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FOREWORD

This report, prepared by Martin Marietta Denver Aerospace, presents a
summary of all locomotive truck testing conducted under Contract NAS8-29882.
The testing was conducted at Martin Marietta's structures test laboratory
from mid-1976 through mid-1980. The contract is administered by the National
Aeronautics and Space Administration, George C. Marshall Space Flight Center,
Huntsville, Alabams, under the direction of Mr. Ismail Akbay.
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1.0 INTRODUCTION

—_—— e am e e

1.1 Background

The demands on the country's rail transpurtation systems have steadily
risen over the past few decades. In accommodating themselves to shippers'
requirements, the railroads have introduced a number of new locomotives,
creating concern about higher derailment risk. One of the prime taruets for
extensive investigation has been the locomotive truck.

Following several Amtrak derailments, severe speed restrictions were
placed on locomotives having a particular type of truck. These restrictions
had such a drastic effect on Amtrak schedules that the FRA initiated, in a
very time responsive manner, several large studies to experimentally analyze
and compare locomotive truck characteristics. The FRA's objective was to
assure all concerned that an acceptable level of safety existed, while
gathering data upon which to make rational decisions regarding operational
restrictions.

Prior to the locomotive derailment problems, Martin Marietta had been
awarded a contract to experimentally characterize the standard three-piece
freight truck. Because of Martin Marietta's success in determining the
dynamic characteristics of freight car trucks, they were awarded a contract
to apply the same type of methodology in characterizing locomotive trucks.
This report summarizes the test program which followed, including the results
of tests on eight locomotive trucks.

1.2 Project Accomplishments

The locomotive truck performs a number of essential functions. The
truck: 1) attenuates the magnitude of impulsive and periodic forces arising
from track imperfections (which are transmitted to the carbody and lading),
2) damps motions of the carbody excited by rail irreqularities, 3) maintains
adequate vertical wheel loads to guard against derailment in the presence of
lateral forces, 4) transmits traction and traking forces, and 5) guides the
carbody around curves.

Recent advances in locomotive truck design have made the task of evaluat-
ing truck performance even more complex. Design changes range from add-on
devices to new truck configurations that are based on the better understanding
of vehicle dynamics gained from analysis, laboratory experiments and road
tests.

Improvements to any piece of hardware requires detailed knowledge of
what exists. Hence, characterization must precede and form the basis for
any engiaeering advancement. Since railroads tend to be pragmatic, their
preferred procedure for evaluating truck operating performance has been by
road test. This study has developed a laboratory test procedure that approxi -
mates the real world and includes many of its complexiiies. The new laboratory
procedure will greatly reduce the difficulties of interpreting data due to
unforeseen interactions within the truck.



Test conditions were selected to measure, either directly or indirectly,
the 1oad deflection characteristics which correspond to the relative motions
or degrees of freedom of a truck.

The specific degrees of freedom evaluated were:

Bolster-frame relative roll (secondary roll);

Frame-axle relative roll (primary roll);

Bolster-frame relative vertical displacement (secondary vertical);
Frame-axle relative vertical displacement (primary vertical);
Bolster-frame relative lateral displacement (secondary lateral);
Frame-axle relative lateral displacement (primary lateral); and
Frame-axle relative yaw (primary yaw).

An important consideration in the measurement of these characteristics
is the effect of natural steady loads acting on the truck. These loads in-
clude the locomotive weight (one-half for each truck) and longiwudinal forces
due to braking or traction. Simulation of these loads was included in the
laboratory test procedure.

It is difficult to simulate operating conditions in a laboratory without
any test induced effects. However, through an intensive evaluation of the
raw data, these undesirable effects were successfully eliminated.

The final phase of the study included development of an anaiytical com-
puter model for evaluating the operational safety of six-axle locomotives.
The analytical » el was structured to accept hardware-oriented suspension
test data from the Lest program, as well as truck and locomotive geometry
and mass properties, and definition of track geometry defects. The model
was used to perform parametric studies on the HT-C locomotive truck, in
order to highlight truck parameters important to operational safety. In
addition, a limited comparative analysis was conducted on HT-C, E8 and U30
locomotives to demonstrate the analytical tool's flexibility. The analytical
efforts are detailed in Reference 1.

1.3 Future Prognosis

There are few standards by which an individual locomotive truck design
may be judged. Certainly,the AAR Mechanical Division does not address dynamic
response characteristics of locomotive trucks, or any of its components, in
any detail. It is apparent that the next step in this study should be the
establishment of a laboratory test and analysis procedure for determining the
acceptability of new or modified truck designs, taking into consideration
wear and maintenance programs.

More explicitly, the acceptance program should incorporate the following
cteps:

a) Experimental determination of truck suspension characteristics;

b) Analysis of the design, based on test data, to identify any potential
operational safety problems;



c) Accelerated wear and fatigue tests to determine projected maintenance
costs and failure freguency:

d) Limited road testing (e.g., Pueblo FAST testing);
e) Review by industry and government using the following criteria:

- Safety
- Reliability (failure rate)
- Economics (1ife cycle analysis); and

f) Production for sale *o industry.

Establishment of a common facility, available for industry use, to con-
duct these acceptance tests has several benefits:

- Established procedures/techniques;

- Cost and schedule considerations;

- Qualified personnel; and

- Accessibility of facility and test equipment.

Test uniformity and reproducibility make a single facility highly desirable,
allowing for valid comparisons between trucks, hence, making test results
more readily accepted by the industry.

Railroads would certainly benefit from such an acceptance procedure.
However. the increased cost of such a procedure must be weighed against the
projected benefits before industry support can be obtained.



2.0 TEST SUMMARY

This chapter summarizes the test programs conducted under this contract
from 1976 to 1980. During this period, efight locomotive trucks were tested
(six three-axle trucks and two two-axle trucks), along with element tests on
some key components of the truck suspension system. A test n.thodology has
been developed in which the truck is tested as a system, using quasi-static
techniques to establish key suspension parameters. The test data obtained
clearly define the hardware physical behavior and, hence, can be used effec-
tively in improving the quality of analytical simulations.

2.1 Truck Test Program

The locomotive truck provides the locomotive carbody suspension system,
in addition to transmitting traction and braking forces between the carbody
and track. Figure 2-1 is a photograph of a General Electric P-30CH lccometive,
showing a typical carbody/truck configuration. There are two trucks per car-
body. Depending on application, trucks have either two or three axles with
two to three electric or diesel electric drive motors (some three-axle trucks
have only two drive motors).

The truck consists of several basic "elements" connected by mechanisms
such as springs, dampers, and bearings. These elements are:

Bolster

Spring plank assembly*

Frame

Wheel/axle set

Electric or diesel electric motors

N W -
PR PR

There are other pieces of hardware on the trucks (e.g., brake rigging, plumb-
ing), but these are not explicitly pertinent to the dynamic behavior of a
truck.

There are two basic suspension designs: 1) the “"standard" designf and
2) the "swing hanger" design. The difference in the two designs is primarily
in the connection of the bolster tc the frame. In the standard design, the
bolster and frame are connected via compression springs (rubber or steel).
The swing hanger design employs a lateral pendulum suspension arrangement,
between the bolster and frame. Figure 2-2 is a photograph of a standard
design truck: Three-axle GE U30C**. Figure 2-3 is a photograph of a swing
hanger design truck: Two-axle EMD GPSSTt.

*The spring plank assembly is only present in trucks having a swing hanger
(pendulum) lateral suspensicn system.

**GE = General Electric.
+EMD = Electromotive Division of General Motors.
#A1so called floating bolster design.

4
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The truck suspension system can be divided into two parts: secondary
and primary. The secondary suspension system is between the bolster and the
frame. The primary suspension system is between the frame and the axles.
Table 2-1 delineates the components of the secondary and ,rimary suspension
systems for both the standard and swing hanger designs. Figure 2-4 is an
artistic idealization of a truck's primary suspension system. Figure 2-5
is an idealization of the secondary suspension system for both standard and
swing hanger design trucks.

Most analytical modeling techniques assume that the truck "elements" are
rigid and, hence, any elastic deformations of these "elements" are not sig-
nificant to the dynamic behavior of the truck. The significant relative
displacements in the truck occur in the connections between "elements". It
was the objective of the test program to measure the physical characteristics
of these connections.

2.1.1 Test Approach

The various interaction forces within a truck may be classified as being
sensitive to acceleration, velocity, or displacement. Acceleration sensitive
forces are influenced by the truck's mass and inertia properties. The velocity
sensitive forces are damping forces, due to rubber pad springs and auxiliary
devices such as shock absorbers. The displacement sensitive forces are related
to the stiffness properties of connections.

The test approach was designed to measure the displacement sensitive
characteristics of the truck including friction. Although friction between
elements is sensitive to the direction of their relative velocity, it is very
nearly independent of the magnitude of the velocity. Mass properties and
damping descriptors, in general, were not measured; they were calculated
or obtained experimentally from element tests.

T.st conditions were chosen to measure, either directly or indirectly,
the load/deflection characteristics representative of the degrees of freedom
which might be simulated in a truck analytical model. Table 2-2 tabulates the
four test conditions employed and the information acquired from each test.

Trucks were mounted on a test fixture, during testing. The fixture
(Figure 2-6) supported the truck's wheels on slide plates which rested on
lubricated, machined fixture surfaces. The slide plates were restrained
with hydraulic actuators to react the wheel loads. The fixture included
provisions for applying vertical, lateral, and longitudinal (tractive effort/
braking) loads to the truck bolster center plate. The restraining actuators,
on the wheel slide plates, were also used to apply axle yaw forces. Figure
2-7 shows the overall test setup with an EMD GPSS (two-axle) truck installed.
The fixture was housed in a cold enclosure, during several of the tests, to
allow low temperature testing (00F) on trucks with rubber suspension elements.
Figure 2-8 is a close-up photograph of the loading interface between the load
beam and bolster center plate. The knife-edge adapter shown was used to load
swing hanger trucks, in order to prevent unrealistic test related constraints.
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Table 2-2

Matriz Relating Information

Acquired to Teet Comdition

TEST CONDITION

TRUCK

DEGREE OF

FREEDOM ! 2 3 4

VERTICAL | LATERAL | AXLE YAW | BOLSTER YAW (WET/DRY)

Bolster Roll X - - -
Frame Roll X - - -
Bolster Lateral - X - -
Frame Lateral - X - -
Carbody Bolster Yaw - - - X
Frame Yaw - X - -
Axle Lateral - X - -
Axle Yaw - - X -

><
"

12

Information obtained from test condition.

No information obtained from test condition.
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An important consideration in the measurement of a truck's suspension
characteristics is the effect of natural steady loads acting on the truck.
These include locomotive weight (one half for each truck) and longitudinal
forces, due to braking and traction. The test conditions accounted /or these
loads. Relative roll and yaw characteristics were determined indirectly by
measuring the vertical and lateral displacement characteristics and then cal-
culating the roll and yaw characteristics.

Table 2-3 presents the general test matrix used for all trucks. Specific
loading values were tailored to the truck being tested. Figure 2-9 pictorially
shows the loading conditions for the four test conditions employed.

Table 2-3  Suspension Characterization Teet Matrix
APPLIED AT BOLSTER CENTER PLATE

TEST VERTICAL | TRACTIVE | LATERAL | BOLETER AXLE
CONDITION LOAD FORCE LOAD | LOAD YAW LOAD | YAW LOAD
1) Vertical# Cyclic* | Constant - - -
2) lLateral Constant | Constant Cyclic* - -
3) Axle Yaw Constant - - - Cyclic*
4) Bolster Yaw | Constant | Constant - Cyclic* -
* Cyclic loads were applied at =~ 0.25 Hz.
# Test 1 was run with and without the truck's brakes set to

determine friction effects.

2.1.2 Data Acquisition and Interpretation

Test loads were applied via hydraulic load actuators, and strain gage
load cells, in series with the actuators, were used to measure test loads.
Both potentiometer and linear variable differential transformer (LVDT) de-
flection transducers were used to measure relative deflection, within the
truck's suspension system. The instrumentation system accuracy was measured
to be approximately 2% of full-scale calibration. Figure 2-10 shows a
typical instrumentation installation.

The testing and data acquisition/reduction was controlled via an HP5451C,
microcomputer based, test/analysis system. Figure 2-11 delineates a typical
test scenario. The HPS5451C system is able to simultaneously output excitation
signals to the test specimen and acquire transducer response signals. The
transducer outputs (from load and deflection transducers) were digitized in

16
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Figure 2-3 Truck Test Loading Conditions
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real time and stored on magnetic storage disks., The computer then operated
on the digital data converting them to engineering units and generated cross
plots of force and displacement.  The resulting hysteresis plots were eval-
uated to determine suspension stiffness and friction characteristics. Inter-
pretation of typical load/deflection hysteresis characteristics found in 2
truck suspensfon system are discussed below.

The most common load/deflection characteristic is that of a linear
spring (Figure 2-12a). This relationship is uniquely defined by the single
parameter, K, which is the slope (%"%%%gizT?Eﬁ) of the load versus deflection
curve. This type of relationship is characteristic of such suspensicn compo-
nents as ccil and leaf springs.

A second common characteristic is bilinear stiffness (Figure 2-12b).
The connections in a truck, where this characteristic would be expected, are
those which allow some motion, prior to hitting a deflection limiter ("stop").
This characteristic requires three parameters: Ky, K2, and &. The parameter
& defines the break point where the slope of the curve changes from Ky to Kj.

The characteristics shown in Figure 2-12 are for suspension elements
with no damping or friction. Most locomotive truck designs rely heavily on
friction to provide suspension damping. Although the sense of the friction
force is determined by the direction of the velocity vector (the friction
force retards relative motion), the magnitude of the friction force is nearly
independent of the magnitude of the velocity vector., Figure 2-13 shows the
hysteresis curve for pure friction. The area within the hysteresis loop is
a measure of the energy dissipated per cycle of motion.

Combining linear and bilinear stiffness with friction results in Llhe
hysteresis characteristics shown in Figure 2-14, In addition to friction,
a truck has other damping sources. Viscous damping is characteristic of
rubber pad suspension springs and external hydraulic shock abscrbers. Fig-
ure 2-15 shows the hysteresis characteristic of a linear spring combined
with viscous damping. The magnitude of the viscous damping force is a
function of the loading rate ?velocity). The testing employed a fairly low
loading rate and, consequently, viscous damping effects were not perceptible
in the test data. Element testing on rubber pad suspension elements and
hydraulic shock absorters (Section 2.2) were used to more zdequately char-
acterizc viscous damping elements and supplement the truck test data.

2.1.3 Truck Test Articles

Truck test articles were chosen by the FRA to represent a cross section
of trucks commonly used by U.S. railroads. From 1976 through 1980, eight
trucks were tested: six three-axle designs and two two-axle designs. Table
2-4 lists the trucks tested and references the detailed test reports published
for each truck. The following paragraphs describe the various truck designs,
highlighting suspension system details.

20
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E”: An early vintage (1940's) three-axle EMD truck. The truck has a
swing anger secondary lateral suspension, with transverse leaf springs for
the secondary vertical suspension. The primary vertical suspension has load
equilization struts, which attempt to equalize vertical axle loads. No
external dampers are employed on the truck. Figure 2-16 is a photograph of
the E8 truck tested.

Flexicoil: An EMD three-axle design produced for SD type locomotives,
prior to development of the HT-C truck design. The truck employs a standard
secondary suspension with coil springs as the active suspension element. Twe
hydraulic shock absorbers are used in the primary vertical suspension system.
They are located on the center axle. Figure 2-17 is a photograph of the
Flexicoil truck during testing.

HT-C: This three-axle EMD design appeared on the market in the early
1970s. HT-C stands for High Traction-three axle. This truck also employs

a standard secondary suspension utilizing single segment rubber pad springs
as the active suspension elements. Two hydraulic shock absorbers are used
on the center axle of the primary vertical suspension system. Early opera-
tioral derailment problems led to design modifications including: the use
of softer rubber pad springs and the addition of a hydraulic shock absorber
in the secondary lateral suspension. Both versions of the truck were tested.

Figure 2-18 is a photograph of the first HT-C truck tested.

U30C: A three-axle GE truck produced for diesel electric service. This
truck has a standard secondary suspension with five-segment rubber pad springs
as the active suspension elements. Friction snubdbers are used to provide
primary vertical suspension damping. Early versions of this truck employed
four snubbers (front and rear axles). Later versions use only two snubbers
(on the center axle). Figure 2-19 shows the U30C truck during testing.

E60: A three-axle GE truck produced for all-electric Amtrak service.
The basic design of this truck is essentially the same as the U30C truck,
with the exception of external damping devices. This truck employs eight
hydraulic shock absorbers: four in the primary vertical suspension (front
and rear axles), two between the truck frame and locomotive carbody to
damp yaw motion, and two in the secondary lateral suspension. The truck
configuration is similar to the U30C design shown in Figure 2-19.

GPSS: A two-axle EMD truck. The truck has a swing hanger secondary
lateral suspension, with rubber pad springs for the secondary vertical sus-
pension. Two versions of this truck were tested: the original version
having rubber pad springs in compression, and the modified design having
inciined rubber pad springs. The inclined rubber pad springs result in a
slightly softer vertical suspension. Two hydraulic shock absorbers are
used in the primary vertical suspension system (diagonally opposite on the
front and rear axles). Figure 2-20 is a photograph of the original version
GPSS truck tested. The two segment rubber pad springs are visible in the
photograph. Figure 2-21 is a closeup of the inclined rubber pad springs in
the modified truck (the second GPSS truck tested).
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2.1.4 Results Summary

The test data acquired for each truck and a detailed description of the
truck configurations are presented in References 2 through 8. The Appendix
of this report contains a summary of the test data, along with other informa-
tion needed for dynamic modeling. The references should be consulted for
additignai details. A1l trucks were tested with external damping devices
removed.

Many of the trucks tested are available with a range of suspension stiff-
nesses to fit the particular service application. The measured values, pres-
ented in this report, and the detai) test reports only reflect the particular
trucks tested. In addition, state of wear can affect some of the measured
data. Any analyses, using the data obtained during testing, should include
consideration of sensitivity of analysis results to variations in suspension
parameters.

Figures 2-22 and 2-23 show a comparison of the vertical and lateral
stiffness of the eight trucks tested, Figure 2-22 shows the truck's equivalent
vertical stiffness considering the secondary and primary suspension systems
in series. Figure 2-23 is a comparison of the secondary lateral stiffnesses.
Note th.t the swing hanger suspension used in the E8 and GPSS trucks signif-
icantly reduces the lateral suspensicn stiffness.

2.2 Component Test Program

In addition to the locomotive truck tests, three component test programs
were conducted under the contract. The objective of these test programs was
to investigate, in more depth, the characteristics of key suspension components.
The following paragraphs summarize the three component test programs conducted.

2.2.1 Rubber Suspension Pad Element Test

The truck tests did not provide sufficient resolution to allow a complete
understanding of the properties of the elastomeric pads used in truck second-
ary suspensions. Since the pad is 2 key element in determining truck behavior,
a separate element test was performed.

A simple test fixture was constructed to allow measurement of rubber
pad stiffness and damping, as a function of pad temperature and frequency
of excitation. Figure 2-24 shows a sketch of the test setup. Two rubber
pad springs were preloaded in series with approximateiy one-eighth the weight
of a carbody, and a hydraulic actuatcr was used to load the pads in shear.
Load-deflection characteristics were measured over a temperature range of
-55 to 7097 and an excitation frequency rance of 0.25 to 3.0 Hz.

Rubber pad springs from three trucks were tested: HT-C (hard rubber),
HT-C (soft rubber), and £60. Pad stiffness and equivalent viscous damping
coefficient were derived from load-deflection hysteresis characteristics
measured during testing. Figure 2-25 shows the variation in pad stiffness,
as pad temperature was lowered, for an excitation frequency of 0,25 Hz.
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Figure 2-26 shows the increase in pad damping with a decrease in pad
temperature. This trend is typical of polymer materials. In general,
rubber pad springs are not good dampers, because they are functioning in
the "rubbery region" as opposed to the "viscoelastic region". Polymer
materials have a critical temperature called the glass transition tempera-
ture. At this temperature, the material enters the "plastic region" and
is more susceptible to fracture damage. The glass transition temperature
occurs below the viscoelastic region. For the pads tested, the viscoelastic
region appears to be below -409F. In service, the pads will be at a much
higher temperature, due to internal heat generation.

Figure 2-27 shows the nonlinearity of pad stiffness,as excitation fre-
quency is varied. Figure 2-28 shows the variation in damping coefficient,
as excitation frequency is varied. Rubber pad characteristics can be analyt-
ically modeled with a variety of spring-damper analogs. The selection of a
modeling method should depend on the analysis objectives. For many applica-
tions, a linear spring and damper in parallel may be sufficient.

2.¢.2 Hyatt Bearing Lateral Bumper Element Test

Hyatt bearings (straight roller}, in contrast with tapered Timken
bearings, do not carry lateral thru:v .cads (aleng the axle shaft), except
through rolling friction. Once the free play clearance is exceeded, a rubber
bumper transmits the lateral load to the journal box. Figure 2-29 shows
details of the bearing construction and identifies the location of the rubber
bumper. Since bearing friction, resulting from rolling wheels, could not be
simulated during truck testing (test friction was much higher), bumper stiff-
ness could not be characterized. Consequently, an element test was conducted
to measure the bumper's properties.

Testing was conducted on an MTS testing machine that plotted load versus
deflection. During testing, the bumper was confiqured with its spacer and
retainer similar to its installed confiqguration in the bearing to provide
realistic boundary conditions. Figure 2-30 is a photograph of the Hyatt
bearing bumper components. g

Using the test data, a polynomial expression was developed relating
load to bumper deflection.

LOAD = 1.440 x 10% & - 1.495 x 10° 63 + 1.704 x 10’ &°

- 3.077 x 108 67 +1.751 x 107 62, (1b)

where
6 = bumper deflection (IN.)
2.2.3 Shcck Absorber - Friction Snubber Element Test
A component test program was conducted to evaluate the damping character-
istics of two representative external damping devices: a Delco 22012514
hydraulic shock absorber commonly used on EMD HT-C locomotive trucks, and a

Houdaille 709702-11 friction snubber commonly used on GE U30C trucks. Figure
2-31 is a photograph of the test setup. An "oil derrick" fixture was
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fabricated to facilitate a range of stroke amplitudes. A hydraulic actuator
was used to load the test specimen utilizing the fixture's mechanical advant-
age to magnify the actuator's iimited stroke. A strain gage load cell and
two displacement transducers were used to measure the load deflection char-
acteristics of the test specimens. A range of stroke velocities and dis-
placements was obtained by varying excitation frequency and load. Specimens
were tested over a temperature range from -50 to 1650F, Thei'mocouples
mounted on the specimens were used to determine test temperatures. Liquid
nitrogen-cooled air was used to control the specimen temperatures. Test
details are presented in Reference 9. A summary of the results is presented
below.

Figure 2-32 is a plot of damping force versus stroke velocity showing
a comparison between measured test data and the manufacturer's specification
average for the Delco 22012514 hydraulic shock absorber (commonly used on
the EMD HT-C truck). The shaded area encompasses the test data for the temp-
erature range from -50 to 100°F. These data correlate well with the manu-
facturer's specification average. At higher temperatures, however, the
shock absorber's performance falls off ségnificantly. The boundary envelope
of the measured data between 100 and 165°F is shown. No attempt has been
made to determine the temperature of a shock under operational conditions;
however, prolonged travel at low speeds over very rough track could result
in higher than normal temperatures, due to stroking of the shock.

Figure 2-33 summarizes the test data for the Houdaille 709702-11 friction
snubber. A1l measured data met or exceeded the manufacturer's specification
range, even for high temperature tests. Comparing the characteristics of
the friction snubber with those of the hydraulic shock absorber, the basic
difference between a velocity-dependent damping device (the shock absorber)
and a damping device based on friction (the snubber) is evident. The snubber
provides a fairly constant damping force, regardliess of velocity.
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3.0 APPLICATIONS

The testing methodology developed under this contract, and the data
collected, have a variety of important applications to the railroad industry.
One important application has been demonstrated by the development of a
methodology for the derailment safety analysis of six-axle locomotives, docu-
mented in Reference 1. A computer code has been developed to simulate the
nonlinear response of a locomotive to track geometry defects and calculate
various measures of safety for evaluation. The code is user-oriented and
provides the flexibilfty to modify the model and measures of safety, if so
desired. Input data are hardware-oriented, and the truck data obtained in
the test program form the basis for the truck test data bank. Figure 3-1
presents the approach used in developing the nonlinear locomotive simulation
model .

The model simulates the nonlinear time response of a locomotive to
track geometry defects on curved or tangent track. Track geometry defects
may be specified in terms of vertical, cross-level, or gage perturbations.
Complex defects can be constructed by superposition. Wheel/rail interactions
are modeled in detafl. The model includes a nonlinear creep formulation and
also simulates wheel flanging. In addition, constant coupler forces and wind
loads may be specified. Figure 3-2 shows the 15 degrees-of-freedom used to
describe a locomotive in the model.

Two studies (documented in Reference 1) were performed to demonstrate
applications of the model, useful to the railroad industry. A parameter
sensitivity analysis was performed, in the first study, using the SDP4QF
locomotive. The objective was tc determine the relative importance of var-
ious truck, track, and operational parameters to operational safety. Twenty-
one different parameters were evaluated. Figure 3-3 shows an example sensi-
tivity plot generated during this study. Shown is the computed sensitivity
(in terms of lateral/vertical load ratios) to the limit force of the secondary
lateral damper. The second study was a comparative analysis of three differ-
ent locomotives subjected to the same set of rail geometry defects.

The testing techniques developed under this study allow the characteriza-
tion of the locomotive truck as a system. Hence, complex interactions within
the truck can be analyzed in the laboratory reducing the need for expensive
field testirg. The data obtained from the laboratory tests, combined with
powerful analytical tools, such as the one discussed above (Reference 1),
have general applicability in the design, maintenance, and operational eval-
uation of locomotives. Several potential applications are delineated below.

The methodology can be used as a predictive technique in:

1) The determination of maximum safe operating speeds for various classes
of track based on locomotive dynamics;

2) The determination of critical track geometry defects;

3) The determination of minimum track strength requirements;
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4)
5)
6)

7)
8)

The development of appropriate locomotive maintenance standards;
The determination of derailment mechanisms;

Determination of the relative importance of truck, track, and opera-
tional parameters to operational safety;

The mechanical design of locomotive suspension components; and

The evaluation of new and/or modified locomotive designs, prior
to introduction into service.
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4.0 CONCLUSIONS AND RECOMMENDATIONS

This contract has led to the development and refinement of a methodology
that allows the testing of a locomotive truck as a system. The testing method-
ology has been used to characterize eight locomotive trucks currently in ser-
vice to form the core of an expandable truck data base.

An analytical tool that uses this data and simulates the nonlinear re-
sponse of locomotives to track geometry defects has been developed. Through
use of the test data and analytical tools, such as the one developed under
this contract, many long range benefits to the railroad industry are possible
including:

1) Reduced derailment risk;
2) Improved ride quality; and
3) Wear minimization.

The studies conducted under this contract have demonstrated the value
to the industry of a complementary test and analysis program for evaluating
locomotive/truck dynami: verformance. The rudimentary test and analytical
methodology are now avai.able to facilitate the development of a centralized
program for evaluating and optimizing truck designs. It is recommended that
the knowledge gained under this contract be used as a source of ideas and
guidelines for the development of a consolidated truck evaluation facility.

The establishment of a centralized facility, available to the entire
industry, is attractive for several reasons:

1) It represents a neutral ground for performing standard-repeatable
tests and comparing results;

2) It allows for a central repository of test data;
3) Personnel training can be minimized; and

4) It facilitates the collection, development, and enhancement of
analytical tools for use by the industry.

Overview, policy guidance, advice and recommendations from the railroads,
the railroad supply industry, the Railway Progress Institute, governmental
agencies, and the Association of American Railroads are imperative for the
successful development of such a facility.

Through the proposed facility, railroads would have the opportunity to
evaluate the performance of prototype truck designs, prior to purchasing even
limited quantities for road evaluation. The test/evaluation procedures would
also allow identification of extreme conditions in a laboratory environment,
minimizing real risks. Within the laboratory confines, fine tuning of designs
could be accomplished and ultimately performance specifications for advanced
truck designs could be developed. The proposed evaluation program will present
the railroad industry with a new, cost effective tool for managing and enhanc-
ing locomotive fleet operations.
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APPENDIX - Truck Test Data Summary

This Appendix summarizes the truck test data presented in References 2
through 8, Some additional information, obtained from the truck manufacturers
and References 10 through 13, is also presented to facilitate truck/locomotive
dynamic modeling. If more detailed data are required, the References should
be consulted*.

The data in this appendix are presented ir. terms of the "major" truck
degrees of freedom usually included in an analytical model. Stiffness, fric-
tion, mass properties and geometric data are presented for the various trucks
tested. Table A-1 describes the truck degrees of freedom for which data is
presented.

Table A-1  Truck Degrees of Freedom for which
Data is Presented

DEGREES OF
FREEDOM DESCRIPTION

Primary Vertical Relative vertical motion between frame and wheelsets
Secondary Vertical| Relative vertical motion between bolster and frame

Primary Lateral Relative lateral motion between frame and wheelsets
Secondary Lateral | Relative lateral motion between bolster and frame
Primary Yaw Relative yaw motion between frame and wheelsets
Bolster Yaw Relative yaw motion between carbody and bolster at

bolster center plate

The following paragraphs present a summary of the measured characteristics
of each truck tested. In addition, some representative locomotive carbody
data is presented. Many of the trucks tested are available with a range of
suspension stiffnesses to fit the particular service epplication. The measured
values presented in this report, and the detailed test reports, only reflect
the particular trucks tested. Any analyses, using the data obtained during
testing, should include consideration of sensitivity of analysis results to
variations in suspension parameters. Friction values are very dependent on
truck cleanliness and wear of friction pads. Consequently, a range of fric-
tion values should be used in analytical simulations.

Geometric data is presented, based on the dimensional parameters shown
in Figure A-1.

*A11 mass property and geometric data are approximate.
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A.1 EMD E8 Truck



A.1 EMD E8 TRUCK

An early vintage (1940's) three-axle EMD truck (the center axle is not
driven). The truck has a swing hanger secondary lateral suspension, with
transverse leaf springs for the secondary vertical suspension. The primary
vertical suspension has load equilization struts, which attempt to equalize
vertical axle loads. No external dampers are employed on the truck. Figure
2-16 is a photograph of the E8 truck tested. Following is a summary of car-
body and truck data for the E8 truck.

Table A-2 Locomotive Carbody Data for the E8 Truck

3
LOCOMOTIVE| MASS (LB-SZ/IN) INERTIA (LB-IN-S7) o | e
MODEL  |CARBODY + BOLSTERS | oot — -~
6 7 7
E8 622.5 1.07x10% | 2.52x107 | 2.52x10" | s16. | s9.
E9* 622.5 1.07x108 | 2.52x107 | 2.52x107 | s16. | 9.
*Figure A-2

Table A-3 E8 Truck Mass and Geometric Properties

2
MASS INERTIA (LB-IN.-S%)

COMPONENT 2 L3(IN.)|L4(IN.)[LS(IN.)|L6(IN.)
(LB-S“/IN.)| ROLL YAW
4 5
Frame 40. 5.5x10 1.7x10 78.
*# 4 L 2]
Wheelset 30.3° 1.65x10° +84. 0. -84.

*With motor (center axle is not driven, Mass = 9.1 LB-SZ/IN.)
**Front and rear trucks are identical, + 13 forward.
#The unsprung wheelset mass is = 22. LB-S¢/IN.
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4

F F(x) = 1.44x10" x - 1.495x10

5 x3

f +1.704x107 ¥ - 3.077x10
+ 1.751%10° °
4 ¥
FF Z PJ‘
L--------FP -*4r— GH—J
where: FP = axle freeplay, 3/16"-3/8"
GH = allowable compression of rubber bumper, = 1/4"
PL = bumper preload, 1,000.-2,000. LB
FF = lateral bearing friction force, LB
£ =y hoco Viat
F NA rov 2 q1/2
a "LOCO 4y 2
RH LT
¥ = coefficient of friction, = 0.1
“LOCO = locomotive weight, LB
NA = total number of locomotive axles (4 or 6)
VLAT = relative axle/frame lateral velocity, IN./S
ra = axle radius at bearing, = 3.2"
RH = wheel radius, IN.
VLoco = locomotive forward velocity, IN./S
x = 6-FP+ 60
60 = rubber bumper installed preload compression, IN.
Figure A-3 Primary Lateral Load Deflection Characteristics
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A.2 EMD Flexicoil Truck



A.2 EMD Flexicoil Truck

An EMD three-axle design produced for SD type locomotives, prior to
development of the HT-C truck design. The truck employs a standard secondary
suspension with coil springs as the active suspension element. Two hydraulic
shock absorbers are used in the primary vertical suspension system. They are
located on the center axle. Figure 2-17 is a photograph of the Flexicoil
truck during testing. Following is a summary of carbody and truck data for
the Flexicoil truck.

Table A-5 Locomotive Carbody Data for the Flexicoil Truck

LOCOMOTIVE | MASS (LB-S2/IN.) INERTIA (LB-IN.-S2)
MODEL | CARBODY + BOLSTERS L1(IN.) | L2(IN.)
ROLL | PITCH | YAW
6 7 7
$D38 668. 1.6x10% | 3.1x107 { 3.4x107 | 4s0. 59.
$D40 678.7 1.6x108 | 3.2x107 | 3.4x107 | 480. 59.
$D45 678.7 1.6x108 | 3.2x107 | 3.4x107 | 4s0. 59.

Table A-6 Flexicoil Truck Mass and Geometric Properties

wass | INERTIA (LB-IN.-S%)
COMPONENT A L3(IN. ) |La(IN.) L5 (IN. ) [L6(IN.)
(LB-s%/n.) | RoLL YAW
4 5
Frame 36. 5.2x10 1.63x10 79.
Wheelset 30. 3% 1.65x10% | +81.5¢ | 0. [-81.5

*Front and rear trucks are identical, + ig forward.
**The unsprung wheelset mass is = 22. LB-S¢/IN.
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A.3 EMD HT-C Truck



I’l

A.3 EMD HT-C Truck

This three-axle EMD design appeared on the market in the early 1970's.
This truck also employs a standard
secondary suspension utiiizing single segment rubber pad springs as the active

HT-C stands for High Traction-Three Axle.

suspension elements.

axle of the primary vertical suspension system.
problems led to design modifications including:
springs and the addition of a hydraulic shock absorber in the secondary

lateral suspension.

truck data for the HT-C trucks.

Both versions of the truck were tested.
a photograph of the first HT-C truck tested.
both ambient and cold temperatures.

Two hydraulic shock absorbers are used on the center
Early operational derailment
the use of softer rubber pad

Figure 2-18 is
The second truck was tested at
Following is a summary of carbody and

Table A-8 Locomotive Carbody Data for the HT-C Truck
2 INERTIA (LB-IN.-5°)
LOCOMOTIVE |MASS (LB-SZ/IN.) : aan.) o)
= . .

MODEL  |CARBODY + BOLSTERS [eorr | prrch | vaw
FREIGHT

$D38-2 669. -804. 1.51x10%|35.3x10%]35.3x10°| 522. | 57.7

$D40-2 669.-804. 1.51x10°%(35.3x10%(35.3x10%| 522. | 57.7

$D45-2 669. -804. 1.51x108135.3x10°|35.3x108| 522. | 57.7
PASSENGER

SOPAOF 742.-766. 1.72x10%39.6x10%|39.6x10%| 552. | 57.7
*Figure A-5.

Table A-9  HT-C Truck Mass and Geometric Properties
wass | INERTIA (LB-IN.-S%)
COMPONENT A L3(IN.)|LA(IN.)[L5(IN.) |L6(IN.)
(e-s2/1N.) | RoLL YAW
4 5
Frame 40. 5.27x10 1.61x10 79.
# 4 * * *

Wheelset 3. 1.68x10% | +78.4" |-1.25" |-85.0

*Rear truck is same as front truck rotated 1800 about bolster center;

signs are reversed (+ is forward).
#The unsprung wheelset mass is = 22

_"LB-S2/IN.
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A.4 GE U30C Truck

A three-axle GE truck produced for diesel electric service. This truck
has a standard secondary suspension with five-segment rubber pad springs as
the active suspension elements. Friction snubbers are used to provide primary
vertical suspension damping. Early versions of this truck employed four
snubbers (front and rear axles). Later versions use only two snubbers (on the
center axle). Figure 2-19 shows the U30C truck during testing. Following is
a summary of carbody and truck data for the U30C truck.

Table A~11 Locomotive Carbody Data for the U30C Truck

7
LOCOMOTIVE | MASS (LB-S2/IN.) INERTIA (LB-IN.-S7) L1(IN.) |L2(IN.)
MODEL  |CARBODY + BOLSTERS [ 7o | prrcn | vAn
u33c 685.-831. 1.72x10%]39.6x10%|39.6x10% | 491. | 50.3
*
€30-7 691.-831. 1.72x10%(39.6x10%139.6x10% | 491. | 50.3
£36-7 691.-831. 1.72x10%139.6x10%]39.6x10° | 491. | 50.3
*Figure A-6.

Table A-12 U30C Truck Mass and Geometric Properties

VASS INERTIA (LB-IN.-S°)
CONPONENT | (15 <2,y ) L3(IN.) [La(IN. ) [LS(IN.) [L6(IN.)
=ST/ING | RroLL YAW
4 5
Frame 37.6 5.6x10 1.78x10 79.
# 4 * * *
Wheelset 30.3 1.65x10% | +79.5" |+2.0" |[-83.5

*Rear truck is same as front, + is forward.
#The unsprung wheelset mass is = 22. LB-S¢/IN.
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A.5 GE E60CP Truck

A three-axle GE truck produced for all-electric Amtrak service.
basic design of this truck is essentially the same as the U30C truck, with
the exception of external damping devices.

shock absorbers:

The

This truck employs eight hydraulic

four in the primary vertical suspension (f-ont and rear

axles), two between the truck frame and locomotive carbody to damp yaw motion,
The truck configuration is

and two in the secondary lateral suspension.
similar to the U30C design shown in Figure 2-19.

carbody and truck data for the E60CP truck.

Following is a summary of

Table A-14 Locomotive Carbody Data for the E60CP Truck
2 INERTIA (LB-IN.-S%)
MODEL  |CARBODY + BOLSTERS [ gt | pircn | vAW )
* 6 6 6
E60CP 670. 1.31x10%]32.x10% [ 32.x10 540. | 52.3
*Figure A-7.
Table A-15 E60CP Truck Mass and Geometric Properties
MASS: INERTIA (LB-IN.-S°) oo lems st ey
COMPONENT 2 L3(IN.) [LaCIN. ) |LSCIN. ) L6 (IN.
(LB-S™/IN.) I pory YAW
Frame an.7 5.26x10° | 1.78x10° 79.
*
Wheelset 31" 2.13x10% | +79.5" [+2.0 |-83.5

*Rear truck is same as front, + is forward.
#The unsprung wheelset mass is = 22. LB-S¢/IN.
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A.6 EMD GPSS Truck

A two-axle EMD truck.

The truck has a swing hanger secondary lateral

suspension, with rubber pad springs for the secondary vertical suspension.

Two versions of this truck were tested:

the original version having rubber

pad springs in compression, and the modified design having inclined rubber
The inclined rubber pad springs result in a slightly softer

pad springs.

vertical suspension.

second GPSS truck tested).

Two hydraulic shock absorbers are used in the primary

vertical suspension system (diagonally opposite on the front and rear axles).
Figure 2-20 is a photograph of the original version GPSS truck tested.
two segment rubber pad springs are visible in the photograph.
is a closeup of the inclined rubber pad springs in the modified truck (the

The

Figure 2-21

Both tr ~ks were tested at ambient and cold temp-

eratures. Following is a summary of carbody and truck data for the GPSS
trucks.
Table A-1?7 Locomotive Carbody Data for the GPSS Truck
2 INERTIA (LB-IN.-S°)
LOCOMOTIVE | MASS (LB-S°/IN.) ' LN L2
MODEL  |CARBODY + BOLSTERS [ o' | pr7cH | vaW
FREIGHT
GP38-2 462. 1.6x10% 11.2x107 [1.2x10 408. | 60.
GP39-2 462. 1.6x10% |1.2x107 |1.2x10 08. | 0.
GP40-2 477.5 1.6x10° [1.3x107 |1.3x107 408. | 60.
GP50 487.9 1.6x10% [1.3x107 [1.3x10 408. | 60.
PASSENGER
* # 6 7 7
F40PH 476.3-494.4 | 1.6x10% |1.3x107 [1.3x10 396. | 60.
*I,,clined secondary suspension rubber pad prings used on FA0PH only.
#Figure A-8.
Table A-18  GPSS Truck Mass and Geometric Properties

MASS | INERTIA (LB-IN.-S%)

COMPONENT 2 L3(IN.) [LaCIN. ) |LS(IN.) L6 (IN. )
(LB-ST/IN.) | poLL YAW
4 4

Frame 29.8 | 3.86x107 |13.15¢10 79.
Wheelset 30.* 2.13x10% | +54." | 0. |-54.7
Swing 2.97 |2.1x10° | 2.2x103
Hanger

*Rear truck same as front, + is forward. 2
#The unsprung wheelset mass is = 22. LB-S"/IN.
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