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Introduction 

The National Aeronautics and Space Administration (NASA) has 

considered a controlled ecological life support system (CELSS) for human 

habitation in preparation for future long duration space flights. The 

success of such a system will likely depend upon the feasibili.ty of 

revitalization of food resources and the human nutritional needs which are 

to be met by these food resources. Edible higher plants would be prime 

candidates for the photoautotrophic components of this system if 

nutritionally adequate diets can be derived from these plant sources to 

support humans (43). 

Our tasks are to develop a human nutritional requirements information 

based on current knowledge, for inhabitants envisioned in the CELSS 

ground-based demonstrator; and to identify groups of plant products that 

can provide the nutrients. 

Certain aspects of these tasks have been reported in "Nutritional and 

Cultural Aspects of Plant Species Selection for a Regenerative Life Support 

System" ( 13) • In this report we present a brief discussion regarding 

factors that influence the human nutritional requirements envisioned in 

CELSS-GD and on three bioavailability experiments of Ca, Fe and Zn. A 

fourth experiment on the interrelationship of protein and magnesium on Ca 

retention is also described. 
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Human Nutritional Requirements in CELSS-GD. 

The best known nutritional standard is the Recommended Dietary 

Allowances (RDA), published by the Food and Nutrition Board of National 

Research Council (NRC), National Academy of Sciences, and updated at 

approximately five year intervals (30). The RDA are designed to serve as a 

guide for planning nutrient intake of population groups but may not meet 

requirements for particular individuals. With the exception of the 

allowances for energy the RDA generally exceed the requirements of the 

majority of persons. 

In the most recent edition of RDA (3D), ranges of estimated safe and 

adequate 

biotin) 

intakes of three vitamins (vitamin K, pantothenic 

six trace elements (copper, manganese, flouride, 

acid, and 

chromium, 

selenium, and molybdenum), and three electrolytes (sodium, potassium, and 

chloride) are tabulated for the first time. These ranges serve as 

guidelines for adequacy and also as warnings against excessive intakes 

through use of supplements. Scientific information on which to base these 

suggested intake is considered less complete than that used to determine 

the RDA. 

Nutrient Composition of Total Plant Diets. 

Most foods contain more than one nutrient individually, but no single 

food item contains all the essential nutrients in the amounts that are 

needed for optimal health. A nutritionally adequate diet could be obtained 

by various combinations of foods, and as the number and kinds of foods 

become more restrictive, it becomes increasingly difficult to formulate 

nutritionally adequate diets. 
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A total plant diet can be made nutritionally adequate by careful 

planning, giving proper attention to specific nutrients which may be in a 

less available form or in lower concentration or absent in plant foods (6). 

Most nutritionists have agreed that well-planned vegetarian diets are 

consistent with good nutritional status (1). 

In order to establish a frame of reference for total vegetarian diet, 

we have assembled a 14-day vegetarian cycle menu (Appendix A) through 

communication with practicing vegetarians and other sources (19, 36). 

This menu represents food items derived from fifty-six plant species 

(Table 1). Presently available data on food composition (47) were used to 

calculate one serving per menu item, three meals per day. The average 

nutrient contents of this cycle menu are listed in Table 2. 

The estimate of nutrient intake on food composition data is not a 

precise procedure. While the calorie and protein contents of many 

individual food items may be within 10% of the calculated value, this is 

not true for other nutrients. In addition, factors affecting 

bioavailabili ty of nutrients are generally not considered in food tables 

(30). Nevertheless, this estimation is helpful to provide a perspective for 

assessing the particular issues in foods solely of plant origin. 

a. Energy. 

considerably lower 

The average energy value provided from the menus is 

than the level recommended by NRC for sedentary 

activities. Low energy intake is a general concern with vegetarians whose 

diets are not well planned. For inhabitants in CELSS-GD, energy intake may 

be increased by using more leavened breads, cereals, legumes, nuts and 

seeds. Between meal snacks and larger serving sizes will also correct this 

discrepancy. 
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Table 1. Selected Plant Used By PractIcing Vegetarians 

Legume Cereal Fruit Vegetable Miscellaneous 

Peanuts Rye Orange Potato Mustard spice 

Chestnuts Wheat GrapefruIt Collards Nutmeg 

Walnuts Corn Lemon Rhubarb Celery seed 

Almonds Oats Apple Carrots Sesame Seed 

Soybeans RIce Strawberry Cabbage Oregano 

Sp I it Peas Peach Asparagus Sunflower seeds 

Beans - Pear Green lettuce Mint 

Navy Watermelon SpInach (Active Dry Yeast) 

WhIte Grapes Celery Green onIon 

Mung Green pepper Gar I Ic 

LIma Green peas (SakI ng powder) 

KIdney Tomato Pars ley 

Chickpeas Green beans Onions 

Lentl Is Wi nter squash (Salt) 

Alfalfa Beet greens 

Cucumbers 

BroccolI 



Table 2. DIetary RecommendatIons vs. PractIces 

Nutrtent NRC1 (ROA) 

Energy kca I 2700(2300-3100) 

Protein g 56 

Vlt. A mcg R.E. 100O 

Vito o mcg 5 (200 I .U.) 

Vlt. E mg Alpha T.E. 1O 

Vito C mg 60 

ThIamtn mg 1.4 

RIboflavIn mg 1.6 

Nlact n mg 18 

Vlt. B6 mg 2.2 

FolacIn mcg 400 

Vito BI2 mcg 3 

Calcium mg 800 

Phosphorus mg 800 

Magnesium mg 350 

Iron mg 1O (Man) 

18 (Woman) 

ZInc mg 15 

Iodine meg 15O 

Sodium g 1.1-3.3 

Potassium mg 1525-4575 

INRC : Reference Man 70 kg mIxed dIet 

2FAO/WHO: Reference Man 65 kg mixed dIet 

3Skylab: MIxed dIet 

FAOLWH02 Skylab3 

3000 ROA 

37-62 + 90-125-10 

750 ROA 

10O I .U. RDA 
ROA 

30 ROA 

1.2 ROA 

1.7 ROA 

19.8 ROA 

ROA 

200 ROA 

2 ROA 

400-500 750-850! 16 

1500-I 700! I 20 

300-400! 100 

9 (Man) ROA 

28 (Woman) 

ROA 

ROA 
+ 3.0-6.0-0.5 

2740 Min. No Max. 
and No Range 

Vegetarian 

197O 

65.4 

2102 

18O 

1.9 

1.2 

18 

° 594 

1368 

19 

2.2 

410O 

4 Veg.: Average calculated values of a 14-day vegetarIan cycle menu which was developed 
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from communicatIon with practicing strIct vegetarIans; and adapted from "RecIpes 
for a Small Planet" and "Laurel's Kitchen, A handbook for Vegetarian Cookery and 
NutritIon." Soybean mt Ik values were substItuted for mIlk and mt Ik products. 
Soybean leclthln values was used In place of egg In mayonnaise, etc. 



b. The protein content of total vegetarian diets warrants special 

comment because of the widespread impression that only protein from animal 

sources will provide an adequate amino acid composition. This concept is 

based on the studies of the poor growth rates in rats after the feeding of 

a single protein, vegetable or animal. Single animal proteins are 

generally superior to single vegetable proteins, soybean protein being one 

important exception. However, man or rat eats proteins via various food 

sources. Previous works conducted in our laboratory and elsewhere (2, 4, 

5, 14, 40) have shown that, assuming adequate energy intake, several 

cereals and legumes can be properly combined so that the amino acid 

shortfalls of each are complemented. A number of combinations can be 

satisfactory to meet protein needs in humans: beans with corn or rice, 

cereals with legumes and green leafy vegetables, peanuts with wheat, wheat 

and rice with chickpeas and sesame, and so forth. All subjects achieved 

positive nitrogen balances when 8 g of nitrogen derived from these 

combination of foods were consumed by each participant. When energy is 

low, however, dietary protein is preferentially metabolized to provide 

energy rather than to maintain tissue protein and protein functions. 

c. Vitamins. Nutri tionists have not reached an agreement as to the 

parameters which may best reflect the requirement for vitamins. Some 

consider that the saturation of tissues or of specific enzyme activities 

and of full normalization of metabolic pathway is desirable. Others place 

less importance on mild abnormalities of biochemical parameters as long as 

they are not accompanied by an impairment of health (7). 

Inhabi tants in CELSS-GD are unlikely to suffer vitamin deficiency 

since appropriate vitamin supplements are readily available to them. 
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However, little information is available concerning the level at which 

excessi ve intake of vitamins is toxic, even though explici t warnings for 

both children and adults regarding excessive vitamin A intake, more than 

7500 R.E. (25,000 I.U.) on a regular basis are included in NRC-RDA (30). 

Also, 

short-term 

nutrient 

megadose 

toxicity 

effect. 

tends 

The 

to be 

health 

toxicities are not known nor defined. 

regarded 

effects 

only in terms of 

of subtle chronic 

Habitual supplementation with 

vitamin (or mineral) preparations indiscriminately may produce nutrient 

imbalance or unwarrantable toxicity. 

d. Minerals. Wi thin the past few decades remarkable progress has 

taken place in recognizing the important roles of trace elements in 

nutrition. Despite their presence in small concentrations in tissues, most 

known essential trace elements act as catalysts of critical 

enzyme---mediated biochemical reactions and thus exert profound effects on 

biological functions necessary for health (27). 

As mentioned earlier in this report, the RDA for man have been 

determined for three of these elements, i.e. iodine, iron and zinc. Ranges 

of "estimated safe and adequate daily dietary intake" have been summarized 

for chromium, copper, flouride, manganese, molybdenum and selenium. 

The determination for adequate dietary intake of mineral for humans in 

the total plant food scenario is especially complicated by the interactions 

occurring among dietary components and by the bioavailabili ty of these 

minerals in different foods. 

Interaction of Dietary Components. 

Each individual dietary component consists of a few to a large number 

of substances; and dietary components rarely act independently of each 

other. Interactions between two or more dietary components and the 
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constituents thereof can occur in the diet or at the site of absorption, or 

during intermediary metabolism or elsewhere. In turn, the human 

requirement for each nutrient is often influenced by other nutrients or 

variables in the diet. For example, the requirement for thiamin has 

usually been related to energy intake, especially when calories were 

derived primarily from carbohydrates (30). 

Some evidence (30) indicates that the requirement for vitamin B6 is 

related to the intake of protein. Subjects consuming a high protein diet 

(150 g/day) required at least 2.16 mg/day of pyridoxine a day to maintain 

normal tryptophan metabolism, whereas male college students who were fed 54 

g of protein required only 0.76 mg of this vitamin (21). 

The high protein content (approximately 100 g/day) and unfavorable 

calcium-to-phosphorus ratio of the American diet leads to increased urinary 

calcium excretion; these findings support an ample calcium intake above the 

present RDA for calcium of 800 mg/day (24). In a total plant food setting 

the protein intake for residents in CELSS-GD would likely be only slightly 

above the RDA value for protein; present RDA for calcium would be adequate. 

Our knowledge regarding interactions in minerals has only begun to 

unravel. Interactions can be either synergistic or antagonistic. The 

absorption of iron, for instance, is enhanced by ascorbic acid and animal 

tissues, but it is adversely affected by calcium and photophate salts, 

EDTA, phytates, and tannic acid, tea and antacids. Concurrently, calcium 

and phosphate interact with each other, and with phytates and antacids, as 

well as with other nutrients. Furthermore, high intake of cobal t, zinc, 

cadium, copper or manganese depress iron absorption due to competition for 

similar binding sites. 
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It is apparent that such interactions complicate the assessment of 

individual candidate plants for use in CELSS. However, they have indicated 

clearly that the nutritional value of any specific food is relative---not 

absolute: It depends upon: 

1. The content and bioavailability of nutrients in that food. 

2. The content and bioavailability of nutrients in other foods 

in the individual's diet. 

3. The nutrient requirements for that individual. 

In general, alterations in intake of one class of nutrients may well 

result in alterations in intake of other nutrients (3). The total plant 

dietary excludes the use of dairy foods and meat, poultry and seafood. By 

necessi ty the consumption of legumes, cereals, and vegetables would be 

increased. Multiple interactions among nutrients and other factors 

resulting from such alterations of intake would occur. 

Stress. 

Stress is defined as "the nonspecific response of the body to any 

demand" (41). It is antiCipated that human habitants in the CELSS Ground 

Demonstrator will experience tension, anxiety or boredom in varying degrees 

from physical or mental reasons. Although the nutritional significance of 

stress is largely unknown, abnormal eating behavior such as loss of 

appetite, compulsive overeating or interference with fat digestion is often 

associated with stress. 

The Food and Nutrition Board, NAS-NRC (30) suggests that nutrient 

intake in excess of RDA are unnecessary for usual stress. In contrast, 

increased urinary nitrogen excretion has been reported as the result of 
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skeletal muscle protein breakdown to meet the increased demands for energy 

during times of stress (46). Symptoms of impaired taste acuity due to 

conditioned Zn deficiency are experienced during stress situations. 

Biomedical studies regarding the effects of space flight on various 

chemical elements were carried out on the nine astronauts who participated 

in the three sky1ab flights of 28, 50 and 84 days in 1973-74. Marked 

increases in urinary calcium, negative calcium balances and related losses 

of nitrogen and phosphorus have been reported, despite vigorous exercise 

regimens in flight. Magnesium, sodium and potassium also indicated 

negative shifts during flight. These observations have been attributed to 

the withdrawal of gravitational stress (32, 48). 

In a recent report (42), the menu for Space Shuttle Columbia was 

described as preassemb1ed standard menus providing three meals and 

supplying 3,000 kcal per person per day. The minimum daily nutritional 

levels supplied by shuttle menu are essentially the same as the RDA which 

usually are considered as amounts that exceed the requirements. However, 

even though the actual energy intake was less, consumption per crewman 

exceeded recommended levels in varying amounts (Table 3). If we assume 

that the recommended dietary levels represent the amounts of nutrients 

desired as well as a needed balance of major nutrients, then some of the 

ratios among nutrients would have been altered, i.e. protein/calcium, 

calcium/phosphorus/magnesium, iron/zinc, etc. Granted that these changes 

are not significant, the compounded effect is not known. Whether this 

increase in nutrient intake intended to counter the nutritional demand 

imposed by in flight stress is not clear. 
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Table 3. Estlmated mean daily in-fltght nutrient consumptIon per crewman In Space Shuttle Columbia (42) 

kcal protein carbo- fat Ca P Na K Mg Fe Zn 
hydrate 

9 mg 

mean/man day 2,656 106.8 358.6 83.1 1,210 1,706 4,506 3,238 387 27.1 17.6 

NASA recom- 3,000 56 . 800 800 3,450 2,737 350 18 15 
mended levels 

RDA 56 800 800 1,100- 1,875- 350 10 15 
3,300 5,625 



Bioavailability Studies of Minerals. 

Rationale. 

The Total mineral content of a food does not necessarily reflect its 

dietary contribution. Absorption and utilization of individual minerals 

can be influenced by the solubility and ionization of mineral complexes 

present in a particular food; competitive antagonism among elements with 

similar properties and the presence of dietary components which bind it can 

render it unavailable (17, 25). 

Bioavailability of a mineral refers to that proportion of the mineral 

in food that can be absorbed and retained by an animal and utilized to 

perform biological functions. Bioavailabili ty varies with food source, 

preparation and processing treatments and interaction with other dietary 

components. By far, the largest indirect factors that reduce 

bioavailability of minerals are those that reduce the intestinal absorptive 

capacity. 

The bioavailability of minerals from plant foods is generally 

considered to be less than that from animal products. The decreased 

availability may be explained by the phytate and fiber content of the plant 

foods. In general, diets rich in fiber and phytate decrease the mineral as 

well as energy, fat, and nitrogen absorption (27). Decreased absorption 

may not be a problem when the intake of these nutrients in the diet is 

sufficiently high but they may be of concern when the intake is marginal or 

low. 

The percent of phytate varies considerably in different varieties and 

strains of plants. The ranges found in foods were cereals (40-90%), 

legumes (5 to 72%), fruits (0 to 16%), nuts (12 to 50%), vegetables (0 to 

32%), and tubers (5 to 23%). 
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Phytate and dietary fibers inhibit the intestinal absorption of 

elements by forming relatively insoluble complexes (20). Elements of 

particular interest relative to complexation by phytate and other dietary 

fibers include zinc, iron, copper, manganese, and chromium as well as 

magnesium and calcium. 

a. Calcium. The subject of calcium requirement of human has been 

under investigation for years. However, efforts to understand the role of 

dietary calcium have been complicated by the influence of numerous factors, 

nutritional or otherwise, that in aggregate appear to lack a clear cut 

relation. 

Recent experiments on the influence of dietary factors on calcium 

metabolism in adult animals and humans have shown that raising protein 

intake increases calcium excretion while decreasing protein intake has the 

opposite effect (22). The calciuria effect of high protein diets 

apparently is due primarily to increased acid production, as sulfate, 

arising from the oxidation of excess sulfur amino acids (49). Calciuria 

therefore is more servere when proteins high in sulfur amino acid are 

consumed. Thus, amounts higher than the present RDA of 800 mg of calcium 

have been suggested for the prevention of bone disease in man in the U.S. 

(18, 24) in contrast to 500 mg as the recommended intake for Canada and the 

United Kingdom or 400-500 mg recommended by FAO/WHO (31). 

Calcium is obtained only through absorption from dietary sources. A 

wide range in absorption rates has been reported in the literature. 

Several dietary factors are known to influence carcium absorption, i.e. the 

vitamin D, phosphorus, the calcium-to-phosphorus (Ca:P) ratio, protein, 
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lactose, magnesium, fat, oxalic acid, and phytic acid (26). It is affected 

by age, immobilization, hormone system and the nutritional status of the 

individual. 

b. Iron. It has been recognized that the relationship between diet 

and iron status is not due to the total amount of iron ingested but the 

amount of iron available for absorption (30). Numerous workers have shown 

that iron absorption is significantly lower, and dietary iron requirement 

therefore, higher, in total vegetarian diets than in foods from animal 

sources, mixed diets and iron salts. It is not only the biological form of 

iron in the food, but also the composite effect of inhibitors or enhancers 

in a complete meal that determines nonheme iron availability (27, 28). 

Ascorbic acid and meat/fish/poultry (MFP) have shown to enhance 

absorption of nonheme iron (7, 28). A recent report indicated that the 

inclusion of 5 fluid ounces of orange juice (75 mg ascorbic acid) in a meal 

of low iron bioavailabili ty would increse the absorption of iron from 5 

percent to approximately 20 percent in the individual with low iron stores 

(28). In the same report a model to estimate bioavailability of iron has 

been developed assuming certain relationships, e.g. 1 mg ascorbic acid is 

equivalent to the enhancing power of 1 g cooked MFP or 1.3 g raw MFP. The 

strong enhancing effect of ascorbic acid allows the vegetarian to construct 

diets which promote iron absorption. 

Tannic acid in tea and many vegetables, phosvitin in egg yolk, and 

excessive intake of other trace elements such as zinc, copper and manganese 

are among the factors that tend to decrease absorption of nonheme iron. 
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c. Zinc. Zinc is particularly vulnerable in a total vegetarian diet 

because it is present in lower concentration in plant products and because 

the fiber and phytin in the whole-grains or legumes inhibit zinc absorption 

in animals and inl human beings (10, 39). 

Reinhold, et al (33) suggested that phytate binding is of secondary 

importance to binding by fiber of zinc and iron. Removal of phytate from 

bran or whole meals by extraction with HCL or by action of phytase failed 

to decrease the quantity of zinc bound. Bran surpassed cellulose in 

ability to bind zinc, perhaps due to the strong affinity of protein in the 

bran for zinc. Lignin and hemicellulose bound zinc to a similar degree as 

cellulose (16). 

Experimental Procedure. 

Three animal experiments were conducted in our laboratory to determine 

the bioavailability of calcium, iron and zinc respectively. The main 

objective of these studies is to determine the feasibility of a total plant 

dietary in CELSS-GD. with particular reference to bioavailability of these 

minerals. 

a. Planning of Diet. Five experimental diets were formulated with the 

following consideration. 

1. Higher plants that have been incorporated in terrestrial 

diets would be more practical candidates for CELSS-GD. 

2. Although the importance of plant diversity has been stressed 

earlier in this report, realistically the number and kind of 

plants envisioned in CELSS-GD. could be limited. 

3. Diets are adequate in micronutrients and nutrients not being 

studied. 
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Therefore, each individual diet consisted of three plant types 

representing the minimum number for plant di versi ty. It contained one 

variety of legume, a grain or starchy vegetable and a green vegetable. 

Sufficient amounts of starch, fat and vitamins were incorporated to insure 

an adequate intake of nutrients not being studied and to achieve caloric 

range (3,600-4,400 kcal/kg) and about 15% of protein (29). 

Five combinations are designated as: 

Diet 1. Soybeans - potatoes - mustard greens 

Diet 2. Peanuts - rice - Chinese pea pods 

Diet 3. Split peas - field corn - kale 

Diet 4. Navy beans - whole wheat - turnip greens 

Diet 5. Chickpeas - oats - broccoli 

All diet components were cooked to assimilate human foods and dried to 

remove their high water content. The plant foods in their original state 

would have been too bulky to provide sufficient amounts of energy or 

nutrients. Composition of these diets are presented in Table 4. 

Individual dietary components and each of the five diets were analyzed for 

protein and minerals. The protein and mineral contents of the diets are 

shown in Table 5. Calculated value for other nutrients are summarized in 

Table 6. The high fat content of peanuts contributed 16.9% of fat to 

Diet 2. Since we were interested in baseline data, we chose not to use 

defatted peanuts. 
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Table 4. Composition of Diets 

Diet Number 

Component 2 3 4 5 

g/kg of diet 

Soybean 304 

Potatoes 66 

Mustard greens 15 

Peanuts 326 

Rice 315 

Chinese pea pods 126 

Split peas 303 

Field corn 361 

Kale 91 

Navy beans 306 

Whole wheat 351 

Turnip green 18 

Chickpeas 321.5 

Oats 350 

Broccoli 105 

Corn starch 540 158 200 215 206.5 

Crisco 30 35 2 

Vitamin mix 10 10 10 10 10 

Choline bitartrate 2 2 2 2 2 

DL-Methionine 3 3 3 3 3 



Diet 

1 • Soybeans, potatoes, 
mustard greens 

2. Peanuts, rice, 
Chinese pea pods 

3. Split peas, field 
corn, kale 

4. Navy beans, whole 
turnip greens 

5. Chickpeas, oats, 
broccoli 

5% salt mixture 
(31) 

NRC (29) 

wheat, 

Table 5. Protein and Mineral 

Prot. Cu Fe 

mg/kg 

110.5 4.1 40.6 

168.4 3.1 40.0 

145.8 3.6 18.6 

142.3 2.3 54.8 

181.1 6.2 49.4 

19.0 49 

5.0 35 

Contents of the Diets 

Mg Mn Zn 

of diet 

846 13.5 11.6 

981 13.8 29.4 

938 1.2 22.5 

914 20.5 18.3 

1273 30.3 29.3 

490 19.5 4.0 

400 50.0 12.0 

Phose 

2427 

2461 

2584 

2172 

3828 

3140 

4000 

Ca 

2096 

1413 

2213 

2425 

1615 

5920 

5000 

I-' 
00 



Table 6. Nutrients In 1.0 kg of Experimental Diets. 

Total Vitamin Ascorbic 
Diet Energy Fat CHO Fiber Ash K A Th I ami n, Riboflavin Niacin acid 

. . g .mg I ,U • mg 

1 • Soybeans, potatoes, 3870 66.'4 69'2 29.5 26.2 9254 64280 10.6 8.4 47.7 410 
mustard greens 

2. Peanuts, rl ce, 4405 169.4 618 21.3 21.8 4584 10800 14.3 7.7 102.5 210 
Chinese pea pods 

3. Spilt peas, field corn 3783 52.2 712 20.4 22.2 6537 88135 11 • 1 9.2 56.2 640 
kale 

4. Navy beans, whole wheat, 3701 51.3 695 33.4 27.9 7361 73000 10.9 8.3 58.5 340 
turnip greens 

5. Chickpeas, oat, 3363 46.7610 33.8 24.3 6462 23175 9.9 8.3 46.5 780 
broccol t 



b. Experimental Animals. Male rats of the Sprague-Dawley strain were 

used in all of the studies. Animals were approximately 8 weeks old and 

weighed between 185 and 224 grams upon arrival. One hundred and twenty 

rats were randomly assigned to the five total vegetarian diets; then 

subdivided for bioavailability studies of Ca, Fe, and Zn. 

All rats were housed separately in plexiglass cages with elevated rod 

bottoms to facilitate the collection of feces and minimize coprophagy. 

The animals were stabilized with the experimental diet for 4 days. 

After an 18-hour fasting, rats were given the extrinsically labeled 

isotope: 47 Ca, 59Fe or 65zn with 3 g of food. The rats then were given 

non-isotope experimental diet and counted daily in a whole body counter for 

the following 12 days. Absorption rates were determined by measuring the 

respective radio isotopes retained in the animal each day. 

Results. 

The rates of absorption of Ca, Fe and Zn in the five experimental 

diets are presented in Fig. 1, 2, 3 respectively. Diet 2, the peanuts -

rice - Chinese pea pods combination was better absorption for all the three 

minerals studied. Animal studies showed that moderate amounts of fat 

favored absorption of minerals (26). The effect of 16.9% of fat 

intrinsically present in Diet 2 seems to support this finding. 

The amount of calcium in the experimental diets varied from 1,473 to 

2,425 mg per kg of diet. These values are markedly lower than the 

proportion of 5,920 mg of calcium per kg of diet used in basal diets as 

optimal intake (37) or the 5,000 mg/kg diet recommended by NRC (29). The 

percent of calcium absorption is ranked against the calcium contents in the 

respective diets in Table 7. An inverse relationship is clearly shown. 
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Table 7. Calctum absorption In SpragUe-Dawley 
rat (8 weeks old) 

Calcfum Calcium 
Dietary component absorption content 

% mg/kg 

Peanuts, rice, 89 1473 
Chinese pea pods 

Chickpeas, oats, 83 1675 
broccol I 

Soybeans, potatoes, 80 2096 
mustard greens 

Split peas, fteld corn, 71 2273 
kale 

Navy beans, whole wheat, 65 2425 
turnIp greens 
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These data indicated that when calcium intake is marginal, homeostatic 

regulation operates for intestinal calcium uptake. This phenomena acts in 

concert with the "mucosal block" theory. It postulates that unneeded 

mineral, although taken up by the enteric cells, will be withheld from 

passing into the body, while only the amounts needed to maintain normal 

balance or to reverse depletion will be permitted to enter the blood 

stream. 

The effect of diets on Ca and Fe absorption is similar wi thin their 

rspective range. The velocity of absorption was highest in the peanut, 

rice and Chinese pea pods combination followed by the chick 

peas-oats-broccoli, then the soybean-potatoes-mustard green combination. 

Calcium absorption in the split peas-field corn-kale combination was better 

than that of the navy beans-whole wheat-turnip green combination. The Fe 

absorption of the latter two diets was virtually the same. Because foods 

were dehydrated the zinc concentration of these diets were high. On the 

other hand, since part of the energy of the diet was supplied by corn 

starch, the amounts of fiber in the diets were relatively modest. 

The effect of diets on Zn absorption was not as distinct as that on 

either calcium or iron. Sinc zinc has a number of accessible excretion 

routes the physiological control to the overload of zinc in these diets was 

not as restricted at the level of intestinal absorption. 

The moderate amounts of existing fiber in the diets did not appear to 

affect mineral absorption significantly. This finding is in agreement with 

the report of Story (44) who has suggested that the main interactions 

between dietary fiber and intestinal contents are water holding, absorption 
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of solutes and modification of intestinal flora. Few changes in mineral 

balance occur when moderate amounts of dietary fiber are added to a mixed 

diet. 

The enzyme phytase, found in many cereals, destroys phytic acid. 

Legumes and cereals used in the experimental diets were soaked in water and 

then cooked. Whether some of the phytic acid was destroyed during the 

soaking and cooking process or whether the amounts of calcium, iron and 

zinc in the diets are sufficient to compensate for the moderate proportion 

of phytic acid in the diets is not clear. Absorption rates did not appear 

to be affected significantly by the phytates in these diets as compared to 

other studies. 

Experiment IV 

Soybean protein has become a replacement for animal protein as a meat 

and/or milk substitute in practicing vegetarian diets. A number of studies 

have indicated that soy bean protein in the diet will suppress the 

utilization of calcium, phosphorus, magnesium, zinc, copper and manganese. 

In the three experiments described earlier the effect of 

soybean-potatoes-mustard green diet was not as favorable on mineral 

absorption as some of the other combinations. 

Both calcium and magnesium are divalent ions and both markedly 

influence parathyroid hormone (PTH) stimulation yet they are antagonistic 

in many physiological processes. 

In a total vegetarian diet intake of protein is expected to be lower 

while intake of magnesium would be higher. Since protein and magnesium are 

known to influence calcium utilization this experiment in essence extends 

the Ca absorption study. Experiment IV was conducted to examine the effect 

of levels of protein (soy protein) or magnesium and their interaction on 

caleium metabolism (15). 
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A 3 x 3 factorial design was used in planning the experiment. A 

combination of three levels of protein and three levels of magnesium was 

used to compose the 9 experimental diets. The combinations represented 

low, medium and high levels of protein designated as PI, Pm and Ph 

respectively. Similarly, low, medium and high levels of magnesium were 

designated as Ml, Mm, and Mh respectively. The low protein level of 

5.5-5.9%, PI, was chosen because in a total-vegetarian diet protein level 

would be low. The protein level of 10.6-10.7%, Pm, represents the amount 

recommended by the National Research Council, whereas the protein level of 

21.4-22%, Ph, represents an excessive protein consumption. 

The magnesium level of 0.053%-0.064%, MI, was derived from the levels 

which are naturally present in the food ingredients used, i.e. kale, turnip 

greens, rice, and small amounts of soy beans, etc. MgS04 was added to Mm 

and Mh diets to raise the Mg levels of these diets to 0.084-0.095% and 

0.14-0.15% respectively. 

The experimental diets were formulated by replacing portions of corn 

starch with soy assay protein. Thus, the amount of magnesium in MI diet is 

low since the purified soy protein or the corn starch contains negligible 

amounts of trace elements including magnesium. The proportion of magnesium 

in Mm diets may represent those in mixed diets; whereas in a total 

vegetarian diet the proportion of Mg would be more closely represented by 

the Mh diet (Table 8). 

All diets contained the same amounts of minerals (except magnesium), 

vitamin-dextrin mixture and fat. The protein and mineral contents of the 

diets were determined and are summarized in Table 9. 
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Table 8. Composition of Diets in Experiment IV 

Type of Diet 

P1Ml P1Mm P1Mh PmMl PmMm PmMh PhMl PhMm PhMh 

Ingredient (gm/kg of diet) 

Kale 1 70 70 70 70 70 70 70 70 70 

Turnip greens 1 55 55 55 55 55 55 55 55 55 

Soybean 2 
7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 

Rice3 200 200 200 200 200 200 200 200 200 

Corn starch 4 603 601 598 543 541 538 423 421 418 

Fat5 50 50 50 50 50 50 50 50 50 

Vitamin mix6 10 10 10 10 10 10 10 10 10 

DL methionine7 3 3 3 3 3 3 3 3 3 

Choline bitartrate 8 2 2 2 2 2 2 2 2 2 

Soyassay protein9 60 60 60 180 180 180 

MgS04
10 1.74 4.64 1.74 4.64 1.74 4.64 

Birds Eye Brand, General Food Corporation. 

2 Amysoy 70. 

3 Uncle Ben's Converted Rice, long grain enriched parboiled. 

4 Argo, Best Foods CPC International Inc. 

5 Crisco, Dehydrogenated vegetable oil. 

6 Vitamin premix supplies amount per kg diet: thiamin HC1, 0.6 g/kg; riboflavin, 0.6 g/kg; pyridoxine HC1, 0.7 g/kg; 
niacin, 3.0 g/kg; calcium pantothenate, 1.6 g/kg; folic acid, 0.2 g/kg; biotin, 0.02 g/kg; vitamin B12 , 1.0 g/kg; 
dry vitamin A palmitate (500,000 PIg), 0.8 g/kg; vitamin D3 trituration (400,000 pIg, 0.25 g/kg; dry Vitamin E 
acetate (500 PIg), 10 g/kg; menadione, 0.005 g/kg; sucrose, 981.225 g/kg. 

7 USB, Cleveland, Ohio 

8 ICN Pharmaceuticals, Inc. Cleveland, Ohio 

9 Soyassay protein, Alcohol water extracted. Teklad, Division of Harland Indiana Inc. 

10 AR. Mallinckrodt, Inc. 

N 
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Table 9. Protein and Mineral 

Diet Protein Ca Mg 
(%) (%) (%) 

Plml 5.9 0.29 0.053 

P1Mm 5.8 0.27 0.084 

P1Ml1 5.5 0.29 0.140 

PmMl 10.7 0.29 0.055 

PmMm 10.6 0.30 0.090 

PmMh 10.6 0.30 0.145 

PhMl 21.4 0.34 0.064 

PhMm 21.9 0.34 0.095 

PhMh 22.0 0.35 0.150 

1 N.D. not detected. 

Content of Experimental 

Cu Fe 
(%) (%) 

N.D. 1 0.0047 

N.D. 0.0033 

N.D. 0.0040 

N.D. 0.0054 

N.D. 0.0061 

N.D. 0.0054 

N.D. 0.0111 

N.D. 0.0097 

N.D. 0.0231 

Diets in Experiment 

Mn Zn 
(%) (%) 

0.0005 0.0012 

0.0001 0.0014 

0.0001 0.0022 

0.0005 0.0013 

0.0005 0.0037 

N.D. 0.0013 

0.0005 0.0022 

0.0001 0.0019 

0.0005 0.0021 

IV 

P 
(%) 

0.10 

0.10 

0.10 

0.13 

0.13 

0.13 

0.20 

0.21 

0.21 

N 
\0 



Seventy-two Sprague-Dawley strain male weanling rats were randomly 

assigned to the diet groups. Absorption of calcium were determined by 

measuring 47Ca retained in the body. Calcium and magnesium concentration 

in femure bones were measured by atomic absorption spectrophotometry after 

rates were fed test diets for 35 days. 

Results of Experiment,IV indicated the following: 

1. Levels of protein per se or magnesium did not have a dis­

concerning effect on calcium absorption. 

2. High amounts of protein in the diets stimulated food con-

sumption and weight gain of the animals, while the increase 

of magnesium in the diet suppressed food intake and body 

weight gain. 

3. Calcium intake linearly correlates with the total calcium 

content in femure bones. 

4. Animals in the PI, Mh group which represents vegetarian 

diet of low protein, high magnesium intake had the lowest 

calcium intake, and the lowest femur bone weight; and the 

lowest total calcium content in femur bones among the nine 

diet groups studied. 
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Summary. 

The preceding literature review and research may be summarized as 

follows: 

• If we assume that the inhabitants of CELSS-GD will live 

under mildly stressful conditions the present known RDA 

are adequate to meet the nutrient requirements. 

• A total plant dietary can be satisfactory, provided a 

diversity of plants will be available for use in CELSS-GD. 

Some supplements for micronutrients may be necessary. 

However, indiscrimnate use of vitamins and minerals pre­

paration is to be discouraged. 

• The minimum number of three plant species per candidate 

group is not adequate to provide a balance of nutrients. 

Imbalance of minerals were shown in the animal experiments 

conducted. 

• More research effort is needed to target on -

a. the inter-relationship of nutrients. 

b. long duration human feeding experiments under 

controlled conditions. 
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APPENDIX A 

A 14-Day Total Vegetarian Cycle Menu 

DAY 1 

Breakfast 

2 Buckwheat pancakes 
1 C Cinnamon-flavored applesauce 
1 slice white bread toasted 
1 C Red clover blossom tea 

Lunch 

1 Sandwich of soy pate 
2 Cucumber sl ices 
1 Apple 
1 C Soy mil k 
1 sl ice whole-grain bread 

Dinner 

1/2 C steamed greens 
1 Savory squash pie 
1 C Soy milk 
1 Green Beans He11enika 
1 Tomato pepper salad 

DAY 2 

Breakfast 

1 Eng1 ish Muffin 
2 wheat toasted 
1 Dilled cucumber and yogurt salad 
1 C Mint Tea 

Lunch 

1 C Tomato soup 
4 Sally's savory Crackers 
1/4 C Celery sticks 
1/4 C split pea 
1/4 C tofu 
1 C Soy milk 

Dinner 

3 Tennessee Corn Pone 
1 Broccoli spears with yeast margarine 
1 T French Dressing 
1/2 C Tossed Salad (spinach) 
1 Diana's Apple Crisp 
1 C Tea 



DAY 3 

DAY 4 

Breakfast 

4 Sarah's Sourdough Pancakes 
1 T Hot orange sauce 
1 C Ganhi s Coffee 
1 C Fresh strawberry yogurt 

Lunch 

3 T 
2 sl ices 
1 
1 

Dinner 

1 
1/2 C 
2 
1 
1 C 
1 sl ice 

Breakfast 

1/2 C 
1/2 C 
1/2 C 
1 T 
1 sl ice 
2 T 
1 C 

Lunch 

1 C 
4 
1 
1 C 

Dinner 

1 
2 
1 
20 pieces 

Jessica's Mock Rarebit over 
whole-grain taost 
Sun choke salad 
apple 

New England baked beans 
Asparagus spears 
Boston Brown Bread 
Summer Salad 
Soy milk 
strawberry-Rhubarb pie 

sliced raw peaches 
oatmeal with 
Soybean mi 1 k 
honey 
whole-grain bread 
peanut butter 
Tea 

Manybean soup 
Corn bread 
Chef's salad 
Soybean milk 

Creamy sesame beans and celery 
Potato pop pens 
Coleslaw 
French-fried 
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DAY 5 

DAY 6 

Breakfast 

1/2 C 
1/2 C 
1 T 
2 
1 C 

Lunch 

2 
2 slices 
1/4 C 
1 C 

Dinner 

Oatmeal with 
Soy mil k 
Maple Syrup 
Apple Bran Muffins 
Rose hips tea 

Soy Burgers 
white break 
Lettuce 
Soy mil k 

1 Shades of Green Salad 
3 Crispy Seed Wafers 
1/2 C orange juice (fresh) 

Breakfast 

4 pancakes 

Lunch 

1 Sesame Tomatoes on Rice 

Di nner 

2 
1 
2 slices 
1 
1 C 
1 T 

Nut and seed patties 
Baked Potato 
wheat flour toast 
Banana 
Coffee 
Sugar 
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DAY 7 

DAY 8 

Breakfast 

1 Victory breakfast 

Lunch 

1 Brown ri ce bu ffet 
1 C Coffee 
1 T sugar 

Dinner 

1/2 C 
2 slices 
1 
1 

Breakfast 

1 
1 C 
1 T 
1 sl i ce 
1 T 

Morning Snack 

1/4 C 

Lunch 

Marinated white beans 
Garlic Bread 
Tossed green salad with zucchini 
Walnut cake 

orange, medium 
bulgur with 
brewer's yeast 
Toasted wheat bread with 
honey 

shelled almonds 

2 C Split pea soup 
2 T peanut butter 
2 slices whole wheat bread 
1 T honey 
1 Fruit-Sunflower Seed Salad 

Afternoon Snack 

1 peach, medium 
Dinner 

1 C Soybean 
1 C Brown rice cooked with 
2 T Corn oil 
2 T Chestnut 
2 T Sesame Seeds 
1 C Collard 
1 Pear 

Evening Snack 

1/4 C Rai sins 
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DAY 9 

Breakfast 

1 C 
2 slices 
2 T 
1 
1 t 
1 C 

Lunch 

Soy mil k 
White flour-bread 
margarine 
banana 
white sugar 
Tea 

1 C Cooked long grain brown rice 
1 1/2 C Soy bean and 
1/2 C winter squash 
1/4 C peanuts, roasted 
1/6 wedge watermelon 
2 t white sugar 
2 T corn oil 
1 C Tea 

Dinner 

1 C 
1 C 
1 T 
1/4 C 
1/4 C 
1 C 
1 
2 
1 C 

Cooked long grain brown rice 
bean sprouts 
soy sauce 
celery 
carrots 
soy milk 
orange, medium 
walnut cake 
Tea 
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DAY 10 

Breakfast 

1/2 C 
2 
2 T 
1 C 

Lunch 

1 
1/2 C 
1 
1/2 C 
1/2 C 
2 T 
1/2 C 
2 t 
1 C 

Dinner 

2 sl ices 
2 T 
1/2 C 
1/2 C 
1/2 C 
1/2 C 
2 T 
1 
2 
1 
1 t 
1 C 

tomato juice 
wheat bread 
maple syrup 
soybean mil k 

banana 
tomato soup 
baked potato 
apple 
celery salad 
french dressing 
peas, cooked 
white sugar 
Tea 

wheat bread 
margarine 
baked beans (lima) 
carrots 
spanish rice 
onion 
Thousand island dressing 
peach, medium 
Ita 1 i an bread 
orange 
sugar 
Tea 
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DAY 11 

Breakfast 

3/4 C 
1/2 C 
1/2 C 
1 t 
1 C 

Lunch 

1 
1 
1 C 
1/2 C 
2 C 
1 t 
1 C 

Dinner 

1 
1/2 C 
1/2 C 
1 C 
1/2 C 
1 t 
1 C 

oatmeal 
Rai sins 
orange juice 
brown sugar 
coffee 

Peanut Butter and Jelly Sandwich 
apple 
soy mil k 
cole slaw 
whole wheat roll 
brown sugar 
coffee 

baked potato 
spani sh ri ce 
ye 11 ow bran s 
strawberry 
applesauce 
brown sugar 
coffee 

42 



DAY 12 

Breakfast 

1/2 C 
1/2 C 
1 sl i ce 
1 t 
1 T 
2 t 
1 C 

Lunch --

orange juice 
cream of wheat cereal 
toasted bread 
margarine 
grape jelly 
sugar 
Coffee 

2 T peanut butter 
1 baked potato 
1/2 C greenbeans 
1/2 slice tomato on lettuce 
1 slice Vienna bread 
2 T margarine 
1/2 C peach 
1 puffed ri ce bar 
1 t sugar 
1 C Tea 

Dinner 

3 oz 
1/2 C 
1/2 C 
2 large 
1 T 
1 sl ice 
1 t 
2 t 
1 C 

soy meat analogue 
French Fri ed 
cooked carrots 
1 ettuce 
French dressing 
bread, white 
margarine 
sugar 
coffee 
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DAY 13 

Breakfast 

1 C 
1 C 
1/2 C 
1 sl i ce 
1 T 

Lunch --
1 
2 slices 
2 T 
1 

Dinner 

DAY 14 

1 
1/2 C 
1/2 C 
1/8 C 
1 sl ice 

Breakfast 

1/2 C 
2 
3 T 
1 

Lunch 

fresh grapefruit juice 
Hot oatmeal with 
soy milk 
wheat grain bread 
peanut butter 

vegetable soup 
wheat grain bread 
margarine 
Fruit salad with sunflower seeds 

Rice patties 
baked winter squash 
green bean wi th 
raisins 
strawbery-Rhubarb pie 

orange juice 
whole wheat grain pancakes with 
maple syrup 
apple 

1 sprout salad 
1 C soybean milk 
1 banana 

Dinner 

1/2 C 
1 C 
1 
1 C 

Deep-fried tofu 
steamed rice (brown long grain) 
mixed stir-fried vegetables 
soy milk 
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