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SUMMARY

The interaction of a planar shock wave with one or more vortexes

is computed using a pseudospectral method and a finite difference

method. The paper emphasizes the development of the spectral method.

In both methods the shock wave is fitted as a boundary of the computa-

tional domain. The results show very good agreement between _oth

computational methods. The spectral method is, however, restricted to

smaller time steps and requires use of filtering techniques.

INTRODUCTION

In their recent paper, Pao and Salas (ref. I) presented a finite

difference solution to the Euler equations governing the phenomena of

shock wave interaction with an isolated vortex. Their study emphasized
r.

the acoustic aspects of the problem. Zang, Hussaini, and Bushnell

(re£. 2) extended this numerical approach to the problem of shock wave

interaction with entropy spottiness (or hot spots), plane waves, etc.

The present study is a continuation of this effort which concentrates

on gaining insight into the nonlinear dynamics of the transient pro-

cesses involved in the passage of a shock wave over a single vortex, a

vortex street, and a hot spot. The governing equations are solved by

two different numerical methods: the well known second-order, finite

difference method originated by MacCormack, and a pseudospectral method
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of high accuracy. The finite difference solutions are calculated on a

very fine grid and are used for comparison with the solutions obtained

with the spectral method. The main emphasis of the paper is on

developing a viable spectral technique.

Spectral methods have been demonstrated (refs. 3,4) to be powerful

alternatives to finite difference methods for the numerical solution of

smooth flows. Recently, the works of Gottlieb, Lustman, and Orszag

(ref. 5) and Zang and Hussalni (ref. 6) have shown their applicability

to one-dimenslonal compressible flows with shocks. Howeve_ for multi-

dimensional flows in the presence of shock waves, spectral methods have

not been developed to the same level of proficiency as finite difference

methods. The present paper is thus an attempt to break new ground in

this area.

STATEMENT OF THE PROBLEM

The physical problem that we model, the shock-vortex interaction

problem, corresponds to an infinite, initially planar normal shock wave

moving from left to right into a downstream region containing a flow

field representative of one or more vortexes, or a hot spot. Since the

"shock wave travels at a speed greater than the local downstream speed

of sound, the flow downstream of the shock wave remains unaware of the

oncoming shock until it is overtaken by it. In order to model the

interaction of the shock wave with some given flow field ahead of it,

it is only necessary to compute the flow field upstream of the shock.

The computational domain, therefore, consists of the region between

some left boundary, judiciously chosen such that it will be far from

the interaction region, and the shock wave front itself. A coordinate

transformation is used to map the infinite lateral extent onto a finite

2



domain, thus concentrating the available grid points in the vicinity of

the interaction.

If the relative shock Mach number, Ms, is sufficiently high

(Ms > 2.08), the flow upstream of the shock remains supersonic and

signals from the shock-vortex interaction will not reach the left boun-

dary. In this case, the left boundary corresponds to a supersonic

inflow, and all dependent variables can be prescribed on it. _Iost of

the cases to be studied here will be of this type. However, if the

relative shock Mach number is low, then the first signal from the

interaction will reach the left boundary at some finite time to . For

times greater than t , special procedures are required to prevent
o

contamination of the solution in the region of interest by spurious

wave reflections from the left boundary. Two approaches are available

to achieve this end. Either radiation type boundary conditions can be

applied at the left boundary, or the boundary can beallowed to move in

such a way as to insure that it is inaccessible to the initial signal

emanating from the interaction region. Both approaches have been tried

for this problem and in a comparison with the experiment of reference 7

we will use the first method for illustration.

On the right, the computational region is bounded by the shock

wave. Downstream of the shock the flow field is given analytically.

The flow field immediately upstream of the shock, as well as the shape

and velocity of the shock, are evaluated such that the Rankine-Hugoniot

" jump conditions and the compatibility condition reaching the shock wave

from the upstream side are simultaneously satisfied.
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GOVERNING EQUATIONS

The unsteady, two-dlmensional, compressible, Euler equations are

written in the form,

Qt + h'Qx + _'Qy = 0 (1) _

where

Q=[p,u,v,s3T
u Y 0 0

2

- u 0 0A' = (3)
0 0 u 0

0 0 0 u
m

and

m

v 0 y 0

0 v 0 0
B' = 2 (4)-- a

"V- o v o
0 0 0 v

with subscripts denoting partial derivatives with respect to the inde-

pendent variables. The natural logarithm of the pressure, the speed of

sound, and the entropy are represented by P, a, and S, respectively,

and V is the isentropic exponent. The velocity in the x and y direc-

tions are u and v, respectively. All variables are normalized with

respect to reference conditions at downstream infinity, as in reference

i.

The physical domain is defined by

h(t) _< x < Xs(Y,t) (5)

- _ < y < __- (6)
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where h and xs are the abscissas of the left boundary and the shock,

respectively.

The physical domain is mapped onto a computational domain by the

following transformation,

x = x - h(t) (7)
Xs(Y,t) - h(t)

y = tanh(_y) + 1 (8)2

T = t (9)

The computational domain is thus

o a x _ i (1o)

0 _ Y _ i (ll)

and the governing equations (i-4) are rewritten as

QT + A-Qx + BQy = 0 (12)

where
m

U yXx yXy 0

a2Xx U 0 0
7

= o2v (13)
0 U 0

Y

O 0 0 U
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N

-V YYx YYy 0

a2y x V 0 0
Y

= (14)

0 V 0
Y

0 0 0 V
m

here U and V are the contravariant velocity components defined by

U = Xt + uXx + VXy (15)

V = Yt + uY + vY (16)x y

SOLUTION TECHNIQUE

Let k denote the time level and let At be the time step incre-

ment, the time discretization of equation (12) is then as follows:

Q* = 1 - At (L x + Ly) (17)

Qk.l = ½[Qk + (1- At (Lx + Ly))Q*] (18) I

where the spatial operators Lx and Ly represent approximations to

A8X and BSy, respectively. In the finite difference MacCormack method,

these operators are evaluated as two points forward and two points back-

ward differences in the predictor (Eq. (17)) and corrector (Eq. (18))

levels, respectively. In the pseudospectral method studied here,

the solution Q is first expanded as a double Chebyshev series,

M N

Q(X,Y,T) = _ _ Qpq(T) Tp (_) 1: (rl) (19)
p=0 q=0 q
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where

= 2x - 1 (20)

n = 2Y - 1 (21)

and Xp and Tq are the Chebyshev polynomials of degree p and q

defined by

_p(_) = cos(p cosl(_)) (22)

Tq(n) = cos(q cosl(n)) (23)

The (M+I).(N+I) Chebyshev coefficients Qpq are such that at

(Xm,Yn,T),

_ N

p=O q=O

and

Xm = 2 (_m + 1) = 2 (cos + 1) (25)

1 + 1) = 2 (cos + 1) (26)Yn = 2 (nn

The derivatives appearing in the operators L x and L..y are then

evaluated as

M N

Tp

Qx= 2 _ _ Qpq _ Tq (27)p=o q=O

The last relation can be expressed by another Chebyshev series

M N

Qx =2 _ _" Qpq _p _q (28)
p=O q=O
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where
M

~ 2

Qpq = -_p _ mQm q (29)
m=p+l

m+p odd

and

c0 = 2 (30)

Cp = 1, p > 0 (31)

The Qy derivative is evaluated in a similar fashion.

Assuming the characteristic wave speed to be _, the time step

for the finite difference method with uniformally spaced N grid

1 , while for the spectralpoints over a unit interval is At < N---[

method with N modes the time step is At < 4 This strong restric-
N2X"

tion on the time step is at present one of the main disadvantages of

the spectral approach. Another disadvantage is its tendency to

develop spurious oscillations. The exact cause of these oscillations

is present_ unknown, but its instantaneous spreading over the field

must be caused by the global nature of the spectral method. Various

filtering techniques are, however, available in order to recover the

solution. The results presented here were obtained by applying a

von Harm Window filter, see reference 6 for details, at every 160

time steps. A comprehensive study of various filters, as well as

of the effect of filtering on the solution is under preparation.

The evaluation of the shock wave shape and velocity followed

the same procedure described in Ref. I, except that in the spectral

formulation, the derivatives that must be evaluated on the downstream
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side of the shock are expressed as Chebyshevexpansions as given

by Eq. (28).

At the left boundary, all variables were specified for supersonic

inflow. For the case of subsonic inflow, the two velocity components

and the entropy were specified, while the pressure was computed from

a quasi-one-dimensional characteristic as described in Ref. 8.

RESULTS

Perhaps the simplest interaction to consider is that of a planar

shock wave with a hot spot, as shown in figure I. The flow field

downstream of the shock wave situated at x=0 at t=0 is taken as a

quiescent field whose temperature, a, distribution is given by

(X_Xo)2a = 2--_ exp (-( + (y_yo)2 )/ 2r 2) (32)

where for this case K = 0.25, r = .125, xo = 0.5, Yo = 0.0, and

M = 3 at t = 0. The flow field and vorticity distribution obtained
s

by the finite difference method and the spectral method after the

shock wave has passed over the hot spot is shown in figure 2. The

finite difference solution presented here, and in all cases that

follow, was obtained with 75 mesh:points in the X direction and 60

mesh points in the Y direction. The spectral solutions were all

obtained with 32 collocation points in the X direction and 16 colloca-

tion points in the Y direction. Qualitatively and quantitatively,

there is very little difference between the two solutions. Both show

the two counterrotating vortexes downstream of the shock, typical of

this interaction.

Figure 3 shows the velocity field for a single vortex about to

interact with a shock wave of the same initial strength as in the
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previous case. The upstream conditions here are obtained by assuming

a constant density field, calculating the velocity from the stream

function,

_ K _2+(X_Xo)2+ (y_yo)22_ log , (33)

the pressure from Bernoulli's relation, and the temperature from

the equation of state. For the case shown in figure 3, the circula-

tion K=2 and the softening scale r=0.1. This model approaches

an idealized _ncompressible point vortex at large distances from its

center but is much smoother near the center. Figure 4 shows the

resulting pressure field at two different time steps. At the later

time the shock wave has passed over the vortex. For this case, the

spectral method seems to be resolving the pressure field more accura-

tely than the finite difference method. Overall, the results are

qualitatively very similar. Finally, figures 5 and 6 show the

results for the interaction with a Karman vortex street simulating

the conditions of the experiment reported in Ref. 7. For this case,

the stream function representing the vortex field is given by

K log(A/B) (34)- 2_

where

2_ 2_ 1A = cosh (-_ r2 + (y - _b) 2 ) - cos (-_ (x - _c)) (35)

B = cosh ( r2 + (y + b)2) - cos (-_ (x + c)) (36) "

To match the experiment, the circulation, core radius, shock Mach

number and vortex separation parameters were determined as K = 0.186,

r = 0.1, Ms = 1.3, c = .33, and b = 0.17. For this calculation, the
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inflow Mach number was subsonic and radiation boundary conditions were

applied at the left boundary. The results shown in figure 6 are in

agreement with the experimentally observed (ref. 7) longitudinal com-

pression and lateral elongation of the vortex field after passage

through the shock.

" CONCLUSION

A pseudospectral technique has been presented for the shock-vortex

interaction problem. The solutions obtained are in good agreement with

those predicted by a standard finite difference method. The proper

treatment of the shock wave, which is one of the major problems with

any numerical technique, was resolved by fitting the shock wave as a

boundary of the computational plane. The spectral technique seems

capable of resolving features of the flow field which are difficult to

resolve by finite difference. The spectral method is, however,

presently restricted to very small time steps, and it requires the

use of filtering techniques which need further investigation.
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Figure i.- Surface plot of temperature distribution _or a hot
spot about to be overtaken by a shock wave moving
at M = 3.
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Velocity Field.
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Figure 2.- Veloclty and vorticity, fields computed by spectral and
finite difference method for a hot spot overtaken by
a shock wave.
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Figure S.- Velocity field depictin_ single vortex about to
interact with a shock wave.
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Figure 4.- Isobars computed by spectral and finite difference
method for the interaction of a single vortex with
a shock wave.
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Velocity Field. Vorticity Field.

Figure 5.- Shock wave about to interact with Karman vortex street.
The flow field is representative of experiment
reported in reference 7.
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Figure"6.:-'VelocitYstreetinteractionand v°rtlcitYa_ter_ield_ourf°rvortexesSh°ck-Karmanhavepassedv°rtex
through the shock wave, time = 0.36.
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