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PREDICTING THE REQUIRED NUMBER OF TRAINING SAMPLES

H. M. Kalayeh and D. A. Landgrebe*

ABSTRACT

In this paper a criterion which measures the quality of the esti-

mate of the covariance matrix of a multivariate normal distribution is

developed.	 Based on this criterion,	 the necessary number of training

samples is predicted. 	 Experimental results which are used as a guide

for determining the number of training samples are included.
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1. INTRODUCTION

In practice, the number of training samples is frequently limited

because it is expensive to collect many training samples.	 A typical

application in which this is the case is the fielJ of remote sensing,

and we will use this application to illustrate the technique.

In remote sensing, the reflected and emitted electromagnetic energy

of each pixel of a scene in several important wavelength bands is mea-

sured by a multispectral remote sensor system mounted on board an air-

craft or spacecraft. The output of the sensor system is used to form a

point in a q-dimensional space[6]. 	 A commonly used pattern classifica-

tion algorithm in this application is the maximum likelihood Gaussian

scheme. In this instance, the classes are each characterized as a Gaus-

sian distribution in q-space and these distributions in turn are speci-

fied by estimates of the means and covariances of each. However, we

know that the performance of the estimators is dependent on the number

of training samples. In the case of limited training samples, the esti-

mates of the first and second order statistics cannot accurately depict

all the information which is contained in the data.	 In particular, the

estimate of the covariance matrix may be poor. As a result of this poor

estimation, later analysis of the data (for example, classification

accuracy and statistical distance measures)	 will be degraded.	 see [1]

for more details. Therefore, it is important to rredict how many sam-

ples will be needed in order that the performance cf the estimators be

statistically reasonable. In the following, a criterion is developed to

measure the performance of the estimate of the covariance matrix; then

the number of required samples is predicted.
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2. PREDICTION CRITERION

Let X 1 , X1, ... Xn be q-dimensional random sample vectors which are

drawn from a normally distributed population with parameters 6 = (M,E),

where M is the true mean vector and E the true covariance matrix. In

practice, M and E are not available, so they must be estimated from the

observed data. The maximum likelihood estimates of M and E are:

N
M 1 E X

N i= 1 i

N
E = N E (xi - M) (X- M) T 	(2)

i=1

For more detail, see [2].

The performance of an estimator is measured by properties, such as

whether it provides (a) an unbiased estimate, (b) a consistent estimate,

(c) an efficient estimate, and (d) a sufficient estimate. 	 Now, let us

study the properties of maximum likelihood estimates of M and E	 From

[21 we have:

E[M] = M	 (3)

Cov[M] = 1 E	 (4)
N

(1)

E[E] = NN1 E	 (S)
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Thus, by definition, M is an unbiased estimate of M, but E is not

an unbiased estimate of E. However, if

M

	

E = N11 E (Xi - M) (X- M)T	(6)
i=1

then EM = E which is unbiased. The density function of M and E are:

p	 1exp{-M-M)T^( 	 NE-1 (M-M))	 (7)
( 27r ) -121 IN E I,

(N-1) q j E I N-q-2
2

	

p(E ) = 2(N- 1)q Q(q-
1) E N--1 q r N-11)	

(8)

2	 4	 112	
10 1 C2^

That is, i , iN(M,N E), a normal distribution and i W(E,N), a wishart dis-

tribution. For more details of other properties of these estimators,

see [2,3] and for various properties of the wishart distribution see

[4 ].

Though the distribution of E is complex, the performance of the

estimates of the covariance matrix which are of interest can be measured

by the variance of the diagonal components of E, as follows:

N

kk = N11	 E (Xi - Mk 	 (9)

	

i=1	 k
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In [3] it is shown that (N-1)okk
kk

(N-1) degrees of freedom. And

has a chi-square distribution with

E[okk]	
akk	

(10)

Erakk]	 = 1	 (11)

Lokk	
22okk

var [vkk] -	 N-1	 (12)

varakk
 l =	 2	 (13)

C kk J	 N-1

Now let Y = A -31 TX where ^ and A are the eigenvector matrix and the

eigenvalue matrix, respectively, of the covariance matrix, Cov(Y) = I,

and in practice 0, A are the eigenvector matrix and the eigenvalue

matrix of I. Therefore, Y = A_^^ TX and cov(Y) = I and let the diagonal

element of this matrix be 
Ykk' 

Because of the orthnormal transforma-

tion, the features in the new space are independent; therefore, (N-1)Ykk

has chi-square distribution with (N-1) degrees of freedom. For brevity,

let:

and

then

(N-1)Ykk ti X2(N-1) (14)

Q	 =	 [Y11	 +... +Y qq ] (15)

(N-1 )d ti X 2(q(N-1)) (16)

E[(N-1)6] = q(N-1)) (17)

E[Q] = q (18)

var [(N-1 )Q 1 = 2q(N-1) (19)



2
var[Q] = N91

.z

	

	 A logical choice for our prediction criterion is var(Q) because it mea-

sures the dispersion of the estimate of the covariance matrix.

To see how to apply the criterion, suppose it is desired that

var(Q) < a. Therefore, from (20)

N > 1 + 2a
	

(21)

Note that the minimum value of N is q + 1, because if N is less than q +

1, then the covariance matrix will be singular. So,

var(Q)max =

	

	 2q = 2	 (22)

Nmin 1

A plot of the var(Q) as a function of N with q as a parameter is shown

in Figure 1. Now, if for example a _ 0.2, then N >_ 1 + 10q.

The next question to be addressed is how does one choose a reason-

able value for a. To answer this question, let us consider the follow-

ing.	 As shown in Figure 1, if N > 1 + 10q, then var(Q) is decreasing

very slowly and its slope is small, less than -.02/q. 	 This suggests

that if N = 1 + 10q, then the statistical distance between the true

probability density and the estimated one may be close to zero. The

transformed divergence[5,6] is a useful statistical distance measure and

is given by

-6-

(20)

DT = 2000[1 - exp(- D/8)],	 (23)
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Figure 1. Variance of Q as a function of number of training samples N.
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where

D _tr(E-F.)(E- 1--1)+tr(E 1+E 1)(M-M)(M-M)T	 (24)

We will usa 11_ to experimentally measure the quality of the estimates of

the parameters and also as a guide to choosing a or N. The following

procedure provides a practical means for doing so:

1. a msume that the true probability density of the data is not►al

wth mean. vector M and covariance matrix E.

'used on the true parameters of the distribution, N i data

points are randomly generated.

3. The parameters of the distribution are estimated based on the

Ni randomly generated samples and then, using transformed

divergence, the statistical distance between the true probabil-

ity density and the estimated one is computed.

4. Step 3 is repeated five times and the average transformed

divergence is calculated.

5. The average transformed divergence for different values of

var(Q) is computed and shown in Figure 2.

The result in Figure 2 shows almost a linear relationship between DT

and var(Q).	 This implies that when var(Q)=var(Q)max = 2, 	 then

DT=(DT )max = 2000. This indicates that the quality of the estimates of

the parameters is very poor.	 However, if var(Q) = 0.2, then DT = 175,

which suggests that the estimated probability density is very close to

the true one.	 In practice, however, the true parameters of the distri-

E, ,
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Figure 2. The average transformed divergence as a function of variance of Q.
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bution are not available and nelthor is the transformed divergence. As

mentioned earlier, a logical choice for our prediction eriteriors In

var(Q) because it measures the dispersion of the estimate.

We have found that DT = 500, or equivalently, a a 0.4 is . a logical

threshold to decide whether the estimates of the parameters are good or

not. This chotee implies that the number of training samples should not

be less than 1 + 5q. However, we believe by using information given in

Table 1, one should be able to establish an upperbound on vsr(Q) and

consequently estimate the required number of training samples.

3. CONCLUSION

The main purpose of this paper was to develop a criterion to mea-

sure the dispersion of the estimate of the covariance matrix of a multi-

variate normal distribution and, based on this criterion, to be able to

predict the necessary number of training samples. To accomplish this,

the variance of Q = tr(I = A # E#A ) was chosen as the predictor cri-

terion. It was theoretically shown that variance of Q is equal to IL

with maximum value of 2. Also, the divergence between the true distri-

bution and the estimated one for different values of variance of Q was

experimentally computed and used to establish an upperbound on the vari-

ance of Q. It was suggested that the required training samples should

be about five times the number of features.

M.



Table 1. Distance between the true distribution and estimated

one as a function of var(0) or number of training samples.

var(Q)	 DT	 D	 N

1.00	 1250	 7.85	 1 + 2q

0.50 675 3.40 1 + 4q

0.4 1) 500 2.30 1 + 5q

0.25 210 0.80 1 + 8q

0.20 175 0.70 1 + 10q

s),
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