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GEOMETRICALLY DERIVED DIFFERENCE FORMULAE FOR THE NUMERICAL INTEGRATION

OF TRAJECTORY PROBLEMS

by

R J Y McLeod*
Department of Mathematical Sciences
New Mexico State University, Las Cruces

New Mexico 88003, U S A

and

J M Sanz-Serna•
Departamento de Matematicas. Facultad
de Ciencias, Universidad del Pais Vasco

Lejona (Vizcaya), Spain

ABSTRACT

The term 'trajectory problem' is taken to include problems that can arise,

for instance, in connection with contour plotting, or in the application

of continuation methods, or during phase-plane analysis. Geometrical

techniques are used to construct difference methods for these problems to

produce in turn explicit and implicit cir:ularly exact formulae. Based

on these formulae, s predictor-corrector method is derived which, when

compared with a closaly related standard method, shows improved performance.

It is found that this latter method produces spurious limit cycles, and

this behaviour is partly analyzed. Finally, a simple variable-step

algorithm is constructed and tested.

'Visiting Scientists at the National Research Institute for Mathematical

Sciences, CSIR, P 0 Box 395, Pretoria, South Africa.
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1.	 INTRODUCTION

We consider an initial-value p

differential equations

where y is a vector in Aim.

In a number of practical applications the interest lies in obtaining the

curve traced by the solution y( • ) rather than in finding the actual cor=

respondence between values of the independent variable or parameter t

and points on that curve. These applications include the computation of

trajectories in mechanical problems, the plotting of the phase-plane of

second-order autonomous differential equations [21, and the study of

solution fields of nonlinear equations x1,51. We shall employ the term

trajectory problem to refer to these cases.

By definition a trajectory problem is not altered if the independent

variable in (1.1) is replaced by a new variable u = P(t), where r is

differentiable and monotonic. On the other hand the performance of a

numerical method when applied to (1.1) depends heavily on the particular

parametrization r61. To overcome the difficulties associated with the

choice of this inde pendent variable, the following devices come easily

to mind.

(i) Use of one of the coordinates, the first say, of y as independent

variable. This procedure reduces by one the dimension of the sys=

tem, but suffers from the disadvantage that the integration catnot

be carried beyond a point y for which f
I
(y) = 0. It should dlso

be noted that this procedure is not invariant with respect to

rotation of the axes in the y-space.

tl
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(ii) Parametrization of the curve by its unique intrinsic parameter, i.e.

its arc length S. This is equivalent to replacing (1.1) by

dy	 1_
ds ^^ f(y) -. 

F ( y )	 (1.2)

since now Idy/dsl = 1. (We shall here not be concerned with singular

points where f(y) = 0.) The use of the arc length and some of its

modifications has been advocated by H 6 Keller LC in the context

of the solution of nonlinear equations. See also [6].

For the two-dimensional case (m=21 Lambert and McLeod [21 have intro=

duced a successful modification of the idea in (i). They use the mid=

point rule by rotating locally the axes in the y plane so as to have the

tangent to the solution at the latest computed point playing the role

of positive direction of the independent variable. This local rotation

renders their method intrinsic in the sense that it does not depend upon

the orientation of the axes in the y plane. Lambert and McLeod prove

their method .o be circularly exact, i.e. if the trajectory is a circle

all the computed points will lie on the circle, provided that the start=

ing points do and that no round-off error is present. Laurie [31 has

extended the idea of local rotation to higher-dimensional equations.

It appears to be desirable that a method should be circularly exact, as

any m-dimensional curve can be approximated to second-order terms by its

local circle (see Section 3).

This paper continues the study of difference schemes specifically derived

for trajectory problems.

In Section 2 we pre-.ent a simple geometrical way of constructing such

methods.

The local accuracy of the schemes is investigated in Section 3.

)
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In Section 4 we define a circularly exact, fixed-step predictor-corrector

algorithm that is closely related to the standard predictor-corrector

method comprising the mid-point and trapezoidal rules in PECE mode.

When both algorithms are tested in a number of problems the standard

method is found to produce spurious limit cycles in some cases. It is

proved that for a model problem the spurious cycles are local attractors.

In the final Section we present a variable-step version of the circularly

exact algorithm, a version whose step control strategy is based on a

Milne device. Numerical examples are given.

2.	 GEOMETRICAL CONSTRUCTION

We illustrate the general idea by constructing the circularly exact method

of Lambert and McLeod. This is an explicit, two-step formula which com=

pates 
Yn+2 

in terms of the back points 
y
n' yn+1 and the back slope

fn+1' - f(yn+1)' We note that the points 
y
n' yn+1 and the vector fn+l

uniquely determine a circle C n in the m-dimensional space, the circle

degenerating to a straight line if yn+1 - y
n' fn+1 are paral! ,^1. Choice

of any point yn+2 on C  makes the formula circularly exact. In particu=

lar we can define 
Yn+2 

to be the point on C n suc:i that 
Pyn+2 - yn+1I

lyn+l - y n 
I (cf. Figure 1, which depicts the two-dimensional plane

spanned by the points yn , yn+I and the vector fn+l)'

It is clear that with this choice

r

Yn+2 = Y
n + 2 (F 

n+l (Yn+l - 
Yn)1 Fn+1'
	

(2.1)

where Fn+1 = fn+l /of n+11, and this is precisely the Lambert-McLeod method

as written by Laurie 131.

By construction the method generates points such that lyn+1 - ynl is

constant. In a 'variable-step' implementation one may wish to increase

or decrease the Euclidean distance between consecutive points, and this
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can be achieved by changing the choice of 
yn+2 on Cn . as will be shown

in Section 5.

Turning now to the general idea, suppose that we are given a family of

curves such that an individual member of the family can be determined by

M linear conditions (when m • 2 three conditions determine a circle,

four a parabola, five a general conic, etc....). Then M pieces of in-

formation from the back data can be used to determine a curve of the

family, and any choice of the next point on this curve will yield an

explicit method which is exact whenever the trajectory belongs to the

given family.

This idea can also be employed to derive implicit methods. In this case

the slope at the next point appears in the formula, and only M - 1 pieces

of information from the back data are required. As an illustration, let

us derive a circularly exact one-step method. From Figure 2 we see that

when the solution is a circle, yn+1 - yn bisects the angle between the

unit vectors F
n , Fn+1'

Therefore

yn+1 - Yn 2 k}(Fn + Fn+1),
	 (2.2)

where k is a parameter, yields the method sought for. Of course (2.2)

is nothing but the trapezoidal rule applied to (1.2) with step-s i ze k.

3.	 THE TRUNCATION ER ROR

In this section we attempt to define the concept 'truncation error' for

methods such as (2.1). In order to motivate the definition, let us con-

sider first the formula (2.2). When this is viewed as the usual trape-

zoidal rule applied t;, (1.2). the standard procedure is to define the

truncatiun error at a point y(so ) of the trajectory by
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	 k I

dY I	 dY
TE = y(s. + k) - y(so) - -5+ — 	 (3.1)

ds 
	 ds so + k

A Taylor expansion reveals that as k » 0

^	 d
3y

	

TE = - 1	 k {	 I	 + 0(0)	 (3.2)

ds3 Iso

and accordingly one says that the method is of second order. We recall

that if we denote by t, n, b the local tangent. (first) normal and second

normal unit vectors, respectively, the derivatives of y w.r.t. s can be

expressed as follows:

Y	 t	 (3.3)	 J

r' • Kn

y = r n - K 2 t + Ktb.

Here a dot represents differentiation with respect to the arc length s

and -r, t the first and second curvatures. When the curve is three-di=

mensional the terms binormal and torsion are often used to refer to b

and • respectively.

From these expressions we see that in the neighbourhood of a point any

m-dimensional curve can be approximated to second-order accuracy by the

circle which shares its curvature, and tangent and normal vectors. When

(3.3) is taken into account (3.1), (3.2) can be written 3%

TE - y(s,^+k) - y(so ) - Z (t(s^) + t(s,+k)I n 	 (3.4)

i	 = - 0 [."(So ) n(so ) - K 7 (so ) t(SO ) + r(SO )T(SO )b(SO )l + 0(0).

When the true trajectory is a circle, r,r : 0 and (3.4) becomes

	

TE _	 k3K2t + 0(k").	 (3.5)



The fact that we are dealing with a circularly exact method is not apps n

rent from (3.4). This is due to the fact that the truncation error

locally measures the distance between the computed point yn+I and the

exact 
y(sn+1 ) (whM y

n - Z(sn))• whilst we are interested in the distance

between yn+I and the trajectory.

As an alternative we shall define the concept of reduced truncation error

(RTE) which has the following property: whenever the method is exact

for a family of curves in the sense of the previous section, the RTE for

a trajectory on that family vanishes identically.

For the particular case of the trapezoidal rule we proceed as follows:

we denote by h - h(k) the Euclidean distance between yn+I and y  when

yn - y(sr ), and then define the RTE at y(s.) by

RTE - y` - y(so ) - k Lt(so ) + t'1	 (3.6)

where y' is the point on the trajectory such that iy - A SO ) I - h and

t' is the unit tangent vector at y.

Thus whenever a step of the trapezoidal rule starting from y n - y(so)

leads to a point yn+1 which lies on the trajectory, we shall have y * - yn+1

and hence RTE - 0.

Let us now expand the RTE (3.6) in powers of h. In order to do so we

reparamrtrize the trajectory in the neighbourhood of y(s ')
), taking as

new parameter the Euclidean distance h(s) - ly(s) - y(s,)l. Tayler ex-

pansion of y(s) - y(sd and use of (3.3) reveal that

h	 (s-sue ) -	 ( S-So)' + 0((s-so)4). 	(3.1)

Now the standard rules for the differentiation of inverse and composite

functions yield the following expressions for the derivatives of y w.r.t.

h:
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dy/dh - t,	 (3.8)

d2y/dhz , Kn,

day/dh 3 - Kn - 3/4 K ` t + Kt b.

Analogously, for the derivatives of t one has

dt/dh	 - Kn,	 (3.9)

d2 t/dh 1 - Kn - K 
2 
t + KTb.

Next, we eliminate k from (3.6), noting that

21y' - y(sn)I	 2h
k • ==-- -	 (3.10)

It(so ) + t• 1	 It(se) + t•l

Substituting (3.10) into (3.6) and expressing the result in terms of the

parameter h, we have

RTE	 y(h) - y(0) - )I (t(0) + t(h)l.	 (3.11)

We now Taylor-expand, using (3.8), (3.9) to replace the derivatives of

y, t, and arrive at

RTE - - 12 h'(rn + rTbl + 0(h°).	 (l.12)

We note that the curvature does not appear alone in the leading terms

of the RTE. in agreement with the fact that RTE - 0 if K, T = 0. (In

fact it can be shown that the whole Taylor series for RTE does not in-

volve terms which contain only the curvature.)

The idea we have just illustrated in the case of the trapezoidal rule

can be extended to ocher members of the class of methods introduced in

the previous section. For instance for the method (2.1) one would de-

fine

RTE - y-* - y(s^) + 2 [t* T ( y• - y ( sO W t• .	 (3.13)



where y*.  y • are the points on the curve such that ly(s o )-y1 - lye-y'i h

with h equal to the constant distance between any two consecutive points.

We now find

RTE - 0 [Kn + aTbl + 0(h°).	 (3.14)

This idea of an RTi can be employed to derive estimates of the global

accuracy of the methods. The details will be given elsewhere.

4. A CIRCULARLY EXACT PREDICTOR-CORRECTOR METHOD

Comparison of (3.12) with (3.14) shows that the iMlicit circularly

exact method (2.2) has a smaller error tonstant than the explicit method

(2.1). Therefore it is reasonable to consider the idea of combining

the two methods in a predictor-corrector pair. We suggest the following

forwilse:

py n+2 - Yn ♦ 2 tF n+l (Yn41 - Yn)1 Fmi•	 ( 4.1)

Yn+2 , yn+l ♦ OF	
h

+ FP	1 ( Fm►+1 ♦ 
Fp 

n+2)•
_"I - n♦2

where h - Iy0 - y11, Fpn•2 - F(ypn♦2) '

Note that lypn♦2 - Yn+l l ` lyn+l 41 and that the step-length k of the

corrector (2.2) is changed from one step to the next in order to guaran-

tee that 
' Yn+2 4♦11 - h.

When the trajectory is a circle and yn , yn+1 , lie on the trajectory, the

predictor y ields a point ypn+2 On the circle with lyn+l - ypn+21 ` h.

Therefore Yn♦2 - ypn♦2 and the method is circularly exact.

Formulae (4.1) were tested in several numerical examples, and in order

to establish a fair comparison. the following method was used:
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ypn+2 . yn + 2k 
Fn+1'	

(4.2)

yh+2 • rn+l + (k/2) ( Fn+l + Fpn+2),

i.e. the predictor-corrector method based on the mid-point and trapezoi-

dal rules used in PECE mode. Wall that F • f/If1.

It should be stres_:3 that if correction to convergence rather than the

pECE mode had been used, one would have had the circularly exact method

(2.2). However (4.2) is not circularly exact, as will be clear from the

following discussion.

Suppose that (4.2) is applied to the two-dimensional problem

f  - - y2 	 (4.3)

f2 .
	

yl

whose trajectories are circles centered at the origin.

This problem is best analyzed by means of polar coordinates. Namely let

us describe each of the vectors y  generated by (4.2) by the radius

Pn - lyn I and the angle nn formed by yn-V•
 n. Then, after some manipu-

lation, it is found that yr-+ z it obtained from yn+I ,y by means of the
_	 n

formulae

pn+2	
(k' cos`P + P n+1 - k "n+I sin 2V) I.	 (4.4a)

cos at	 (6)	 + n"	 - k . cos' i3) /(2 c	 a	 ),	 (4.4b)
n+2	 n+1	 n+2	 n+l n+2

where d is a function of k. r) n . an+1 given by

cot 20 - P  cos an+i /(2k - sin an+1 ).	 (4.5)

We see from (4.4a) that in general the radius i , does not remain constant

for all iterants and therefore that the method is not circularly exact.

It is useft-1 to take this discussion further as follows. Formulae (4.4)

%tqk
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describe a two-step recurrence for the computation of 
(p n+2' an+2) in

terms of (p n+1' an+i) and Pn . It is possible to reformulate this recur-

rence as one having only one step, by increasing the dimension of the

vectors involved. Namely with rn+1 = P n we arrive at the recurrence

rn+2 = Pn+1,	
(a.b)

Pn+2 =
 R.

01n+2 = arccos 
(P2r++1 + R2 - 

k2 cos 20) /(2 Pn+1 R)l,

where a, R satisfy

cot 26 = rn+1 cos on+1/(2k - rn+i sin an+i )	(4'7)

R = (k2 cos ta + P2n+1 - k p
n+1 sin 2g)^.

Now (4.6) describes the transformation of 
(rn+i' Pn+l' an+1) into

(rn+2,Pn+2,an+2). It is easily verified that (k/f, k/Z,w/2) is a fixed

point of this iteration.

We conclude that if (4.2) is applied to the model system (4.3) with

ly0l = lyll = k/2 and y0 , y1 forming an angle of x/2, then each subse=

quent iterant also lies on a circle of radius k/2 and is n/2 radians

from the previous iterant. We shall use the term 'spurious limit circle'

to refer to this circle of radius k/2.

The Jacobian matrix of the transformation (4.6) evaluated at the fixed

point is found to be

0	 1	 0

0	 0	 -k/6

0	 -2/k	 0

with eioenvalues 0, +- 3313. Since these are smaller in magnitude than

unity, the fixed point is a local attractor, i.e. initial vectors y0-y1

near the spurious limit circle and forming an angle near to n/2 will pro=

A
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duce a sequence of iterants which converges to the spurious limit circle.

In fact we shall see in what follows that the iterants converge to that

circle oven if the initial vectors are far from it.

We are now in a position to report several numerical tests on methods

(4.1), (4.2). In all the examples the 'exact' trajectory was calculated

employing the usual fourth-order, fourth-stage Runge-Kutta method, which

also provided the additional starting value.

When using the Runge-Kutta method, a step-size one-tenth that of the

predictor-corrector algorithms was taken. In the figures the points

produced by the Runge-Kutta method have been joined by a continuous curve,

those produced by (4.1) being indicated by circles '0' and those produ=

ced by the trapezoidal rule indicated by crosses 'X', and joined by a

broken line for additional clarity.

As a first example we consider the model problem (4.3). The initial

point was (0,1) and the step 1. ('Step' means, of course, h in formulae

(4.1), k in formulae (4.2).) The results have been plotted in Fig.3.

Ninety-eight points were computed for each algorithm. Those correspond=

ing to the circularly exact method fall repeatedly on the inscribed hexa=

gon, showing numerical stability. The points corresponding to (4.2)

spiral very rapidly towards the spuriuus limit circle, and from the six=

teenth onwards lie on that circle (within the accuracy of the plot).

Fig.4 corresponds to the same problem and initial condition, but the

step is now 0.37. Note that the radius of the spurious limit circle

has decreased, in agreement with our earlier discussion.

The second example is the system

f  = - Y 2 +	 (4.8)

f2 = sin yl,
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which is equivalent to the well-known pendulum equation.

The initial point was (0,1) and the step 0.5. The behaviour of the me=

thods was very similar to the one we have seen in the first example. The

points produced by the circularly exact method were, within the accuracy

of the figure, on the exact integral curve. The solution given by the

method (4.2) spiralled in and reached a limit circle of radius 0.25, far

from the true orbit. This value of the radius is precisely that of the

spurious limit circle for the model problem. This is no surprise as the

phase-planes of (4.3), (4.8) near the origin are very similar.

The next example is the van der Pol system

fl = Y2 - .1(yi - 3 y l )	 (4.9)

f2 = -y1.

The results illustrated by Figs. 5 and 6 both refer to a step 1.5 but the

starting point was (10,10) for the former and (0,1) for the latter. We

see that in both instances the circularly exact method identifies correct=

ly the limit cycle of the system, whereas the results given by the

method (4.2) suggest a 'spurious' limit cycle whose diameter is roughly

half the true one. Neither method does well in the descending section

of the trajectory in Fig.5. We shall see later that the integration of

(4.9) is comparatively difficult in that region.

For Figs. 7 and 8 the step was 1. Again the method (4.2) prod:ces a

spurious limit cycle. It appears that the size of the spurious limit

cycles obtained does not depend on the initial point but only on the

step size.

The last example had

f1 ' Y2 ( 2 Yi * y2)	 (4.10)

f	
3

2 
= -Y1

3
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and 'initial point (0,1). The results for h - k = 0.5 are depicted in

Fig.9. The points corresponding to (4.1) are reasonably close to the

true trajectory even when five orbits have been completed, while the

method (4.2) once more yields an incorrect picture of the situation.

We conclude that for the problems considered the geometrically derived,

circularly exact algorithm (4.1) is better suited than its standard

counterpart.

5.	 VARIABLE STEP

In this Section we construct and test a variable-step version of the

circularly exact method (4.1). It should be emphasized that our aim is

to demonstrate the possibility of such a construction rather than to

develop a sophisticated code.

We first derive a variable-step circularly exact predictor formula.

Given yn, 
y
n+l' Fn+1 and a positive number hn+1' 

this formula will yield

the point YPn+2 
which satisfies lypn+2 - 

yn+1 I
 - hn+1 and lies on the

circle C  determined by 
yn' y

n+1' Fn+1' Fig.10 depicts the two-dimen=

sional plane defined by the paints yn' yn+i and the vector Fn+1' If we

denote by y the angle between yn+1 - Yn and F
n+1 , then the central angle

subtended in C  by yn' yn+l is 2y. Therefore the angle between y  - yPn+2

and yn+1 - ypn+2 is y. _(Recall that an inscribed angle is equal to one

half of the corresponding central angle.)

Next let 6 be the angle between Fn+1 and ypn+2 - ?'n+l' Then the angle

between yn+1 - yn 
and ypn+2 - yn+I is 6 + y, and con.- aeration of the

triangle with vertices-yn' yn+l' yn+2 leads to the conclusion that the

angle between yn+1 - yn 
and ypn+2 - yn is also 6. We have denoted by

Nn+1 the unit normal vector to C n at yn+1'

We are now in a position to derive the required formula. We project

yp	- y	 onto F	
, !n+1
 to get



15

yp
nt2 - 

y_n+l = h n+1 cos 6 F
n+1	 n+1	 _n+1'

+ h	 sin 6 N	 (5.1)
, 

The Gram-Schmidt procedure enables us to express the normal vector Nn+1

in terms of F y 	- y as follows:
..n+1	 n+1	 n

Nn+1 ' cot Y F,+1 - (h
n sin y)- 1(yn+1 - Yn)'	

(5.2)

where h  = lyn+1 - ynI. Next 6 can be eliminated by use of the sine then=

rem in the triangle -y . y	 , yp
n n+1	 n+2

hn/sin y - hn+i/sin 6.	 (5.3)

Finally y is related to F
n+l' yn+l' Yn

 by the formula

FTn+1 (yn+1 - y
d = h  cos y.	 (5.4)

When (5.2), (5.3), (5.4) are substituted into (5.1) the following predic-

tor formula is Obtained:

ypn+2 ' yn+1 + (hn+1/hn )`[A
n Fn+1 + Y  - ?'n+1l	

(5.5)

where

h4

An = Bn + (B2 - h2 + n )}.	 (5.6a)

n+1

8  = F 
T
n+1^?_n+1 - 

yn ).	 (5.6b)

Formula (5.5) reduces to formula (2.1) if hn+1 . h n . It should also be

noted that 
ypn+2 

will not be defined if hn+i is chosen larger than the

diameter d. of Cn . From Fig.10 this diameter is h n/sin y, whence using

(5.4), (5.6b) we obtain

do = h2 /(h2 - Bn ) 1 .	 (5.7)

In fact the algorithm we shall describe later imposes the condition

h
n+1 ` 0.5 dn.

The corrector formula is written in the form
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yn+2 ' yn+l + (hn+1/IFn+1 +
 FP

n+21)(Fn+1 + Fpn+2),	
(5.8)

so that 
lyn+2 - yn+1 1 - hn+1'

In order to control the step-size a Milne device can be employed. Let

y be the point such that l y - yn+11 - hn+i and y lies on the trajectory

through 
yn+1' 

Then as in Section 3

y' - Ypn+2 - (1/6)(h3n+1 + h')
n+1 

hn)CKn + KTbl,	 (5.9)

Y* - yn+2 - (-1/12) h
3
 n+1 [Kn + KTb]	 (5.10)

and elimination of the term in square brackets leads to

y* - Yn+2 = Ihn+1
/(3 h

n+1 + 2 hn)llyn+2 - ypn+21. 	
(5.11)

We considered the following algorithm

(1) Given y0 ,y l , h0 ,h 1 , E > 0, with h0 = In - y01 set n = 0;

(2) Evaluate 
Fn+1' 

Use (5,6b),(5.8) to compute Bn , 1/d 
n' 

If 1/h 
n+1' 

2/d n,

set h
n+1 = do/2'

(3) Compute ypn+2 according to (5.5), evaluate FP 
n,2 

and form yn+2

(formula (5.8)).

(4) Use (5.11) to estimate the error e = l y" - yn+21. Set hn+1 = 
h
n+i1	 _	 _

(5) If e > E , set hn+1 ` hn+1 and go to (3);

(6) Print 
yn+2' 

set hn+2 ' hn+1' n = n+1 and go to (2).

The trapezuidal rule in correction-to-convergence mode was used to com=

pute y 1 and initialize the algorithm, which was tested with several

tolerances E and various initial points in the systems (4.9),(4.10).

The following three-dimensional system was also considered:
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f2 = yl,

f3 = 4 y1 y2.

Fig. 11 shows the results for the system (4.9) with e n 0.001 and

yD - (30,30). The true trajectory starting from (30,20) is also depic=

ted in order to display the rapid convergence of the integral curves in

the vicinity of the vertical portie: C,D. 1t is well-known that this

convergence forces any explicit algorithm to take a small step. By com-

parison the step is larger along AB, where the neighbouring integral

curves are almost parallel.

Fig.12 also refers to the system (4.9), but now c = 0.005 and y D • (0,1).

The maximum Euclidean distance between consecutive points is 1.6.

Fig.13 corresponds to the system (4.10) with e - 0.001 and y 0 = (0,1).

The system (5.12) was integrated starting from (1,0,1). , The true solu-

tion is given in parametric form by

y l (t) = cos t	 (5.13)

Y2(t) --sin t

Y3(t) - cos 21;

The integration was stopped when roughly a quarter of an orbit had been

completed. This corresponds to an arclength of 2.63. The curvature is

initially 2.0, decreasing to 0.1 and increasing again to 2.0. When the

tolerance was 0.01, nine steps were taken and the final point lay at a

distance of 0.025 from the true integral curve. When the tolerance was

decreased to 0.0001, thirty-two steps were required and the final error

was 0.003.

We wish to emphasize that the algorithm presented here can be easily adap=
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ted to yield several geometrical elements of the trajectory such as

tangent and normal vectors, curvature, arc length, etc.
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