in the dissipation equation. However, in high Reynolds
number flows, we have shown that this explicit effect was negligible. At
low Reynolds number (the Reynolis number is based on the following turbulence
characteristics: k, € and is h}/ve = RT)' the dissipation becomes non-
isotropic and both the effects of Reynolds number and Richardson number may
be important in this case. But the main remark is that the effects of rota-
tion are more important on the production of turbulence implied by the
interaction of the Reynolds stresses end the "external effects", than on
the others. 1In fact, i{f we refer to the previous chapter it is easy to see
that the Reynolds stresses may be greatly affected by the rotation while
the kinetic energy and its dissipation rate are not so much affected. Then,
it appears that in any two-equation turbulence model combined with an eddy
viscosity hypothesis, the first priority is to control the calculation of
the eddy viscosity coefficient. In fact, in most of the work done, the
main hypothesis to derive the viscosity law assumes that the turbulent viscosity
is isotropic. For simple shear flows, this gives adequate results at very
low cost. However, for three dimensional flows and particularly for some
boundary layer flows the velocity vector ; and V: are not aligned in
general. Therefore the {sotropic eddy viscosity is not adapted tc predict

the behavior of the Reynolds stresses. Solving the complete set of Raynolds
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stress equations would avoid this difficult nroblem, but it is a tremendous
work which involves very important nmﬁrical schemes, which are only in their
early stages of development., On the other hand, the eddy viscosity is

s fourth order tensor in general, however, in many real flow situations,
there ¢re mly two directions in the flows which are of equal importance

(it is the case for blade boundary layers). Therefore, we are able to
derive different eddy viscosities to take account for the anisotropy of the
flow. More generai.y, it would be interesting to classify the flows that
the engineer is encountering in which we could use such an eddy viscosity
model. This can be related to "Zonal Modelling" referred to by Kline during
the last Stanford Conference on complex turbulent flows.

To be able to check some of the assumptions made previously, particularly
for low Reynolds number modelling, a computer code was developed based on
the Patankar-Spalding procedure [18], which solves the parabolic two-
dimensional and quasi-three dimensional transport equation for the velocity,
the kinetic energy snd the dissipation. Chapter 2 is divided into two parts.
In the first part, we present some simple approach to the modelling -# rhe
different stresses. In the second part, some calculations of a boundary
layer developing on a rotating and non-rotating cylinder is presented. The
non-rotating cylinder calculation has been done to show the effects of the
corrections due to Reynolds number ond Richardson number of rotation in the
dissipation equation. A brief «planation of the Patankar-Spalding numerical

method i{s given in Appendix B.
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2.2 Algebraic Modelling of the Reynolds Stresses

The Reynolds stress equation presented in Chapter 1 (equation 1),

together with the assumptions made, may be written as:

. A [ 7% I e 7% tatuyd o o'Pd o !
(p agu)+(p uguy U, ==(pluy§ + pu by + pugupu “1’;11 “:;1)'5 +3(uyu)
(33)

where the left hand side is the convective like term, the first group of the

right hand side is the diffusion like term and C(ului) is the source-sink term.

g(u'uY) CF
1"k £ I P L 2 r £
- ’u[l - cp’(nixﬂ] * Ryl I xz)] +3 80 SFGED?
' 1 £y Y% 2
Ak 2 s
- €1 -cF (;‘—ii-{))l - clr(:;{)e T ke,
(34)
vhere
-_tnj _-003 R __P ..3 ,,!
Py ugu Uk,j wu ﬁi,J i Ry 29 (Eipj ugu’s + ckpj uju )
o oatatd gt . -1
Pe-uu ﬁ,j PSS, "3 (!31'k + ﬁk'i)
The kinetic energy equation may be deduced from «quation 33.
(k) + (k5™ = -GTa] 61 ¢ okur? - ugrth 4 20 (35)
wvhere (k) is the source-sink term and k = % ;1k GIG;
) e (36)

e

The transport snd diffusion terms are treated by the technique known as
algebraic stress modelling {19]. The net transport of u;u{ is assumed to
be locally proportional to the net transport of k, the coefficient of

proportionality taken as uiui7k. Thus for incompressible flows,
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(wJur)+(aToy T ),j - Dif(ujuy) = — (k + (x )ay - Dif (k)) 3n

where Dif denotes diffusion terms.

This treztment appears to be reasonably accurate for thin shear layers
except near an axis of symmetry. However, the turbulent boundary layers in
a rotor are far to be axisymmetric and more over if any symmetry exists it
must be a symmetry in regard to the axis of rotation which is never in
"contact” with the fluid. Therefore, substitution of the model assumptiomns

yields the following algebraic equation for the Reynolds stresses:

- R 1-521,( £\+[1_cp_1_\)(? _ 2 P)_la -1/2 | o
YN |2, 1k 2 a1 T ST ) P T3 P T3 2 Ry 1k
r 3%kt

(38)

A
The form of the wall-damping function F(
nix

as the values of the coefficients Cp and C

i] must now be specified, as well
1’ and a. This is presently under
survey, however, we still may discuss equation 38. This equation is basically
a non-linear algebraic system of six equations, in fact, which have to be
solved simultaneously. The six equations plus a formulation for the dissipa-
tion rate, will form a closed system, providing we know the mean flow.

It is interesting to note that several authors have treated similar
equations as a linear system, provided that the kinetic energy k and dissipa-
tion rate € are calculated with two differential equations, and most of all
the computations are restricted to local equilibrium turbulence for which
P/e is unity.

In this case, equation 38 provides mainly some indications on the

anisotropy of the flow and then the quantitative values are given through the

calculation of k and €. It is therefore not necessary to define any eddy
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viscosity formulation. If we want to solve this system still linearly, when
P/c is a function of the space, it is necessary to make an assumption on

the denominator in equation 38; then provided that the evolution of the
stresses in the main direction of the flow is not very important, which is

a good approximation in boundary layers flows, we may calculate the stresses,

supposing that P + E(CIF (n:ii) - 1} is taken at the previous step, in a
parabolic marching method, where all the quantities are known.

On the other hand, it is also possible to solve the system of six non-
linear equations plus the equation for the dissipation simultaneocusly. The
numbar of equations to solve is then reduced to seven. However, it is
well known that non-linear systems are very much sensitive to the initial
conditions we must give in order to iterate and converge toward the solution.
But still, in the case of parabolic type flows, the evolutions in the stream-
wise direction are very much less important than in the normal plane, so

that it is possible to use the values at the previous step as a first guess,

and as the changes should be small, the process should converge rapidly.

2.3 Calculation of the Boundary Layer Qver an Axial Cylinder

The governing equations in the axial and circumferential directions for

a uniform property, axisymmetric turbulent boundary layer flow may be written:

- - U _ =
L IR I W il
Ix 3y x r dy
- 3 Ba/r 2—'-—'
pﬁiﬁ+oﬁaf".la(ru ol (39)
X dy r 3y

which together with the continuity equation
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and of radial equilibrium of the mean motion

2

Nltﬂ

-p

lar
<

Constitute a closed set if we define a model for the two Reynolds
stresses p33 and pw'v'. The independent variables x and y are respectively
the axial and radial direction. The corresponding velocities are U and V.

W denotes the circumferential velocity and is zero for non rotating cylinder.
All symbols are defined in the nomenclature. The effective viscosity of

this flow may be taken as the sum of the laminar and turbulent contributions,

i.e.
ueff LI uT

Provided that the two Reynolds stresses are respectively aligned with the
correspondent mean strain. The turbulent vwiscosity My is obtained from the
solution of the following differential equations.

Turbulent kinetic energy k:

u
S 3k . - Ok 1aru+°:-% ax}/2)2
el 5 +P-oe-2u[ay) (40)
Dissipation rate €:
u
2 “*'o—r‘%';? 2
- 3¢ =3 1 3 € £ 1/2
U= + 0oV 3 ;- 3y +celkp 'Ce2° k+cgavp (41)
with
Paw-, ooy _ o 3w _w
pu'v pw'v (By :\
2 2
k 2 k
e = CF P Fu-exp(—3.6/(1+&r/50)} , 3
2
o =1 , o =13 csl-l.éé , c€2-1.92 [lo.3exp(-RT))
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u
ol ;Tf' W/r (42)

= -r-'- —— -—r'
CE3 2 and pu'v MT 3y ’ ¢ ow 3y

Discussion about the coefficient Uw will be presented later. In the preliminary
calculations ow has been taken equal to 1. This coefficient represents the
anisotropy existing between the Reynolds strers components and the mean strain
components. This model has been tested first, on an axisymmetric cylinder
to check the effects of the corrections due to low Reynolds on the equation
of dissipation rate €, through the coefficient Cez. We may see on Figure 1
that the correction allows a 30 percent damping of the value of €. However
this damping function starts to be effective at Reynolds numbers lower than
two which means that occurs well inside the viscous sublayer where the
viscous effects are preponderant over the turbulent ones. In Figures 2 to 6
we present some comparison between two calculations, the first one using the
low Reynolds damping function in the equation of € and the second one letting
CEZ = 1.92. 1t appears that the maximum differences around 1 percent on
quantities such as the kinetic energy, the dissipation rate, the wall shear
stress and below 1 percent for the velocity profile, which is well beyond
the accuracy we may hope from this type of calculation and experimental
measurements of these quantities. We may wonder why then implement such
corrections. It is possible in certain very low turbulence flows that this
function may have some more important effects. However it is evident that
again the changes due to the production terms in equation 40 and 41 are much
more important and over a wider distance from the wall. Then it is in fact
the modelling of the Reynolds stresses themselves which is making the big
difference.

To illustrate this, the calculation of the boundary layer developing
over a cylinder of which one part is rotating is a good test case. In fact,

the boundary layer first develops along the static cylinder as a classical
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two dimensional boundary layer. It is then submitted to a sudden transversal
distortion by rotation of the downstream part of the cylinder. Sufficiently
far away the origin of the spinning part, the reorganization of the three-
Jdimensional boundary layer into a two-dimensional one, in a relative coordinate
system is in an advanced phase. Very near the discontinuity in boundary
conditions, the three dimensionality is stronger. A recent paper of
Arzoumanian et al. [25] shows that in a relative coordinate system linked to
the moving cylinder, far from the origin of the spinning part, the turbulent
quantities are very slightly influenced by the three-dimensional effects,
except the Reynolds stress uv. This suggests that the evolution of uv and wv
in the fixed coordinate system are different and therefore the anisotropy of
the Reynolds stress tensor is quite important, at least in the very beginning
of the rotation. Then a model based on an isotropic eddy viscosity (e.g. the
two directions have the same characteristics) should fail to represent the
dynamic characteristic of such a flow.

We present hereafter some calculations of the rotating cylinder with an
isotropic eddy viscosity to illustrate our purpose. The calculation is
confronted to the experimental results of Lohmann [20]. Figures 7 and 8 show
the development of the mean velocity profiles U and W, while Figure 9 shows
the evolution of the limiting streamline angle along the streamwise direction.
Differences betwecn the experimental and calculated profiles are up to 9 per-
cent in our calculation, it can be easily seen in Figure 7.

However, larger differences appear in the calculation of the Reynolds
stresses u'v' and w'v', (Figures 10 and 11) particularly for w'v'. It is then
evident from these calculations that the isotropic eddy viscosity fails to

represent the characteristics of the flow.
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Different authors have proposed some alternative to model such a
behavior. For example, Koosilin and Lockwood (21] derived eddy viscosities
for the two directions and then define a viscosity ration 01'2 = uTlluTZ
which globally represent the anisotropy of the Reynolds stresses. Cousteix
et al. [22] proposed a similar approach with the k-€ model.

A very simple way of deriving two different eddy viscoeities is to
use equation 38, which gives the ratio u'v'/w'v' representing the differences
between these two Reynolds stresses.

We are now developing two different schemes using equation 38 to solve
the turbulent field. The first scheme solves the momentum equations and the
kinetic energy and dissipation rate equations first using the stresses u'v'
andv'w' calculated from the linear form of the equation 38 as we discussed
previously. The second scheme solves the momentum equations and dissipation
equation using again the stresses u'v', v'w' and ;TI’ ;77, ;T? calculated
from the algebraic nonlinear system 38. The system of six nonlinear equations
is solved with the iterative Newton-Raphson scheme.

These two programs are now almost in their achieved form. A brief

discussion of the numerical method used to snlve the differential equationms

is presented in Appendix B.



3. NUMERICAL ANALYSIS OF BLADE AND
HUB WALL BOUNDARY LAYERS

In the early stages of the present inveastigation, an attempt was made
to predict the blade boundary laver using the parabolized form of the
Navier-Stokes equations. The procedure involves the solution of the momentum
equations and the Poisson equation for the pressure.

Numerous investigators have tried different ways of deriving and
solving the Poisson equation for the preasure. In most of the cases the
procedure requires some kind of iteration to ensure mass conservation. All
the previous investigations indicated that the solution of the Poisson
equation and the ensurance of mass conservation are the most troublesome
parts of the whole procedure. The efficiency and accuracy of the method
depends almost exclusively on these factors. The situation becomes more
difficult in the case of complex geometry, like for example in the case of
a turbomachinery rotor passage.

Up to date, nobody has come up with a "clean"” solution to the problem
and all the evidence shows that coupling the momentum equation with the
Poisson equation for the pressure is an ill-posed problem. Based on the
above discussion we decided to try to solve the problem by using a procedure
which does not involve the solution of a Poisson equation for the pressure.

The first attempt was to solve the incompressible set of equations

(three-momentum and continuity) with the vector of unknown given by,

£ < o v
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We tried to solve this system of equations by marching in the stream-
wise direction £. We soon realized that:

1. When treating the streamwise pressure gradient fully explicitly
(i.e., following the classical assumption of the parabolized Navier-Stokes
equations) the Jacobian matrix, which expresses the changes in the streamwise
direction, becomes singular.

2. When treating the streamwise pressure gradient partly explicitly
and partly implicitly the solution is unstable. This is because our system
of equations has both negative and positive eigenvalues. This makes it
impossible to solve the system of equations by marching in the streamwise
direction.

An attempt is presently being made to solve the compressible set of
equations by marching in the streamwise direction. This procedure was
developed by Govindan and is described in ref. 24. The code is presently
working well, and it has already given very encouraging results for some
test cases. So we decided to use that code for the solution of the flow in
the blade passage, including the hub wall and the blade boundary layer.

We are presently working to adapt the code to our particular problem

with the turbulence closure model described in section 2 of the report.




4, EXPERIMENTAL STUDY OF THE ROTOR BLADE BOUNDARY
LAYER IN AN AXIAL FLOW COMPRESSOR ROTOR

The measurement of the blade boundary layer in the rotor of an axial
flow compressor is presently being carried out. The study is performed in
the Axial Flow Compressor Facility, located in che Turbomachinery Labora-
tory of the Department of Aerospace Engineering. The on)y similor study
available at the present time is that due to Lakshminarayana et al. [23,24]
inside the rotor of an axial flow fan.

All the measurements reported here are taken with a hot-wire probe
rotating with the rotor. A miniature cross flow "X" hot-wire probe,
TSI 1247, with sensor diameter of 3 um and sensor length equal to 1 mm is
used.

Both the sensors are within a circle of approximate diameter 1.5 mm.
The sensors are located in the zR plane with their axis at 45° to the z axis
{Fig. 10). The probe is traversed normal to the blade surface. Since the
flow traverse is done close to the blade surface, the component of velocity
in the n direction is assumed to be small.

The boundary layer measurements are carried at non-dimensionalized
radii R = 0.583, 0.67, 0.75, 0.832, 0.918 and at various chordwise locations.
Only one chordwise location has been surveyed so far, at each of these

radial locations.

4.1 Experimental Results

Only a brief interpretation of the results is given here. Detailed

interpretation will be given when the whole set of data is completed.
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The streamwise velocity profiles are shown in Figures 11 through 15,
At all suction side locations the profiles are relatively well behaved. The
profiles on the pressure side at the locations near to the hub (R = 0,583,
0.67) have an unconventional shape. This probably comes from the secondary
velocities developed in the hub wall regiom.

The radial velocity profiles are shown in Figures 16 through 20. At
the location nearest to the hub (R = 0,583) the radial velocity is very small
(less than 4 percent of Ug). At R= 0.67 a strong radially outward velocity
starts to develop very near the surface. At R = 0.75 we see that the radial
velocity does not get stronger but it spreads away from the surface (see
Figures 18 and 19). At the location nearer to the tip, R = 0.918 (Figure 20),
the radial velocity becomes again small. Here the radial velocity is affected
by the leakage flow, and the annulus-wall boundary layer.

The streamwise and radial turbulent intensities are shown in Figures 21
through 26. In almost all locations we see an increase of the turbulent

intensities when going towards the blade surface.
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5. PUBLICATIONS AND PRESENTATIONS

The following papers were published during this period:

Lakshminarayana, B., C. Hah, and T. R. Govindan, "Three Dimensional
Turbulent Boundary Layer Development on a Fan Rotor Blade,” AIAA
Paper 82-1007, 1982.

Pouagare, M., K. N, S, Murthy, and B. Lakshminarayana, "Three Dimensional
Flow Field Inside the Passage of a Low Speed Axial Flow Compressor

Rotor," AIAA Paper 82-1006, 1982.

The following presentations were made during the reporting period.

B. Lakshminarayana, "Experimental Study of the Rotor Blade Boundary
Layer in a Single Stage Fan," IUTAM Symposium on Three Dimensional
Turbulent Boundary Layers, Technische Universitat Berlin, Germany,
March 29, 1982,

B. Lakshminarayana, "Three Dimensional Turbulent Boundary Layer Develop-
ment on a Fan Rotor Blade," AIAA/ASME Third Joint Thermophysics,
Fluids, Plasma and Heat Transfer Conference, St. Louis, Migsouri,
June 11, 1982.

M. Pouagare, "Three Dimensional Flow Field Inside the Passage of a Low
Speed Axial Flow Compressor Rotor," AIAA/ASME Third Joint Thermophysics,
Fluids, Plasma and Heat Transfer Conference, St. Louis, Missouri,

June 11, 1982.
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APPENDIX A

Derivation of ¢:'2
',2 Iffvol

becauge the derivation at point x and X,

forward in the case of cartesian coordinates.

tengor see Aris [12].

»> - -> -
x=X and ¢ = Xy = -
with ; - xi and ;1 - xf : E - Ez
then UM = —x .t
"1 35 Bxl :
and
axf .. ,.a", k"
(u.ru.i) - L" 3xi" 38" ax ( .r" [")
1 n1k 3" ax ax: axk

”fvol 1 rl( 19 ) —L

are independent.

’ k" "

av!

mk 8

(A-1)

It is etraight-

In the case of generalized

Let us define new independant variables as follows:
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Then with the hypothesis of homogeneous flow the Uf:" is independent of the

point (1), therefore it can be shown [3,10,14])
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r' are dummy se can rewrite equation A-2 as follows:
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APPENDIX B

Patankar-Spalding Numerical Method
for Two-Dimensional Boundary Layers

1. Imcryduction

We are going to give some indications on the numerical method established
by Patankar and Spalding in 1967 and modified in 1970 by these authors.
The presentation will be brief and for further information the reader may
want to refer tc r:e bk entitled HEAT AND MASS TRANSFER IN BOUNDARY LAYERS--
A GENERAL CALCULATION PROCEDURE, by S. V. Patankar and D. B. Spalding,
Intertextbook, London, 1970, The method 1is of the marching type and is
adapted for two-dimensional boundary layers. The boundary layers approxima-
tions lead to a system of parabolic, partial derivatives equctions. With the
Patankar-Spalding method we may calculate a purely dynamic boundary layer,
as well as a thermal boundary layer, or whatever contaminant evolution.

This method does not need any boundary layer similitude hypothesis,
and the principal characteristics of the method are the following:

~- . non-dimensional streamfunction is used as independent variable,
then the couple (x,y) of the physical plane is replaced by the couple (x,w)
which allows an automatic adaptation of the thickness at each abscissa x.

—- The implicit scheme of discretization using the micro-integral
technique, verifies the conservative properties of the partial derivatives
equations ard is unconditionally stable. -

-- The marching solution is very well adapted to calculate a flow,
very quickly and using a really few memory storage in the computer.

-~ To invert the matrices, the method uses a tridiagonal algorithm
derived from the Gauss method, this is done witn 1. .- simple iterative

formulas.
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2. Formulation of the Equation

Here, we will use a two-dimensional cartesian frame to present the
derivation of the equatioms.
For each transport quantity ¢ of interest in the boundary layer, its
equation can take the form:

9% _ ar'eff 3¢/ 3y

K]
PUG+P Vg 5

+ s¢ 1)

where reff is an effective diffusivity coefficient and S¢ represents a
"source" term.

The continuity equation is joined to equation (1).

Using Von Mises transformation, where (x,y) is replaced by (x,¥), V¥

is the streamfunction (p U = 3/2y), equation (1) becomes:

g UT 2¢/3y S
9 _ eff ¢
= m + 50 : (2)

In this new coordinate system (x,¥), the grid is automatically adapting to

the growth of the boundary layer thickness. However, for simplicity in the
definition of boundary conditions, it is useful to introduce another coordinate
system (x,w) where w is defined by w = ¥ - wI/wE - wI and wE’ wI are

respectively the values of ¥ at each boundary. We have then:

wp = 0 R wp = 1

de dwE
x -1t o &% Ve

In this new coordinate system, equation (1) becomes?

3 + (a + bw)
x

80 _ 3c 3¢/ , , (3
: .

™ ow o
conv. dif. source
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where a and b are functions of x

I b e P1 Yy
- ’ -
wE wI WE wI
vhere ¢ and d¢ are functions of x, w, ¢
P UT g
¢ —— ; d0 depends on the definition of the quantity ¢
(WE - wI) (for example for velocity U, d, is the pressure

gradient) ¢

The mass transfer rates m" = pV through the boundaries I and E are specified

by the nature of the boundaries (symmetry axis, wall, free boundary, ---).

In the case of a symmetry axis or a wall, these rates are zero. For a free
boundary G, Patankar and Spalding express the mass transfer rate as a function

of the effective diffusion, as follows:

[a/ay (Mogg aU/By)]

mg = lim 3U/ 3y

Y*¥¢

This necessitates the knowledge of the effective viscosity. We may note that
it is this transfer rate which controls the "entrainment" of the marching
solution, then it is important to control the definition of this mass transfer
rate ma. Some damping functions may be used to diminish the exchange of flow
through the boundary G when that is necessary (see Patankar-Spalding).

Now, equation (3) is a non-linear partial derivatives equation with
boundary conditions depending on the specificity of the physical problem. Then,

to solve this equation, in the general case, we have to use a finite difference

technique which is described hereafter.
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3, Numerical Discretization

Equation (3) 1is discretized and integrated by a marching method in
direction x. At each step of the integration, the values of ¢ are known at
each point of the grid in direction w for a given section, and we may get
the values of ¢ for the next section.

Generally, to obtain a finite difference form of a partial derivative
equation we may use the Taylor series. But it is also possible to obtain
the finite difference equation considering each term of the non-discretized
equation as an average integration on a smai! -<lume around each point of
discretization; thig volume is called the control volume. _This is the
process which is used by Patankar-Spalding, introducing certain hypotheses
relatively to the nature and the variation of ¢ between grid nods. Two
assumptions are made on the variation of ¢. First it is supposed, that ¢
varies linearly between nodes Voo and secondly, ¢ is set constant in the
interval ]xU, xD] and equal to its value in Xp. Then, for the non-boundary
zone, equation (3) may be integrated in the rectangular dot domain presented

below (Figure 1) as follows:

+ +
[I dpdw = [ oydwl/ Ex+ [{(a + bwep)} - {(a + bwiep} ]

+ +
3¢ 3
-b { ¢de = [(C 3;)+ - (c 33)_] +:{ d®dw (4)
Equation (4) can be put, then, in the recurrent form:

¢, = Ai® + Bi¢ +C (5)

Di 1 4

Diyy

where Ai' Bi' Ci are coefficiente and are known at each node.
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Xy X
Figure 1.

In the case of the boundary region, a different scheme is used. On
boundary I, for example (Fig. 2) a fictitious value ¢2, called the "slip
value" is introduced such as the linear interpolation of ¢ between nodes v,
and wa gives the right slope at the intermediate point Wy 5° In fact, the
boundary regions are important as they control the fluxes and entrainment
rate, the variations of ¢(w) could not be supposed linear in a domain which
is only half of an equivalent domain away from the boundaries. The values
of ¢ at the boundaries I and E are given by the boundary conditions; if

the grid is numbered from 1 to N + 3, we need two discretized equations to

relate ¢2 and ¢

P to, respectively, ¢1 and ®3, and ¢

N+1 and ¢N+3' Then

we may write:

Oy = Ax03 + B0 + G 5 Oy " Ava®has Yt Byo®ua t Gy

where AZ’ 82, C2 and AN+2’ BN+2’ CN+2 are known and include the boundary

conditions.
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1 Po, w,

Figure 2.
Then, we obtain the following tridiagonal system:
¢y, = A b +BO, L FC (=2, ..., WD) (6)

The system is solved, using the so-called Thomas algorithm:

¢1-a1¢1+1+ 61 (L1 = 2, ..., N+2)
with
§ et g PPt
1 1-Bo i 1-3Ba

(1 =2, ..., N41) 1=2, ..., N+2)

o =4 £, =B

Then the values ¢(x,w) are known for each w; if we want to locate the value
in the physical plane (x,y), we have to compute the y, at each station x.
In the particular case of a plane flow, the value y corresponding to w is

given by:

Y1 dw
v, - (WE - WI) £ oU
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Entrainment Rate

In the case of a wall at the boundary I(E), n;( ') is given by the
wall conditions (blowing, suction, etc.).

In the case of a free boundary, Patankar and Spalding have proposed the
following formulations:

( u
P
V3792
"y O
"E Ine2 ~ Yl

which come from the expression:

ou 2
£f£ 3°u,au
m" = lim [;_e__+u —-_._-;
G ££ . 2
Y & ot W]

where the second term is neglected. Then the entrainment rate is always
positive, and by the way, instabilities of the kind positive-negative-

positive in calculation of the rate are avoided.

Source Terms

Different procedures are applicable to discretize the sources S

¢
[1+1/2
S, = (Y. - y.) d, dw
¢ E I 1-1/2 ?

S, is linearized in ¢ and is written as:
V

S¢ = SU + ¢DSD

For example, for the U component equation the source term is the

pressure gradient, and is given by:
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In the general case, for example, total enthalpy, kinetic energy,
discipation rate, many decompositions are possible.

We may put the positive sources in S, and the negative ones in S, or

U D
put the proportional sources to ¢ in SD’ while the others are put in SU'

or also put all the terms in S, and in 5, divided by ¢U(Launder). In fact,

U
it does not seem that a particular technique is better than another one.
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