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COMPARISON OF VISCOUS+SHOCK%-LAYER SOLUTIONS

BY TIME-ASYMPTOTIC AND STEADY-STATE METHODS

By

R. N. Gupta* J. N. Moss,and A. L. Simmonds
Langley Research Center

SUMMARY

An evaluation has been made of two flow-field codes employing the time-

and space-marching numerical techniques. The space-marching technique

considered is an implicit finite-difference method due to Davis. The

time-marching method employs the time-asymptotic, two-step, finite-difference

method of MacCormack. These two methods have been used to analyze the

flow field around a massively blown Jupiter entry probe under perfect gas

conditions. In order to obtain a direct point-by-point comparison, the

computations by the two schemes have been done by using identical grids and

turbulence x,4els. For the same degree of accuracy, the space-marching schene

takes much less time as compared to the time-marching method and would appear

to provide accurate results for the problems with nonequilibrium chemistry,

free from the effect of local differences in time on the final solution which

is inherent in time-marching methods. With the time-marching method, however,

the solutions are obtainable for the realistic entry probe shapes with massive

or uniform surface blowing rates, whereas with the space-marching technique,

it is difficult to obtain converged solutions for such floe conditions. The

choice of the numerical method is, therefore, problem dependent. Both the

methods give equally good results for the cases where a comparison with the

experimental data has been made.

*NRC-Senior Research Associate.
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INTRODUCTION

Recently an evaluation  of the three different flow-field codes 2,3,4

was presented. These codes were primarily developed for the hypersonic,

massively blown, and strongly radiating shock layers with application to

the Jupiter entry conditions. Evaluation and comparison of the codes are

important because of the dependence of the Galileo heat-shield design on

these flow-field solutions. However, direct comparisons have been hampered

by the fact that the three codes use different solution procedures, different

computational mesh sizes, different chemical and turbulence models, different

convergence criteria, as well as a different number of computational nodes

along and perpendicular to the body. Even for the only common feature of

radiative transport code, there are subtle differences in the spectral

details of some species. Thus, for an objective evaluation of the different

numerical solution methods employed by these codes, it would be desirable to

select a simple no-blowing perfect-gas flow-field case for which the turbulent

models are well established. The purpose of this paper is to present the

results of such a study. The results have been obtained by employing two of

the three numerical codes mentioned earlier. The first  of these two is a

space-marching method that solves the steady-state viscous-shock-layer type

equations by the method of Davis. 5 The second one  is a time-marching method

that employs the time-asymptotic, two-step, finite-difference method of

MacCormack6 for the solution of time-dependent viscous-shock-layer type

equations. The third numerical code  uses an inverse analytical method.

Since the method of reference 4 also falls under the category of a space-march:.ng

method (similar to the category of method of ref. 2), it has not been

included in the present comparison. The work presented here includes the

hL
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results for a blown perfect-gas viscous shock layer by the space- and

time-marching numerical methods. The comparative study of these two methods

shows their relative merits and disadvantages for a blown rnd unblown shvc4

layer. The present results may also be helpful in resolving the differences 

in predicted results by the different codes for the Jupiter entry conditions.

ANALYSIS

As mentioned earlier, the space-marching (perfect-gas version of NYVIS2)

and the time-marching codes (perfect-gas version of COLTS 3 ) have been employed

to predict the perfect-gas forebody flow field for Jupiter entry-type conditions.

For this study, these two codes employ the same grid spacing along and perpen-

dicular to the body, and the same number of computational mesh nodes in the

streamwise and normal directions. The flow for both of these methods under-

goes transition instantaneously to turbulent flow at the first body station

downstream of the stagnation point. The two methods also employ the same

turbulence model 
7,8 

with and without blowing. For the case which includes

blowing, identical blowing-rate distribution as shown in figure 1 has been u3ed.

The governing equations employed in the present study can be obtained

from the unsteady/steady Navier-Stokes equations by keeping terms up to second

order in the inverse square root of the Reynolds number in both the viscous

and inviscid recions. These equations, when modified for turbulent flow by

using methods analogous to those presented by T)orrance, 9 provide perfect-gas

governing equations for the space- 8 and time-marching 10 methods.

IL

	

	 In addition to the surface blowing rate distribution of figure 1, the

boundary conditions employed along the body surface are no velocity slip and

temperature jump. The wall temperature is taken as a constPnt specified

R



Sutherland's equation 1 + C*

—T!-

1 + C*

T*
W

U*	 u*	 T*
W

T* (1)

A

value. For the time-marching method, the wall pressure is taken equal to

the pressure at the adjacent grid point in the normal direction. The

conditions imposed at the shock are calculated by using the Rankine-Hugoniot

shock relations. These relations in the body-oriented --)ordinates (for use

wi`-h the time-marching method) are provided in reference 11. The flow conditions

along the supersonic outflow boundary are determined by extrapolation from

the inner mesh points for the time-marching scheme. No such flow conditions

are required for the space-rotrcii+.g method. Further, for the present study,

has been used to determine the viscosity, and the coefficient of thermal

conductivity is computed by assuming a constant Prandtl number:

k* _ 
Y R* u*

(Y - 1)Pr	 (2)

In equations (1) and (2), the quantities with an asterisk are dimensional and R*

is the gas constant.

In order to obtain a direct point-by-point comparison and to keep the

same truncation error in the finite-difference approximations employed in

the space- and time-marching schemes, the computations by the two schemes

have been done by using identical grids. The following logarithmic

grid-spacing

	

	 n

In

s -	 (i-n)
n=

(3)

In	 + 1

s - 1

-
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has been used in the two methods in the direction normal to the body to

allow higher resolution near the body surface. In equation ( 3), 5 is the grid-

stretching factor, n(-n /rN) is the normal coordinate, and 8(=d /rN) is

the shock standoff distance. Finally, the following convergency criterion

has been employed for both blown as well as unblown cases:

aH k	 -	 aH k-500

maxim	
ran)	 (an)

um
i ^^	 < e

( 
aH )k	 (4a)

an i=1

-2	 • 2
where c is of order 10	 In equation (4a), H(=H /u ^) is the nondimensional

total enthalpy; i is the finite-difference point in the direction along the

body surface (or s-direction); j is the finite-difference point normal to

the body surface (or n-direction); and k is the kth time step. For the

space-marching method, convergence criterion of relation (4a) is modified to:

	

R	 -	 -1

^
aH	 aH

an)	 ^an^
maximum

_55'

	

 E	 (4b)IaH

Tn- i=1

where k is the global iteration count.

As indicated in the Introduction, the present comparative study of the

space- 5 (due to Davis) and time- 6 (due to MacCormack) marching methods has

been done by employing these methods as described in reverences 2 and 3,

respectively. Since the present methods of solution are identical to those

of references 2 and 3, these are not presented here. Briefly, since the time-

marching al,gorithm6 is explicit and amenable to complete vectorization, it

has been programed on a vector processor (CYBER 203). The solutions with
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the space-marching implicit-difference schems 5 have been obtained on CYBER

175. Further, in order to speed up the calculations with the tine-marching

method, the largest possible Courant-Friedrichs-Lewy (CFL) tiros-step size

for each mesh point has been used in preference to the global minimum CFL

time-step size.

DISCUSSION OF RESULTS

First, a comparison of the predictions made by the space- and time-

marching methods against the available experimental data is given. There

are no experimental data available, for the turbulent viscous-shock-layer

problem (at high Reynolds number) with massive surface blowing considered

here. For the laminar viscous-shock-layer flow at moderate Reynolds number,

a comparison between the predictions made by the two methods and the

experimental data is contained in figure 12 of reference 12. Both the methods

predict the heating rate for a 45 0 half-angle cone which compares favorably

with the experimental data. For the low Reynolds number case, the predictions

by the space- and time-marching methods are compared against the experimental

data of reference 13 in figure 2 for a 45 0 half-angle hyperboloid. Once again, the

comparison between the predictions by the two methods and the experimental

data is quite good at MW-90. At Rem 1035, the predictions depart from the

experimental data. However, the two predictions compare favorably with

each other.

Next, flow-field results and surface heating rates obtained by the
a
{	 space- and time-marching methods are presented for the forebody of a 44.250

r	 .
half-angle sphere-cone probe entering the Orton nominal (0.895 H 2 + 0.105 He)

a a'dk
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Jupiter atmosphere under perfect-gas assumption. Results have been obtained

with and without surface blowing assuming instantaneoub transition at the

first grid point downstream of the stagnation point. The freestream condi-

tions and other parameters employed in the analysis have been taken from the

peak heating entry conditions at 51.5 seconds for the 310-kg probe. 14

These are given below:

•
Nose radius, r  - 0.352 m

Free stream Mach number, M
OD 

= 43.76

Free stream temperature, T - 151.2 K
00

•

Free stream density,p. = 4,966 x 10 4 kg/m3

Probe surface temperature, w - 4022.80 K

Ratio of specific heats, Y = 1.4

•
Gas constant, R	 3737.45 J/ko K

6Reynolds number, Re = 	 r  
Us, pW	

1.2274 x 10

P.

Prandtl number, Pr - 0.72

Mixture molecular weight, m = 2.2246

Computations by both space- and time-marching methods employed a constant

step size As(As /rN )	 0.1597 in the direction along the body surface and a

total of 15 body stations were used. In the direction perpendicular to the

body, the grid was generated as given by equation (3) and altogether 101 points

-
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were used with a constant step size An = 0.01. Depending on the value of

S in equation (3), this step size gives a finer resolution near the body surface

in the physical s , n - plane. Two values of (i (1.1 and 1.01) were

M
employed in the computations. For the first value of P, the first grid

point off the body surface is located at 0.295 percent of the shock standoff	 A

distance as compared with 0.05418 percent for a = 1.01. The -arious results

computed by the two methods are displayed in figures 3 through 9 and are

discussed in the following paragraphs.

Figures 3(a) and 3(b) contain the surface pressure distributions and the

shock standoff distances obtained from the two methods with and without

surface blowing conditions. Except for the region near the tangency point,

both these methods give comparable results. The results obtained by the two

codes at the juncture point should not be taken seriously due to the

curvature discontinuity there. For an unblown shock layer, the method of

characteristics does give 
15 

a fast pressure recovery at the tangency point

similar to the one obtained by the space-marching method. The fourth-order

damping employed with the time-marching method smears out the effect of

surface discontinuity, since a large number of global iterations is used to

obtain a converged solution.

Figures 4 through 7 show velocity and temperature distributions over

both the spherical (s = 0.64) and the conical flank (s = 1.76) portions of

the probe. There is reasonable agree;.r nt between the various results

obtained by the two computational methods. However, if the results near

the wall (figs. 5 and 7) are analyzed carefully, the slopes of the velocity

and temperature profiles for 6 - 1.1 and no surface blowing (m o = 0) are



9

seen to be quite different. With the reduction in the value of S to 1.01,

the slopes predicted by the two methods begin to agree quite well. Reducing

S further does not result in any noticeable improvement. The surface

pressure distribution, shock standoff distance, and gross features of the

velocity and temperature profiles are unaffected by reducing a from 1.1 to

1.01. As will be seen later, the quantities affected most by the mesh

refinement near the surface are the wall heat transfer and skin friction,

as expected. Figures 5 and 7 also indicate that with the coarser normal-

direction mesh (s - 1.1), results obtained by the space-marching method are

closer to the finer mesh (S - 1.01) results. With surface blowing, the

mesh refinement near the surface does not affect the slopes there substan-

tially. A mesh refinement obtained with S - 1.1 appears adequate. Use of

the largest possible value of a without jeopardizing the accuracy of the

results is important, since the computational time is reduced by almost 20

percent for the time-dependent method when a is increased from 1.01 to 1.1

for the same convergence criterion of equation (4a). Yet if a large value of S

is used with small surface blowing rates, then poor resolution of the

maximum gradients may occur.

The eddy viscosity distributions over the spherical and conical

portions of the probe are given in figs. 8(a) and 8(b). There is reasonable

agreement with respect to the maximum values and the general character of

the distributions obtained by the two methods. It may be mentioned again

that the identical turbulence models 
7,8 

have been used with the two

computational methods.
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Finally, figs. 9(a) through 9(c) give the skin-friction, dimensional

and nondimensional (Stanton number) heating rates at the wall. As indicated

earlier, there is better agreement between the results obtained with a fine

mesh (S - 1.01) for the unblown case. For the blown surface case, the two

numerical methods give good results for even the coarse mesh (S - 1.1).

Generally, the results are in better agreement over the conical flank portion

than over the spherical portion or near the juncture point.

Computationally, in absence of blowing, the space-marching method is

quite economical and gives results which compare well with the experimental

data. However., with large blowing and arbitrary body shapes, the time-marching

method has proved to provide solutions without the numerical instability

experienced with the space-marching method. Without blowing and for analytic

body shapes, both methods appear equally accurate.

Further, the time-marching method has been used to predict flows with large

embedded subsonic regions. 
16 

Some recent efforts 
17 

have also been made to

handle such flows with the space-i,xarching method by making use of certain

approximations to improve the initial marching profiles. The advantage of the

space-marching method in such cases lies in the fact that for problems

requiring more computational grid points (either due to the large body size

or large Reynolds number of the flow) the storage and computational time

requirements are much less as compared to the time-marching method. Also,

with the time-marching method, the computational tin* increases substantially

if more grid points are clustered in the shear layer, whereas with the

space-marching method, the computational time is not significantly affected

by distribution of the grid points in the shear layer. The computational

time of the time-marching method, however, can be reduced substantially by

employing its recent implicit analogue. is

0:
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Finally, for a viscous reacting flow with nonequilibrium chemistry,

there are three time-step criteria 19 used with the time-marching method,

namely: the Courant-Friedrichs -Lowy (CFL) criterion, a viscous dissipation

criterion, and a species production criterion. Therefore, the solution of

the species equation proceeds with a time stop which is different from the

one used with the momentum and energy equations. For the nonequilibrium

chemistry calculations, such local differences in time will affect the final

relaxed solution, since in going through the transient part of the solutions

one would produce or deplete species at a rate which may not be characteristic

of the final converged solutions. Unlike the case with equilibrium chemistry,

the nonequilibrium chemistry cannot correct itself as the velocity and

temperature fields converge to the steady state values. The space-marching

method, 20 however, appears to be free from this drawback.

Thus, the choice of the numerical method is rather problem dependent.

Both methods give comparable results for the problems where comparisons with

the experimental data have been mace, provided that care is taken in selecting

the appropriate mesh s:.ze near the body suru„e.

CONCLUDING REMARKS

The space-marching implicit technique cf Davis and the time-marching

explicit method of MacCormack have been used to analyze the flow field around

a massively blown Jupiter entry probe under perfect gas conditions. These

two techniques have been widely used for the heat shield design calculations

for such a probe. Certain difference:; &re known to exist in the predicted

results by the two techniques. In order to isolate these differences, a point

by point comparison of the various flow-field quantities computed by the two

schemes has been obtained by using identical computational grids and turbu-

lence models. Generally, the results obtained by the two methods are in better
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agreement over the conical flank portion than over the spherical portion or

near the juncture point. For the saws degree of accuracy, the space-marching

scheme takes much less time and would appear to provide accurate results for

the problems with nonequilibrium chemistry, free from the effect of local

differences in time on the final solution which are inherent in time-marching

methods. With the time-marching method, however, the solutions are obtained

for the realistic entry-probe shapes with massive blowing rates, whereas with

the space-marching technique, it is difficult to obtain converged solutions

for such flow conditions. The choice of the numerical method is, therefore,

problem dependent. Both the methods give comparable results for the problems

where comparisons with the experimental data have been made, provided that

care is taken in selecting the appropriate mesh size near the body surface.
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^$ o ô E^ !	 11 r

v+^ + v 1

1! =
^IkO M C C ^	 ! eT

C^ti tl1`o u L
t v

^Ik

Z
A
ti..

O O
,t,
C i	 ^" M= w
E

Ra
W F-	 V) /

O
0

O q

O
r-4 N /

C6

O
H

^
•- 4

N

I ^ LA-

O
00 ^O ^	 N O
r-4 ..-4 r-4	 .--^ r+

D
U



ORIGINAL PAGE IS
OF POOR QUALITY

fi0 0

	

Time-marching code	
1.01

m

	

---- m0 = 0.1	 a=
AND

q 	 = 0	 1.1

	

.9	 0	 Space-marching code.	
o	 m0 = 0.1

.8

.7

PW

.6

	

.4	 0	 Re. = 1.2274 x 106, Tw o = 4022.80K,

M. = 43.76, T. = 151.2K, r  = 0.352 m,

P* = 4.966 x 104 kg/ m3, Pr = 0.72, Y = 1.4

	

.3 1 	 1	 1	 1	 1

0	 .4	 .8	 1.2	 1.6	 2.0	 2.4
s

(a) Surface pressure distribution.

Fig. 3 Comparison of time-marching and space-marching solutions both
with and without blowing.
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'PACE ig
a 1,WR AIS (

O^ P

"r	 r+	 O

CA

11	 it

^	 d1	 O

u
^+	 c

j	 _	 L

	

L	 L	 u	 •^

E	 E

	

g	 $	 o
j..	 N	 1-	 N

	

O C O O O O O C i	 0	
01

I	 II	 it	 11	 1!	 11	 II	 11	 II	
1	

^

	

1	 m

•E •E a •E •E •E •E •E	 q 	 01,	 ° c

I	 q 	 o

'	 n 1	
q

	

en	 n 	
q 	

—°

	

^	 I

	

^+	 n 	 q 	 clq 1	 O
lie

	

vo	 .	 1 q 	 ^I t

	

x	 n 	 q 	 p ;'•

~ 
N

^- r, L Q	
`^

x 8 E II
Lh N

CD

	

II g II *I	 cQi	 g	 000	 oo	 Sir	
O

z m	 ZWIMW 'alej Ninew



ORIGINAL PAGE IS
QF POOR QUALITY

m0 — 0	 Time-marching code l---- m0 = 0.1)	
l

q 	 m0 = 0	 p= 1.1

0	 m0 = 0.1 Space-marching code

.010	 1h0 — 
0	 Time-marching code•	 ---- m0 = 0.1 i

• a =1.01
n 	 m0 = 0	 Space-marching code

.009	 ^^ ^\ •	 • m0 = 0.1

a o
.008

.007

q
q 	 q

Q06	
q 

q

E
c 

005c
8c

004

.003

002

001	 3 •	 •

•

0	 .5	 1.0	 1.5	 2.0	 2.5	 3.0
s

tcl Stanton number.

Fig. 9 Concluded.



DEVELOP REAL-TIME DOSIMETRY
CONCEPTS AND INSTRUMENTATION FOR
LONG-TERM MISSIONS

Technical Progress
February 1981 to February 1982

L.A. Braby

May 1982

Prepared for
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Order No. T-794H
under a Related Services Agreement
with the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory
Richland, Washinqton 99352



CONTENTS

FIGURES

TABLES

INTRODUCTION 1

-	 DETECTOR DEVELOPMENT 1

ELECTRONIC SYSTEM 2

EVALUATION OF RADIATION QUALITY 6

FUTURE DIRECTION 15

REFERENCES 16

ii



FIGURES

1. Detector Gas Gain at a Constant Anode Voltage as a Function
of Time After Sealing the Detector 2

2. Gas Gain Versus Anode Voltage 3

'	 3. Flow Diagram of the Subroutine and Block Diagram of Hardware
for Adjusting the Anode Voltage to Maintain Constant Gas Gain 4

4. Block Diagram of a System Using Two Detectors to Cover a Wide
Range of Event Sizes 5

5. Detailed Block Diagram of the Electronics for the High Gain
Detector 6

6. Analog to Digital Converter Using CMOS Successive Approximation
Circuit 7

7. Prototype Portable Instrument with the High Gain Detector 8

8. Typical Curves for the Density of Dose in Lineal Energy for
Neutron and Mixed Field Irradiations 11

9. Mean and Standard Deviation for Forty Repetitions of
= 0.8 + 0.14 —YD

 at Each Va l ue of the Dose 12

10. Mean and Standard Deviation for 40 Samples of 	 Determined by
a Fourier Transform Deconvolution of the LET Distribution at
Each Dose 13

TABLES

1. Power Consumption	 8

2. Mean Value for 40 Calculations of Quality	 13

4. Milestones	 15

iii



DEVELOP REAL-TIME DOSIMETRY CONCEPTS AND
INSTRUMENTATION FOR LN E 	 SI NS

INTRODUCTION

Major objectives in the process of developing a rugged portable instrument

to evaluate dose and dose equivalent have been achieved. A tissue-equivalent

proportional counter simulating a 2 micrometer spherical tissue volume has

operated satisfactorily for over a year. The basic elements of the electronic

system have been designed and tested. And finally, the most suitable mathe-

matical technique for evaluating dose equivalent with a portable instrument

has been selected. Desigi. ai ^-) 'abrication of a portable prototype, based on

the previously tested circuits, is underway.

DETECTOR DEVELOPMENT

The 5.7 cm detector has been operated for over 15 months with the original

gas filling. Figure 1 shows the gas gain for a constant anode voltage during

that time. The long-term drift, less than one percent per month, and short-

term (les.; than 24 hour) variations of +2 percent can easily be controlled by

adjusting the anode voltage, ( see Figure 2). These adjustments will be made

automatically by a subroutine, illustrated in Figure 3, which compares the

actual position of a calibration peak with the position of that peak at the

proper gas gain. The difference is used to calculate a new high-voltage supply

setting. The actual voltage is provided by a high-voltage supply referenced

to the output of a digital-to-analog converter.

The detector will be operated with a combination of gas gain and ei+rctronic

gain which results in a calibration factor of 0.12 keV/um/channel and a useful

range of 0.36 to 300 keV/um. Since the dose mean of the single-event distri-

bution for X and y rays varies from 0.7 to 3.0 keV/um, and for neutrons from

30 to 130 keV/dun, the system is expected to detect photon as well as neutron

dose. However, the stainless steel vacuum chamber surrounding the detector

will distort the response as a function of photon energy. Also, the photon-

induced events cannot be distinguished from very low-energy neutron events.
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FIGURE 1. Detector Gas Gain at A Constant Anode Voltage as
a Function of Time After Sealina the Detector

Thus, though the s.,/stem is expectod to accurately measure dose due to photons

and low-energy neutrons, estimates of the mean quality factor become less

certain when low-energy neutrons are abundant.

Specifications for the second detector, intended to detect high-energy

heavy particles, have been completed. It will use the same basic design and

materials but will be 12.7 cm in diameter in order to provide approximately

five times the counting rate.

ELECTRONIC SYSTEM

The electronics for a system using two detectors is outlined in Figure 4.

Each detector is supported by a dedicated high-voltagE supply, amplifiers and

analog-to-digital converters (ADC's), but the two detectors share a multichannel

analyzer (MCA) and microcomputer. The ADC's output is used as a MCA memory

address. Each event results in a "one" being added to the memory content at

2
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FIGURE 2. Gas Gain Versus Anode Voltage

the corresponding address. As illustrated in Figure 5, the entire MCA content

can be periodically transferred to the microcomputer memory. The dosimetric

quantities can then be computed without interrupting further data collection.

An absolute time clock in the microcomputer is used to initiate the dose cal-

culation, data storage, calibration and other functions. A CMOS successive

approximation ADC chip and other CMOS components are used in the ADC circuit,

in Figure 6, to minimize power consumption.
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