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PREFACE

Communication satellites in the last decade played a
vital role in modern military defense systems and commercial
telecommunication system applications, in particular, where
communication systems are sparse and inaccessible in various

remote areas of the world.

Furthermore, with the advent of the NASA Space Shuttle
proven to be a reliable space transport system, large
communication satellite systems and large antenna structures as
relay or observatory platforms and experimental space stations,
such as the space telescope for deep space exploration, are
becoming a physical reality and a continued driving force for

advanced commurication satellite research and development.
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SUMMARY

An aiiready ceazigned NASA Adaptive Multibeam Phased Array
(AMPA) communicat ion system by AIL (Division of Eaton
Corporation; Melvilla, Long Island, New York) was partially
tested on 7 December, 1981, at their Long Island test facility.
The or‘3jinal intantion of such a system was a low cost system
for maritime and acronautical services as a surveillance and

geclcearninn :Jevice for search and rescue missions.

Tr's studv was initiated in an attempt to conceptualize
other viable applications or programs for which AMPA might be
deployed or implemented. No attempt will be made to modifv the
hardware design but simply to use AMPA "as is." Keep in mind,
that in any operational scenario, the only critical restriction
is that the ccmmunication 1link closure criteria must be

satigfied.

An overview of the proposed orbital geometrv will be
discussed in Section I. Section II will highlight some of the
NASA AMPA capabilities and preliminary specifications. In
Section III, ¢typical AMPA-User terminal 1link models and
calculations will be presented. The principal AMPA features
will be described and its implementation will be demonstrated
in Section IV. System trade-offs and requirements will be
discussed in Section v, followed by comments and

recommendations in Section VI.
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AMPA
B/B
BPSK
BW
CEP
C/N
dBm
dBw
ECM
EIRP
EM
EMI
FAA
FCC
FOV
GPS
GSFC

ICBM
IF
IR
LHCP
LNA

LO

ix

ABBREVIATIONS

Airborne Instrument Laboratories
Adaptive Multibeam Phased Array
baseband

biphase shift keying

bandwidth

circular effective perimeter
carrier-to-noise density

power (0 4Bm = 1 milliwatt)

power (0 dBw = 1 watt)

electronic countermeasure
effective isotropic radiated power
electromagnetics

electromagnetic interference
Federal Aviation Administration
Federal Communication Commission
field-of-view

global position satellite

Goddard Space Flight Center
receive gain-to-noise temperature
intercontinental ballistic missile
intermediate frequency

infrared

left hand circular polarization
low noise amplifier

local oscillator



LOS
LRC
modem
MRV

MSIR

NASA

NBFM
NF

NOAA

nm
OTH
P/L
PRN
RCVR
RPV
SAR
SNR
SOTA
TT&C
UsCG

XMTR

line-of-sight

Lewis Research Center
modulation-demodulation
multiple reentry vehicles

maximize signal-to-noice
plus interference ratio

National Aercnautics and
Space Administration

narrowband frequency modulation
noise figure

National Oceanic & Atmospheric
Administration

nautical mile
over-the-horizon

path loss

pseudo-random noise
receiver

remote piloted vehicles
synthetic aperture radar
signal-to-noise ratio
state-cf-the-art
telemetry, tracking and control
U.S. Coast Guard

transmitter



I. INTRODUCTION

The NASA AMPA is an advanced communication system slated
as a low altitude orbital relay platform, such as the Space
Shuttle Spacelab program, by directives given in the Goddard
Space Flight Center (GSPC) Specifications S-415, "Performance
Specification for Adaptive Multibeam Phased Array (AMPA)
Instrument fcr Spacelab," dated 20 October, 1977. However, the
Office of Space and Terrestial Applications, NASA Headquarters,
cancelled AMPA as flight hardware for the Space Shuttle
Spacelab and redirected AMPA as a laboratory experimental
development model to be tested and evaluated at the
contractor”s facility (AIL, Division of Eaton Corporation;
Melville, Long Island, New York). The revisions are described

in NASA (GSFC) Specifications S-420(A), dated December, 1979.

AMPA was originally intended ¢to be flown on ul
earth-viewing low altitude pclar orbit in the 200 to 600
kilometer (km) region to provide a low cost system for maritime
and aeronautical users as a surveillance device for traffic
controlling and the geolocation capability for search and
rescue missions. Furthermore, AMPA also possesses a number of
advanced antenna technologies giving improved satellite
communication performances, particularly in heavy interference

environments.
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These state-of-the-art (SOTA) antenna techniques are the
adaptation and steerable multibeam capabilities. An adaptive
antenna produces nulls in the direction of the undesired
signals while maintaining the mainbeam onto the
signal-of-intezest (SOI). Also the steerable (phased array)
multibeams provide additional spatial separation and increased

power and bandwidth efficiency of the link.

With these AMPA features (ref: section II) in mind, this
study is intended primarily to conceptualize other viable
applications or programs that AMPA might be deployed or
implemented without major modification to the system design or
software. No attempts will be made at this point to discuss in
detail the signal processing aspect, such as BPSK and PRN, nor
what the adaptive algorithm employed is. The main concern in
deploying AMPA for the various postulated applications is that
the RF link closure be achieved and maintained, i.e., an
appropriate signal-to-noise ratio (SNR) pe ascertained for any

operational scenarios.

Unfortunately, during this writing there are no
comprehensive test data to fully evaluate 2ad qualify the
overall AMPA system performance. Nevertheless, conceptually
low altitude orbital satellites can be advantageous in
certain tactical and strategic militarv and some commercial

applications.



II. ORBIITAL GEOMETRY

In this section the basic orbital geometry is discussed
briefly in order to determine the slant range between an
orbiting satellite and a ground user terminal. A circular
orbital path is assumed in the calculation and its geometry is
defined and depicted in Figure 1. It is well understood that a
geosynchronous satellite appears relatively stationary to an
observing earth terminal and that its slant range or
line-of-sight (LOS) 1is nearly constant. However, this is not
the case with orbiting satellites. The slant range will be
maximum when the nadir angle is approximately 70 degrees or at
the horizon and minimum when the satellite is directly overhead
or 0 degree nadir. Fiqure 2 provides an illustrative example
for a slant range calculation for a 4C0 km (216 nm) orbiting
satellite. The radius of the earth is assumed to be 3444 nm.
Then the maximum LOS is 1238.73 nm when the satellite is at the
horizon and 400 km (216 nm) when tl.e satellite appears directly
overhead. Once the LOS is determined, the free space path loss

{P/L) can be found from the equation:

P/L = l10Log(}/4 d)"2
where )\ = operating wavelength
d = distance in nm.

Let F = 1.64 GHz, then

s
[}

(3x10710) /(2.54%x12x1.64x1079)
0.60 ft
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Since 1 nm = 6076.1 ft and max LOS = 1238.73 nm,

the maximum P/L:

(P/L)max = 20Log[.6/47(1238.73) (6076.1)])
= -164 4B

and, when the satellite is directly overhead, the LOS is 400 km
(216 nm); then, the minimum P/L:

(P/L)min = 20Log[.6/47(216) (6076.1)]
= -148.8 4B

From Kepler“s Law, the period of a satellite in c¢ircular

orbit around the earth can be expressed by:

T = (27a”3/2)/(u)"1/2
where a = radius of the orbit

u =1,4076x10716 ft"3/sec”2.

is the earth gravitation parameter. Hence, the total orbital

period:
T = 2 n{(3660) (6076.1)]1"°3/2}
/(1.4076x10716)"1/2
= 5553.92 sec
or,

T =1 hr 32 min 33.9 sec

The velocity of the satellite can be found from the expression:



V = 271a/T = 27 (3444+216) /5553.92

= 4.14 nm/sec.

From Figure 2 the observable period of the satellite at 400 km

(216 nm) can be found from the simple relationship:

T = (2I/360)T = 610.93 sec

Qr

T = 10.18 min

Since, from one horizon to the opposite horizon, the satellite
travels an arc of approximately 4C degrees, then it is apparent
that nine (9) satellites are required to provide continuous
coverage. Each satellite would provide approximately 10

minutes of acquisition time as it passes over an earth

terminal.

The doppler frequency shift can be readilv found from the

expression below:

Fd = (1/\) (Re/R) (V)sin(a)

where 1 = operating wavelength
Re = radius of the earth
R = line-of-sight (LOS) distance
a = nadir angle (degrees)

V = satellite velocity

For example, suppose that at 400 km (216 nm) the elevation



angle 68 = 30 degrees, then, the doppler frequency is:

Fd = [(1/.6) (3444/1399,26) (4.14)
3in(54.58))
= 34.165 KHz

Tables la-lf provide the elevation angles, nadir angles,
doppler shift frequency, LOS distances, free space path loss
(P/L), orbital time, and velocity as a function of orbital
altitude for a nominal frequency of 1.64 GHz. Figures 3a-3b
and 4a-4b depict the slant range and path loss as functions of

elevation angles for different altitudes, respectively.
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III. NASA AMPA SYSTEM

In this section, the original AMPA system capability and
performance specifications are cited from NASA (GSFC)
Specification S-420(A) dated December, 1979, for the purpose of
highlighting some of the more pertinent functions of the
system. Since no measured data nor actual hardware design
information are available, engineering evaluation of the system
performance cannot be readily performed. As mentioned earlier,
only the proposed AMPA capabilities will be utilized in
conceptualizing other applications by assuming that each

designed function works accordingly.

The NASA AMPA has incorporated several SOTA antenna
concepts into the system design, namely, the multiple beams and
adaptive antenna technologies. A multiple beam array directs
independent beams to designated geographical locations. Figure
5 depicts a multiple geographical user-terminal coverage. At
the same time, each directed beam provides increased power and
bandwidth efficiencies, as well as spatial separation to the
different telecommunication links. This capabilitvy |is
extremely useful in dense interference or jamming environments.
The adaptive antenna concept provides an additional immunity to
an interfering signal environment by <creating nulls in the
direction of the intentional or unintentional signal
interference, meanwhile maintaining the peak of the main-beam

to the signal-of-interest (SOI). Figure 6 illustrates the
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action of an adaptive antenna system. The principal AMPA
capabilities are listed in Table 2. Another important concept
which serves to improve the satellite communication efficiency
is the frequency reuse. Frequency reuse is a technique
employed for transmitting two separate signals on the same

frequency by utilizing two orthogonal polarizations.

In the AMPA communication mode, simplex transmit-receive
provides a simultaneous unidirectional link from AMPA to the
user-earth terminal and user-earth terminal to AMPA,
respectively. Full duplex operation provides a bidirectional
link between two user-earth terminals through a
modulation/demodulation {modem) process aboard the AMPA,
whereas, in the bent-pipe mode, the modem function is omitted.
Figures 7, 8 and 9 depict typical simplex, duplex and bent-pipe

operations, respectively.

The beam control modes consist of the static programmed
pointing, dynamic programmed pointing, adaptive receive and
transmit beam pointing, and nulling. The static pointing
directs the beam to a fixed direction with respect to the
phased array. The dynamic pointing directs the beam to a
specific 1location on the earth. The adaptive receive mode
acquires a desired signal and points the beam toward the
desired user-earth terminal to maximize :the signal-to-noise

plus interference ratio (MSIR). 1In the transmit beam pointing
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Table 2 SUMMARY OF AMPA CAPABILITIES

Geolocation

Adaptive Nulling

Frequency Reuse

Beam Controls
static programmed pointing
dynamic programmed pointing
adaptive receive

transmit beam pointing and nulling

Communications
Modes Format Available
simplex transmit narrow-band FM (NBFM)
simplex receive biphase shift-key (BPSK)
simplex xmt/rcv pseudo-random noise (PRN)
full duplex delta-modulation

bent pipe
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and nulling mode, the transmit beam is peaked to the SOI and
nulls in the direction of the undesirable signals. In the
geolocation mode, orthogonal elements of the array serve to
form a dual baseline interferometer system to determine the
angle of arrival of the signal by phase comparison. Tables 3,
4 and S5 1list the pertinent AMPA asystem, antenna  and

transmitter/receiver characteristics, respectively.

Table 3 AMPA SYSTEM CHARACTERISTICS

Up/Down Link 53 dB-Hz (C/No)
Frequency
uplink 1646.75+/-1.25 MHz
downlink 1534.75+/-1.25 MHz
Coverage +/-60 deg. FOV

Number of Beams

receive two independent steerable

tcansunit two independent steerable
Geolocation

coarse +/- 2 degq.

fine +/- 0.1 deg.



Table 4 AMPA ANTENNA CHARACTERISTICS

Array Size
Element Type
Element Gain
Polarization
Array Gain
Beamwidth
G/T

EIRP

Table 5 AMPA TRANSMITTER/RECEIVER CHARACTERISTICS

Transmitter
EIRP
Bandwidth

Receiver
Noise Figure
Bandwidth

Dynamic Range

32 elements

Flared Cone Turnstile
7.5 dB

LHCP

22 4B

5 to 10 degrees

-6 dB/K

30.5 dBwW/beam

0.5 dBHW/element
2.5 MHz

17 4B
2.5 MHz
55 dB

28
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The User-Terminal characteristics are listed below in

Table 6. This represents the equipment required by a typical
AMPA subscriber.

Table 6 USER-TERMINAL CHARACTERISTICS

Antenna
Type Modified Volute
Coverage Hemispheric
Polarization LHCP
Gain 0 dB (overhead)
+1.9 dB (60 deg.’
~1.6 dB (horizon)
Receiver
G/T -30 4B/K
C/No 53 4B-~Hz
Bandwidth 2.5 MHz
Transmitter

EIRP 10 4BwW
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IV. LINK CALCULATIONS

The AMPA-User Terminal link model and sample calculation
will be presented in this section. Again, the readers are
reminded that link closure is absolutely necessary and must be
maintained at all times between the AMPA and the user earth
terminal for a successful communication link. This criterion
applies to any forms of communication and/or data links.
Generally speaking, a certain signal-to-noise ratio is required
to insure that an adequate amount of signal is avajilable to
overcome the various transmission losses, such as- free space
path losses, atmospheric, polarization, scan losses, and system
hardware losses, as well as the inherent system noises in an
RF/microwave communicatiorn system ¢to provide a useful data
output, Figure 10 {llustrates a typical multiple AMPA

deployment scheme for global coverage,

Satellite communication engineers often tend to use such
terminology as carrier-to-noise density (C/No) and gain over
temperature in degree Kelvin (G/T) in their 1link analysis,
whereas, the RP/Microwave system engineer (EM type) chonses to
use the signal-to-noise ratio (SNR) instead. 1In this report,
the latter 1is chosen because it is more direct and simpler to
visualize in a 1link calculation. Figure 11 i{llustrates a
communication engineer’s version and Figure 12 depicts the

RF/Microwave system engineer”s approach.
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In Table 7a, an illugstrative example of a link
calculation for a 400 km (216 nm) orbital altitude is yiven.
In this example, several basic assumptions are made for both
the AMPA and user-terminal receiver, that is, the effective
noise figure (NFeff) is 5 AB (636 deg. Kelvin), the desired
signal-to-noise ratio (SNR) is 20 dB, and the RF bandwidth (BW)
is 2.5 MHz. These receiver requirements are well within the
SOTA for a system of this kind. Hence, given the effective
radiated power (EIRP) of the transmitter, the SNR, the NFeff,
and the RF BW of the receiver system, one can readily find the
tangential sensitivity and transmission losses to determine the
receive antenna gain required to close the communication/data

link. A simplified procedure is outlined below:
Step 1. Determine equivalent noise input power (Pn):

Pn

10Log (kTB)

where k (1.38x10°-23 joules/K)
T = temperature in degree Kelvin

B bandwidth in Hz

and if B = 2.5 MHz and T = 290 deg.
Therefore,
Pn = 10Log(1.38x107-23) (290) (2.5x1076)

= -110 d4Bm or (~140 dBW)



Table 7a

EIRP (d4BW)

Path Loss (dB)
Atmos. Loss (dB)
Polar. Loss (dB)
Scan Loss (dB)
Power Avail. (d4BW)
RF Bandwdth (MHz)
Effective NF (dB)
Noise Power (dBW)
System Loss (dB)
Desired SNR (dB)
Rcvr Pwr Reg”d (dBW)

Ant. Gain Reg“d (dB)

LINR CALCULATIONS (Typical)

User-to=-AMPA

10
-163.95
-

1.0

7.0
-162.45
2.5

5.0
-140
2.0
20.0
-113

49.45

AMPA-to-User

30.5
-163.95
-]

1.0

7.0
-141.95
2.5

5.0
-140
2.0
20.0
-113
28.95



Step 2.

where

36

Determine receiver input power (Pr) required:

Pr = Pn - SNR - NFeff - L*

SNR = desired signal-to-noise ratio
NFe = effective noise figure in (dB)
L° = system loss (cables, etc.).

If SNR = 20 dB, NFe = 5 @B and L.° = 2 dB

therefore,

Step 3.

where

and if
range)

then

Step 4.

Pr = -110 + 20 + 5 + 2 = -83 dBm.

Calculate free space path loss (P/L):

P/L 20Log (A\/47R)

A = ¢/F (wavelength in m)

R = slant Range in km

¢ = velocity of light (3x107°8 m/s)
F = Frequency in Hz

F = 1640 MHz (nominal), Rmax = 2294.04 km (slant

P/L = 20Log[3x10"8/47(1,64x1079)
(2294.04x1073) ]
= -163.95 dB

Determine total transmission loss (Lt):

Lt = (P/L) + La + Lp + Ls
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where P/L free space path loss (dB)
La = atmospheric loss in (dB)
Lp = polarization loss in (dB)
Ls = scan loss in (dB)

if La= .,54dB, Lp = 1.0 dB and Ls = 7.0 4B

therefore,

Lt = -163.95 - (8.5) = -172.45 4B

Step 5. Find available power (Pa) at the receive antenna:

(a) Given user uplink transmitter EIRP = 40 3dBm (10 4BW)
then

Pa = EIRP + Lt
= 40 + (-172.45) = -132,.45 dBm
(b) Given AMPA downlink transmitter EIRP = 60.5 dBm:
then

Pa = 60.5 + (-172.45) = -111.95 dBm

Step 6. Find required receive antenna gain (Gr):

(a) The AMPA receive antenna gain:

Gr = Pr - Pa
= =83 - (-132.45) = 49.45 dB
and

(b) The user receive antenna gain:

Gr = -83 - (-111.95) = 28.95 dB
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It is clear from this illustrative example that, in order
to provide 1link closure, the antenna gain of the AMPA and
User-terminal must be 49.45 dB and 28.95 dB, respectively, to
have the desired signal-to-noise ratio (SNR). However, with
the same scenarios and given equipment specification in section
II, the bandwidth must be reduced drastically in order that the
link may be closed. Table 7b depicts the reguired antenna
gains if the bandwidth was reduced to 2 KHz. This would place

the antenna gains more in the ball park, as given in section

II.
Table 7b LINK CALCULATIONS (Reduced Bandwidth)
User-to-AMPA AMPA-~-to-User

Powr Avail. (dBW) ~-162.45 -141.95
RF Bandwdth (KHz) 2.0 2.0
Effect NF (dB) 5.0 5.0
Noise Power (dBW) -171 -171
System Loss (dB) 2.0 2.0
Desired SNR (dB) 20.0 20.0
Rcvr Pwr Reg”d (dBW) -146 -146
Ant. Gain Req”d (dB) 16,45 -4.05

Often terminology can cause confusion, particularly if
the parameters are not clearly specified. 1In brevity, the
relationship between the carrier-to-noise density (C/No) and

the signal-to-noise ratio (SNR) can be readily shown below.
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SNR = 10Log(Pr/Pn) = C/N

= 10Log[PtGtGr (A/4TR) “2/KTB] dB

and
(C/No) = IOLog[Pth(Gr/T)(k/4ﬂR)”2/K]
hence
SNR = (C/No) - 10Log(B)
where EIRP = 10Log (PtGt)
P/L = 10Log()/4md) "2
N = 10Log (KT)
B = bandwidth in MHz2
Pn = 10Log (KTB)

Figure 13 depicts the SNR as a function of the bandwidth for

given C/No ratios.

Consider the receiver characteristics from section 1II
Table 6; that is, C/No = 53 dB-Hz amd BW = 2.5 MHz
Then
SNR = 53 - 10Log(2.5x1076) = -10.98 dB.

For SNR = 20 dB, this implies that

C/No = SNR + 10Log(2.5x1076) = 83.38 4B

and

B = (10)°(53 - 20)/10 = 1995.26 Hz (2KHz)
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Let”’s take another look at the definition of (C/No).
Given EIRP = 10 4BW, P/L = =172.45 4B and if Ts = 636 deg. K,

hence let

(C/No) = [EIRP + Gr - N + P/L)

= 10 + Gr -(~-200.6)

+(=172.45) = 53.0

Therefore, the expected receive antenna gain
Gr = 53 - 38.12 = 14.88 4B
Similarly, if EIRP = 30.5 4BW, then
(C/No) = 30.5 + Gr -(-200.6)

+(=172.45) = 53
Therefore,

Gr = 53 - 58.62 = -5,617 dB

Notice that the bandwidth has not been taken into consideratiza

at this point.

Now let”“s examine the terminology Receiver Gain-to-Noise
Temperature (Gr/Ts). From Section II, Table 4 and Table 6, the
AMPA antenna and User-Terminal antenna are specified as -6 4B/k
and -30 dB/k, respectively. For the sake of illustration,
again assume Ts = 636 deg. K.

Then

(Gr/Ts) = 10Log{(Gr/Ts) d4B/K
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For G/T = -6 dB/K implied the actual antenna gain,
therefore,
Gr = G/T + 10Log(Ts)
= -6 + 28.03 = 22,03 4B
Similarly fer G/T = -~30 4B/K
then

Gr = =30 + 28.03 = -1.95 4B

Extreme cacre must be exercised when figure-of-merits, such as
(C/No) and (G/T), are used in the link calculations. Often
times it is not so obvious what the system design engineer has
in mind for bandwidths and system noise temperatures. This
confusion can lead to an erroneous calculation of the signal

margins.

Based on the AMPA and user-terminal specifications given
in section I, Table 8 and Table 9 depict the relationship
between C/N and SNR at maximum slant range (worst case) at
different satellite altitudes for the uplink and downlink,
respectively. FPigure 14 shows the SNR curves of the uplink and
downlink as a function of altitudes. In Table 10 and Table 11
the required antenna gain for a 20 dB SNR is given. Figure 15
gives the corresponding required antenna gain curves for the

uplink and downlink.
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V. APPLICATIONS

This section will discuss the principal objectives of
this study effort, conceptualizing new or improved viable
applications by utilizing th; basic design features and
technology employed in AMPA. To begin with, a low-orbital
satellite has its own set of requirements as opposed to
geo-synchronous satellites. Namely, geo-synch are virtually
stationary and do not have any tracking dynamics with which ¢to
contend. Nevertheless, low-orbital satellite concepts are
viable candidates /‘or certain commercial telecommunication
applications, in particular, tactical and strategic military
functions. Of course, the biggest drawback with low-orbital
satellites is the need to cluster them in appropriate orbits to
obtain the desired coverage and observable period. Recall that
typical acquisition time from one horizon to the other is about
10 to 15 minutes. Furthermore, for certain applications, it
might be advantageous to be able ¢to observe two or more
satellites from any User-Terminal on the ground at any given
time. Then the satellites must be deploved in the appropriate
orbital geometry to obtain the desired global network. Hence,
an orbiting satellite wil: have tracking and other flight

dynamic requirements to be considered.

Table 12 provides a list of the pertinent technological
capabilities and potential applications. The two major

technological areas are the multi-beam and adaptive antenna
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systems. These concepts are vital in dense interference
environments, particularly where the threats of jamming signals
are intentional. Adaptive antenna systems will steer nulls in
the directions of the intentional/unintentional threat signals
and at the same time maintain or maximize the main-beam onto
the direction of the signal-of-interest (SOI). Multi- beam
concept provides additional rejection to interferers by
directing beams to designated geographical 1locations. These
controlled beam shapes will tend to optimize the power
allocation. This will also provide spatial separations between
the different ge)graphical locations. Another useful technique
is the frequency-reuse. This allows simultaneous use of the
same portion of the spectrum by polarization diversity, that

is, utilizing the orthogonal linear polarizations.

Much of the conceptual discussions herein will be slanted
toward military applications, since military applications are
more apt to employ adaptive and multi-beam antenna systems for
deployment in severe threat environments. Secure
communications and anti-jam constraints are also bases for
major military communication systems design and deveiopment.
Table 13 lists a few of the more commonly used techniques in
secure communications. However, secure communication and
electronic counter-measures are mentioned only in passing and
will not be discussed in this report. It is obvious that the

combination of these techniques will play an important part in
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the design consideration on a tactical and/or strategic system
by improving its survivability and vulnerability to electronic

counter-measures (ECM).

Table 12 TECHNOLOGY & APPLICATIONS

MAJOR TECHNOLOGICAL CONCEPTS:
Adaptive Antenna Technology
Multi-beam Technology

Polarization Diversity

APPLICATIONS
Tactical/Strategic Deployment
Long Range RPV (Over-the-Horizon)
ICBM Terminal Guidance
Reconnaissance Platform
Maritime/Aeronautical Service
Global Position Satellite Interface
Meteorological Surveillance
Remote-Sensing Platform
International Mail System
forporate Business System

Large-Aperture Antenna Test System
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Table 13 SECURE COMMUNICATIONS TECHNIQUES (typical)

Spread Spectrum

Frequency Agility
Multibeams

Pseudo-Random Noise (PRN)
Cryptographic

Polarization Diversity
Adaptive Antenna Techniques

Time Division Multiple Access (TDMA)

During this last decade, much emphasis has been placed on
development of unmanned tactical systems, such as remote
piloted vehicles (RPV) and cruise missiles. Long range
telemetry and guidance are classical problems because of range
limitations and inherent tracking problems associated with low
altitude vehicles. Figure 16 depicts a typical scenario of a
low altitude flying RPV penetrating a low angle radar defense
system. The RPV will be in constant view of AMPA and a
continuous telemetry and guidance updating can be provided
thcough the terminal phase of the mission. Through this
illustrative scenario, AMPA served as the telemetry, tracking
and control (TT&C) platform. The instant the RPV(S) care
launched TT&C functions can be handed over to AMPA. The entire
flight profile of the RPV(s) can be controlled and monitured

from the ground or shipboard command post via AMPA.
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Furthermore, a linkup with NAVSTAR for the GPS will provide
precise navigational data for updating the flight profiles of
the RPV(s). In the event of a jamming situation, the TT&C
functions may be transferred over to other AMPA(s) that are

within the FOV of the RPV(s).

Figure 17 illustrates AMPA in an intercontinental
ballistic missile(ICBM) strategic scenario. Similarly, AMPA
will serve as the TT&C platform but can also serve
independently as command post with predetermined flight plans
and trajectories transferred via high data burst from the
launch vehicle. This, of course, will imply that some form of
computer memory is required aboard AMPA to store the command
post functions. In conjunction with GPS data from NAVSTAR,
continuous trajectory updating for terminal guidance is
possible, This capability will improve the target

circular-effective-perimeter (CEP) accuracy.

Numerous military applications are possible; however,
additional instrumentation will be required. For instance,
AMPA can be deployed as a reconnaissance system. Just to
mention a few - this could include sensors, such as radiometer,
synthetic-aperture radar (SAR) and video or infrared (IR)
camera systems. Depending on the specific mission requirement,
a combination of these sensors may be incorporated aboard AMPA.
The entire reconnaissance mission can be directed and monitored

from one or more strategically located earth stations.
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Low altitude poliar orbiting AMPA will be able to cover
major portions of the world”“s oceans as it is encircling the
earth. It is conceptually feasible that AMPA can e deployed
for maritime and aeronautical services. Figure 18 illustrates
AMPA (s) deployed in the maritime and aeronautical services.
These services can be operated separately or Jjointly by
agencies, such as the U.S. Coast Guard (USCG) and/or Federal
Aviation Administration (FAA), or even in a consortium with
other nations to provide world-wide coverage. AMPA scans the
oceans and ajir-space for ships and aircrafts and relays its
geographical positions and status to their respective agencies
for traffic control and coordination. Again, coupling AMPA to
NAVSTAR, precise geographical positions for the ships and
aircrafts can be obtained. Furthermore, in the event of an
emergency, the geo-location system aboard AMPA will provide
precise location data of the distress beacon signal to enable

rapid search and rescue missions.

Neadless to say, a 1link with NAVSTAR for the GPS
capabilities is crucial for precision navigational information.
Similarly, numerous other AMPA deployments are possible ¢ty
incorporating additional instrumentation or sensors for
meteorological and earth resource remote sensing services for
agencies, such as the National Oceanic & Atmospheric

Administration (NOAA).
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In the commercial services, AMPA can provide subscribers
with a low-cost high-speed data transmission relay link for
international mail services, corporate and financial
businesses, world-wide medical and health services, educational
centers, etc.. Figure 19 demonstrates AMPA as a far field test
platform for measuring radiation patterns of extra large

aperture antenna systems.
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VI. TRADE-OFF & SYSTEM REQUIREMENTS

As mentioned earlier, no attempts will be made to modify
AMPA, but rather, a "use it as it is" format will be used in
postulating other applications. However, this ground rule only
applies to certain cases in the commercial telecommunication
applications. Most of the AMPA features listed in Section II
can be wused for simple point-to-point digital and narrow-band
FM commercial applications. But, a certain amount of hardware
and software modirications will be required to meet the
peculiar system or operational requirements. The moi 2
sophisticated military-type applications will definitely
require extensive desigr modifications before they can qualify
as tactical hardware. For example, just to mention a few of
the more common military-type system requirements: such
subtleties as specific frequency assignments, electromagnetic
interference (EMI) shielding, radiation hardening, structural
ruggediz._*iorn, redundancy capabilities, electronic
counter-measures (ECM), and communication security will have to
be considered and incorporated into the system design. For the
special reconnaissance applications, additional instrumentation
and software back-up will be required. Specialized sensors,
such as radiometer, SAR, video or IR optical svstem, may be

required, depending on the mission deployment.
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Serious system trade-off will be required by the
potential AMPA user to determine if the basic AMPA features
given in Section II are adequate to meet their specific mission
or system performance requirements. From the program
management point of view, would it be cost-effective to use
AMPA, or even worthwhile to make any modifications? what are

the reliability factors and growth capabilities of AMPA?

Since AMPA was originally intended fo: the maritime and
aeronautical services, the FCC frequency allocation was in the
L band region. For other services, appropriate FCC designated
frequency band conformance will be required. This will greatly
impact the potential user. New link calculations and system
performance analysis must be performed to insure system

integrity and hardware design compatibilities.

Figure 20 depicts an AMPA utilization chart. This chart
shows how the different AMPA features may be configured for the

various applications.
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VII. COMMENTS & RECOMMENDATIONS

In this section, a candid critique and opinion of the

AMPA system with particular emphasis in RF/Antenna system areas

will be expressed.

Conceptually, AMPA should have been a cost-effective
system, but exorbitant development costs have reduced its
attractiveness. In view of the partial testing conducted at
AIL on December 7, 1981, and the limited data presented during
the final project presentation at NASA - Lewis Research Center
on April 4, 1982, the system left much to be desired. There
were no real comprehensive test results to demonstrate or
signify that AMPA has met all of its design or performance

goals.

The antenna patterns presented were confusing and lacking
definition. It is not clear which lobe is the main beam nor
where the boresight is supposed to be. The antenna
measurements conducted on December 7, 1981, were far from
laboratory condition. Wind conditions on the roof-top test
range were high. Large puddles of water accumulated from the
rain or snow and other roof-tcp obstacles contributed to the
multiple scatterings as evident by the jitters and noise on the

antenna pattern measurements.
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The adaptation performances are below expectation. Under
current adaptive antennz technology, one could expect to
achieve a jammer noise cancellation in the order of 50 dB for a
400 MHz broadband noise jammer and 70 dB for a narrowband or CW
signal. Furthermore, the jammer injected at or near the first
null of the antenna radiation pattern is not a fair test for
adaptation. A more valid test would be to place the jammer at
the half beamwidth of the mainbeam, first and intermediate
sidelobes, particularly, the grating 1lobes. In passing,
adaptation at RF rather than at IF can improve the overall
adaptive system by avoiding all the accumulated phase
dispersions through the mixers and IF(s). Phase and amplitude

matchings of the RF hardware are critical.

As mentioned earlier throughout this report, our prime
concern was to insure that the communication or data link
closes with an acceptable SNR or C/N, as a safety margin. Off
hand, 3judging from the array design, it is not obvious how it
can have an antenna gain of 22 dB. Even if it did, the
negative gain of the user-terminal antenna would result in a
gross gain deficiency in closing the link for a path loss of
-173 4B and a 2.5 MHz system bandwidth for the given EIRP and
G/T. BAs arule, a 1l0 to 20 4B SNR or C/N would be a
conservative safety margin for most types of telecommunication
links in the event of severe fading or adverse propagation

conditions. These facts were mentioned at the final project
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meeting. The AIL personnel in attendance chose not to
elaborate or attempt to explain why and/or how 53 dB-Hz C/No is
gsufficient to close the link. Instead, they (AIL) said that
this link analysis was done two years ago and that NASA had
concurred, and furthermore, that the bandwidth was not 2.5 MHz
but instead more 1like 15 KHz and that they had a signal
processing gain. The fact of the matter is, for a predetection
system bandwidth of 2.5 Mhz, mother nature (KTB) will provide
-110 4Bm or -140 4BW of input noise power. Again, unless the
system bandwidth and temperature are clearly specified it can

certainly cause erroneous and misleading link calculations.

Another puzzling fact that is not so obvious is: Why go
through the trouble and expense of having a low noise amplifier
(LNA) with a noise figure (NF) of 2.0 4B and then place 15 dB
of loss in front of it and come up with an effective ncise

figure (NFeff) of 17 d4B?

It is our opinion that a detailed RF and antenna system
test program is necessary to provide a comprehensive
engineering evaluation of the overall system design so
corrective action may be taken. It is anticipated that AMPA
will require some extensive modifications and redesign effort
before it can meet all the system performance requirements and

design goals.
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As it stands, the AMPA system hardware serves no purpose
except the computer portion. It is indicative that some more
design and development work will be required if this system
concept is to be pursued further. The universities are
definitely interested in the analytical and theoretical aspect;
but, it would be prohibitive from a financial point of view to
maintain and operate such a complex system. Also, it would
take too long for someone to get fully intimate with the system
before any useful work can be done. It was suggested during
the final project meeting on April 4, 195z, that perhaps some
governmental or military agency with appropriate facility and
technical personnel with the expertise in the area of multiple
beam and adaptive antenna systems could provide a home for AMPA
and the universities could provide the theoretical and

analytical support.
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