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COMPARISON OF VISCOUS~SHOCK~LAYER SOLUTIONS
BY TIME-ASYMPTOTIC AND STEADY-STATE METHODS
By
R. N. Guptal J. N. Moss, and A. L. Simmonds
Langley Research Center
SUMMARY
An evaluation has been made of two flow-field codes employing the time-
and space-marching numerical techniques. The space-marching technique
considered is an implicit finite-difference method due to Davis. The
time-marching method employs the time-asymptotic, two-step, finite-difference
method of MacCorxmack. These two methods have been used to analyze the
flow field around a massively blown Jupiter entry probe under perfectwgas
conditions. In order to obtain a direct point-by-point comparison, the
computations by the two schemes have been done by using identical grids and
turbulence 1Aels. For the same degree of accuracy, the space-marching schene
takes much less time as compared to the time-marching method and would appear
to provide accurate results for the problems with nonequilibrium chemistry,
free from the effect of local differences in time on the final solution which
is inherent in time-marching methods. With the time-marching method, however,
the solutions are obtainable for the realistic entry probe shapes with massive
or uniform surface blowing rates, whereas with the space-marching technique,
it is difficult to obtain conveiged solutions for such flov conditions. The
choice of the numerical method is, therefore, problem dependent. Both the
methods give equally good results for the cases where a comparison with the

experimental data has been made.

*NRC-Senior Research Associate.



INTRODUCTION
Recently an evaluation® of the three different flow-field codes2’>'?
was presented. These codes were primarily developed for the hypersonic,
massively blown, and strongly radiating shock layers with application to
the Jupiter entry conditions. Evaluation and comparison of the codes are
important because of the dependence of the Galileo heat-shield design on
these flow-field solutions. However, direct comparisons have been hampered
by the fact that the three codes use different solution procedures, different
computational mesh sizes, different chemical and turbulence models, different
convergence criteria, as well as a different number of computational nodes
along and perpendicular to the body. Even for the only common feature of
radiative transport code, there are subtle differences in the spectral
details of some species. Thus, for an objective evaluation of the different
numerical solution methods employed by these codes, it would be desirable to
select a simple no-blowing perfect-gas flow~field case for which the turbulent
models are well established. The purpose of this paper is to present the
results of such a study. The results have been obtained by employing two of
the three numerical codes mentioned earlier. The firstz of these two is a
space-marching method that solves the steady-state viscous-shock-layer type
equations by the method of Davis.5 The second one3 is a time-marching method
that employs the time-asymptotic, two-step, finite-difference method of
MacCormack6 for the solution of time-dependent viscous-shock-layer type
equations. The third numerical code4 uses an inverse analytical method.
Since th: method of reference 4 also falls under the category of a space-marching
method (similar to the category of method of ref. 2), it has not been

included in the present comparison. The work presented here includes the



results for a blown perfect-gas viscous shock layer by the space- and
time-marching numerical methods. The comparative study of these two methods
shows their relative merits and disadvantages for a blown and unblown shucl
layer. The present results may also be helpful in resolving the diffetences1

in predicted results by the different codes for the Jupiter entry conditions.

ANALYSIS

As mentioned earlier, the space-marching (perfect-gas version of HYVISZ)
and the time-marching codes (perfect-gas version of COLTS3) have been employed
to predict the perfect-gas forebody flow field for Jupiter entry-type conditions.
For this study, these two codes employ the same grid spacing along and perpen-
dicular to the body, and the same number of computational mesh nodes in the
streamwise and normal directions. The flow for both of these methods under-
goes transition instantaneously to turbulent flow at the first body station
downstream of the stagnation point. The two methods also employ the same
turbulence model7'8 with and without blowing. For the case which includes
blowing, identical blowing-rate distribution as shown in figure 1 has been used.

The governing equations employed in the present study can be obtained
from the unsteady/steady Navier-Stokes equations by keeping terms up to second
order in the inverse square root of the Reynolds number in both the viscous
and inviscid reuions. These equations, when modified for turbulent flow by
using methods analogous to those presented by Dorrance,9 provide perfect-gas
governing equations for the space—e and time-marchinglo me thods.

In addition to the surface blowing rate distribution of figure 1, the
boundary conditions employed along the body surface are no velocity slip and

temperature jump. The wall temperature is taken as a constent specified



value. For the time-marching method, the wall pressure is taken equal to

the pressure at the adjacent grid point in the normal direction. The

conditions imposed at the shock are calculated by using the Rankine-Hugoniot
shock relations. These relations in the body-oriented ¢ >ordinates (for use

wih the time-marching method) are provided in reference 1l. The flow conditions
along the supersonic outflow boundary are determined by extrapolation from

the inner mesh points for the time-marching scheme. No such flow conditions

are required for the space-narcii>.g method. Further, for the present study,

Sutherland's equation 1 . c}
pk o= gk ( T* £
« —— ——
T* 1 + C* (1)
T*

has been used to determine the viscosity, and the coefficient of thermal
conductivity is computed by assuming a constant Prandtl number:

k* =.Y_R*_£___
(v - 1)pr (2)

In equations (1) and (2), the quantities with an asterisk are dimensional and R'
is the gas constant.
In order to obtain a direct point-by-point comparison and to keep the
same truncation error in the finite-difference approximations employed in
the space- and time-marching schemes, the computations by the two schemes
have been done by using identical grids. The following logarithmic
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has been used in the two methods in the direction normal to the body to

allow higher resolution near the body surface.

In equation (3), B is the griad-

* ® * »
stretching factor, n(=n /rN) is the normal coordinate, and §(=§ /rN) is

the shock standoff distance.

Finally, the following convergency criterion

has been employed for both blown as well as unblown cases:

max {mum

1.3

where € is of order 10
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. In equation (4a), H(=H /u'_?) is the nondimensional

(4a)

total enthalpy; i is the finite-difference point in the direction along the

body surface (or s-direction); j is the finite-difference point normal to

the body surface (or n-direction); and k is the kth time step.

For the

space-malching method, converjence criterion of relation (4a) is modified to:

max imum
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where f is the global iteration count.

(4b)

As indicated in the Introduction, the present comparative study of the

5
space-

(due to Davis) and time-° (due to MacCormack) marching methods hes

been done by employing these methods as described in references 2 and 3,

respectively.

of references 2 and 3, these are not presented here.

Since the present methods of solution are identical to those

Briefly, since the time-

marching algorithm6 is explicit and amenable to complete vectorization, it

has been programed on a vector processor (CYBER 203).

The solutions with



5 have been obtained on CYBER

the space-marching implicit-difference scheme
175. Further, in order to speed up the calculations with the time-marching
method, the largest possible Courant-Friedrichs-lewy (CFL) time-step sige
for each mesh point has been used in preference to the global minimum CFL

time-step size.

DISCUSSION OF RESULTS

First, a comparison of the predictions made by the space- and time-
marching methods against the available experimental data is given. There
are no experimental data available, for the turbulent viscous-shock-layer
problem (at high Reynolds number) with massive surface blowing considered
here. For the laminar viscous-shock-layer flow at moderate Reynolds number,
a comparison between the predictions made by the two methods and the
experimental data is contained in figqure 12 of reference 12. Both the methods
predict the heating rate for a 45° half-angle cone which compares favorably
with the experimental data. For the low Reyr.olds number case, the predictions
by the space- and time-marching methods are compared against the experimental
data of reference 13 in figure 2 for a 45° half-angle hyberb0101d. Once again, the
comparison between the predictions by the two methods and the experimental
data is quite good at Ré_=90. At Re _=1035, the predictions depart from the
experimental data. However, the two predictions compare favorably with
each other.

Next, flow-field results and surface heating rates obtained by the
space- and time-marching methods are presented for the forebody of a 44.25°

half-angle sphere-cone probe entering the Orton nominal (0.895 Hz + 0.105 He)



Jupiter atmosphere under perfect-gas assumption. Results have been obtained
with and without surface blowing assuming instantaneous transition at the
first grid point downstream of the stagnation point. The freestream condi-
tions and other parameters employed in the analysis have been taken from the
peak heating entry conditions at 51.5 seconds for the 310-kg probe.14

These are given below:

L
Nose radius, rN = 0.352 m

Free stream Mach number, M, = 43.76

*
Free stream temperature, T, = 151.2 K
*
Free stream density, Py, ™ 4,966 x 10 4 kg/m3

®
Probe surface temperature, T; = 4022.80 K
Ratio of specific heats, Yy = 1.4

*
Gas constant, R = 3737.45 J/ka K

* * &

'y Ve Pu 6
Reynolds number, Re = ———0—— = 1.2274 x 10

U

Prandtl number, Pr = 0.72

Mixture molecular weight, m= 2.2246
Computations by both space- and time-marching methods employed a constant
* L]
step size As(As /rN) = 0.1597 in the direction along the body surface and a

total of 15 body stations were used. In the direction perpendicular to the

body, the grid was generated as given by equation (3) and altogether 101 points



were used with a constant step size An = 0.01. Depending on the value of

f in equation (3), this step size gives a finer resolution near the body surface
in the physical s*. n. - plane. Two values of f (1.1 and 1.01) were

employed in the computations. For the first value of R, the first grid

point off the body surface is located at 0.295 percernt of the shock standoff
distance as compared with 0.05418 percent for B = 1.01. The various results
computed by the two methods are displayed in figures 3 through 9 and are
discussed in the following paragraphs.

Figures 3(a) and 3(b) contain the surface pressure distributions and the
shock standoff distances obtained from the two methods with and without
surface blowing conditions. Except for the region near the tangency point,
both these methods give comparable results. The results obtained by the two
codes at the juncture point should not be taken seriously due to the
curvature discontinuity there. For an unblown shock layer, the method of
characteristics does give15 a fast pressure recovery at the tangency point
similar to the one obtained by the space-marching method. The fourth-order
damping emplioyed with the time-marching method smears out the effect of
surface discontinuity, since a large number of global iterations is used to
obtain a converged solution.

Figures 4 through 7 show velocity and temperature distributions over
both the spherical (s = 0.64) and the conical flank (s = 1.76) portions of
the probe. There is reasonable agreement between the various results
obtained by the two computational methods. However, if the results near
the wall (figs. 5 and 7) are analyzed carefully, the slopes of the velocity

and temperature profiles for £ = 1.1 and no surface blowing (mo = () are
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seen to be quite different. With the reduction in the value of B8 to 1.01,

the slopes predicted by the two methods begin to agree quite well. Reducing

B further does not result in any noticeable improvement. The surface

pressure distribution, shock standoff distance, and gross features of the
velocity and temperature profiles are unaffected by reducing B from 1.1 to
1.01. As will be seen later, the quantities affected most by the mesh
refinement near the surface are the wall heat transfer and skin friction,
as expected. Figures 5 and 7 also indicate that with the coarser normal-
direction mesh (8 = 1.1), results obtained by the space-marching method are
clogser to the finer mesh (B = 1.01) results. With surface blowing, the
mesh refinement near the surface does not affect the slopes there substan-
tially. A mesh refinement obtained with § = 1.1 appears adequate. Use of
the largest possible value of B without jeopardizing the accuracy of the
results is important, since the computational time is reduced by almost 20
percent for the time-dependent method when 3 is increased from 1.0l to 1.1
for the same convergence criterion of equation (4a). Yet if a large value of f
is used with small surface blowing rates, then poor resolution of the
maximum gradients may occur.

The eddy viscosity distributions over the spherical and conical
portions of the probe are given in figs. 8(a) and 8(b). There is reasonable
agreement with respect to the maximum values and the general character of
the distributions obtained by the two methods. It may be mentioned again
that the identical turbulence mode157'8 have been used with the two

computational methods.
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Finally, figs. 9(a) through 9(c) give the skin-friction, dimensional
and nondimensional (Stanton number) heating rates at the wall. As indicated
earlier, there is better agreement between the results obtained with a fine
mesh (B = 1.01) for the unblown case. For the blown surface case, the two
numerical methods give good results for even the coarse mesh (B = 1.1).
Generally, the results are in better agreement over the conical flank portion
than over the spherical portion or near the juncture point.

Computationally, in absence of blowing, the space~marching method is
quite economical and gives results which compare well with the experimental
data. However, with large blowing and arbitrary body shapes, the time-marching
method has proved to provide solutions without the numerical instability
experienced with the space-marching method. Without blowing and for analytic
body shapes, both methods appear equally accurate.

Further, the time-marching method has been used to predict flows with large
embedded subsonic regions.16 Some recent effortsl7 have also been made to
handle such flows with the space-narching method by making use of certain
approximations to improve the initial marching profiles, The advantage of the
space-marching method in such cases lies in the fact that for problems
requiring more computational grid points (either due to the large body size
or large Reynolds number of the flow) the storage and computational time
requirements are much less as compared to the time-marching method. Also,
with the time-marching method, the computational time increases substantially
if more grid points are clustered in the shear layer, whereas with the
space-marching method, the computational time is not significantly affected
by distribution of the grid points in the shear layer. The computational
time of the time-marching method, however, can be reduced substantially by

employing its recent implicit annloque.18
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Finally, for a viscous reacting flow with nonequilibrium chemistry,
there are three time-step criteria’’ used with the time-marching method,
namely: the Courant-~Friedrichs-lewy (CFL) criterion, a viscous dissipation
criterion, and a species production criterion. Therefore, the solution of
the species equation proceeds with a time step which is different from the
one used with the momentum and energy equations. For the ronequilibrium
chemistry calculations, such local differences in time will affect the final
relaxed solution, since in going through the transient part of the solutions
one would produce or deplete species at a rate which may not be characteristic
of the final converged solutions. Unlike the case with equilibrium chemistry,
the nonequilibrium chemistry cannot correct itself as the velocity and
temperature fields converge to the steady state values. The space-marching
method,zo however, appears to be free from this drawback.

Thus, the choice of the numerical method is rather problem dependent.
Both methods give comparable results for tie problems where comparisons with
the experimental data have been maace, provided that care is taken in selecting

the appropriate mesh cize near the body suriu.e.

CONCLUDING REMARKS

The space-marching implicit technique cf Davis and the time-marching
explicit method of MacCormack have been used to analyze the flow field around
a massively blown Jupiter entry probe under perfect gas conditions. These
two techniques have been widely used for the heat shield design calculations
for such a probe. Certain difference: xvre known to exist in the predicted
results by the two techniques. In order tc isolate these differences, a point
by point comparison of the various flow-field quantities computed by the two
sChemes has been obtained by using identical computational grids and turbu-

lence models. Generally, the results obtained by the two methods are in better



12

agreement over the conical flank portion than over the spherical portion or
near the juncture point. For the same degree of accuracy, the space-marching
scheme vakes much less time and would appear to provide accurate results for
the problems with non;quilibriun chemistry, free from the effect of local
differences in time on the final solution which are inherent in time-marching
methods. With the time-marching method, however, the solutions are obtained
for the realistic entry-probs shapes with massive blowing rates, whereas with
the space-marching technique, it is difficult to obtain converged solutions
for such flow conditions. The choice of the numerical method is, therefore,
problem dependent. Both the methods give comparable results for the problems

where comparisons with the experimental data have been made, provided that

care is taken in selecting the appropriate mesh size near the body surface.
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(a) Surface pressure distribution.

Fig. 3 Comparison of time-marching and space-marching solutions both
with and without blowing.
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(a) Skin- friction coefficient.

Fig. 9 Comparison of wall quantities fof two solution methods.
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DEVELOP_REAL-TIME DOSIMETRY CONCEPTS AND
INSTRUMENTATION FOR LONG TERM MISSTONS

INTRODUCTION

Major objectives in the process of developing a rugged portable instrument
to evaluate dose and dose equivalent have been achieved. A tissue-equivalent
proportional counter simulating a 2 micrometer spherical tissue volume has
operated satisfactorily for over a year. The basic elerents of the electronic
system have been designed and tested. And finally, the most suitable mathe-
matical technique for evaluatirg dose equivalent with a portable instrument
has been selected. Desigi. ai» “abrication of a portable prototype, based on
the previously tested circuits, is underway.

DETECTOR DEVELOPMENT

The 5.7 cm detector has been operated for over 15 months with the original
gas filling. Figure 1 shows the gas gain for a constant anode voltage during
that time. The long-term drift, less than one percent per month, and short-
term (les: chan 24 hour) variations of +2 percent can easily be controlled by
adjusting the anode voltage, (see Figure 2). These adjustments will be made
automatically by a subroutine, illustrated in Figure 3, which compares the
actual position of a calibration peak with the position of that peak at the
proper gas gain. The difference is used to calculate a new high-voltage supply
setting. The actual voltage is provided by a high-voltage supply referenced
to the output of a digital-to-analog converter.

The detector will be operated with a combination of gas gain and electronic
gain which results in a calibration factor of 0.12 keV/um/channel and a useful
range of 0.36 to 300 keV/um. Since the dose mean of the single-event distri-
bution for X and y rays varies from 0.7 to 3.0 keV/um, and for neutrons from
30 to 130 keV/um, the system is expected to detect photon as well as neutron
dose. However, the stainless steel vacuum chamber surrounding the detector
will distort the response as a function of photon energy. Also, the photon-
induced events cannot be distinguished from very low-energy neutron events.
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FIGURE 1. Detector Gas Gain at A Constant Anode Voltage as
a Function of Time After Sealing the Detector

Thus, though the system is expected to accurately measure dose due to photons
and low-energy neutrons, estimates of the mean quality factor become less
certain when low-energy neutrons are abundant.

Specifications for the second detector, intended to detect high-energy
heavy particles, have been completed. It will use the same basic design and
materials but will be 12.7 cm in diameter in order to provide approximately
five times the counting rate.

ELECTRONIC SYSTEM

The electronics for a system using two detectors is outlined in Figure 4.
Each detector is supported by a dedicated high-voltage supply, amplifiers and

analog-to-digital converters (ADC's), but the two detectors share a multichannel

analyzer (MCA) and microcomputer. The ADC's output is used as a MCA memory
address. Each event results in a "one" being added to the memory content at
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FIGURE 2. Gas Gain Versus Anode Voltage

the corresponding address. As illustrated in Figure 5, the entire MCA content
can be periodically transferred to the microcomputer memory. The dosimetric
quantities can then be computed without interrupting further data collection.
An absolute time clock in the microcomputer is used to initiate the dose cal-
culation, data storage, calibration and other functions. A CMOS successive
approximation ADC chip and other CMOS components are used in the ADC circuit,
in Figure 6, to minimize power consumption,
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