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Abstract

The i.ethods used to analyze the aerodynamic

performance of V/STOL inlets at the NASA Lewis
Research Center are briefl y described. Recent
extensions and applications of the method are em-
phasized. They include the specification of the
Kutta condition for a slotted inlet, the calcula-

tion of suction and tangential blowing for bound-
ary layer control, and the analysis of auxiliary
inlet geometries. A comparison is made with ex-
periment for the slotted inlet and also for tan-
gential blowing. Finally, an optimum inlet diffu-
ser velocity distribution is developed.

Nomenclature

Cf	 skin friction coefficient
Cp pressure coefficient
D fan diameter

L inlet	 length	 (0.3048 m)
M Mach number
m mass flow rate
P total pressure
S surface distance
S.P. stagnation point
V velocity

x x-coordinate

Y y-coordinate
x nondimensional	 distance from the

start of diffusion normalized
by the total diffusion length

a angle o r	attack
g inlet y.a angle
6 displacement thickness
e circumferential	 angle (e - 0 0 at

windward plane)

Subscripts:

B	 blowing plenum

c	 control station
de	 diffuser exit

e	 edge of the boundary layer
inlet	 inlet
j	 blowing jet
max	 maximum
ref	 reference
suction	 suction
T	 throat

free stream
F AN	 tan face

ntroductzon

In recent years, meny ditferent airframe/en-

gine configurations have been proposed for V/STOL

aircraft. Some of the proposed configurations
impose rather severe flow conditions on the pro-
pulsion System inlet. For example, the approach
and takeotf flight paths of a tilt. nacelle V/STOL
aircraft may result in inlet angles of attack up

to 120 0 . A major concern for the inlet designer

at these conditions is the possibility of inlet
interr^l flow separation. Separation free flow is

desired to minimize thrust loss, minimize fan
blade stress, and prevent engine stall. To assist
the designer in providing inlet designs with sei , a-
ration-free flow, reliable theoretical method, of
inlet flow analysis are desired both fo: • the in-
let design process and to interpret and augment
the results of wind tunnel testing. The methods
should be able to calculate the potential and
boundary layer flows in inlets of arbitrary geome-
try and at arbitrary flow conditions.

Such methods of analysis have been developed
over the past several years at the NASA Lewis Re-
search Center. They consist of a series of compu-
ter programs documented in Refs. I to 6. Compari-
sons with experimental results are presented in
Refs. 7 to 12. Since these reports have been pub-
lished, the programs have been extended and ap-
plied to more difficult inlet problems.

The present paper will briefly describe the
y asic method of analysis. The major emphasis,
however, will be or presenting the recent exten-

sions and applications. The topics covered in
this paper are: the flow about a slotted inlet;
the flow in an auxiliary inlet; the analysis of
suction and blowing boundary layer control; and
the development of an optimum diffuser velocity
distribution.

Basic Method of Analysis

The basic problem to be solved is to calculate

the compressible viscous f l ow in inlets of arbi-
trary geometry and at arbitrary operating condi-
tions. A series of computer programs develo ped at
the NASA Lewis Research Center are used to solve
this `roblem. A flow chart depicting the sequence

for using these pro g rams is presented in Fig. 1

with the basic programs on the left, and recent
extensions on the right. All programs start with

the geumetry program, upper left-hand block, which
creates the discrete control points for each geo-
metric configuration. Then the incompressible
potential flow program is used to calculate the
basic solutions to the pro^lem. These basic solu-

tions are combined into a solution that satisfies

the inlet operating conditions of freestream ve-
locity, angle of attack, and inlet mass flow.
Next, the imcomp ressible flow is corrected for
compressibility effects. The compressible poten-
tial flow solution is then used as an input to the
boundary layer program which calculates the lami-
nar, transition and turbulent boundary layer char-
acteristics, and predirts flow separation.

Twu iteration loops are available as shown to
the left in Fig. 1. The first adds the displace-
ment thickness to the geometry to improve the ac-
curacy of the potential flow and boundary layer
calculations. The second incorporates an automa-
tic angle of attack sweep to find the separation
angle of attack of an inlet at any given value of
freestream velocity and inlet mass flow in one
uninterrupted computer run.



The recent extensions to these programs, which
will be the major emphasis of this paper are: (a)
to calculate the flow in an inlet with a leading
edge slot; (b) to calculate the performance of
suction and tangential blowing boundary layer con-
trol concepts, and (c) to analyze the flow in aux-
iliary inlet geometries. The method has also been
applied to finding the optimum velocity distribu-
tion in a subsonic diffuser.

Geometry Program
A program called SCIRCL is used for 2-0 and

axisymmetric geometries. For an axisymmetric in-
let case, the geometry is represented by its meri-
dional profile which is shown in Fig. 2(a). Both
the external and internal ducts are extended far
downstream so that accurate potential flow solu-
tion can be obtained in the region of interest.
SCIRCL breaks the profile into segments with a
control point on each segment which are used for
potential flow calculations. The program also
calculates information such as curvature, wall
angles, and flow area distribution which are very
useful in preliminary screening of proposed inlet
shapes. In addition to the surface points, SCIRCL
generates off body points (like flow measuring
rakes) also shown in Fig. 2(a) at axial locations
where the velocity p..,file or the streamlines are
desired.

The 3-D geometry program, applicable to inlet
geometries like that shown in Fig. 2(b) and dis-
cussed in Ref. 13, allows the user to input a rel-

atively small number of points to define the inlet
and centerbody. The routine then enriches the
point number and redistributes the points for good
potential flow analysis. The detailed description
of this geometry package is given in Ref. 5.

Incompressible Potential Flow Basic Solutions

The Douglas Neumann Program(" 14-16) is used
for calculating the incompressible potential flow
field. The following basic solutions are obtained
by this program:

1. Static solution (V. = 0)
2. Uniform axial flow solution
3. 900 angle of attack solution
4. 900 angle of yaw solution (for 3-0 geome-

try only)
In general, to obtain the basic solutions, the sur-
face is replaced by a number of panels on which
there is a surface source (or sink) distribution
of unknown strength. For 2-D and axisymmetric
cases, the source density can be a constant, linear
or parabolic. For the 3-0 case, only a constant
source density can be used. The strength of source
distribution varies over the surface in a manner
such that at every control point the normal veloc-
ity is zero. The best static solution is found to
result from using a vorticity distribution on the

cowl surfaces (:.s opposed to a source or sink dis-
tribution).

Linear Combination and Corrections
The basic solutionsob— - tained from the incom-

pressible potential flow calculation are combined

linearly into a solution of interest having arbi-
trary `low :.onditions of free stream velocity,
mass flow rate, and angle of attack. (17 .i	In
cases where a Kutta condition is required, the
constants for linear combination are readiu^,ted to
satisfy the Kutta condition. The linearly com-

bined incompressible^4 ution is then corrected
for compressibility. ( If the local velocity
is supersonic, it is further corrected Man em-
pirical supersonic correction formula.( 19) The

final potent i al flow solution can now be used as
an input to the boundary layer program.

Boundary Layer
The analysis of the boundary layer uses a 2-

dimensional compressible boundary layer program.
The complete documentation of the boundary layer
program is given in Ref. 6. The program calcu-

lates important boundary layer parameters such as
displacement thickness, momentum thickness, and
skin friction coefficient, Cf. It also provides
the boundary layer velocity profiles at any de-

sired station. The location of transition from
laminar to turbulent flow can either be predicted
by the program or can be specified by the user.
Flow separation is defined to occur when the skin
friction coefficient becomes zero.

Recent Extensions

The discussions thus far has described the ba-

sic method of analysis. Now the discussion will
focus on describing the recent extensions which
were motivated in part by the following thoughts.
It is desirable to design a V/STOL inlet as short
and as thin as possible in order to reduce the
weight, to reduce the friction drag at cruise, and

improve pilot visibility. However, when an inlet
is too thin the peak velocity is so high that the
subsequent adverse pressure gradient causes the
flow to separate at the lip resulting in a low
pressure recovery and high distortion. Several
ways to help control this possible separation are
by the use of an inlet lip slot, the use of auxil-
iary inlets, by suction or blowing boundary layer
control, or by optimizing the surface pressure
distribution. The analysis techniques to analyze
these possibilities are considered next, starting
with the slotted inlet.

Slotted In let

An axisymmetric slotted inlet is shown in
Fig. 3. Two cases are considered, zero degrees
angle of attack and angle of attack. At zero deg-
rees angle of attack or at zero forward velocity
for an axisymmetric geometry the flow is axisym-
metric and specifying the <utta condition (i.e.,
the flows from the upper <_urface and the lower
surface join smoothly at the trailing edge.) at
one circumferential location is equivalent to spe-
cifying the Kutta condition around the entire cir-
cumference of the slat. Calculations were made
for static conditions, V. = 0, and the results
are shown, in Fig. 3. Experimental data are inclu-

ded for comparison. The agreement is quite good
on the main inlet cowl surface (points 6 to 9).
The agreement between the theoretical and experi-

mental surface velocities is also good on the slat
(points 1 to 5). Figure 3 shows that the peak vel-
ocities occurs at point 2 on the slat and point 7
on the main cowl. Both peaks are considerably

lower thag l tt e peak velocity of the inlet without
the slot, ll	which is also indicated on the
figure . Thus the addition of the slot has unlod-
ded the lip of the thin inlet.

The case of a slotted inlet. at an angle of
attack is more difficult, because with the present
method, the Kutta condition cannot correctly be



imposed at all circumferential positions simulta-
neously. The Kutta condition can be imposesd lo-
cally at one circumferential location, with the
inlet at angle-of-attack, by adjusting the mass
flow rate through the slot. Results obtained us-

ing this approach are shown in Fig. 4. The agree-
ment between theory and experiment at these condi-
tions is quite good, however, it should be noted
that the comparison is being made at the 2700
circumferential position (side of the inlet). At
this particular location, angle-of-attack effects
tend to be minimal arid in fact the surface veloc-
ity distribution does not change much at all as
angle-of-attack is increased from 0 0 . At other

circumferentia^ locations, a local specification
of the Kutta condition has not been a very suc-
cessful analysis method and work is now underway
to extend the procedures to permit specification
of the Kutta condition around the entire circum-
ference of the slat at any angle-of-attack. Ex-
tending the method of analysis to include this
feature will result in the ability to analyze a
new class of inlet geometries, specifically those
that employ leading-edge slats and slots.

Auxiliary Inlet

The method of analysis has also been extended
to include auxiliary inlet geometries. Auxiliary
inlets increase the total inlet flow area thereby
reducing the amount of airflow that must be taken
into the main inlet. It is another technique for
preventing flow separation on cowl lips at static
and low flight speed conditions.

An auxiliary inlet on the top of a conventional
subsonic inlet and an auxiliary inlet on the top
of a supersonic inlet are considered. A conven-
tional subsonic inlet with an auxiliary inlet is
shown in Fig. 5. A continuous "N-line" (in the
longitudinal direction ? is required for the Cur-
rent version of the 3-D potential flow program.
When the N-line meets the auxiliary inlet opening,
it is rerouted along the side wa l l of the auxil-
iary inlet and then proceeds back to the original
N-line as shown in Figs. 5(a) and (b). Additional

N-lines are added to completely panel the inlet.
This particular example required 682 panels to
describe the geometry.

Figure 5 also illustrates the technique used
to yield the best static solution for an inlet
with an auxiliary inlet: Two inlet-duct systems

are considered, one with a straight duct and one
with a flared duct as shown in Figs. 5(a) and (b).
The flared duct induces more flow through the main
and auxiliary inlets. The difference between the
velocities for the flared inlet and nonflared duct
for a free stream uniform flow then provides the
static solution. This procedure was adopted be-
cause the velocities in the region of an auxiliary
inlet were unrealistically large when the ^zirti-
city distribution method noted earlier, was used
for the static solution.

The computer time for the basic solutions wiU
the 682 panels is quite high, 19 minutes. How-
ever, the basic solutions are onl y computed once
and are stored iii the computer for later use in
obtaining solutions of interest. Subsequent cal-
culations using a linear combination method re-
quired only 5 seconds of computer time.

In order to show the effectiveness of an aux-

iliary inlet for reducing the inlet p,ak velocity,

a calculatiion was made for a conventional inlet
with and without an auxiliary inlet as shown in

Fig. 6. The peak velocity ratio is reduced con-
siderably from 3.4 to 2.5 at the highlight of the
windward plane when the auxiliary inlet is open

which is, of course, the desired result.

The pressure coefficient distribution on the

surface around and within an auxiliary inlet is
illustrated in Fig. 7 . In this particular case,
the results are shown for a supersonic inlet with
an auxiliary inlet on the top as illustrated in
Fig. 7(a). (This figure also illustrates the hid-
den line removal feature of the geometry package.)
For this case, the Kutta condition is satisfied at
the trailing edge of the front surface (point A),
and the high velocity occurs at the lower portion
of the downstream surface of the auxiliary inlet
(point B). By examining pressure distributions of
this type, this analysis method can be used to

study such variables as the shape, the size, num-
ber of, and location of the auxiliary inlets.

_Suction and Tangential Blowin
nother recent extension to the basic methods

is the analysis of suction and tangential blowing
boundary layer control systems. Suction controls
the boundary layer by removing that portion of it
not having sufficient momentum to negotiate the
subsequent adverse pressure gradient. Blowing
controls the boundary layer by reenergizing it
with a thin jet of high velocity air injected tan-
gentially into the boundary layer.

Some results from this analytical method are
shown in Figs. 8 and 9 for suction and blowing, re-
spectively. An axisymmetric inlet having a diffu-
ser exit diameter of 0.508 

in
	 analyzed at a free

stream Mach number, M_ = 0.12, throat Mach number,
MT - 0.4, and angle of attack, a = 60 0 . The skin
friction coefficient distribution on the internal
surface of the windward cowl is shown along with
boundary layer velocity profiles at several loca-
tions. Without boundary layer control, the solid
line, the flow separates at S/L = 0.81 w ere the
skin friction coefficient becomes zero. The bound-
ary layer profile, just before separation, is quite
weak compared to the one upstream at S/L - 0.48.
Separation is prevented when the boundary layer is
controlled by suction (Fig. 8 1' - the dashed line.
It was necessary to bleed off only 0.12 percent of
the inlet mass flow to prevent separation as indi-
cated by the nonzero skin friction coefficients.
The static-to-total pressure ratio at the suction
location is 0.796.

For the blowing boundary layer control (Fig. 9)
a blowing velocity ratio, jet velocity to boundary
layer edge velocity, Vj/Ve = 1.75 was selected.
For this case a blowing mass flow of 0.4 percent
of the inlet mass flow was required to mp.intain
attached flow. The reenergized boundary layer is
clearly evident in the velocity profile just down-
stream of the blowing slot.

A comparison of analytical and experimental ve-
locity profiles in the windward plane with blowing
being used for boundary layer control was made for
0.,08 m axisymmetric inlet at a - 70 0 , Vl/Vo - 2
and P B /P o = 1.2. The axial locations of the total

pressure rakes used to measure the profiles are
shown in Fig. 10. As indicated, the analytical
and experimental velocity profiles agree well at
the upstream measuring station except in the vi-



cinity of Y/a - 0.375, where the analytical veloc-
ity is too high. This discrepancy between the

analytical and experimental results could be the
result of the closeness of this measuring station
to the blowing slot and the difference between the
assumed velocity profile and the experimental ve-
locity profile at the blowing slot exit. A similar
trend in blowing velocity profiles was observed in
REf. 20. At the downstream rake location, however,

the mixing between blowing jet and boundary layer
has already taken p lace so that the well developed

analytical velocity profile agrees very well with
the experime ntal velocity profile.

Next, a comparison of analytical and experi-
mental separation bounds is shown in Fig. 11 for
the same inlet. The separation parameter V /Vm
is used to collapse the experimental data. 	 Refs.

21 and 22). Agreement between the analytical and
the experimental separation bounds is iound to be
excellent up to a = 80 0 . For angles of attack

greater than 80 0 , the anal;-tical separation p. in.
is predicted to be ahead of blowing slot and the
analysis can then not proceed since the boundary
layer code cannot perform calculations beyond the
separation point.

Optimum Diffuser Velocity Distribution
Another application of the method i's concerned

with finding the optinum velocity distribution in
a subsonic diffuser. This velocity distribution
will result in the shortest no-bounda ry layer con-
trol inlet and the lowest loss for the required
amount of diffusion.

The design method for an optimum subsonic in-

let is given in Refs. 23 and 24. Based on the
design criteria given in those references, the
boundary layer program was used to find the opti-

mum diffuser velocity distribution. The general-
ized mathematical f-rni of the velocity distribu-
tion is given by

b
V - V de " (V max - Vde)e

-5x

A typical case of Vmax = 190 m/s, V de - 68 m/s is

shown in Fig. 12. The overall diffusion ratio
Vmax/Vde is the same for the three cases shown.
The upper p art of the figure shows the surface ve-

locity ratio (V/Vde) as a function of surface dis-
tance s/sref. Velocity distribu t ions were calcu-
lated for three values of the exponent b.

A value of b = 0.613 produces the steepest
initial velocityradient (largest initial adverse
pressure gradient . The initial adverse pressure
gradient is so large that the flow separates on
the lip at the beginning of the diffusion pro-
cess. A value of b = 1.005 produces a relatively
more severe adverse pressure gradient in the dif-
fuser and the flow separates there. Somewhere
between these two cases, there exists a velocity
distribution such that at every location the mo-

mentum of the boundary layer is just able to over-
come the adverse pressure gradient so that the
flow remains attached throughout the diffuser.
This is called the optimum diffuser velocity dis-
tribution and i, achieved when b = 0.794. For
comp ri^on, Stratford's optimum velocity distribu-
tion ?24) 's also presented it, Fig. 17.	 Although
not clearly evident from the figure, the present

optimum velocity distribution is slightly more
consevativl: at the beginning of the diffusion pro-
cess than that of Stratford. Since Stratford's
distribution is derived on the basis of zero skin

friction throughout the diffuser, it can be c msid-
ered as a limiting case. A design velocity distri-
bution (besides having a safety margin against
separation) should have a slightly more gradual
start to the pressure rise (the deceleration of
velocity) than that of Stratford. The present
optimum velocity distribution has this character-
istic and deserves further investigation as a po-
tential attractive inlet design.

Concuding Remarks

An analysis method based on incom;iressible
potential flow corrected for compressibility was
described. Several sample calculations compared
well with experimental data. The most recent ap-
p,ic;tions include an inlet with a leading edge
slat, an auxiliary inlet, and suction or blowing
boundary layer control. An optimum diffuser velo-
city distribution was also developed. This paper
shows that the present methods can be a very power-
ful tool for the analysis and the design of V/STOL
inlets.
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