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PREFACE

The progress of research on "'Three Dimensional Flow Field Inside a

Compressor Rotor Blade Passage, Including Blade Boundary Layers" (NASA Grant

NSG 3266) for the six-month period ending June 30, 1982, is briefly reported

here. Two papers were presented and published during this period. These

are listed in section S of the report.

B. Lakshminarayana
Principal Investigator
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NOMENC.ATURE

ar
fourth order tensor in pressure strain correlation model

mik

b ij

TT
i_1a

2k	 3	 i,j

c chord length

Cp' C1' CU modeling constants

CE1'CE2'CE3

FE (RT , Ric ) dumping f ,inc ic-, for low Reynolds number flows

gik
metric tensor

k	 2 gik uTr turbulent kinetic energy

Q length scale

N distance normal to blade, normalized by blade spacing

p,p pressure, fluctuating pressure

P mean pressure

P ' P A turbulence production

r radial distance to the axis in equation 39

q vector of unknowns

R radial distance normalized by the tip radius

k?
RT _ local Reynolds numbers

vE

SZPE

Ric - - -- generalized gradient Richardson number
ij

S tensor

T shear stress

u',	 u' i fluctuating velocity

Ui mean conti-avariant velocity

U*¢	
Um¢ 

+ E pi SP

-,



v

• u U Reynolds tensor

U local freestream (or edge) velocity
e

U streamwise relative velocity normalized by U
e

W ' V ' U velocities in radial, tangential, and axial direction,
respectively

xj ' x contravariant and covariant coordinates variables

z,n,r streamwise, normal, and radial directions (orthogonal to
each other shown in Fig. 12, z - 0 at leading edge, n	 0
on the blade, r - 0 at the machine axis)

x l y distance along and normal to cylinder (Figs. 2-12)

Z chordwise distance normalized by the blade chord

bomdary layer thickness

d ij Kronecker tensor

e	 2v S	 Slij turbulent dissipation rate

e 
ipj

permutation tensor

P mDlecular viscosity

ueff V + UT

IJT
turbulent viscosity

T 3U-,2 I j
z e

Tr

density

k v
modeling constants

E	 W

angular velocity

Q 
P

contravariant component of angular velocity

Subscripts

i,j,k,4,m,n	 indices

e	 edge



1. TURBULENCE MODELLING: REYNOLDS STRESS MODEL (RSM)

A literature survey on both the analytical and the experimental work

on effects of curvature and/or rotation was given in ref. 1. Some of the

important conclusions of that survey were:

1. Only few calculations are available for the prediction of the

three dimensional boundary layer in rotating frames.

2. No complete Reynolds stress model is available for rotating turbulent

flows. Very few attempts have been made to account for the rotation effects

in the k-E model and those are not based on a logical analysis.

3. There are very few detailed measurements providing information on

the effects of both the Rossby and the Richardson number on turbulence.

It was emphasized in ref. 1 that new experimental results would be of

great interest, particularly if the rotation effect can be isolated from the

other effects. It was also noted tha t a major effort should be given to

the analysis of the dissipation rate equation and to the Reynolds stress

equations.

In the previous report (1], modelling of the rotation effect and the

low Reynolds number effect in the dissipation and the kinetic energy equa-

tions were described, with major emphasis on the equation for the dissipation

rate. It was also noticed that, in the case of a k -E model, the assumption

of the existence of an eddy viscosity concept could not account for the

anisotropy of the turbulence which exists in the boundary layer around a

blade. The best way to avoid this problem would be to solve the complete

set of Reynolds stresses equations along with the momentum equations.

However, the calculation procedures for three-dimensional viscous flows

require large memory storage and large computer CPU tame to solve the three

momentum and continuity equations. The resolution of ti•e six Reynolds stress
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equations simultaneously with the three momentum equations, the continuity

equation, and an equation for the dissipation rate is a very complex problem

and can still be considered as an unresolved one. It is hoped that the

rapid progress in computers and also the progress made in developing calcula-

tion algorithms for three-dimensional viscous flows will allow such calcula-

tions to be done in the very near future.

A two-equation model is a compromise between a full Reynolds stress

model and the empirical models which fail to rep.,sent the turbulence

properties in such complex flows as rotor blade boundary layer. However,

the anisotropy of turbulence which exists in flows cannot be represented

by the usual isotropic eddy viscosity formulation. In its more general

form, the eddy viscosity is a fourth order tensor which depends on many

parameters such as the Reynolds tensor, the strain tensor, the curvature

and the rotation. It is therefore, a very complex formulation, which evidently

represents very complex phenomenon. At this stage of the discussion it

appears that the eddy viscosity tensor could be as difficult to handle as

a Reynolds stress model. For the cases which are of interest to us, e.g.

blade boundary layers, an algebraic model of the Reynolds stresses based on

the complete model, together with the dissipation equation might be a

compromise between a detailed description of the turbulent stresses (full

Reynolds stress model) and the very crude eddy viscosity hypothesis.

It is not necessary to solve the complete set of equations for the

Reynolds stresses, it is, however, necessary to analyze the Reynolds stress

equation to find out which terms have to be modelled or neglected and then

derive some propositions to model the remaining terms.
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1.1 Reynolds Stress Equation

The equations of the mean and turbulent quantities for an incompressible

flow in the generalized tensor formulation are given in ref. 1. The Reynolds

stress equation which is of interest in the discussion that follows is

given by:

(o i k1+(pu ii llk U J ),^ _ - (p dk + p ' i + p uiuku' J 
_ ujk - ukFi) j

+ P,ui, j 6k + P u	 di _ puiu'i (Uk,j +2S1PekP3) - 
puku1J (Ui,j 

+ 2S2PEiPi)

- 
Pkui,J - 

Fiuk
,.)	 Fik	

2u S
ik	 (1)

It is evident that the Reynolds stresses appear to be affected explicitly by

the Coriolis forces, but they are also implicitly affected by the rotation

through the triple velocity correlations, the pressure velocity correlations,

the pressure strain correlation, the production by the stresses themselves,

and the dissipation.

In the case of a Reynolds stress equation model, the second order terms

are handled exactly, then only dissipation, pressure strain correlation and

diffusion terms need to be analyzed and modelled.

These quantities must be represented as empirical functions of the

mean velocities, Reynolds stresses, and their derivatives and the rotation

and curvature. These terms will be analyzed and modelled separately.

1.2 Pressure-Strain Ccrrelation

pPfu{ k + pT k— ^ p + p.u k i, j	 J,j	 i	 ,k

Following Chou [2j, the explicit appearance of the pressure may be eliminated

b y taking the divergence of the equation for fluctuating velocity ui, thus

obtaining a Poisson equation for the fluctuation ol.
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The fluctuating Navier-Stokes equation is:

(Puj)+(pU Ru' r + puRUr + Pu'fu' r - Puju `r), r + 2ERprPflu' r _ -(ptr - F^r),r

(3)

let us then take the divergence of equation 3

Rm^.	 + a
im	 ,r	 ,-r	 , , r	, ,r	 + 2g (CLp^Pu,r)^

	

8 (Put I ) 'm 	 (PUiu + pup + puiu - puiu ),^	 pr	 m

-gim (p , dir - Fjr),rm

and with the continuity equation: Uii 0 ; u;i . 0

we may re-write this equation.

a) the time and space derivative are commutable, then the time derivative

disappears

b) the viscous term also disappears.

_^ . (u'^u ),	 - "'u'mu'r), 
mr - 

Z(U' 
r 

+ 6p 
r 
nP)tl^ r 	(4)

	

p	 mr	 p	 m

which is the Poisson equation for the pressure fluctuation.

Then following Chou, the pressure fluctuation may be expressed in

the following form for a position x in the flow.

r
dV'

1 tIt	 { (u'mu' r)	 — cum)	 }	 1

	

P	 4n	 ^rol	 1 1 'mr1	1 1 'mr1 IIII

1	 m P } , r	 dV^

+ i^ fffvol { lrl + Eprn1 ul,m

l
 

II^Ii

ap^al^lill1	 1	 1	 ,
+ 4np IfS {IIEII and - p l	 ant	

}ds 1	(S)

where terms with and without an indite 1 relate to values at x  sad x,f
respectively (the integration being carried out over x 1 space) (E - x1 - x).
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• An expression for the pressure strain correlation which appears in the

equation of Reynolds stresses can be derived as follows. We calculate the

correlation at point x, then ui k and uk i are independent of point xl and

may be considered as constants for the volume and surface integrals.

Thai we may write:

T—
P pi,k - 

04 k,l + Oik , 2 + Pik m gilt (ok,l + Ok,2 + k)

Tf
P '

i - ^	 + ^+	 -	 01 + 0i + Ci1	 (6)
P	 ki,1	 ki , 2	 '-ki	 Ski 1,1	 i,2	 1

with:

^i	 1 !j1	 'm  r	
dVi

k,l	 47r	 vol (u
1 ul 

) 'mr1 u 'k ^IE'+

P	 ,	 ,
V

^k,2 - 2n 1!!Vol 
{ U1^

r1 
+ EprS21} ulr.lui ,

k ^ ^EI

i - 1  ph!! { 1	 i —, - .-^_,.._ a 1	 }	 (7)
^k 4np S 

	
2ul ui,k - P lui,k 8n1 

Equation 6 suggests that themi are three distinct kinds of interaction giving

rise to the pressure strain correlation; one involving fluctuating quantities

mk
1 ,
1' other arising from the presence of "external effects" such as mean

strain rate and rotation 

k, 2

; the last one is a surface integral which

will be negligible away from the vicinity of a solid boundary [3].

Some of the proposals for closing the Reynolds stress equation have

assumed that 
P
ik 1 is the only significant contribution to pu i ^ k [4-6].

However, Reynolds (7) has shown that prediction of a range of even homogeneous
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free turbulent flows demands the inclusion of mean strain rates in the

pressure-strain terms. Moreover, both Townsend (8) and Crow ( 9) have shown

that under conditions of rapid distortion the effect of Pik
,2 far outweighs

that of 0ik,l*

It is then necessary to model 0ik 2 as well as 0ik.1'

1.2.1 Modelling of Oik,2: "Rapid Term_'

Our practice in simulating 0ik,2 and 0ki,2 
takes its direction

from Rotta's analysis and more recently Launder, Reece, Rodi (5) and Lumley

(11). It is easy to show that the rapid term can be written as (Appendix A)

,gym 
(a 

r	 r
^ik,2 + ^ki,2 U 'r mik + amki)

where

U*r • U, + c; Op and ask -2L ltivol (ul ui )•mlk	 1	 (8)

Equation 8 is a rigorous consequence of equation 6 when all second deriva-

tives of the mean velocity are negligible and the turbulence field is

homogeneous. It is of course only approximately true in more general flows.

In the case of a cartesian coordinate system, Rotta (10) has commented

that the fourth order tensor armik should satisfy the following conditions:

symmetry: 
armik • aimrk ' armik • arkim	

(9a)

incompressibility: a rmii 0	 (9b)

normalizatio^
	ariik 2ur i	 (9c)

isotropic turbulence: armik	 (4 a ii. r ra - a ri amk - a rk ami) 15	 (9d)
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The spectrum of the Reynolds stress completely determines the fora of ask.

If we assume that the spectrum has an equilibrium form, we may expect the

fors of this fourth order tensor to be expressible in terms of the Reynolds

stresses. There are 10 linearly independent combinations of the anisotropy

tensor which satisfy the sysstry conditions, incompressibility, normalisa-

tion, and isotropy condition. In practice, the first two linear terms are

used (111. However, Lumley has shown that this approximation does not

satisfy the realisability condition. It is necessary to go at least to

second order terms before this can be achieved. A model is said to be

realisable if it guarantees that quantities which should be non-negative

(like variances) will remain non-negative, and that correlation coefficients

will never exceed unity in absolute value.

Lumley's Model 1111

I rmik	 (briask - 6ribakM + 
(46

ri8ok - 6 rm6 ik - aAamiMO

+ c(b
rod ik +bin rk + brkd im + bA M 13 bridmk 3 aribmk)	

(10)

with

T"uuri l
b
ri	 q2	 3 bri 

and 
armik 2kIrolk

and only one constant to adjust.

Launder. Reece and Ro 4I's Model 131

These authors approximated the tensor 
armik 

by a linear combination of

Ryaiolds stresses. 'Their method is very similar to Lumley's; the symmetry

constraints imply that the fourth order tensor may be written as:



+ G 6ridkmk + H(dki6mr + 6mi6krA

	
(11)

where E, F, G, C2 are constants. The application of equations 9b and 9c

enables four of these constants to be expressed in terms of the fifth: in

terms of C2

4C2 + 10	 2 + 3C2

E	 11 	F - 11

50C2 + 4	 20C2 + 6

G=-	 55	
H=	

55

In cartesian coordinates, equation 8 may be then written in the following

compact form: (Launder, Reece, Rodi [ 11); Cousteix, Aupoix [131)

^ik,2 + ^ki,2 a
	

11 lP A 3 a ikP*}	 55 k^axk + axi}

C2 + a jj
	 2	

30C2 - 2 aUi aUk

8C2

11 2 {Dik — 3 dik P*}
	

(12)

with

* _ -,-z U	 au* 	aU*k "„^ i	 * _ - ^"', 3U* ^" .
Pik - uiuj axj 

ukuj 
axj ' Dik	 uiuj axk %J a x i

 aUk*	 aUk ;Uk
P	 UT--Tik a-

i	axi axi + ekpi

It is interesting to note that equation 12 has been derived mainly from

kinematic arguments, for the case of isotropic turbulence subjected to

sudden distortion, equation 12 reduces to:

au	 au

ik + ^ki) 2	 .4k(a i + axk)	
irrespective to the constant C2

xk	 i

which is the exact result derived by Crow [9].
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However, it appears that equation 11 together with relations 9 cannot

be generalized to any kind of coordinate system. In fact, if we go back to

equation 8 it is easy to show that the fourth order ask does not satisfy

conditions 9b and 9c. A detailed analysis is then necessary to derive

a general formulation for relation 8. While we await the final resolution of

this problem (the study is under development) it is interesting to point

out some features of this problem.

It appears from equations 10 and 12 that the "rapid term' of the

pressure strain correlation might be expressed in terms of the Reynolds

stresses or the anisotropy tensor and what we will call here the "external

effects", e.g, mean strain rate, rotation. Moreover, one of the essential

properties of the pressure strain correlation is its character of redistribu-

tivity (e.g. this term vanishes under contraction of indices). It also

turns ouc, looking at equation 12, that the "rapid part" of the pressure

strain correlation, is a turbulence production like term, e.g. the term

may be approximated by a similar expression to the production by the

turbulence through the "external effects."

Then a simple way to express the "rapid term" may be given as follows:

+

	

C (P* + 2 P*d )	 (13)
^ik,2	 ^ki,2	 p ik	 3	 ik

where

Pik - -uiu' j Uk^ j + %uli Ui,j

P* -uiu'k U *k 
and U*kU tk + EikQP

P

In order to be sure that the expression will behave properly in all coordinate

systems, it is necessary that the constant be a function of the invariants

of the anisotropy tensor, and the local Reynolds number of the turbulence.

These invariants are defined as:



10

	

5kb i	bjbkbi

	

II - 2 k
	 III = ii k
	

(14)

A formulation of the coefficient C  is under survey, some directions towards

this end have been proposed by Lumley (111.

According to equation 13, 
0ik 2 + 0

ki 2 tends to isotropize the turbu-

lence production tensor. However, it is interesting to note that if the

production due to the mean strain is following this trend, it is not true

for the terms involving the Coriolis force effects.

1.2.2 Modelling of hk,l' "Return to Isotropy"

Let us first present some basic features about this term:

•	 dV1
^ik,l = 4tr fffvol (ul ulm), tmui,k ({ {{

1,m	 ,	 dV'fff	 (u a ),.	 a	 (15)
ki,l	 Ott	 vol	 1 1	 Nmuk,i {{^{{

This term involves only the fluctuating quantities and is responsible for

the return of an isotropic turbulence to isotropy, in the absence of other

disturbing effects. Rotta (101 pointed out that ^ik,l + 
0
ki 1 is a symmetric

tensor with zero trace, which vanishes if the turbulence is isotropic. Since

this term acts to interchange energy among the components when the turbulence

is anisotropic, and vanishes when it is isotropic, it is natural to express

it in terms of the anisotropy tensor of the turbulence, which is also a

symmetric second rank tensor which vanishes if the turbulence is isotropic.

It is also easy to show that, for a flow without mean strain and rotation

and initially non isotropic the Reynolds stress equation may be written

as (cartesian tensors)
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-r-
 ^ik,1 +  ki,1 3 6 A

which leads to

a(ui" - 2/3 6ikk)

at	 . Oik , l + 0ki,l

Therefore, as the flow must return to an isotropic state, the following

assumption is made:

^ik,l + Oki,l -Cl k (ui k 3 6ik k)	
(16)

where Ei s the rate of time at which the energy is mainly transmitted from

big eddies to dissipative ones. The value of the constant has been originally

set to about 1 .4 by Rotta. Different authors have then used a value of C1

of about 1.5.

According to equation 16, the sign of 
Pik 1 + 0

ki 1 is always such as

to promote a change towards isotropy, its magnitude being proportional to

the local level of anisotropy. This term is called "return to isotropy"

term, and this model gives acceptable behavior in most situations of practical

importance. However, it does not take into account the variation of the co-

efficient C 1 with the local Reynolds number of turbulence, or the variation

with anisotropy. It is found experimentally that C 1 is larger when the

turbulence is more anisotropic. Consequently, the coefficient C 1 appears

to be a function of the Reynolds number and of the anisotropy. This

anisotropy is generally created by "external effects", such as shape of the

boundaries, rotation, mean strain. In fact, these effects mainly influence

the time of return to isotropy. Then we may write that the tensor

®ik 1 + s
ki 1 is a functional of the anisotropic tensor, but also depends

on the Reynolds number, the "external effects" explicitly. In fact, we
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may divide these effects in three main categories:

the gross turbulent structure effects: through anisotropic tensor

the dissipative effects: through Reynolds number of turbulence

the "external effects": through mean strain, rotation, curvatures

It is shown in Lumley [111 that, even though in many flows the turbulence

does not become sufficiently anisotropic to make realizability a necessary

,ondition, there are, however, some situations where the turbulence does

become nearly two dimensional. The constant C 1 should then reduce to 1.

It is clear that in order to be sure that the expression will behave properly

in all corodinate systems and situations, it is necessary that C 1 be a function

of the invariants of the anisotropy tensor, the Reynolds number and the

"external effects".

Lumley (111 proposed a formulation of the constant C 1 . In his paper

the constant is 2C 1 . Then the formulation is:

2Cl = C2 = 2 + F(Rp, II, III)(1/9 + 3III + II)	 (17)

2
where R i = q /9sv and II and III are the invariant of the anisotropic

tensor.

F is then expressed as

F = exp(-7.77/R1 17 )J72/R1/2 + 80.1 Ln(l + 62.4 (-II + 2.3 III))} 	 (18)

Equation 18 is simply an interpolation formula to connect the known value

in a certain number of experiment. However, this proposition gives certain

directions which could be followed to establish a formulation of the constant

C1.

C1	 C 1 (RT , II, III, Ric )	 (19)

where RT is the local Reynolds number and Ric is the local Richardson

[t
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number of the rotation. The formulation of the quantity C 1 is under survey.

It is not known now whether all these effects are really necessary to be

taken in account. However, it is certain that the Reynolds number is to

be important in the evolution of the coefficient C 1 . At this stage arguments

concerning the expansion of C1 in a power series remains one of the

directions to follow to derive an expression for the coefficient.

1.2.3 Modelling Near the Wall

Near the wall, the surface integral in equation 5 Appears to

become important in magnitude and must not be neglected. In fact, Bradshaw [141

demonstrated that the surface integrals 
;ik 

and ski would make a significant

contribution to the pressure-strain correlation as long as the typical size

of the energy containing eddies was of the same order as the distance from

the wall. As he remarked, this condition is always satisfied in near wall

flows.

If we refer to Launder, Reece, Rodi [31 1, for a plane wall (with x2

normal to the surface) the pressure strain correlation may be recast in the

following form, from which the surface integral is eliminated:

i 1	 a utum} aui	 aU	 u2^	 ui ( 1	 1
P axk 4n jvol { ^axka 1 1 3xk + 2 ^3x 1 (. x1 ) 1 axk } l^^ + x - y* ) dv

(20)

where y* is the image of the point Y in regard to tha wall.

This form again suggests that there should be two contributions to the

near-wall effect corresponding to the reflecting wall influence of 
^ik,1 

and

^ik,2' Therefore, they proposed a formulation of the wall proximity effect

on the pressure strain term as follows:
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au

(^ik + ^ki)w - {C1 k (u iuk - 3 a ikk) + 3xm (bkk + b
H F^ 2}	 (21)

where i denotes the length scale of the energy containing eddies, thus

F 
r f 1	 k3/2

1x21	 Ex2

In the general case, the two surface integrals are:

!	 _ ,	 al 1I 1i
Pik 4np fS {	 and ui,k - p l^ ui,k and	

}d,	 (22a)

I IC I i	 1

_ _	 _^—'	 1/ ICI I
ski 4np 1S 

{il^ll 
an d uk,1 - p lu k 

8 
and } ds

1	(22b)

where the quantities with subscript 1 correspond to point p l and others

to point p. a/an t is the normal derivative and dS 1 is a surface element.

The value of this integral is to be evaluated at point p. Following Raj [15),

a series expansion would indicate that, to a first order approximation,

equation 22a can be written as:

apr
1
-I- ui,k j

s and ds - Fik {deviatoric, external effects}	 (23)

4 'x 1101	 1
It is clear that near the wall the deviatoric of the Reynolds stress and

the "external effects" should have some contribution to the surface integrals.

Unfortunately, the experimental results very near the wall are extremely

rare, particularly on curved surfaces, and it is therefore very difficult

to derive a specific modelling of the surface integral in the case of

highly curved flows. However, for flows over mildly curved surfaces we

Pik

may hope that the only important length scales are the local turbulen t

-
length scale k312a and the normal distance to the wall y. Moreover, it is

also hoped that the predictions will be less sensitive to assumptions made

to third order correlations, handling the second order ones exactly. Them,

following an analysis close to Launder, Reece and Rodi's one, the effect of
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f
the surface integral is modelled through the introduction of a function

of the turbulence length scale and the normal distance to the wall y, in

the general model for (pli
i,k + p k,i)'

p k + k	 E -^-T - 2	 _ 2	 !t

P	 {-C1 k (uiulc	 3 aikk) - Cp (pik 3 aikp*)} f(
n ) (24)
i

where F (—I ) must -educe to one away from the wall.
nixi

1.2.4 Summary

A model for the pressure strain correlation has been proposed,

which includes the effects of rotation and curvature explicitly. However,

this model is still under study as three functions C , C and F( £ ) have
1 p	 nixi

to be defined. Some directions have been given, but further work is needed.

The pressure strain correlation model is presented above (equation 24).

The coefficients C 1 and C  are functions of the local Reynolds number, the

Richardson number and the invariants of the deviatoric of the Reynolds stress

tensor, while F( I ) is function of the length scale and the normal distance
nixi

to the wall.

1.3 Dissipative Tema and Diffusion

Referring to equation 1 for Reynolds stress, two kinds of terms remain

to be modelled--the diffusion term, which included viscous terms as well

as pressure velocity correlations and triple velocity correlation, and

the dissipation terms. Let us examine the dissipative terms.
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Dissipative 'terms

D - -Fku - iu'
	

where F ib	 u(ui^j + uj ^ i) 2USi'	 (25)

in incompressible flows, only the fluctuating quantities remain in equation 25

then,

D -u (Sk ui, j + Si %' j )	 where S i j - 2 ^ui, j + uJ 'i)	 (26)

Terms like skj ui
'j
 and s iJ ul have been derived in the previous report and

it has been shown that we may write:

skjui,j - 3v {d ik + al 3 e sik}	
(27a)

sij uk^ j z 3v {d ik + a2 3 e sik
}	 (27b)

Therefore equation 26 may be approximated by

D - -PC
 
 3 { d ik + a 3 

e si
k }	 (28)

A dimensional analysis, using similar approximations as the ones used in

the previous report shows that the term involving the mean strain is of

order Re1/2 , and therefore is negligible in high Reynolds number flows. In

that case the decay rate D reduces to:

D - - 3 d ik P E 	(29)

which is the form proposed by Launder, Reece and Rodi [31 who assume the

dissipative motions to be isotropic. Several experimental studies have

shown that turbulence does not remain locally isotropic in the presence of

strong strain fields [ 8, 161. Nevertheless, equation 29 seems to be enough

for most of the flows studied by Launder et al. In the case of low Reynolds
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number flows, the energy containing and dissipation rang & of motions overlap

and.the dissipation rate is then commonly approximated as (101

"r'^

	-D a p u k E	 (30)

Equations 29 and 30 have led a number of workers to propose that in general

the correlation may be approximated as:

	

uk
u 

-'r
D - 3 pE {(1 - Fs)dik + 2 13 k F

a }	 (31)

where Fs is a function of the turbulent Reynolds number RT - k2
vE .

A detailed analysis of equation 31 has been proposed by Hanjalic and

Launder ( 17]. However, equation 30 is not asymptotically valid. In fact,

as the Reynolds number increases the equation 30 should reach continuously

the form obtained for very high Reynolds number (equation 29). It seems that

equation 28 should not present this problem, therefore we may re-write

equation 28, including the Reynolds number of the turbulence

D - - 3 pE{dik	
e

	

+ a 
E ik 

RT1/21	 (32)

where a is a constant of order 1. Some numerical calculations are needed

to derive an "exact" value for the constant a.

Diffusion Terms

There are two kinds of "diffusion" terms, the viscous ones and

the third order correlation ones. The diffusion terms in equation 1 are:

Dif -p uibk + 
ui i + puiuO) , j + (u^ + "^i' 'j

triple correlation	 viscous
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A dimensional analysis, again shows that the viscous terms are of order

Re l and smaller than other .terms. Therefore, it is evident that these terms

will be important only for low Reynolds number flows, very near a wall. The

triple correlation terms need to be modelled so that the complete set of

Reynolds stress equations is closed. This work is presently under survey.



2. TURBULENCE MODELLING: k -E MODEL

2.1 Introduction

M analysis of the kinetic energy and the dissipation equations have

been presented in the previous report (1]. At that time, we made the following

remarks.

The rotation does not appear explicitly in the kinetic energy equation,

but is present in the dissipation equation. However, in high Reynolds

number flows, we have shown that this explicit effect was negligible. At

low Reynolds number (the Reynolds number is based on the following turbulence

characteristics: k, c and is k /vc - RT), the dissipation becomes non-

isotropic and both the effects of Reynolds number and Richardson number may

be important in this case. But the main remark is that the effects of rota-

tion are more important on the production of turbulence implied by the

interaction of the Reynolds stresses and the "external effects", than on

the others. In fact, if we refer to the previous chapter it is easy to see

that the Reynolds stresses may be greatly affected by the rotation while

the kinetic energy and its dissipation rate are not so much affected. Then,

it appears that in any two-equation turbulence model combined with an eddy

viscosity hypothesis, the first priority is to control the calculation of

the eddy viscosity coefficient. In fact, in most of the work done, the

main hypothesis to derive the viscosity law assumes that the turbulent •!iscosity

is isotropic. For simple shear flows, this gives adequate results at very

low cost. However, for three dimensional flows and particularly for some

boundary layer flows the velocity vector u and Du are not aligned in

general. Therefore the isotropic eddy viscosity is not adapted to predict

the behavior of the Reynolds stresses. Solving the complete set of Reynolds
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stress equations would avoid this difficult problem, but it is a tremendous

work Which involves very important numerical schemes, which are only in their

sarly stages of development. On the other hand, the eddy viscosity is

a fourth order tensor in general, however, in many real flow situations,

there rro m ly two directions in the flows which are of equal importance

(it is the case for blade boundary layers). Therefore, we are able to

derive different eddy viscosities to take account for the anisotropy of the

flow. More general y, it would be interesting to classify the flows that

the engineer is encountering in which we could use such an eddy viscosity

model. This can be related to "Zonal Modelling" referred to by Kline during

the last Stanford Conference on complex turbulent flows.

To be able to check some of the assumptions made previously, particularly

for low Reynolds number modelling, a computer code was developed based on

the Patankar-Spalding procedure 118). which solves the parabolic two-

dimensional and quasi-three dimensional transport equation for the velocity,

the kinetic energy and the dissipation. Chapter 2 is divided into two parts.

In the first part, we present some simple approach to the modellin ° 9 the

different stresses. In the second part, some calculations of a boundary

layer developing on a rotating and non-rotating cylinder is presented. The

non-rotating cylinder calculation has been done to show the effects of the

corrections due to Reynolds number ;md Richardson number of rotation in the

dissipation equation. A brief 6=planation of the Patankar-Spalding numerical

sethod is given in Appendix S.
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2.2 Algebraic Modelling of the Remolds Stresses

The Reynolds stress equation presented in Chapter 1 (equation 1),

together with the assumptions made, may be written as:

(P

	

L%)+(P "i"k U')'^ a-tp i6k + -76i + pui 	 - uIP. - "kri)'' +t(u k)
(33)

where the left hand side is the convective like term, the first group of the

right hand side is the diffusion like term and C(ui^uk) 
is the source-sink term.

C(uPiuk) Pikrl - C
pF(n X }^ + Rik l -^- ^n x

i^^ + 3 
6ikiCpF-̂-}P

i J	 i	 u^

- E^1 - C1F ( r) )l - C1F ^—^JE k	 3 a k •ik
i	 1	 nix	 RT

(34)

where

Pik 
-Uiu'j 

^k.i - uku' ^i,j

P • -uiu'3

R • -2f? (cip) 
uku'

ik 
	 + Ekpj 

u-iu

1

' SA 2 
( D 	 +0 + t^k.i)

The kinetic energy equation may be deduced from equation 33.

(Ak) + (pkL'1, j + -(pui b ij +akin - uF 3).^ + C(k)	 (35)

where C(k) is the source-sink term and k - 2 gik u- ur

C k)	 p _ e	 (36)
P

The transport_ and diffusion terms are treated by the technique known as

algebraic stress modelling ( 191. The net transport of ui^uk 
is assumed to

be locally proportional to the net transport of k, the coefficient of

I.
proportionality taken as u=k. Thus for incompressible flows,
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ru
(u )+(ui Uj ) , j - Dif (ui )	

ik tic + (ku3 ) , j - Dif (k) j	 ( 37)

where Dif denotes diffusion terms.

This treatment appears to be reasonably accurate for thin shear layers

except near an axis of symmetry. However, the turbulent boundary layers in

a rotor are far to be axisymmetric and more over if any symmetry exists it

must be a symmetry in regard to the axis of rotation which is never in

"contact" with the fluid. Therefore, substitution of the model assumptions

yields the following algebraic equation for the Reynolds stresses:

ik = i ik +
Rik11 ^

Ptx ni^^
+I1 - p

Ftn xis) (Pik 3 SiJ^ -3 a RTl/2 k 
8ikJ	 i

^	
f	 tP + e iCi nix i) -1

(38)

The form of the wall-damping function F^ i^ must now be specified, as well
nix

as the values of the coefficients C  and C l , and a. This is presently under

survey, however, we still may discuss equation 38. This equation is basically

a non-linear algebraic system of six equations, in fact, which have to be

solved simultaneously. The six equations plus a formulation for the dissipa-

tion rate, will form s closed system, providing we know the mean flow.

It is interesting to note that several authors have treated similar

equations as a linear system, provided that the kinetic energy k and dissipa-

tion rate C are calculated with two differential equations, and most of all

the computations are restricted to local equilibrium turbulence for which

P/E is unity.

In this case, equation 38 provides mainly some indications on the

anisotropy of the flow and then the quantitative values are given through the

calculation of k and o. It is therefore not necessary to define any eddy
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viscosity formulation. If we want to solve this system still linearly, when

P/C is a function of the space, it is necessary to make an assumption on

the denominator in equation 38; then provided that the evolution of the

stresses in the main direction of the flow is not very important, which is

a good approximation in boundary layers flows, we may calculate the stresses,

supposing that P + EC F t P - 11 is taken at the previous step, in a
4 1 nix 1

parabolic marching method, where all the quantities are known.

On the other hand, it is also possible to solve the system of six non-

linear equations plus the equation for the dissipation simultaneously. The

number of equations to solve is then reduced to seven. However, it is

well known that non-linear systems are very much sensitive to the initial

conditions we must give in order to iterate and converge toward the solution.

But still, in the case of parabolic type flows, the evolutions in the stream-

wise direction are very much less important than in the normal plane, so

that it is possible to use the values at the previous step as a first guess,

and as the changes should be small, the process should converge rapidly.

2.3 Calculation of the Boundary Layer Over an Axial 2llinder

The governing equations in the axial and circumferential directions for

a uniform property, axisymmetric turbulent boundary layer flow may be written:

PU 
a$ + Pv au - ak + 1 ar(u 32 - per'

ax	 ay " ax r	 ay

arW	
arw 1 a^r3u aa/r - r2p wT)

P5 
1

+ Py ay =	 sy	
(34)

which together with the continuity equation

oaaX+aa°.
y
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and of radial equilibrium of the mean motion

- W2
30 P
ay p r

Constitute a closed set if we define a model for the two Reynolds

stresses puv and pwTv^. The independent variables x and y are respectively

the axial and radial direction. The corresponding velocities are U and V.

W denotes the circumferential velocity and is zero for non rotating cylinder.

All symbols are defined in the nomenclature. The effective viscosity of

this flow may be taken as the sum of the laminar and turbulent contributions,

i.e.

11'V +u"

Provided that the two Reynolds stresses are respectively aligned with the

correspondent mean strain. The turbulent viscosity 11T is obtained from the

solution of the following differential equations.

Turbulent kinetic energy k:

ar u + UT ak

	

a" ay	 j 1/2 2
pU ax + pV ay - r	 ay 

k	
+ P - pC - 2u ( say ^	 (40)

Dissipation rate C:

ar U + 
uT ac

pU ax +pV	
ay - 1
	

ay Q

a 	 C 
y + CC 

k 
P - CC 	Cp k

2 
+ C v P1/2	 (41)

	

1	 2	 3

with

p_ pTT aU _ pw vT raw
ay	

ay -

	

2	 2

	

11 T - Cu FU p C	 ,	 Fu - exp(-3.4/(1 + RT/50)2	 RT vC

Qk - 1	 ^C - 1.3	 CC - 1.44	 CC	 1.92 (1 - .3 exp(_ 2))

1	 2



25

CE 	2 and pu "v - P at
3

P w v ur aR
/r(42)

r	
^w 

—5;-s-
y

Discussion about the coefficient a  will be presented later. In the preliminary

calculations a  has been taken equal to 1. This coefficient represents the

anisotropy existing between the Reynolds stress components and the mean strain

components. This model has been tested first, on an axisymmetric cylinder

to check the effects of the corrections due to low Reynolds on the equation

of dissipation rate c, through the coefficient Ce2 . We may see on Figure 1

that the correction allows a 30 percent damping of the value of E. However

this damping function starts to be effective at Reynolds numbers lower than

two which means that occurs well inside the viscous sublayer where the

viscous effects are preponderant over the turbulent ones. 	 In Figures 2 to 6

we present some comparison between two calculations, the first one using the

low Reynolds damping function in the equation of c and the second one letting

CE2 - 1.92. It appears that the maximum differences around 1 percent on

quantities such as the kinetic energy, the dissipation rate, the wall shear

stress and below 1 percent for the velocity profile, which is well beyond

the accuracy we may hope from this type of calculation and experimental

measurements of these quantities. We may wonder why then implement such

corrections. It is possible in certain very low turbulence flows that this

function may have some more important effects. However it is evident that

again the changes due to the production terms in equation 40 and 41 are much

more important and over a wider distance from the wall. Then it is in fact

the modelling of the Reynolds stresses themselves which is making the big

difference.

To illustrate this, the calculation of the boundary layer developing

over a cylinder of which one part is rotating is a good test case. In fact,

the boundary layer first develops along the static cylinder as a classical
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two dimensional boundary layer. It is then submitted to a sudden transversal

distortion by rotation of the downstream part of the cylinder. Sufficiently

far away the origin of the spinning part, the reorganization of the three-

dimensional boundary layer into a two-dimensional one, in a relative coordinate

system is in an advanced phase. Very near the discontinuity in boundary

conditions, the three dimensionality is stronger. A recent paper of

Arzoumanian et al. [25] shows that in a relative coordinate system linked to

the moving cylinder, far from the origin of the spinning part, the turbulent

quantities are very slightly influenced by the three-dimensional effects,

except the Reynolds stress uv. This suggests that the evolution of uv and wv

in the fixed coordinate system are different and therefore the anisotropy of

the Reynolds stress tensor is quite important, at least in the very beginning

of the rotation. Then a model based on an isotropic eddy viscosity (e.g. the

two directions have the same characteristics) should fail to represent the

dynamic characteristic of such a flow.

We present hereafter some calculations of the rotating cylinder with an

isotropic eddy viscosity to illustrate our purpose. The calculation is

confronted to the experimental results of Lohmann(20]. Figures 7 and 8 show

the development of the mean velocity profiles U and W, while Figure 9 shows

the evolution of the limiting streamline angle along the streamlise direction.

Differences between the experimental and calculated profiles are up to 9 per-

cent in our calculation, it can be easily seen in Figure 7.

However, larger differences appear in the calculation of the Reynolds

stresses u v and w v , (Figures 10 and L1) particularly for w ' "v.  It is then

evident from these calculations that the isotropic eddy viscosity fails to

represent the characteristics of the flow.
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•	 Different authors have proposed some alternative to model such a

behavior. For example, Koosilin and Lockwood (21) derived eddy viscosities

for the two directions and then define a viscosity ration a1,2 ' uTl/uT2

which globally represent the anisotropy of the Reynolds stresses. Cousteix

et al. [22] proposed a similar approach with the k-e model.

A very simple way of deriving two different eddy viscosities is to

use equation 38, which gives the ratio 77/w-77  representing the differences

between these two Reynolds stresses.

We are now developing two different schemes using equation 38 to solve

the turbulent field. The first scheme solves the momentum equations and the

kinetic energy and dissipation rate equations first using the stresses u T

aid v w calculated from the linear form of the equation 38 as we discussed

previously. The second scheme solves the momentum equations and dissipation

equation using again the stresses ury , vTw and u'^, v' , w^ calculated

from the algebraic nonlinear system 38. The system of six nonlinear equations

is solved with the iterative Newton-Raphson scheme.

These two programs are now almost in their achieved form. A brief

discussion of the numerical method used to solve the differential equations

is presented in Appendix B.



3. NUMERICAL ANALYSIS OF BLADE AND
RUB WALL BOUNDARY LAYERS

In the early stages of the present investigation, an attempt was made

to predict the blade boundary laver using the parabolized form of the

Navier-Stokes equations. The procedure involves the solution of the momentum

equations and the Poisson equation for the pressure.

Numerous investigators have tried different ways of deriving and

solving the Poisson equation for the preasure. In most of the cases the

procedure requires some kind of iteration to ensure mass conservation. All

the previous investigations indicated that the solution of the Poisson

equation and the ensurance of mass conservation are the most troublesome

parts of the whole procedure. The efficiency and accuracy of the method

depends almost exclusively on these factors. The situation becomes more

difficult in the case of complex geometry, like for example in the case of

a turbomachinery rotor passage.

Up to date, nobody has come up with a "clean" solution to the problem

and all the evidence shows that coupling the momentum equation with the

Poisson equation for the pressure is an ill-posed problem. Based on the

above discussion we decided to try to solve the problem by using a procedure

which does not involve the solution of a Poisson equation for the pressure.

The first attempt was to solve the incompressible set of equations

(three-momentum and continuity) with the vector of unknown given by,

P

U
g

V

W
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We tried to solve this system of equations by marching in the stream-

wise direction &. We soon realized that:

1. When treating the streamwise pressure gradient fully explicitly

(i.e., following the classical assumption of the parabolized Navier-Stokes

equations) the Jacobian matrix, which expresses the changes in the streamwise

direction, becomes singular.

2. When treating the streamwise pressure gradient partly explicitly

and partly implicitly the solution is unstable. This is because our system

of equations has both negative and positive eigenvalues. This makes it

impossible to solve the system of equations by marching in the streamwise

direction.

An attempt is presently being made to solve the compressible set of

equations by marching in the streamwise direction. This procedure was

developed by Govindan and is described in ref. 24. The code is presently

working well, and it has already given very encouraging results for some

test cases. So we decided to use that code for the solution of the flow in

the blade passage, including the hub wall and the blade boundary layer.

We are presently working to adapt the code to our particular problem

with the turbulence closure model described in section 2 of the report.



4. EXPERIMENTAL STUDY OF THE ROTOR BLADE BOUNDARY
LAYER IN AN AXIAL FLOW COMPRESSOR ROTOR

The measurement of the blade boundary layer in the rotor of an axial

flow compressor is presently being carried out. The study is performed in

the Axial Flow Compressor Facility, located in che Turbomachinery Labora-

tory of the Department of Aerospace Engineering. The only similar study

available at the present time is that due to Lakahminarayana et al. [23,24]

inside the rotor of an axial flow fan.

All the measurements reported here are taken with a hot-wire probe

rotating with the rotor. A miniature cross flow "X" hot-wire probe,

TSI 1247, with sensor diameter of 3 pm and sensor length equal to 1 mm is

used.

Both the sensors are within a circle of approximate diameter 1.5 mm.

The sensors are located in the zR plane with their axis at 45° to the z axis

(°ig. 10). The probe is traversed normal to the blade surface. Since the

flow traverse is done close to the blade surface, the component of velocity

in the n direction is assumed to be small.

The boundary layer measurements are carried at non-dimensionalized

radii R - 0.583, 0.67, 0.75, 0.832, 0.918 and at various chordwise locations.

Only one chordwise location has been surveyed so far, at each of these

radial locations.

4.1 Experimental Results

Only a brief interpretation of the results is given here. Detailed

interpretation will be given when the whole set of data is completed.
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•	 The streamwise velocity profiles are shown in Figures 11 through 15.

At all suction side locations the profiles are relatively well behaved. The

profiles on the pressure side at the locations near to the hub (R - 0.583,

0.67) have an unconventional shape. This probably comes from the secondary

velocities developed in the hub wall region.

The radial velocity profiles are shown in Figures 16 through 20. At

the location nearest to the hub (R - 0.583) the radial velocity is very small

(less than 4 percent of Ue). At R - 0.67 a strong radially outward velocity

starts to develop very near the surface. At R - 0.75 we see that the radial

velocity does not get stronger but it spreads away from the surface (see

Figures 18 and 19). At the location nearer to the tip, R - 0.918 (Figure 20),

the radial velocity becomes again small. Here the radial velocity is affected

by the leakage flow, and the annulus-wall boundary layer.

The streamwise and radial turbulent intensities are shown in Figures 21

through 26. In almost all locations we see an increase of the turbulent

intensities when going towards the blade surface.
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APPENDIX A

Derivation of ^
i 2

,

^i • 1 II	 U*m 
u"""'r `^u"7c dvl - i 

f If	 ** ( 'r' Ai 	 _del
k,2	 2it	 vol 1,r1 l,m. 'k 

II^II	
2rt	 Vol U1,r1 ul 

u	

'mlk (I II

(A-1)

because the derivation at point x and x  are independent. It is straight-

forward in the case of cartesian coordinates. In the case of generalized

tensor see Aris (121. Let us define new independent variables as follows:

x • X and	 xl

With x • x
t
 and xl • xii

axm 	 r"
then U*m	 1 `'^	

,*^^^	 *fin

and

FJ
u 	

l(û r )	 Ir ax 3E— ax 
^U, Elf  

•	 rt • l	 ! r	 (U,	 )

 if

1	 "lk air d
^ 

axm axk	
k m	 k m	 k m

1

Then with the hypothesis of homogeneous flow the t3:t„ is independent of the

point (1), therefore it can be shown (3.10,141

*m'
0	 / "' ll 	 , e	

^

r 1

	
*a	 r /t e

^k 2 • - -w- n Ill	 (u t u s 

1) . k,.^ I I L I I • U' r" a^"kR	 (A-2)
'	 vol	 j

as the indices m' and r' are dummy se can rewrite equation A-2 as follows:

^Q D*m art
k,2 • 'r mk

(A-3)



APPENDIX B

Patankar-Spalding Numerical Method
for Two-Dimensional Boundary Layers

1. Iny_.•,)duction

We are gai.-^g to give some indications on the numerical method established

by Patankar and Spalding in 1967 and modified in 1970 by these authors.

The presentation will be brief and for further information the reader may

want to refer tc *.:e b-)ok entitled HEAT AND MASS TRANSFER IN BOUNDARY LAYERS--

A GENERAL CALCULATION PROCEDURE, by S. V. Patankar and D. B. Spalding,

Intertextbook, London, 1970. The method is of the marching type and is

adapted for two-dimensional boundary layers. The boundary layers approxima-

tions lead to a system of parabolic, partial derivatives equations. With the

Patankar-Spalding method we may calculate a purely dynamic boundary layer,

as well as a thermal boundary layer, or whatever contaminant evolution.

This method does not need any boundary layer similitude hypothesis,	 r

and the principai characteristics of the method are the following:

-- A non-dimensional streamfunction is used as independent variable,

then the couple (x,y) of the physical plane is replaced by the couple (x,w)

which allows an automatic adaptation of the thickness at each abscissa x.

-- The implicit scheme of discretization using the micro-integral

technique, verifies the conservative properties of the partial derivatives

equations and is unconditionally stable. 	 -

-- The marching solution is very well adapted to calculate a flow,

very quickly and using a really few memory storage in the computer.

-- To invert the matrices, the method uses a tridiagonal algorithm

derived from the Gauss method, this is done witn %..• simple iterative

formulas.
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2. Formulation of the Equation

Here, we will use a two-dimensional cartesian frame to present the

derivation of the equations.

For each transport quantity ^ of interest in the boundary layer, its

equation can take the form:

aO =P U ax + p V a areff WDYy 	 ay	 + S^	 (1)

where Teff is an effective diffusivity coefficient and S 0 represents a

"source" term.

The continuity equation is joined to equation (1).

Using Von Mises transformation, where (x,y) is replaced by (x,IP),

is the streamfunction (p U - a;P/ay), equation (1) becomes.

a s 
ap U t W a* S

a ea*	 + pU	 (2)x 

In this new coordinate system (x,tp), the grid is automatically adapting to

the growth of the boundary layer thickness. However, for simplicity in the

definition of boundary conditions, it is useful to introduce another coordinate

system (x,w) where w is defined by w - IP - 
IP4 - ^i and ^E 4)1

 are

respectively the values of ^) at each boundary. We have then:

wI = 0	 ,	 w E = 1

d1P
I 	 dIPE

dX 
-PI V

I	 dx = _P E V 

In this new coordinate system, equation (1) becomes.

TX 
+ (a + bw) aw = ac a"/'ww 	

+ d^	 ( 3)

conv.	 dif. .	 source
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where a and b are functions of x

P1 VI	 P  V  - P1 VI

	

a WE ^I	
b
	 *E - *I

where c and d0 are functions of x, W. 0

	C _ P U reff 2	 d0 depends on the definition of the quantity 0

	

N - ^I )	(for example for velocity U. d 0 is the pressure
gradient)

The mass transfer rates m" - PV through the boundaries I and E are specified

by the nature of the boundaries (symmetry axis, wall, free boundary, •••).

In the case of a symmetry axis or a wall, these rates are zero. For a free

boundary G. Patankar and Spalding express the mass transfer rate as a function

of the effective diffusion, as follows:

Fa/ay ()Jeff au/ ay)

	

M
IR - 

^	
au/ ay	 _j

G

This necessitates the knowledge of the effective viscosity. We may note that

it is this transfer rate which controls the "entrainment" of the marching

solution, then it is important to control the definition of this mass transfer

rate m". Some damping functions may be used to diminish the exchange of flow

through the boundary G when that is necessary (see Patankar-Spalding).

Now, equation (3) is a non-linear partial derivatives equation with

boundary conditions depending on the specificity of the physical problem. Then,

to solve this equation, in the general case, we have to use a finite difference

technique which is described hereafter.
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3. Numerical Discretization

Equation ( 3) is discretized and integrated by a marching method in

direction x. At each step of the integration, the values of 0 are known at

each point of the grid in direction w for a given section, and we may get

the values of ^ for the next section.

Generally, to obtain a finite difference form of a partial derivative

equation we may use the Taylor series. But it is also possible to abtain

the finite difference equation considering each term of the non-discretized

equation as an average integration on a sma'I -dl ume around each point of

discretization; this volume is called the control volume. This is the

process which is used by Patankar-Spalding, introducing certain hypotheses

relatively to the nature and the variation of @ between grid nods. Two

assumptions are made on the variation of 0. First it is supposed, that

varies linearly between nodes wi , and secondly, 0 is set constant in the

interval NU , xD } and equal to its value in xD . Then, for the non-boundary

zone, equation (3) may be integrated in the rectangular dot domain presented

below (Figure 1) as follows:

[f mDdw - j OUdw]/ex + [{(a + bw)^D }+ - {(a + bw)0D}-1

- b j 0Ddu • I ^c ^) + - (c	 ^ ] + j dmdw	 (4)

Equation (4) can be put, then, in the recurrent form:

ODi = AiOD
+1 + B 1 

0 
D i-1 + C 
	 (S)

i 

where Ai , B ig C  are coefficients and are known at each node.
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Figure 1.

In the case of the boundary region, a different scheme is used. On

boundary I, for example ( Fig. 2) a fictitious value m2 , called the "slip

value" is introduced such as the linear interpolation of 0 between nodes w2

and w3 gives the right slope at the intermFdiate point 
w2.5. 

In fact, the

boundary regions are important as they control the fluxes and entrainment

rate, the variations of ON) could not be supposed linear in a domain which

is only half of an equivalent domain away from the boundaries. The values

of 0 at the boundaries I and E are given by the boundary conditions; if

the grid is numbered from 1 to N + 3, we need two discretized equations to

relate G" 2 and CN+2 
to, respectively, Ql and q 3 , and 0N+1 and ¢N+3' 

Then

we may write:

A203 + 
B

2 01 + 
C2
	 0N+2 s AN+2 0N+3 + BN+2 0N+1 + CN+2

where A2 , B 2 , C2 and A
N+2' B

N+2' CN+2 are known and include the boundary

conditions.

0ii♦

0ia9".

0;

L-,
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Figure 2.

Then, we obtain the following tridiagonal system:

0, = Ai0i+1 + B101-1 + C 	(i = 2, ..., N+2)
	

(6)

The system is solved, using the so -called Thomas algorithm:

0, = CL 01+1 + ^i (i - 2, ..., N+2)

with

a "i 	 Q = 
Bi 

Si-1 + ^i

1 1 - Biai-1	 i 1 - Biai-1

(i = 2, ..., N+1)	 (i = 2, ..., N+2)

al=A1	 ^1=B1

Then the values ^(x,w) are known for each w; if we want to locate the value

in the physical plane (x,y), we have to compute the y  at each station x.

In the particular case of a plane flow, the value y corresponding to w is

given by:

1 i dwY  = (VIE - ^I) o 
oU
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Entrainment Rate

In the case of a wall at the boundary I(E), m1(mE) is given by the

wall conditions (blowing, suction, etc.).

In the case of a free boundary, Patankar and Spalding have proposed the

following formulations:

m" . 2 ueff2.5

	

I	 y3 - y2

^^ a 2 ueffN+1.5
	mE 	

yN+2 - yN+l

which come from the expression:

mie n Jim l a-peff + U	 a2U/au^

	

G wy	 ay	 eff ^2 ay-1

G -

where the second term is neglected. Then the entrainment rate is always

positive, and by the way, instabilities of the kind positive-negative-

positive in calculation of the rate are avoided.

Source Terms

Different procedures are applicable to discretize the sources S^

i+1/2

S	 (V' - W){	 d dw

	

E	
I 1-1/2	 'w

S^ is linearized in Q and is written as:
Y

So = S  + 0 
D 

S 
D

For example, for the U component equation the source term is the

pressure gradient, and is given by:
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y1+l - yi-1
SU _ ^ax 1	 2

SD . 0

In the general case, for example, total enthalpy, kinetic energy,

dissipation rate, many decompositions are possible.

We may put the positive sources in S  and the negative ones in S D , or

put the proportional sources to 0 in SD , while the others are put in SU,

or also put all the terms in S  and in S D divided by 0U(Launder). In fact,

it does not seem that a particular technique is better than another one.



IR-

44
;f3 ^.IdTMiwv

MAIN
DATA

--

-- In
^ F_ialispF^ar,, ..

F. v t bq T4. -
--- Go. ., one y

- -

DeEin^Eio.^ of
_ SFer -^X-----^
Var I obls

Gor+d i1-;onc

EFFt c^,ve viscotifi
Ina PrQ"JH nuvv,6rs,

Sources

En^r4^vsrnen^ --
RQI-t and

1 0c1 iF. col+o.. of DX
,if r•ececsa--_

' In^`igl P3 1..^ONr

Pero Cie. ..r vor"t,
^__ Pr^vsfov^---

For
Ts

 T1air, Loop

INIT
PrtliM

L

i r+4riK

Znl rlq,

PvoFile^

S1•.eo.r funcvlo.
o^d

otr 094 d;s^r;6uF;

VARCON
CalculcN;O" of
P . ttsurt y*cWJ-

o.
Rt w baun^a.

Aux
cQ1WICI 'ion p`
edd^viscos^^'y,
Pror+dK r^un,^ty^

and a;FFo sio..
Cc err,cionfs

SOURCE

Calf-JQ %0% '% or
Sov.c4 Eerm

r'01-
ti	 LL^

Fptnuo.^r^^J

r------

1	 ^	 STRipE 	 ^-- —
1	 ;tR1o6(4)
1	 Colcu6Fw.1 oC

1	 i^ _tLY	 --
1	 STRIOE(i)
1	 CoeFFlcic41 A1B t
1	 Fe^ln^t2,Nill^-

1	 STRroE(e)
1	 CocFF^c^t^►^
1	 a.,d Rtselu^^^g^
1

OUTPUT
1	 In►^'ia priV44
1	 OuTPuT(I)

1	 DtDehdnv►^

1	 P.,v^^ovF
1	 OU-T PUT (2)
1
1

1	 WIDTHI

1	 Cq^cu^o^'^or,
1	 0^

Inregvul
1	 J

1	 ^uti^^)'^tS
1

YES
END

CHART



cl-- .. 	 - 	 -
14 ;- - -- k- t - .. t. - )

OF PCOR QUALITY

45

-0

0
rl
Ld

O

0.
vi

ml

•

0
"4

L) P-4
v01w 

A
14

pC

44-4 -4

0

0 A

> 0
ftl 41

Ir

0
L17



5

m

X

W^

O

V
u
0
7
w

a+
O
O
r
v

't7

u

O

u^u

7
u
4

u ,^
ww
O O

C it

O ^
V1 ^

u
o

cg ^

N
d

00
+d

w

m

m

N_

m
m

qr

0

46

N E+
1

07

M

W



E

o^"
N

iv

47



CY3

N

W

CD

C3

0
{"i
co

OiF p^ QU
,I,iALI'M

48

WCLW

w

c

w

w
a

r
.a

ro

ro

5

X

u
,rt
x

a

u ^
N e

..r
O^
U
ip d
U ^

Mr 4r
O O
C O
O ,r

.^^i tp
►. d

GOB D

.Q

d
7

f+.

rt h

a



ORIGINAL PAGE 13

OF POOR QUALITY

49

CD

r-- C'-J

it

LD

CD

CD

r	 t^ j 	 I	 I	 I	 I	 I- j	 I l	 r I	 I 	 f r I	 t -r	 I- I	 I	 I	 I

(S) co

ty	 CD 	CD CD CD

CD

n w -j H "I.



r M

r
L

r

n

tV
F	 '

CD

L

N
r CD

r

i

I A
^ 1_.J J

r ^7

7

L m

X

14;

ORIGINAL- PA^^ IS
OF POOR QUALITY

N [-+
OC

50

a^
w
a
rl
^ri CD

L

rrr-rT T -r -ri ri rr -rl^r l rT rrr rt^rr - rrr i - " I r -r r i rrrT^ -n-ri

m	 m	 CS:	 6^
m	 CD	 53	 m	 m

^	 :S^	 m	 C9	 CD

C_)L- UX nHcy- WU —"0=^

M
CD

1



'	 O

C
O

O M

w n
v u

m c`^

o

o	 as	 m	 n	 .o	 w

O	 O	 O	 O	 O

O! e

two	 N	 O

C]	 O	 O	 d	 p

eta	

51

OF POOR QUALITY

w
C3	 ^+

U

CI

cn

C:; w
O
C
n	 -
w
as

m °o
C; i w

w
0
V
v
a

c d

ao

co u

o ^

a+

v
In u^

C;

N

61

t0
J.1	 '
RI
b

m
C; 

C 
w
M^w

O O
►.7 1+

d

fY r u

O	 u
C OO r"+
m 4!

N
to .-^

w
o v .e

C3

w



^	 T

—	 —	 a
=) -1

0
0

OF POOR ? at^:.T1f

52

b 'dC

	

•	 r-i
0-4
ON
:J

p ~
• W
O O

C
YIV

^C ri H
_	 W

O

V
d

_	 ar a
a ^,

_	 u

o ^
w

O ^

N

u^ 3p
u

p ^ F+
d

^l rl
u4 o

IV v
rl Cl

D 3 >

G ^
O 0
w ++
►+ C
W N

	r 	 00
• p^ C

D V F

	

.7	 ►̂i

M
k.

CL O
C +^
Q^ L

g W

N ^

K m

W C'

0

E,



a+
e0
b

v
m ^

O

a^ a0
.+ d
^ w

p m
0
m o0

Af ^

_QOV â
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Figure 12. Nature of blade boundary layer and
notations used
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