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Table Captions

Table is Normalized RMS Model Errors in Streamfunction (0) and Velocity

(u,v) After One Period for N.)nlinear Topographic Wave Solutions.

Table II: Required cpu Time Per Model Time-Step on a VAX11-180.
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ABSTRACT

A prototype four-dimensional (x,y,z,t) continental shelf/deep ocean

model is described. In its present form, the model incorporates the ef-

fects of finite-amplitude topography, advective nonlinearities, and vari-

able stratification and rotation. The model can be forced either directly

by imposed atmospheric windstress and surface pressure distributions, and

energetic mean currents imposed by the exterior oceanic circulation; or

indirectly by initial distributions of shoreward propagating mesoscale

waves and eddies.

To avoid concerns over the appropriate specification of "open" bound-

ary conditions on the cross-shelf and seaward model boundaries, a peri-

odic channel geometry (oriented along-coast) is :jsed. The model employs

a traditional finite-difference expansion in the cross-shelf direction,

and a Fourier (periodic) representation in the long-shelf coordinate.

A modified sigma coordinate system, and a Chebyshev-tau approximation

scheme, are used to incorporate the vertical dependence.

The model has been validated against a variety of propagating top-

ogr up" ic wave problems. Representative run times a" .4 	--

are given.
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1.	 Introduction

The dynamical coupling between the large-scale ocean circulation and

motions on the continental shelf and slope is at present poorly under-

stood; nonetheless, the existence and implications of that coupling are

of concern to both coastal and deep-water oceanographers. For example,

exterior current systems undoubtedly place strong constraints on the form

of the adjacent shelf circulation, thereby dictating circulation patterns

in the important near-shore zone. Increasing evidence suggests, for in-

stance, that the observed southwesterly directed mean flow along the

northeastern continental shelf of the United States is driven by a long-

shore pressure gradient supported by the large-scale ocean circulation

(Csanady, 1978). Conversely, flow along the continental margin can be

thought of as a boundary layer component of the exterior ocean circula-

tion (Beardsley and Winant, 1979). A refined description of the closure

of open ocean flow by the shelf/slope system would therefore contribute

strongly to modeling studies of the wind- and eddy-driven oceanic general

circulation [see also, Haidvogel (1979)j.

These and other considerations suggest that a detailed knowledge of

the operative continental shelf/deep ocean coupling mechanisms is of con-

siderable practical importance. This is not only true, however, from

stric-L.y are ocean modeling point of view. As well as being areas of in-

tense mean flow and potentially significant mesoscale eddy/mean field in-

teraction, the western boundaries of the world's oceans are also sites of

strong ocean-atRiosphere transfers - for example, of heat. The continental

slope regions - representing as they do a large reservoir of heat, and



acting as preferred locations for oceanic frontal formation - may con-

tribute strong'y to the maintenance and form of that heat flux. A proper

definition of the role of the continental margins in closing the general

ocean circulation is ultimately relevant, therefore, to a broad range of

=	 questions, including local oceanographic and global air-sea interaction

(i.e., climate) problems.

Recent observational evidence in the near-shore and deep ocean re-

gions suggest three plausible mechanisms for shelf/open ocean coupling.

The first is the aforementioned mean alongshore pressure gradient (be-

lieved to be) imposed at the outer edge of the shelf by the exterior

large-scale circulation. Such a pressure gradient, and its extension

across the narrow shelf, is thought to drive the mean southwestward flow

in the Middie Atlantic Bight and thereby to support the observed shelf-

slope front (Bearasley and Winant, 1979). Second are nearly linear, low

frequency motions--thought to be topographic Rossby waves--which, gener-

ated in the deeper ocean, are directed shoreward and propagate onto the

continental slope. The most complete description of the properties of

these low frequency motions has been synthesized from data taken at

Site D, a long-term observing location situated on the continental rise

north of the mean axis of the Gulf Stream. Results at Site D indicate

most of the low frequency energy to be associated with periods of a week

to a few months and with a shoreward energy flux. Thompson (1977) offers

a review. Finally, mixing and/or transport of properties across the shelf-

slope boundary is associated with in$..nse eddy motions impinging on the

shelf/slope region from the open ocean. These nonlinear features, though
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intermittent, are strongly energetic and have been observed to account

for sizable local heat and momentum exchange [e.g., see Smith (in press)].

Such intense mesoscale features can often be seen, and their penetration

of shelf waters monitored, by satellite infrared imagery (Ring Workshop,

1977).

Theoretical and numerical studies of linear topographic Rossby waves

incident from the open ocean onto the continental slope have been made

(Kroll and Niiler, 1976; ©u, 1979). Results suggest that linear wave

mechanisms are unlikely to be quantitatively important in the coupling

of shelf and open ocean circulations. At the present time, therefore,

the "best-guess" scenario is that: (1) longshore pressure gradients im-

posed by the exterior circulation are instrumental in supporting mean

shelf currents; and (2) energetic eddy motions provide significant

transient exchange of heat and momentum across the continental slope.

A numerical model, using primitive equation dynamics, has been devel-

oped to begin to investigate the details of this continental Shelf/deep

ocean coupling. The dynamic equations and physical assumptions of this

model are quickly reviewed in Section 2. A sigma coordinate system for

the vertical dependence is then introduced (Section 3), and the resulting

four-dimensional problem (in x,y,o and t) is discretized for efficient

and accurate solution (Section 4). Test problems are examined in Sec-

tion 5 to determine model accuracy and cpu requirements.

2. Model Equations

the model is governed by the hydrostatic primitive equations, which
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can be written:

au+u - vu - fv=_ 1 a
	 +	 + a 	 au%

-	 p0 az (p p a )	 az (^ az'	 `1)

	

5T -+ v • vv i fu = .. 
p0 ay t^ + p a ) + az (V a;)	 (2)

at + u ' VP - az (" az)

iE
az = — P9

au + av + aw	
= 0,	 (5)

ax	 ay	 az

where, in standard notation:

(u,v,w) = (x,y,z) components of vector velocity v

P = density

Pa 
= imposed (atmospheric) pressure

f = f0 [1 + a(y)] = Coriolis parameter

g = acceleration of gravity (acting vertically downwards)
and

(v,K) = vertical diffusive coefficients for horizontal

momentum and density.

Equations (1) and (2) express the momentum balance in the x and y direc-

tions, respectively. The time evolution of the density field, P(x,y,z,t),

is g(,ierned by the advective—diffusive equation (3). lastly, equations (4)

and (5) express the hydrostaticity and incompressibility of tr?e fi', +w field.

(4)
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Note that the Boussinesq and rigid lid approximations have been invoked.

The latter, in particular, is numerically advantageous in that it effec-

tively filters out surface gravity waves which otherwise place strong

restrictions on time-stepping (see Section 4). We do not expect, however,

that this assumption wil, seriously affect the physical representation of

the coastal/deep ocean coupling of interest.

For convenience, and to avoid dealing with the considerable problem

associated with the specification of appropriate "open" boundary condi-

tions, we choose to work within a periodic channel oriented in the along-

coast direction. The region is bounded above by a rigid lid, and below

by a variable bottom of depth h(x,y). The assumption cF periodicity in

the along-coast direction, and the placement of a fictitious "wall" at

some distance from the coast are, of course, only crude approximations

to physical reality. Although they allow rather confident and straight-

forward treatment of equation (1-5), the influence of these assumptions

on the modeled flow must be borne in mind. It is expected, howe ver, that

the existence of these boundaries will be unimportant if they are placed

at a sufficient distance from the sites of coastal/deep ocean, interaction.

Consistent with the assumption of the periodic channel geometry, suit-

able boundary conditions for equations (1-5) are chosen as follows:

sidewalls (y = 0, ly )	 v = 0	 (6)

top (z = 0)	 v az = T 0 (x,y)

v 
2v - 

T y ( x ,Y)	 (1)

aR = 
T 0 ( x ,Y)j—,^



T1 az 
= 0 .

Thus, the sidewalls are required to be impermeable (equation 6), and sur-

face distributions of wind stress ( To , Ty) and density flux (T O ) are

prescribed on the top (equation 7). On the variable bottom, z :: -h(x,y),

the horizontal velocity components are constrained either to vanish, or

to accommodate a prescribed bottom stress; the density flux is taken to

vanish. It is relevant to note at this point that the vertical (Cheby-

shev-tau) discretization scheme to be described in next section can triv-

ially accommodate quite arbitrary boundary conditions on z = 0, -h-

Lastly, all variables are required to be periodic over the interval

0 < x < L x .

3. Sigma (stretched vertical) Coordinate System

From the point of view of the computational model, it is highly con-

venient to introduce a stretched vertical coordinate system, which essen-

tially "flattens out" the variable bottom at z = -h(x,y). Such "sigma"

coordinate systems have long been used, with slight appropriate modifi-

cation, in both mEteorology and oceanography [e.g., Phillips (1957) and

Freeman et al. (1972)). To proceed, we make the coordinate transformation:

X = x

y = y

a = 1 + 2 (z/h)



and t = t
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In the stretched system, the vertical coordinate c spans the range -1 < a

< 1; we are therefore left with a domain of regular shape. As a trade-off

for this geometric simplification, howe,er, the dynamic equations become

somewhat more complicated. The resulting dynamic equations are, dropping

the carats:

au
at = -v - VU 	 -[ 2x (h fQ p do)- (1-a) p L

0
(10j

ax

1	 a	 0 + 4 a	 au
po ax p	 7 as (" au)

at+fu = -v vv-	 [ ay (hf 1 pdo)-(1 -a)p Lh
0

(11)

ay

_ 1	 a	 o + 4 a	 av
P0 ay 

p	 7 as (^ aa)

at	 = — v vp	 +	 as ( K aa ) 	 (12)-	 h

ax [hu] + ay [hv] + h aw = 0	 (13)

where the vertical velocity in sigma coordinates:

w (x,y,a,t) = h [(1—a)u ax + (1-a) v a
y + 2w(x,y,z,t)]

Po is the net pressure at z = 0 - the sum of the imposed atmospheric

pressure and the "reaction pressure" due to the presence of the rigid lid.

Note also that the dynamic pressure has been eliminated from the equations

using the hydrostatic relation.
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In the stretched coordinate, boundary conditions (6-8) become:

sidewalls (y = 0, L y )	 v = 0
	

(14)

top (a = 1)
	

(hv) as = T x (X.Y)

(f) 2a = t 
y 

(X.Y)
	

(15)

(2,,)
 SC = T P (X.Y)

and bottom (a = -1)
	

( h V) as - T X (X.Y)
	

or u = 0

( h v) as = T 
y 

(X.Y)
	

or v = 0
	

(16)

(hn) as = 0 .

Details of this coordinate transformation have been given by several

authors - see, for instance, Owen (1980).

4. Numerical Discretization and Solution

(4a) Chebyshev Polynomial Basis Set

In the vertical (a) direction, it is dynamically appropriate and

computationally convenient to represent the motion in terms of a sum of

its depth-averaged (external) and depth-varying (internal) components.

To do so, we represent the vertical dependence of the dependent variables

as an expansion in the polynomial set PO O ):

N

( u . v ,P. w ) = z luk ( X .Y. t )9 vk ( X .Y. t )s u k ( X .Y.t). wk ( X .Y. t )] P k (a).	 (11)
k=0

We further require that I 1 1 Pk (a) da = sak - that is, that only the zeroeth
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order polynomial have a non-zero vertical integral.

The Pk (a) expansion functions can be chosen somewhat arbitrarily. We

choose to use a modified form of the Chebyshev polynomial of the first

kind. In particular, we set:

T
0 	= 0

	

Pk (Q) =	 Tk(v)	 k > 1, k odd	 (18)

TOO +	 k > 2, k even .
k-1

Note that the Pk (a) conform to the required integral property; further,

since PO (a) is identically constant with depth, it represents the depth-

averaged component of the field.

Further properties of the Chebyshev polynomial basis functions are

summarized in the Appendix.

(4b) Discretization in x and y

Adopting a complex Fourier expansion in x, and a finite-difference

representation in y, (11) becomes:

L/2-1	 N

(U,v,a,w)lmn -	 E	 E	 [U.	
(t), v	 (t), a	 (t), w	 (t)]j= -L/2	 k=0	

Jmk	 jmk	 jmk	 jmk

(19)

0	 1
-21r j x 1 /L x	

<	 < L
—

e	 pk(a)	 0 < m < M

0 < n < N

where, for instance, u
lmn = u(x l , ym, an, t). The locations of the

equivalent "arid-points" associated with this expansion are given by:

x l =	 1Lx/L

ym = m L  / M
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and	 an =	 cos [w (N-n) / N] .

It should be noted that the assumed reality of the fields (u,v,o,w) im-

plies the associated conjugate symmetry condition:

[uj . vj , Pj, wj ]mk = (U -j 1 v-j ^ a-j, w-j]mk

(4c) Evaluation of Spatial Derivatives and Vertical Integrals

In representation (19), the semi-discrete form of the dynamic

equations (10-13) can be written:

at - fv = -(uaxu + v6yu + wa Qu) -	 ^Jh IQ(P)] - (1-Q)ps xh^ _ a axp0

0 	 0

+ 7 % (vaQu)	 (20)

A

av
at + f u = -(usxv + vayv + W6 V)-— (6y[h IQ(p)] — (1-Q)p ayhl - v0 6yp0

+ h 6Q (v6 Qv)	 (21)

B

at	 =	 —(U6xP + vayp + W6 QP) + 42 6 Q ( K 6 QP)	 (22)
h

= C

and	
6x(hu) + 6y(hv) + 6Q (hw) = 0	 (23)

where it is understood that the equations are to be evaluated at the grid-

points (x 
11 

ym , Q n ); or alteriately, in horizontal gridpoint/vertical mode

space.
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Here, ax , ay and sa , and IQ(p ) denote the dio,.ece forms of the dif-

ferential and integral operators occurring in the continuum equations (10-

13). They are evaluated as follows:

(i) ax : Derivatives in the x-direction are computed by direct Fourier

synthesis using a one-dimensional discrete Fast Fourier Trans-

form (FFT). Thus, a forward transform, followed by a multi-

plication of the resulting Fourier spectrum by (-2nij/Ly ) and

lastly, an inverse transform yields the desired x derivative.

(ii) ay :	 Derivatives in the y-direction are computed using the tradi-

tional centered, second-order finite-difference approxima-

tion, except at the edges of the domain (the channel walls)

where an uncentered (one-sided) second-order formula is used.

and (iii) ay and IQ(p):

Both derivatives and integrals in a can be implemented by

constructing the appropriate matrix transformation - i.e.,

for instance, the matrix which transforms a given vertical

column of point values into the values of the derivatives at

hose points. These transformation matrices are easily con-

structed by reference to the known properties of the Cheby-

shev basis functions P k (a). The structure of these matrices

is discussed in the Appendix.

(4d) Time-Stepping: Depth-Integrated Transport

Taking k = 0, equations (20-23) describe the time evolution of the

depth-integrated flow field. In particular - since W1m0(t) =_ 0; i.e.,

the depth-averaged vertical velocity vanishes - the k = 0 transport field
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[hU
imO , 

hVimO] is horizontally non-divergent by (23). Taking advantage

of this property, we introduce the horizontal mass transport streamfunc-

tion ylm(t), where

[u(t), V(t)J 1m0 = [-6y *e Yl lm

Taking the curl of the momentum equations (20) and (21) in the usual way,

we obtain a vorticity equation for the depth-integrated flow field:

at elm = at [6x 6x 0 + 6y 6y* - F (6xh) *x - F (6 yh)
  'y

l
lm =

hlm [6x ('F ^y - dy ('F ^x + 6x 60 - dyAOJim	 (24)

Olm .

Note that 
(AO)lm 

and 
(BO)lm 

are the depth-integrated components of the

cumulative right-hand side terms in equations (20) and (21). This compon-

ent is obtained from the associated physical space (vertical) distribu-

tion of values by a simple matrix transformation - see the Appendix. Not

only does the introduction of ^ automatically guarantee horizontal non-

divergence, but it eliminates the pressure gradient term associated with

the (unknown) reaction pressure supported by the rigid lid. A solution

to equation (24) is fully prescribed by specifying the (constant) bound-

ary values of ^ on the channel walls - that is, by setting:

V1 0 ( t ) = TO (t) and ^,M(t) = TM ( t ) .
	

(25)

The vorticity equation (24) is advanced in time using a second-order

Adams-Bashforth approximation. The resulting fully discrete equation is:



q+1	 q+ ( 3at ) q	 et	 q-1
c lm - 4 lm	 Olm - (^) Olm

k,
where q is the time step index. By applying a forward transform in x, the

Pelmholtz-like equation (25) - and associated boundary conditions (25) -

can be reduced to a sequence of (M-2) x (M-2) complex triagonal matrix

equations, one for each Fourier component (j) in the x expansion. These

triagonal equations can be efficiently solved to yield the updated stream-

function field *iml.

(4e) Time-Stepping: Internal Velocity Modes (1 < k < N-2)

The (N-2) lowest order internal modes of the velocity distribution -

that is, (u,v)lmk for 1 < k < N-2 - can be obtained by direct time-step-

ping of equations (20 and (21). Using an Adams-Bashforth time-step on

the right-hand side terms A and B, and a Crank-Nicolson approximation on

the Coriolis terms, we get:

[ u - ( f-^-) v ^lmk - L u + ( f ) ^lmk + ( 3tF) Aq - ( at) Aq-1
(27)

_ Glmk

Iv + ( f - u] lmk	 Lv - ( T_ lmk + (3- ' B  - (-7 Bq-1

(28)

Hlmk

where the indices 0 < 1 < L, 0 < m < M and 1 < k < N-2. The straightfor-

ward algebraic solution to these equations is:

u lmk	
(G + 

aH) lmk / (1 + a2 )	 (29)

(26)

and	 vlmk ° (H - aG)lmk/ (1 + a2 1	 (30)
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where	 a = fat/2 .

(4f) Time-Stepping: Density Equation (0 < k < N-2)

The 0 < k < N-2 vertical modes of the density field are advanced in

time using equation (22). Without further elaboration, the resulting

fully discrete form of (22) is:

q+1	 q+	 3,&tq	 _	 at	 q-1
plmk = p 1mk	 (-F) C1mk 	 T) Clmk

where 0< 1< L, 0< m< M and 0< k< N-2.

(4g) Application of Boundary Conditions Using the Tau Method

Note, in Sections (4d, e, f) that only the lowest (N-1) modes of

(u,v,p) q+l have been obtained by time integration of the dynamic equa-

tions (20-22). The remaining two highest vertical modes - that is to say,

(u,v,p)gmk with 0 < 1 < L, 0 < . m < M and N-1 < k < N - are chosen such

that the resulting (u,v,p) q+l fields identically satisfy the prescribed

boundary conditions on a = + 1 (equations 15-16). This is the so-called

tau method, and can be shown to deliver solutions of comparable accuracy

to those obtained using Galerkin or collocation approximation techniques.

Definitions, further discussion, and sample comparisons of these spectral

approximation techniques has been given by Gottlieb and Orszag (1977).

Having obtained (u,v,p) gmk for the lower vertical modes 0 < k < N-2,

the solution of a simple algebraic problem at each horizontal location

(x 
lm' ylm) provides the required values of (u,v,p)gm k for k = N-1, N. The

precise structure of these algebraic equations is discussed in the Appendix.

(4h) Determination of the Vertical Velocity Field

Having obtained a complete specification of the u,v, and p fields at



-18-

time step (q+1) by the methods outlined above, the vertical velocity field

at the interior vertical gridpoints a n (1 < n < N-1) can be computed:

	

q+1	 _ 1	 1	 +

	

w lmn	 - hlm Ian 
[d x (hu

lmn )	 ay ( hvlmn) 1

where 0 < 1 < L, 0 < m < M and 1 < n < N-1. In the sigma coordinate sys-

tem, w
1m0 = w 1mN - 0.

5. Model Performance and Evaluation

The numerical model described in the preceding sections has been

validated on a variety of simple test problems for which analytic

solutions are available. Results for one such representative class of

tests are given next.

With uniform rotation and density (f - f0 and p =_ 1), and with the ex-

ponential bottom profile h(x,y) = HOe
-lay , 

nonlinear topographic wave

solutions of equations (20-24) can be found. The solutions are depth-

invariant; hence, they can be written explicitly in terms of the trans-

port streamfunction. The analytic solution is:

^a(x,y , t ) = e-ay sin (njy/Ly) ei(kr.-wt)	 (33)

with the accompanying dispersion relation

w = - 2f0ak / (k 2 + j 2 + a2 ).	 (34)

The transport components (hu, hv) can, of course, be recovered from the

solution for ^ by the diagnostic relations (uh, A) = (-^ y, x).

For the topographic wave test problems, the following nominal values

for the dimensional parameters have been used:

(32)



(ii) cross-channel length

(iii) depth at y - 0

(iv) Coriolis parameter

and	 (v)	 constant density

Lx = 108 cm - 1000 km

L  = 5 x 10 7 cm = 500 km

HO =5x 104 cm=500m

f  = 1.0 x 10-4 sec-1

P = 1 gm cm-3

The choice of a specific analytic solution *a (x,y,t) involves the speci-

fication of three hp ysical parameters. These are: the along-channel wave-

number, k; the cross-channel mode number, j; and the topographic e-folding

scale length, a. Having chosen these parameters, the frequency of the wave

follows from (34).

In ascertaining the accuracy with which the numerical model recovers

the nonlinear wave solutions (33), the important non-dimensional computa-

tional parameters are:

(i) (Number of points in x/x wavescale) = L/k

(ii) (Number of points in y/y mo nde scale) = Mk/j or M/aLy

and	 (iii)	 (at / wave period) = atw /2w .

Since the analytic solution is depth-invariant, there is no obvious

meaningful measure of the formal accuracy of the a expansior;. However, it

will be important to note any spurious generation of higher modes (k > 0)

by the numerical model; since these modes identically vanish for the

analytic solution, we hope that they remain small in the model solution.

Table I shows the results of these analytic tests. As well as the

relevant parameter values, the table lists the normalized RMS differences

between the model-generated and analytic wave solutions for ,, u and v
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after an elapsed time of one wave period. Here, the normalized RMS error

in * is defined as

	

L	 M	 L	 M	
112

	

RMS (*) = 
I

Z	
E (* - ^d lm / E	

E 
(*a)lm

	

1.0	 m=1	 1=0 m=1

with similar definitions for RMS(u) and RMS(v).

For these wave problems and the range of parameters studied, RMS er-

rors are generally about one percent after one wave period. Model errors

depend most sensitively on th;? non-dimensional time-step. (Compare, for

instance, cases 4 and 5. No{,: the nearly quadratic dependence of RMS er-

ror on at.) The relative insensitivity of RMS error to the effective x

resolution is a reflection of the high accuracy of the Fourier expansion

technique. In particular, it is well known that Fourier simulations of

wave propagation are free from any phase error attributable to space dif-

ferencing for any resolved wave (Orszag and Israeli, 1974). While this is

certainly not true of the second-order finite-difference representation

in the y-direction, the analytic solutions examined here have phase prop-

agation in x only. Since the cross-channel modal structure is invariant

in time, RMS errors are only weakly dependent on the cross-channel reso-

lution parameters. An examination of cases 1, 4 and 6 indicates, however,

that ay-related RMS errors comparable to those arising from time-differ-

encing begin to appear for these wave solutions when (M/j) approaches

0(10). (Compare also cases 7 and 8.) Lastly, we note that the simulated

wave solutions remain highly depth-invariant througnout the experiments.

Higher mode amplitudes are typically smaller by four orders of magnitude

(nearly machine accuracy) than the barotropic mode.
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These topographic wave tests have been run at the Woods Hole Oceano-

graphic Institution on a VAX11-780 system. Calculations were carried out

primarily in-core, with a minimum of "paging". The required cpu time per

moo e ! time step is shown in Table II a3 a function of spatial resolution.

These figures indicate that execution time increases roughly linearly with

the number of horizontal grid points, and perhaps slightly more rapidly

with the number of vertical expansion functions. To put these cpu times in

an appropriate perspective, a two-month simulation using a (32 x 49 x 5)

grid, and a time step of 0.1 day would require roughly 3.5 cpu hours on

the VAX, and much less on a more powerful machine. Even on a machine like

the VAX, however, this cpu requirement is modest.

Prototype test problems characterized by non-trivial vertical stru---

ture have also been run, with roughly comparable error levels. T:, ken to-

gether, these results indicate that the four-dimensional model described

here can be used to provide accurate and efficient numerical exploration

of coastal/deep ocean coupling and physics.
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TABLE I

Normalized RMS Model Errors in Streamfunction	 and Velocity (u,v)
After One Period for Nonlinear Topographic Wave Solutions

otw RMS RMS u RMS v

Case Lya(M /mLy ) j(M/j) k(L /k) L M N T;,- (°/•) (°/•) (*/.)

1 1.0 (49) 1	 (49) 4 (4) 16 49 5 0.01 1.07 1.06 1.07

2 1.0 (25) 1	 (25) 4 (4) 16 25 5 0.01 1.14 1.14 1.14

3 1.0 (49) 1	 (49) 4 (8) 32 49 5 0.01 1.19 1.33 1.61

4 1.0 (49) 2	 (25) 4 (4) 16 49 5 0.01 1.26 1.26 1.26

5 1.0 (49) 2 (25) 4 (4) 16 49 5 0.02 4.46 4.41 4.46

6 1.0 (49) 4 (12) 4 (4) 16 49 5 0.01 2.94 3.08 2.94

7 2.0 (25) 2	 (25) 4 (4) 16 49 5 0.01 1.34 1.33 1.33

3 2.0 (13) 2	 (13) 4 (4 16 25 5 0.01 2.19 2.53 2.17

9 1.0 (25) 2	 (13) 4 (4) 16 25 10 0.01 1.88 2.30 1.88
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TABLE II

ReqL;4Me,± --pu Time Per Model Time-Step on a VAX11-780

^,econas cpu
L M N Per Time Step

16 25 5 5.9
16 49 5 11.9
32 49 5 21.8
16 25 10 13.9



DETAILS OF THE CHEBYSHEV-TAU SOLUTION TECHNIQUE

Recall from Section 4 that the vertical (a) dependence of the depen-

dent variables (u,v,o,w) has been represented as an expansion in the mod-

ified Chebyshev basis function P k (a), where

TO (a)	 k = 0

Pk (a) =	 TO(a)	 k > 0, odd	 (A.1)

T0
	k2,_

(a) + [  

	1 ]
	 k > 0, even

and Tk (a) is the k th degree Chebyshev polynomial of the first kind. Typi-

cally defined over the interval -1 < a < 1, TL.(a) = cos[k cos-1 (a)] where

-W < cos-1 (a) < 0. For the purposes of the following discussion, we in-

troduce an arbitrary one-dimensional variable q , and set

N
qn = n (an) = E	 nk Tk (an )	 0 < n < N	 (A. 2)

k=0

The "collocation" points or equivalent gridpoints, a n , are conveniently

chosen to correspond to the extrema of T N(a); hence,

a = cos [R (n-N)/N] .	 0 < n < N	 (A.3)

Given n(a n ) at the (N+1) collocation points a n (0 < n < N), the equiv-

alent expansion coefficients nk (0 < k < N) can be recovered in several

ways. For instance, a Fast Cosine Transform (FCT) can be used - see,

e.g., Haidvogel and Zang (1979). Alternately, a linear (matrix) trans-

formation can be constructed to compute the n k from nn . The required

transformation matrix F is given by
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PO (-1) P1(-1 ) .... PN(-1)

	

F =	 PO(a1) P l (al ) .... PN(al)

P0 ( 1 ) P1( 1 ) .... PM(l)

Considering nn and nk to be column vectors, it is easily seen that
Fnk = nn	 0 < n, k < N

and, hence, that	 F-1 qn = nk .
The identical approach can be used to form matrix operators which

perform a vertical derivative or integral. For instance,

d ( an) = 6a nn 
= Onn

where

PO - 1 ) P 1 (-1) .... PN(-1)

	

O =	 PO(al) P l (a l) .... PN ( a l )	 F-1	 (A.8)

0 1 )  P1 (1) .... PN(1)
and	 Pk(a) = as Pk ( a ) _ 7 Tk(a)	 (A.9)

= n sin ne
sin 8	 6 = Cos-1(a)

1
Likewise,	 P(a)da = IQ (P) _ $ nk	 (A. 1G)

a	 n
n

(A. 4)

(A. 5)

(A. 6)

(A. 7)
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where 1 P 	PS1P
0	

.... fl
1	 -l l 	1N

lP

S =
SlP 	.... 

IIPN
0 l

1

F

1PP0
Jl	

ll	
....
	 J1PN1

and

	

( 1 -an)	 k=0

	

2 ( 1 -an )	 k=1

(A.11)

(A.12)

Pk(a)du

a
n

0
cos (n+1)x_	 cos n-1 x
2 n	 -(n--TT-n-	

cos-1(an)
0

	

cos(n+1)._ cos n- 1 x	 I
n+	 ^1) , COs 1(a)

n

+ ( 1 - an ) (k^

k > 1, odd

k > 1, even

As described in Section 4, the tau approximation replaces the dynamic

equations for k = N-1, N - that is, those which dictate the dynamical

evolution of the highest two vertical modes - with the two boundary

conditions at top and bottom (a = + 1). The implementation of the tau

method proceeds as follows. Suppose that our time-stepping scheme has

provided values of n k	 (0 < k < N-2), but that our boundary conditions

require that

n ( -1) = 0
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and
W(1)	 Y

Then,

	

PN-1(-1)'
	 PN (-1)	 q+1

,	
1	 nN- I	 =	 dq	 (A.13)

P
N-1(1)	 PN(1)	 n	

Y _
N	

dc(1)

	

nk	k - 09 ..., N-2
where	 -

nk	 0	 k = N-1, N	
(A.14)

The algebraic equation (A.13) is readily solved. Nate that the same seq-

uence of steps leading to (A.13, A.14) yield similar simple expressions

for nk (k = N-1, N) for various alternate top and bottom boundary

conditions.
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