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FORBWOV

The general objective of this research is a fundamental physical

understanding of electric and magnetic fields which, in turn, might

promote the development of new concepts in electric space propulsion.

The approach taken is to investigate quantum representations of these

fields. The objective and approach were not fully achieved during the

support period covered by this report, but are included here to indicate

some of the motivation for the direction taken in the research.

The classical representations of electric and magnetic- fields have

been adequate for calculations related to conventional electric thrusters.

In seeking fundamental departures from present electric propulsion

concepts, though, the conventional representations may be much less

useful.

It is not possible, of course, to predict the exact line of basic

research that will give rise to new propulsion concepts. However, some

general observations can be made as to the line of research that might

be expected to be more fruitful. To be consistent with our present most

fundamental understanding of physical objects and their interactions,

alternative representations should be consistent with quantum mechanics.

There is an existing quantum mechanical theory of electromagnetic

interactions. The proposed departure from the existing interpretations

can perhaps be made clear by analogy with classical field theory. One

approach used in class+cal electromagnetic theory is to sum the inter-

tions of a particular charged particle with all other charged bodies

the system. An alternative approach, however, tends to bypass much

this complexity by emphasizing parameters of the electric and mag-

tic fields themselves. In this second approach the interaction of a
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charged particle with electric and magnetic fields can be treated as one

problem, while the system of particles giving rise to the electric and

magnetic fields can be treated as a separate problem.

As a simple example of this difference in approach, consider the

force on a charged particle between the plates of a parallel-plate

capacitor. In the more lengthy particle interaction approach, the

forces between the particle of interest and all other charged particles

must be summed. Alternari-^ily, the concept of an electric field can be

used, and that field cau oe calculated in a simple manner by Gauss' law.

The field then can be used to calculate the force on the charged par-

ticle.

Textbooks on electromagnetic theory are replete with other examples

of the utility of the field concept, as opposed to working only with the

charged particles themselves. In turning from classical electrodynamics

to quantum electrodynamics, except for radiation, no equivalent quantum

representation is found of electric and magnetic fields.

A quantum representation of a static electric field is not con-

sidered within the context of quantum electrodynamics and the classical

electromagnetic field theory upon which it builds. In exploring the

nature of this exclusion, it is quickly found that the fundamental

problem is one of long standing, but one that has only been partially

understood. The initial objective in this research, then, is to work

toward a quantum representation of a static electromagnetic field.

1

!°
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TOWARD A QUANTUM MECHANICAL REPRESENTATION OF A

STATIC ELECTRIC FIELD

INTRODUCTION

The best present understanding of electromagnetic field interactions

is a body of knowledge collectively known as quantum electrodynamics.

In quantum electrodynamics, fields are generally treated using the

Coulomb gauge, which is limited to radiation phenomena. In other words,

the quantization of a static field is specifically excluded by the

present techniques of iield quantization.

The difficulties involved in quantizing electromagnetic fields

without rectriction to radiation, though, involve more than the selection

of a gauge.	 The bulk of electromagnetic theory in use today is due

to Abraham and Lorentz and can correctly be called Abraham-Lorentz

electrodynamics. 
1-6 

The use of Abraham-Lorentz electrodynamics results,

in the general case, in energy-momentum discrepancies. These discrep-

ancies have been studied many times, with emphasis usually on the

energy-momentum relations for an electron. 7-10

If the electric field energy of an electron in the rest frame is

Uo , special relativity requires that the associated equivalent mass be

Uo/c2 . Observed from a reference frame in which the electron is moving

at a velocity v, a momentum of YV ov/c2 would clearly be expected. When

the momentum of the electron is evaluated employing the techniques of

The electrodynamic formulations of many problems are underspecified
without additional assumptions to remove possible ambiguity. The
required further assumptions can be made by the selection of a "gauge".

n ;
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Abraham-Lorentz electrodynamics, a momentum of (4/3)(YUo /c 2) is

obtained instead.

There is general agreement that the stress in what might be termed

the body f the electron is central to the discrepancy.7-10 	
4

YThis is the

stress that Poincard found necessary to hold the electron together, 11

and is often associated with his name. There is also general agreement

that the expected momentum of YUov/c2 can be obtained from electromag-

netic theory if this stress, among other things, is properly included.

From a formal mathematical viewpoint, using a covariant formulation,

the problem can be considered solved.6

Two major aspects of the problem, though, would benefit from

further explanation. One is the physical significance of the pressure-

volume product for the assumed electron body, that has been involved in

the momentum correction. The other is a more complete description of

the shortcoming in Abraham-Lorentz electrodynamics that gives rise to

this discrepancy. It should be emphasized that outmoded classical

electron models are not a concern of this paper. The real concern is

the interpretation of the energy-momentum discrepancy, which exists

in both microscopic and macroscopic problems.

In the work presented herein, the covariant formulation of electro-

magnetic momentum will be reviewed and rationalized, from a physical

viewpoint, with classical (Abraham-Lorentz) electromagnetic theory. In

this rationalization, an alternate formalism will be presented for

energy and momentum calculations of an electromagnetic field. It is

hoped that this alternate formalism will promote new insights for possible

quantum representations of electric and magnetic fields.
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RADIATION FIELD QUANTIZATION

For a continuous field, 0, Sefined at every space-time point % =

(x,y,z,ict), N = 1,2,3,4, the Euler-Lagrange equation is of the form

ax 1 3(30/ax >I - To­  0	 (1>

u	 u

where x is the Lagrangian.

Introducing the Maxwell stress tensor F Uv and defining the current

density four vector

Ju = (Ji , icp)	 i = 2,3,4	 (2)

where c is the velocity of light and p 

of 

the charge density, Maxwell's

equations are obtained from Eq. (1) if dl is defined as

_ -4 FuvFuv 
+ c 

JuAU	 (3)

The vector potential A u is defined by the relation

aA	 aA

axV ax = F 11	 (4)
P	 v

The Ramiltonian for the free field (p = 0) can be written in terms of

the magnetic and electric field as

HEM - 2
	 [(1)2  + (1)21

   dx
	

(5)
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Classical Radiation Field

A Fourier expansion of the vector potential can be written as

	

x,t) = 1	 E [c	
(t)e(a)Pik•x + c	 (t)E(a)e-ik•x^

	

FV 	 a k,a	 k,a

where e (a) is the polarization vector, k is the propagation momentum

vector, and the c's are expansion coefficients.

Using the transversality condition

V • X = 0	 (7)

the Hamiltonian of the field can be written as

2

HEM	 2	 [IV,II2 + Ic at 1 dx (g)

Assuming a time dependence

c^ (t) = c-. (0)eiw[
	

(9)
k,a	 k,a

where w - ck, and defining

f	 Q^	 _	 [ci (0) + c^ (0))	 (10)

k,a	 k,a	 k,a

I

P;	
_ -iw [c
	 (0) - c* (0) )	 (11)Ck,a	 k,a	 k,aI

yields

(6)
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H^ 

k, 
2 [p22 + w2„2 ]	 (12)

	

-► 
a	 'a	 iso

which is of the harmonic oscillator form.

Quantized Radiation Field

Defining operators

a^	
1- 

[wQ	 + ip	]	 (13)
k,a	 232	 k,a	 k,a

a+	 l [wQi - iP ]	 (14)
k,a ^ t ' CL	 k,a

and recognizing that P and Q are canonical momenta and coordinates,

and hence satisfy canonical commutation rules, it follows that

[ a 'a ' ak,'ai ] = 6k'k ^6aa'	 (15)

[aa	 ]	 [a+ , a+	]	 0	 (16)
k,a	 k',a'	 k,a	 k',a'

and

HE	 [N^ + 2] hw	 (17)

	

k,a	
k'a

where

N	 a 	 (18)
k,a	 k,a ka
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Thus, the field tmiltonian is

HEm 
•	 We + Z)	 (14)

k,a

and the commutation rules for the a's are Bose-Einstein (aV+
ai 

	8i1

etc. Thus the electroxagnetic field is represented by a set of inde-

pendent (non-interacting) bosons (i.e., photons).

In the case of a static field, a difference is surely that the

Fourier expansion coefficients of the vector potential do not have an

a±IWt time dependence, and that there is no requirement that W - ck,

Which is necessary to satisfy the wave equation in the traveling wave

case.
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ELECTROMAGNITIC ENERGY AND MOMErTUM

.
Previous Treatment of an Electron

`

	

	 The energy-m mentum problems of Abraham-Lorentz electromagnetic

theory have been studied primarily in the context of an electron. 7-10

(Wilson8 assumes a charged sphere, but the problem is otherwise identical.)

The treatments use various mathematical formalisms, but the underlying

concepts are similar. The discussion presented here is intended to do

justice to the substance of previous treatments, without becoming overly

detailed.

A rigid, massless sphere is assumed for the body of an electron,

with the charge distributed uniformly on the surface. Outside of this

body, the radial electric field for an isolated, stationary electron,

Eo , is

Eo M e /41rc0r2	,	 (20)

where a is the electronic charge, E  is the permittivity of free space,

and r is the radius from the center of the electron (SI units). The

in • ar-Aal energy of this field is obtained by integration,

Uc a f 2 Eo 
02dTO	 ,	 (21)

with the integration performta over the volume, TO , of the electric

field, from the radius of the electron, r e , to infinity, yieldins
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U  M e2/$whore .
	

(22)

If the sass of the electron is viewed as being entirely electro-

magnetic, the internal energy of the field has an equivalent rest sass

of

se - Uo/c2 .
	

(23)

When an isolated electron is observed with a steady relative velocity

of v, the field energy mat have an observed suss of

s 0 yaa • YUo/c2	 (24)

and a momentums of

p s Ymav ` YUov/c 2 ,	 (25)

where Y is 1/(1-v2/c2)1/2

The preceding Eqs. (23) through (25) are quite simple, but, at the

sane time, fundamental in their importance. If the energy and momentum

of a body do not satisfy Eq. (25), they cannot conform to the laws of

physics as presently accepted.

Consider the momentum of the electron as calculated using the

methods of Abraham-Lorentz electromagnetic theory. Starting with the

electric field of the stationary electron. Lorentz transformations can

be used to obtain the volume distributions of electric and magnetic

fields for the el-	 -jving at uniform velocity. The momentum; of the

electromagnetic fi,	 pf, is then obtained by the integration

U=



The field momentum p f clearly differs from the expectation of Eq. (25),

with the difference constituting the energy-momentum discrepancy for an

electron obtained by Abraham-Lorentz electromagnetic theory.

The product of the pressure and volume for the body of the electron

has the units of energy. The mass equivalent of this quantity of energy

has a momentum that can be included in the total momentum of the system.

The pressure within the body of the electron is

_ _ 1	 2
P	 (28)b	 2 co b

where Eb is the electric field at the surface of the electron body.

This pressure can be calculated from the mutual repulsion of the electric

charge distributed over the surface of election body. It is also the

internal pressure Poincarfi found necessary to balance the stress of the

electric field. 11 Also note that the result is negative. The value of

E  can be obtained from Eq. (20), with the radius set equal to the

radius of the electron body, re . With this substitution, the pressure

is

Pb - -e2 /32n 2eore4 ,	 (29)
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so that the product of pressure and volume is

PbVb R -e2 /24rsore .	 (30)

From Eqs. (3) and (11), it is clear that

PbVb - -Uo/3 .	 1	 (31)

The momentum associated With this quantity of energy is

Pb = -YU0
V/3c2 .
	 (32)

When the momentum of the field, p f , is added to this momentum for the

elect-on body, pb , the total momentum is

YU0V
/c2

 ,	 ( 33)

Which is in agreement with Eq. (25).

The calculation described constitutes the substance of previous

treatments of this problem. 
7-10 

Although a massless electron body was

assumed, a negative momentum was obtained for this body through the

inclusion of a pressure-volume product in the momentum expression.

Macroscopic Charged Sphere

Further study of the energy-momentum discrepancy for an electron,

along the lines described above, is of limited utility. Such a procedure

would involve an outmoded model of an electron. Also, the discrepancy
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can be shown to exist at the macroscopic level without reference to

properties of fundamental particles. For the corresponding macroscopic

problem, a large conducting sphere is assumed. This sphere would be

expected to have some mass when neutral, but attention can be focused

only on the additional energy and mass associated with a net charge.

To assure that the field energy has an equivalent mass far larger

than the mass of the charging particles, it is assumed that

Uo
/c2

 >> m ,
	 (34)

where m is the mass of the particles. The field energy can be obtained

from Eq. (22), with the radius of the electron body, r e , replaced by the

radius of the sphere, rs , and with the electronic charge, e, replaced by

the net charge, q.

Uo = q 2 /8neors .	 (35)

It should be noted that the inequality (34) can be met by making q

sufficiently large, inasmuch as U  increases as q2.

To assure that the stress within the sphere remains below the

elastic limit of the sphere material, that stress should be small. From

Eq. (29), with substitutions similar to those for Eq. (35), the stress

on the sphere is

Ps = -q2 /321t 2 cors4 .	 (36)

Because this stress, an isotropic tension or negative pressure, varies

----	 I
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as rs-4 , the stress can be reduced to any arbitrary value by making rs

sufficiently large.

The macroscopic regime can thus be assured by assuming a large

enough net charge on the surface of a large sphere.

The Abraham-Lorentz momentum associated with the electromagnetic

field of the sphere when it is in uniform translational motion is, from

Eqs. (26) and (27),

F	 (4/3)yUov/c2
	

(37)

with U  the energy of the electric field when observed with the sphere

at rest.

Returning to the matter of the stress within the sphere and examining

it more carefully, the only energy within the sphere that results from

the charging is the elastic deformation energy. The deformation energy

per unit volume is, in general,

u^2a2d	 /M,	 (38)

where o is the stress and M is the appropriate modulus of elasticity.

The fractional deformation, or displacement, is a/M. For a relatively

rigid material,

a/M<<1 .	 (39)

The deformation energy of this rigid material per unit volume is, from

Eq. (38),
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ud «c .
	

(40)

Energy transfer under the application of a stress requires a

simultaneous displacement. This matter of displacement under stress

application is critical. If an energy exists within a body as the

result of a styes- being applied to that body, then, from the conserve-

tion of energy, that energy must cross the boundary of the body during

the application of the stress. For an energy to crosR this boundary,

the boundary must be displaced by the application of stress. If the

displacement is negligible, so is the energy transfer.

The stress within the sphere is isotropic, and it equals the

pressure, P. From Eq. (40), the deformation energy per unit volume of a

rigid material under a pressure P must be much less than P. Mathe-

matically, it would be possible to "correct" the momentum by including

the pressure-volume product of the sphere in the energy-momentum calcu-

lation. But such an ap roach cannot be justified from a viewpoint that

requires energy to be conserved. By the selection of a reasonably rigid

material for the sphere, the deformation energy within the sphere

becomes negligible. For an isolated sphere, there is no other internal

energy to include. Equation (37), then, gives the additional momentum

due to charging the sphere. This result is clearly inconsistent with

relativity.

Mother aspect of this charged sphere problem should also be

pointed out. The Poynting vector,	 x 9, is associated with energy

flow. For configurations in which charged bodies and current carrying

conductors are at rest relative to the observer, the Poynting vector

appears to correspond exactly to the actual energy flow.
12-13

 But for a

moving charged body, the situation is quite different.



16

Consider a field element associated with a moving charged sphere.

The electric field is everywhere radial from the center of the sphere.

(This is also true for the relativistic case.) If I x A is everywhere
normal to	 as well as varying in intensity with the angle of

relative to v, it is apparent that x A alone does not correspond to a
real energy flow because such a flow would violate continuity.

Parallel-Plate Capacitor

A simple parallel-plate capacitor has not received the intensive

study from the energy-momentum viewpoint that the electran has. This

configuration, however, permits each component of electric field to be

evaluated separately, thereby facilitating a more detailed examination

of each component.

Parallel-plate capacitors are assumed to be oriented with the

electric field directions parallel and normal to the velocity, as

indicated in Figs. 1 and 2. The shaded portions represent insulators

required to hold the plates apart against electrostatic attraction.

Each plate has a square projected area of dimension w on each side.

The two plates are spaced a distance d apart. In addition to the

parallel-field volume between the plates, there are fringe-field effects

near the edges of the plates and small electric fields in other regions.

All other electric field energy can be made negligible compared to that

of the parallel-field volume by making w sufficiently large compared to

d.

The pertinent Lorentz transformations are:

t11 0 t Oil J ► 	 !tj = tol ,	 (41)
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Fig. 1. Parallel-plate capacitor with field E parallel to
velocity 4.

^^( 111111 )^
Fig. ?. Parallel-plate capacitor with field E normal to velocity v.
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11 ' loll it ! Y(t
o1 - 

v
"	 o)	 (42)

^M	 ^oll l Y(IOL + v " to/c2)	 (43)

The subscript o denotes the rest frame of the capacitor, and the sub-

scripts 11 and 1 refer to the electric field orientation with respect to

v. The velocity v is the velocity of the capacitor with respect to a

fixed, or laboratory, inertial frame (i.e., v is measured in the fixed

frame, not in the rest frame of the capacitor).

The field energy for the rest condition is given by Eq. (21). For

a uniform electric field, the integration reduces to the product of

energy density, 2EOEO 2 , and volume, TO.

UO M 1	 2	
(44)2 E E To 	 o .

This means that, from special relativity, a momentum of

4	 1	 2 -► 2
p m 2 YEOE0 T

OV/c	 (45)

is expected from this field energy when `he capacitor has relative

velocity V.

The momentum indicated by Abraham-Lorentz electromagnetic theory

can also be calculated. For the configuration of Fig. 1, with the

electric field parallel to v,

io ' 0 1	 (46)



and, from Eqs. (42) and (43)

II	 doll

k 0 1- 0 .

From Eq. (26), then,

-0.
P	 0.

That is, no momentum is associated w

capacitor motion.

For the configuration of Fig. 2

V,

10 -0,	 (51)

ioll=0,	 (52)

and, from Eqs. ( 42) and (43),

iN - '11 	0
	

(53)

kL - Yi0
	 (54)

L ' Yv x 0 /c 2 .	 (55)

Substituting the values for ^ and I into i x A yields
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x t	 Y 2c0 o 2v	 (56)

From Eq. (41)

T •t T D/Y .	 (57)

From Eqs. (26), (56), and (57), then,

p ` ye0 o2 T0V/c2 	 (58)

This momentum is twice the expected value given by Eq. (45).

Having found the result for parallel and normal orientations of an

electric field, a brief comparison can be made with the effect on a

field from a charged sphere. Due to spherical symmetry, the rest-frame

field energy of the spherical field can be represented as being divided

equally between, three mutually orthogonal directions. One of these

three directions is taken to be parallel to v, so that 1/3 of the field

energy should have no momentum, in agreement with Eq. (51). The other

two mutually orthogonal directions are both normal to v, so that 2/3 of

the field energy should have twice the expected momentum, in agreement

with Eq. (56). For the total momentum, then, with only 2/3 of the

energy having twice the expected momentum, the momentum is 4/3 of the

expected value.

The field energy can also be considered for the two capacitor

orientations. For the orientation of Fig. 1, the field is unaffected by

the motion
{of

 _off) and Eq. (57) can be used for the volume change.

The electromagnetic energy of the moving capacitor is thus



U = 2 ecEo 
2 t0

/I = Uo/Y

For the orientation of Fig. 2, the electric and magnetic fields are

given by Eqs. (54) and (55), while the volume is again given by Eq. (57).

The electromagnetic energy for the moving capacitor can be calculated

from

UJ (2 e oE ` + ;` uoH W(60)

which gives

	

U1 ycoEo2 (1 + v2 /c 2 )dTo V YUo (1 + v 2/c 2 )	 (61)

It is found, then, that the electromagnetic energy is different

for the two capacitor orientations, and that neither agrees with the

expected value from relativity of yU0 . This rc-sult has been known for .•

long time. Trouton and Noble based an experiment t o detect motion

relative to the ether on this energy difference; such ar energy cif-

ference implies a torque on a suspended body under appropriate condt-

tions . 14 A null result was obtained, which is consistent with fundamental

concepts of relativity.

The experiment of Trouton and Noble was analyzed by Butler, l ' who

concluded that the proper energy expression 'er n mt ,vins; 1 retd hodv

is, in SI units,

^.	 Troutor• and Noblu did not 'on-;idvr t',c rs 1.j l f—	 1, (It—v- — % ,olur v,
Eq. (38). but an v.iorgy dif ferer.ee is predIt • ted t vrn wllt • n. this et feet
Is omitted.

('	 s

i
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(59)
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U M Y2 f (Z e0E2 - 2 vo 2)dt	 (62)

Instead of Eq. (60). (See also p. 795 in Ref. 6.) It can be verified

that Eq. (62) does, indeed, give an energy in agreement with relativity -

when the initial conditions specify for the rest frame an electic field

only. If a magnetic field only is specified for the rest frame, the

magnitude of energy given by Eq. (62) is correct, but the sign is

opposite.

Flow and Nonflow Processes

As an aid to the phjiical interpretations to follow, it is useful

to describe thermodynamic flow and nonflow processes.

A nonflow process is concerned with internal energy. The Internal

energy per unit mass is obtained by integrating the specific heat at

constant volume, Cv , from zero temperature to the temperature of interest.

u a 
rT 

CvdT	 (63)

An example of a nonflow process is measuring a quantity of heat by

heating a gas within a fixed volume container. This quantity of heat

can be evaluated from the mass of the gas and the change in internal

energy per unit of mass,

Q - m(u2 - ul) ,	 (64)

where the subscript 2 indicates the final condition and 1 indicates the

initial. The energy evaluation boundary in this example is the wall
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of the container. In a nonflow process, no gas (or in the general case,

fluid) crosses the energy evaluation boundary. The quantity of heat

is thus directly equated to a change in internal energy within the gas.

That is, to the various excitations and motions of gas molecules.

A flow process is concerned with enthalpy. The enthalpy per unit

mass is obtained by integrating the specific heat at constant pressure,

C  ,

T
h ! CpdT

0

The enthalpy can also be expressed in terms of internal energy and the

product of pressure, P, and volume per unit mass. V.

h- u+PV
	 (66)

(65)

The product PV in Eq. (66) is called flow work. An exs+*-1., of a flow

process is measuring a heating rate by heating a gas that is flowing

through a pipe at constant pressure. This heating rate can be calcu-

lated from the mass flow rate and the enthalpy change per unit of mass.

& - m(h 2 - hl) - m[u2 - u  + POT 2 - V1 ))	 (67)

Note that only part of the heating rate corresponds to a hange in

internal energy, u. The remainder corresponds to a change in the flow

work, PV, and represents an energy exchange that takes place between the

gas and the surroundings. To be more specific, a flow process evaluation

is normally concerned with a fluid flowing past a boundary. The

pressure-volume product of that fluid thus represents an energy
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transport across the boundary, in addition to the internal energy of

the fluid.

The concepts of flow and nonflow processes have been included here

in a very abbreviated manner. More detailed descriptions are available

i^r these two processes from a thermodynamic point of view. 16-17 A

treatment that includes relativistic effects in the two processes has

apparently not been pursued in standard thermodynamics texts.

Rest Frame for Electromagnetic Energy

For the steady translational velocities of interest herein, the

electromagnetic energy of an isolated charged body or current carrying

conductor can be regarded as remaining associated with the body or

conductor. The rest frame for the body or conductor is thus also the

rest frame for that electromagnetic field energy.

For a charged body, with only an electric field observed in the

rest frame, the rest energy is, of course, given %y Eq. (21). For a

current carrying conductor, with only a magnetic field observed in the

rest frame, the rest energy is given in a similar manner by

Uo 
s f 2 uo 

o2dTo	 (68)

with the integration performed over the volume, T o , of the magnetic

f ield.

For a systea involving both charged bodies and current carrying

conductors, both electric and magnetic fields can be present in the same

volume when observed from the rest frame. The Foynting vector could be

used for a detailed description of the energy flow. Further, the local
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values of E and # could be used to define a direction and velocity for
0	 0

this energy flow, at each point in the electromagnetic field.

It is of interest, however, to be able to calculate the overall

electromagnetic energy in the rest frame when both electric and magnetic

fields are present in the same volume. This energy is:

Uo = f (2 Eoo2 + 2oµ o2)dTo	(69)

In using this expression, it is helpful to recognize that

I (i x A)dT - 0 .	 (70)

That is, that the net energy flow must be zero in the rest frame.

Flow and Nonflow Electromagnetic Formalisms

It is customary in thermodynamics to use energy per unit of fluid

mass. For an electromagnetic field, an energy per unit of volume is

more appropriate. In this section, the general approach followed is

similar to that presented in a short earlier study. 18-19

From the preceding discussion of the rest frame for electromagnetic

energy, the internal energy density in that frame is defined as

1	 2	 1	 2_—
uo	 o o + 2 u2 E	 0o

For the enthalpy, the flow energy must be added to the internal

energy. The flow work per unit volume is simply the stress. And for

(71)
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the nonisotropic stress of an electromagnetic field, the stress

associated with energy transfer is the stress in the direction of

motion, oo'1 . The enthalpy is, for v << c,

ho = uo + a
Oil
	 (72)

The stress, in terms of electric and magnetic field components parallel

and normal to the translation velocity, is

V  = 2 co (Eol - E00 + 2 ^'o (HOL - Hon)	
(73)

Substituting the internal energy of Eq. (71) and the stress of Eq. (73)

into Eq. (72), yields, again for v << c,

h = c E ` +uH 2 	(74)
O	 O Ol	 O Ol

Thus only the transverse electric and magnetic field components

contribute to enthalpy.

Using the nonflow approach, the internal energy density of Eq.

(71) can be integrated to obtain the total internal energy

U I u dT	 (75)
0	 0 0

t For an exclusively elec +:rostatic field in the rest frame, Eq. (75) is

equivalent to Eq. (21). With the broader definition of internal energy

given by Eq. (71), Eq. (75) is clearly a generalization of Eq. (21). If

it is assumed that the charged bodies and current carrying conductors
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are rigid, the internal energy is limited to the volume of the

electromagnetic field, and the integration can also be limited to that

volume.

A flow process evaluation normally involves a boundary, with the

fluid ( in this case an electromagnetic field) flowing past this bounda:v.

Because the configurations of interest do not change with time when

viewed from the rest frame, a spatial integration can be substituted for

the temporal integration that might otherwise be expected. For a flow

process evaluation, then, the total electromagnetic energy should be

U  = I h0dT 0 .	 (76)

Strictl y speaking, this evaluation should be for a near-rest frame,

rather than the rest frame. This is because the flow work depends on

the stress in the direction of motion.. The field stress is nonisotropic,

and a velocity is necessary to establish flow direction, even thcugh v <<

c. Using Eq. (72), Eq. (76) can be divided into two integrals.

Uo 	 I uodT O + I ao^^dT o	 (77)

In using U  as the sum of these two integrals, it is implied that the

second integral is zero (see Eq. (75)). This implication follows

directly from the conditions for stationary equilibrium. A system of

charged bodies, current carrying conductors and connecting members is

assumed t3 be in equilibrium when viewed from the rest frame. Being in

equilibrium, all forces in all directions sum to zero over any plane

passing through the system. Treating the volume integral as the sum-

mation over successive planes, this summation must also equal zero.
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Note that, although both the flow and nonflow evaluations give the

same total electromagnetic energy, the flow process integration must

include the volume of any stressed members in the system. These members

may be rigid, so that the actual internal energy associated with the

stress is negligible, but the flow evaluation still requires the inclu-

sion of flow work contributions from them.

For a translation velocity that is significant compared to the

velocity of light, the energy and volume transformations require that

u = Y 2 uo ,	 (78)

h = Y 2ho .	 (79)

The corresponding expressions for energy flux, 3, are

Sin = uv ,	 ( 80)

f = by	(81)

where subscripts n and f refer to nonflow and flow evaluations. The

expressions for momentum density, g, are

_* 2
g n = uv/c (82)

gf = by/c `	(83)

Either u or h can be integrated spatially to verify that
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k	 ,

F
	

U - YUo .
	 (84)

E-\
	

The same result can also b:: obtained by a temporal integration of energy

flux, S, through a boundary that is fixed relative to the observer. In

either the spatial or temporal integration, the nonflow evaluation

(depending on u and uo) can be limited to the electromagnetic field

volume. In the flow evaluation (depending on h and h o), the integra-

tions must include flow work contributions of various members due to

stresses caused by the electromagnetic field.

For momentum, both the nonflow and flow momentum densities can be

integrated to show that

p = Uv/c2	(85)

The same limits on the regions of integration for p apply as in the

previous integrations of both U and Uo.

A note of caution should be included here against too detailed an

interpretation of electromagnetic field properties when both electric

and magnetic fields are present in the same volume, when ob:ierved in the

rest frame. The definitions of u  and ho were selected to give the

correct integrated values of U o , U, and p when considering an entire

closed system. In such a rest frame, however, there will in general be

energy flow loops, defined by the Poynting vector. If a localized

definition of rest frame is required, such that the condition of Eq.

(70) is met locally, such a definition will in general vary from point

to point throughout the electromagnetic field. If such a definition is

required, the localized rest frame will in general have electric and

magnetic fields either parallel or antiparallel. The definition of rest
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frame used in this paper for an entire closed system loses some of this

detailed field information, but gains in having only a single transfor-

mation velocity for the entire electromagnetic field.

No similar problem exists for either rn exclusively electric field

in the rest frame, or an exclusively magnetic field in the rest frame.

In either case, there is no energy flow when viewed from the rest frame.

A velocity transformation is therefore correct both for overall field

integral values and point-by-point local values.

Interpretation of Discrepancies

It is of interest to describe, in as general terms as possible, the

problems in which energy-momentum discrepancies are encountered in

Abraham-Lorentz electrodynamics. These problems all have in common

charged bodies and/or current carrying conductors that are moving

relative to the observer. In what is herein defined as the rest frame,

there are no such discrepancies.

When moving bodies are present, the discrepancies appears to be

inherent in Abraham-Lorentz electrodynamics and, for the most part, can

be explained in terms of flow and nonflow processes.

Most of the formalism of Abraham-Lorentz electrodynamics corresponds

to the nonflow approach. As examples, the volume integration of 2 
c Eo2

to obtain a capacitor energy, or the volume integration of ; 4oHo2 to

obtain an inductor energy, are precisely equivalent to the nonflow

integration of internal energy.

On the other hand, Yoynting vector energy flow and classical

momentum density correspond more to a flow process treatment. At least
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considerably less familiar to most workers. Returning to the charged

sphere problem, the pressure-volume product for the sphere must be

included in the Abraham-Lorentz momentum calculation. This is because

it is a flow work term and the integration of flow work must cover all

parts of the moving system, not just the electromagnetic field volume.

For the rest frame, the energy flow and momentum density are in

complete agreement for Abraham-Lorentz electrodynamics and the flow

process approach. When moving charged bodies or current carrying

conductors are involved, the agreement can be less complete. For a

moving charged sphere, for example, both the Poynting vector energy flow

and momentum density are everywhere normal to the radial electric

field (Fig. 3). As was pointed out, such a distribution of energy flow

cannot satisfy continuity. For the flow process approach, however, both

energy flow and momentum are everywhere parallel to the translation

velocity for the sphere. Examined in detail, these parameters for the

flow process will be found to correspond to the component parallel to It

of the electrodynamic parameters. When integrate.] over a symmetrical

charge and electric field distribution, only the component parallel to

4 remains. Hence the integrated values are in complete agreement with

the flow process evaluations.

The major shortcoming in some of the typical procedures used in

Abraham-Lorentz electrodynamics, then, is that two different energy

evaluation approaches are used in the sa:pe body of knowledge, usually

without a clear distinction as to the differences between the two

approaches. With an appreciation of the diff.errnces between flow and

nonflow processes, and with an understanding of where tle two processes

are involved, the energy-momentum discrepancies are readily resolved.
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ORIGINAL PAGE- IS

OF POOR QUALITY

V

Fig. 3. Electric field of moving charged sphere. Note Poynting
vector direction for element of electric field. (Element

of field shown by dashed line.)
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TREATMENT OF STATIC FIELDS

Gauge Transformations

A certain amount of arbitrariness is injected into the solution of

problems in classical electromagnetism when, for convenience, potentials

are used instead of working with the fields directly. Because differen-

tial operators are employed to extract the fields from the potentials,

the potentials are arbitrary to within additive functions that vanish

when the operator is employed.

If vector and scalar potentials A and (P can be employed to represent

electric and magnetic fields It and t through the relationships:

9 _ ^Xx	 (86)

and

E
at	

(87)

then a general gauge transformation to new potentials is and 0' using

A' = A + Ty	 (88)

and

at + (
o	(89)

where `Y is an arbitrary scalar field that leaves 9 and E unchanged.
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The value of the divergence of the vector potential can be viewed

as an adjustable parameter in gauge transformations. Thus, when

^-1 - 0
	

(90)

the gauge is said to be the Coulomb gauge, the radiation gauge, or the

transverse gauge. All of the terms are synonymous. If

_ 1 30	 (91)
c at

the gauge is said to be the Lorentz gauge.

Gauge for Static Field

'Che approach initially taken in an attempt to quantize static

electric and magnetic fields was to follow the procedure for field

quantization developed by Sakurai. 
20 

To follow this procedure faith-

fully, it was necessary to choose a gauge in which the scalar potential

vaniHited and the divergence of the vector potential also vanished. This

can he stated as

V s 0	 (92)

and

t -X' . 0 .	 (93)

As a starting point, it was determined that scalar and vector potentials



2	 xr	 (95)

could be used to represent static electric and magnetic fields 	 and
o	 o

6

However, this gauge manifestly did not meet the criteria in Eqs. (92)

and (93). A scalar field

	

4' _ - o • rt	 (97)

is used to generate a Gauge transformation to satisfy Eqs. (92) and

(93) where

'	 2 0	 0	 -

and

m' = 0 .	 (100)

So far, attempts to quantize borh static electric and static

magnetic fields using this gauge have not been successful.
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CONCLUDING REMARKS

The approach taken in the quantization of classical electromagnetic

fields has been outlined along with some observations important in

attempts to quantize a static field.

In this study a number of energy-momentum anomalies have been

described that result from the use of Abraham-Lorentz electromagnetic

theory. These anomalies have in common the motion of charged bodies

or current carrying conductors relative to the observer.

The anomalies can be avoided by using the nonflow approach, based

on internal energy of the electromagnetic field. The anomalies can also

be avoided by using the flow approach, if all contributions to flow

work are included.

The Abraham-Lorentz approach for either energy flow or momentum

density most closely approximates the flow process approach. The energy-

momentun problem has been studied repeatedly, though, without apparent

recognition that the stress-volume product of a moving charged body is

a flow-work term, and not a real energy located within that body.

Further, a detailed examination of some aspects of Abraham-Lorentz

electromagnetic theory has, in general, shown components of energy flow

and momentum density normal to a general translational motion. These

normal components cannot be reconciled with the flow theory approach,

a detailed relativistic accounting, or continuity of energy slow. One

should, therefore, conclude that some of the methods used in Abraham--

F	 Lorentz electromagnetic theory are not necessarily relativistically

is
correct for energy and momentum evaluations of electromagnetic energy

moving with charged bodies and/or current carrying conductors. Some of

i	
the difficulties can he overcome if it is understood that both flow and

_	 m
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nonflow evaluations are included without distinction between the two

processes.

Either the flow or nonflow alternate formalisms should be better

suited than Abraham-Lorentz theory to the quantization of static, or

near-static, electromagnetic fields.

Attempts to cast the static problem into the form customarily used

in field quantization yield time-dependent potentials and have not yet

led to a successful resolution of the quantization problem.

i

i
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