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A GENERAL >_THOD TO DETERMINE THE STABILITY OF COMPRESSIBLE FLOWS

In this reportseveral problems were studied using two completely

different approaches. The initial method was to use the standard linearized

perturbation theory by finding the value of the individual small disturbance

quantities based on the equations of motion. These were serially eliminated

from the equations of motion to derive a single equation that governs the

stability of fluid dynamic system. These equations could not be reduced

unless the steady state variable depends only on one coordinate. The sta-

bility equation based on one dependent variable was found and was examined

to determine the stability of a compressible swirling jet. The results oh-

tained were very similar to those of Lallas for finite domains. There are

differences that could be explained to slight changes in initial assumptions

and also due to the fact that the interval of integration is all space rather

than a finite subspece.

The second approach was that of using a Lagrangian approach to the pro-

blem. Since the equations developed were based on different assumptions, the

condition of stability was compared only for the Rayleigh problem of a swir-

ling flow, both examples reduce to the Rayleigh criterion. The second method

allows including the viscous shear terms which is not possible in the first

method. The same problem was again examined to see what effect shear has on

stability.
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NOMENCLATURE

a Speed of Sound.

The incompressible convective acceleration vector, (_ • &_).

a. Basis vectors in reference coordinate system.
i

A Compressible flow operator (2-13').

AI, A2 Coefficient of _ used to determine the stability of a cylindrical
shear layer.

Rate of change of the perturbation displacement vector in the
direction v (_ AT).

_. Basis vectors of coordinate system tied to non-deformed materia!
l element.

B The gradient of the convective perturbation operator in the
r-direction, _DU + _D*(r_)/r.

C The Rayleigh wave speed.

C2 The speed of sound (1-4)

C The vorticity or the velocity gradient used in defining the
Richardson criterion, DL/2 + ZQ%/r.

C Non-isentropic exponent for the pressure-density relationship.

3. Basis vectors in the unperturbed deformed material element.
I

C Specific heat at constant pressure.
P

7. Basis vectors in the deformed perturbed material element.
l

ds Differential length element.

dt Differential volume element.

D Derivative with respect to r, d/dr.

2 2e Square of the absolute wave number for cylindrical flow, _ + /r2. °
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f An arbitrary function.

F An arbitrary scalar.

F(_) The inviscid Lagrangian perturbation quantity required to
determine the stability of the flow (Chapter 3).

F'(_) The Lagrangian perturbation quantity for the full problem
(Chapter 3).

gij Metric tensor in the new coordinate system.

G Rayleigh radial perturbation velocity function (Introduction).

h.. Metric tensor in the perturbed coordinate system.
ij

H (I) Hermite polynomial of the first kind used to determine the

stability of a compressible cylindrical shear layer.

i The imaginary number,-_.

I The identity tensor.

J Bessel function of non-integer order.

K Energy difference function, (3-10).

% Azimuthal wave number.

L Operator formed by the substantial derivative acting on a

perturbed quantity, L = w + u_ + _q.

LI The imaginary part of L.

The rea! part of L.

m Perturbation mass flux in the radial direction, 0v'r.

m Perturbation mass flux vector, (1-2).

Mass flux vector (1-2).

2 , 2
M Angular speed of sound squared over the radial distance _ r/a

M Mach number function, (Chapters 2 and 4).

n Frequency.

Vector normal to a surface or boundary.
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N2 Brunt-Vaisal_ buoyancy frequency.

P Steady state pressure.

q Arbitrary flow field quantity.

q' Arbitrary perturbed flow field quantity.

Heat flux vector.

r Radial coordinate.

Arbitrary position vector or distance.

R Reynolds number.

R Perfect gas constant.

Re Real part of an operator or quantity.

Position in space at time t .
o o

_o Position in space at time t.

S Entropy.

t Time.

t Initial time.
o

T Temperature.

u' Perturbed axial ve!ocity component.

U Axial velocity component.

V' Radial perturbation velocity component.

Velocity vector.

W Circumferential velocity component.

Arbitrary position vector in reference coordinate system.

Arbitrary position vector in the coordinate system fixed with

respect to a material element.
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GREEK SYMBOLS

Axial wave number.

B Mach number function that includes the wave speed (Chapters 2

and 4).

Ratio of specific heats.

5 A small length, thickness or value.

As Incremental change in value of a quantity across a discontinuity
f

Asf = fr + _ r - €

A small value used in the definition of stability (Introduction).

Normal component of the displacement vector.

9 Azimuthal coordinate.

k Characteristic value.

Coefficient of viscosity.

I

v _2 + I.

The perturbation displacement vector.

Perturbation pressure (2-2).

Density.

T Shear stress tensor.

y Transformedperturbationfunction,m/L_.

Frequency.

Curl v or angular rate w/r (2-6).

_R Rayleigh discriminant, 2_D*(r_).

SUPERSCRIPTS

i Perturbed quantity.

* Complex conjugate, adjoint or the derivative D* = d/dr +I/r.
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SUBSCRIPTS

c Critical layer or value.

I Imaginary part.

R Real part.

i, j Indices referring to coordinate directions.

* Derivative, D, = D I/r.
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INTRODUCTION

The basic concept of the stability of a particular flow is obtained

by observing the effect that the viscous, inertia and body forces have on a

fluid element as it proceeds through space and time. In general a flowing

medium will exhibit the smooth streamlines and steady motion of a laminar

flow for some time after it is set into motion. After a certain distance

the paths of the individual fluid elements may change into a chaotic

motion about a mean streamline. This type of motion can be observed in

flows of the boundary layer type as they progress through stages from laminar

to turbulent ones. Other types of changes may take place such as observed

by Taylor (I) and Gortler (2) in which the flow under the action of centri-

fugal forces does not become turbulent but changes to another form by the

appearance of vortices in the direction of motion. In each of these

the transition from one type of flow to another does not take place until

a certain set of circumstances is satisfied. Thus the steady flow remains

unchanged until the growth of the perturbations exceeds the inherent damping

of the flow field.

Since the transition from laminar to turbulent flow is not the only

possibility, a definition of stability must be written such that all limits

of stability may be included. To obtain such a definition we will resort to

the one used by Sattinger (3) in his paper on the "Mathematical Problem of

Hydrodynamic Stability".
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Definition: Let v(t) be a solution of the perturbed

equation. The steady state flow is stable if in the limit
as time approaches infinity the absolute value of the
disturbance, v(t), goes to zero whenever the perturbation

at time t = to is finite. The flow is conditionally stable
if, for an E > 0 there is a 6 > 0 such that IV(t) l < E for

all t e 0 and in the limit as t approaches infinity IV(t) l = 0

whenever IV(0) I < 6. The flow is unstable if this condition
is not met.

Unconditional stability implies that the flow is stable regardless of

the magnitude of the perturbation applied. This is similar to placing a

ball at the bottom of an infinitely deep well in a gravitational field.

Since the !ocation of minimum potential energy is at the bottom of the well,

the ball will always return to it. Conditional stability is sheen by

placing the bal! in a well of finite depth. If the initial displacement

is sufficiently large, the ball will leave the well and be free to find a

new location of minimum potential energy. Instability results when any

perturbation will move the ball in such a manner that it will not return to

its initial point; i.e. placing the ball on a hill. In like manner the

stability of a steady fl_ may be established via a more general energy

approach in which the kinetic and potential energies of the system are

defined by a more complicated set of forces and reactions. The problems in

hydrodynamics are initial value problems because a perturbation is applied and

its growth in time is considered. The stability so derived satisfies the def-

inition for conditional stability. For most theories the solution of the sta-

bility boundaries is obtained via a set of equations that are linearized with

respect to the perturbation variables. In this type of an analysis the velo-

city, pressure, density, etc. are perturbed and the linearized forms of the
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equations are retained after substitution into the full viscous or inviscid

equations. The non-linear perturbation terms are dropped because they occur

as products of the linearized variables, and therefore, are assumed to be

small. The argument that this type of solution describes the actual

phenomenon is known as the "linearization hypothesis" The method is

open to question because the derivatives of the perturbation quantities

appear in the non-linear terms and these in general do not have to be as small

as the perturbation quantities themselves. The wealth of experimental

data, however, does tend to support this type of an analysis. The method

has its limitations because the perturbations are assumed to infinitesimal;

and therefore, the results do not depend on the amplitude of the distur-

bance. Thus it breaks down if the perturbations are of sufficient size

so that the non-linear interactions take over and either limit further

growth of the disturbance or amplify it disportionately.

As stated earlier the vast majority of analytical interpretations of

stability were obtained via linearized analyses of stationary flows. The

first accurate analysis of a stationary liquid jet was made by Lord Ray-

leigh (4) using an inviscid, incompressible !inearized form of the pertur-

bation equations. In such an analysis it is not assumed that the stationary

f!ow is inviscid only that the effect of the viscous forces acting on the

perturbation equations is of higher order and may be ignored. The work

of Rayleigh was preceded by the experimental work of Savart(5)and the

analytical work of Plateau (6). Plateau was able to derive certain proper-

ties of the stability but he was unable to derive the most likely wavelength

at which instability would occur. This was one of the contributions that

was made by Rayleigh.
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Rayleigh used the inviscid form of the perturbation equations and in

the limit of high Reynolds numbers or vanishingly small viscosity it is

expected that there will be no difference between the full and inviscid

solutions. This is of course true in the bulk of the fluid. But for the

inviscid fluid there is a critical layer at which the velocity of the dis-

turbance and the steady flow are equal. If the distrubance velocity is

complex, this layer lies in the complex plane. The problem of stability

has by the linearization been reduced to an eigenvalue problem of the Orr-

Sommerfeld kind. Rayleigh's equation became:

It can be seen immediately that letting u = c presents an immediate problem

and results in a singularity for the solution G. The addition of the vis-

cous terms renders the problem solvable because (u - c) is not a multiplier

of the highest order derivative. Hence, the solution for G would remain

finite. Physically the addition of a vanishingly small viscosity spreads

the effect of the critical line over a finite width, Ir - r I < 6 that goesC

to zero as the viscosity goes to zero. If the value of r is real and non-
c

zero, then the critical layer is a thin sheet in the fluid and the properties

across the layer behave as they do in a two dimensional primary flow.

This behavior was first noticed by Pretsch (7) and hence the effect of fric-

tion in a critical layer can be obtained by resorting to the known solution

of two-dimensiona! primary flows. The two dimensional analyses were expan-

ded by Tollmien (8) and Lin (9) For amplified disturbances the effect of

the friction is negligible for vanishing viscosity; and for neutral distur-

bances which also satisfy the inviscid equations of motion, the same branch
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of the logarithm must be taken as for the slightly amplified case. Damped

solutions require integration of the above equation in the complex plane as

was shown by Lin (9). Thus for damped solutions friction must always be

taken into account in certain regions. This was demonstrated by O. Tietjen (54)

for laminar, linear velocity profiles over a wall that would be stable for

inviscid flow. The addition of small viscosity to these profiles did not

lead to damping but led to amplification for all Reynolds numbers and wave-

lengths. Tollmien was able to explain the paradox by showing that the

viscosity for this case must be taken into account over the entire flow

especially in the neighborhood of the critical layer where the velocity

gradient becomes infinite in frictionless theory. The existence of viscos-

ity forces the ve!ocity gradient to remain finite. The effect of the vis-

cosity could be evident only if the curvature profile was included and the

viscosity was included at the wall and at the critical layer.

The inviscid perturbation solutions of Lord Rayleigh are valid for

the straight jet and for rotational Couette flow because even for infinite

Reynolds numbers there exists a certain range of wavelengths that result

in instability. Therefore, he was able to state two important theorems

that relate to more general flows. The first became known as the Rayleigh

discriminant for inviscid rotational flow: "An inviscid rotating flow is

unstable if the square of its circulation decreases outward." The second

is the point-of-inflection criterion: "Velocity profiles that possess a

point of inflection are unstable". These and a final theorem that limits

the speed of propagation of an instability govern the so-called frictionless

instabilities because laminar f!ow subject to those conditions are unstable
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even without considering the effect of viscosity on the oscillations of the

motion. Viscosity does play a small role in either of the above theorems.

For the first it smudges the boundaries somewhat and adds some damping to

the system (Fig. I). For the second, as discussed earlier, it shows that

even flows without a point of inflection in the velocity profile tend to

become unstable. The second theorem as initially stated was a necessary

condition for the stability of certain flows, but Tollmien (I0) was able to

show much later that it was a sufficient condition also.

The stability condition as stated does not require that a flow go

from a laminar to a turbulent to be unstable, only that the disturbance not

die out with time. Examples of stationary flows that admit secondary solu-

tions are vortices in Couette flow, Benard cells and the Gortler vortices

in concave parallel flows. These have been studied extensively. In each

flow, the initial or primary flow bifurcates and a secondary stable solution

appears that satisfies the same boundary conditions as the primary flow.

Extensive mathematical work in the theory of partial differential equations

has been done to provide rigor to the solution of the linear perturbation

equations, but the scope of these solutions is limited. The specific pro-

blem of Couette flow has been treated by Velte (11)(12) and Kirchgassner

and Sorger (13). The B_nard problem was discussed by Rabinowitz (14). These

solutions are extensions of the more general work on the spectrum of the

eigenvalues of the Navier-Stokes equation by Prodi (15). Sattinger (3) deve-

loped the more rigorous basis for the use of the "linearization hypothesis"

for incompressible, viscous flows over closed domains.

The flows for which frictionless instabilities are important have been

studied extensively but the number of solutions to various problems is very
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limited. The work of Rayleigh as a starting point for these has been dis-

cussed earlier. There have been a number of other related works in diver-

gent fields that directly impact on this problem. One was the work by

Brunt (16) and V_isal_ (17) concerning the stability of a density stratified

atmosphere in a gravity field. Others in the field of meteorology include

the appearance of Richardson and Rossby numbers as critical parameters to

describe the effect of a density gradient, velocity gradient and rotation

for stability in a gravity field. More recently the investigation concerning

the design of swirl combustion chambers, flame holders and nozzles have added

greatly to the knowledge of compressible swirling flows. In the latter, the

experiments of Chigier(18)and Chervinski (19) increased the data base for the

stability of flows with a superimposed swirl component.

The more recent analysis of Batchelor and Gill (20) in describing the

incompressible jet have added a great deal to the knowledge of the stability

of a straight jet. They showed that a jet with a top hat profile satisfies

the necessary condition for instability to axisymmetric disturbances. In

this case the instability has been found explicitly in the form of ring-

shaped vortices at the boundary of the core of a jet as shown by Wehrmann

and Wille (21) It is these large scale and efficient emitters of noise

that may produce a substantial part of the radiated noise by a jet engine.

The interest in swirling flows has not decreased since the development

of the basic theorems in the early papers as is demonstrated by the large

number of papers published in a variety of technical journals. The topics

of these concern the behavior of applications for which the addition of swirl

proved to be successful. Among these are the swirl combustors, flame holders
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and nozzles. For some applications the introduction of the swirling velo-

city component was primarily used to stabilize a marginally stable system,

in others it was used to enhance mixing. An example of stabilization is

the flame behind an axisymmetric flame holder. The axisymmetric flow with-

out rotation repeatedly tears and sheds vortices that are associated with

the steady flow base flow, but if a sufficient azimuthal velocity component

is added the flame is stabilized and holds its shape.

The number of analytically derived steady state solutions of swirling

flow problems is limited; therefore, the criteria used to determine the

stability of an arbitrary swirling f!ow must be very general. Lord Ray-

leigh's condition for the stability of an inviscid rotating fluid meets this

requirement. The interactions that take place in a compressible swirling

jet are numerous. First, the straight jet is unstable if the axial velocity

component has a point of inflection. This is known via the second stability

theorem (22). Because the flow also has an azimuthal velocity distribution,

it will be stable if the angular momentum increases outward from the surface.

For compressible flow, if the buoyancy tends to return the flow to its ori-

ginal equilibrium condition, it corresponds to a statically stabilizing dis-

tribution. As a result the buoyancy and rotation may stabilize an otherwise

unstable velocity distribution as based on the inflection point theorum. The

guage stability, the ratio of the rotational components and the axial

velocity gradients, resul_in a measure of the two effects that govern the

overal! stability of the flow field. This ratio, known as the Richardson

number was originally derived to estimate the stability of a wind moving

over a surface in a stratified atmosphere in a gravitational field. The fact
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that a number of the particular problems scale similarly regardless of

whether the central force field is generated by rotation or by gravity,

allows generalization of the stability results for gravitational field

to parallel stabilities for rotational flows.

The comparison of a straight and a swirling jet was made by N. A.

Chigier(!8)(Figure 2). If we remember that the existence of large scale

structures present in the vicinity of the exit was proven by Wehrmann and

Wille (21), some obvious conclusions based on the experiments of Chigier are

most interesting. One of which could lead to a reduction in sound generated.

Schwartz (24) postulated that the effect of a sufficient amount of rotation

within a thin layer near the jet boundary greatly reduces the overall noise

measured at a station in the far field. This could be due to a stabilization

of the axisymmetric instability mode. In a paper by Mollo-Christensen (25),

it was suggested that the near and far field pressure measurements could be

correlated by assuming the sources of the sound were regularly distributed.

He noted that a coherent large scale emitter would be much more efficient

than randomly distributed emitters throughout the jet. In a later experi-

ment Crow and Champagne (26) were able to excite different modes of the

shear layer at the jet edge by imposing an acoustic source of a given fre-

quency on a jet at various Reynolds numbers then observing both the behavior

of the shear layer along with the emitted sound as a function of the down-

stream distance.

Brown and Roshko (27) observed the growth of structures in a two-dimen-

sional shear layer and noted that such structures tend to grow with the

linear distance from the shear layer origin. The modes of instability of
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the jet would therefore play an important role in better understanding of

the modeling of the turbulence structure within the jet itself. Michalke

and Fuch_ 28) used the cross correlation of partic1,1ar modes to determine

that jet noise can be determined using only the lowest modal oscillation

associated with the large scale structures. This method provided a remark-

able match to the actual data.

Laufer (29) used the measurements of other people to determine the sep-

aration distance between neighboring large scale structures (vortices) and

found them to be a linear function of the distance from the jet origin.

The propagation and growth of these vortices, their eventual pairing and the

azimuthal modes may directly influence the measured nose by an observer in

the field. (Figure 3)

There are therefore at least two motivations for the current effort.

The first is to determine if the basic steady state flow will remain stable

to infinitesimal disturbances. The second is to obtain a basic understan-

ding of the stability of the jet relating to the production of noise and

its propagation. It could be assumed that if the instability of the shear

layer and the mixing process of the jet and the free stream are the primary

sources of noise, stabilizing the shear layer by the introduction of an

externally induced rotation could prove very beneficial. The earlier sta-

bility analysis for straight jets all indicate that the instability occurs

where the velocity profile has a point of inflection. Near the jet exit

this is in a thin layer, at the jet boundary therefore, the amount of swirl

added to stabilize the flow can be small. This is important because re-

placing a potential flow field by one that has rotation wil! always result

in l_¢ered velocities and in the case of a jet lower thrust.
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These motivations require an analysis that is concerned primarily

with sources and modes of instability. Since for such perturbations the

effect of viscosity is small, it is possible to analyze the perturbation

from an inviscid point of view even though the steady state profiles were

generated by viscous forces. The following analyses deal primarily with

stability in time even though based on the compilation of Laufer a more

meaningful investigation would also include a stability in space analysis.

In chapter two this will be done for a flow field for which the steady

state properties depend only on the radial distance. The basic stability

equation remains in either case but the difference in definition of the

operators that determine the frequency and wave number lead to different

results.

Of the many papers that deal with the stability of rotating flows only

a few were chosen to represent the ideas behind the development of the

results shown here. One of the earliest was a paper by Howard and Gupta (30)

that put limits on the rate of growth and propagation speed of the distur-

bances. This work extended the theorem that states that the velocity of

the disturbance is bounded between the maximum and minimum velocities obser-

ved in the flow field. Leibovich (31) extended the method used by Howard and

Gupta to problems that included axisymmetric disturbances in a density stra-

tified medium. The results were the same except that the definition of the

Richardson for rotational flows became the critical parameter. Fung and

Kur_¢eg (32) extended the Leibovich results to include non-axisymmetric dis-

turbances and discovered that the ratio of the wave number S =%---must be
r_

included to determine stability. In an earlier paper using the narrow gap
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approximation for Couette flow, Yih (33) was able to show that for compres-

sible flows the entropy variation normal to the stream surfaces must be

known to obtain a simple criterion.

Because of the presence of vortex rings in the shear layer, the growth

and decay of these is an important feature of the flow. Data that deals

with the breakup of these rings is almost non-existant. Several papers that

treat their growth and decay were written by Magarvey and MacLatchy (34)(35)

These show that aged rings tend to break up due to the growth of azimuthal

disturbances on the ring distorting the entire ring structure. In a gra-

vitational field the breakup of the rings is associated with movement to

positions of less gravitational potential. For a jet this would be accom-

plished by parts of rings moving to regions of smaller axial velocity

gradients. Since the decay of the rotational velocity is approximately

four times as rapid as the decay of the axial velocity component, the growth

and destruction of vortices would correspond to regions axially removed

from the exit. Rotation does inhibit the growth of ring shaped vortical

structures, thus it is required to examine the experiments of Ludwieg (36)(37)

to determine the instability mechanism that is expected. Ludwieg provided

an inviscid analysis to show that the disturbances that are associated with

axially-symmetric Tay!or vortices when the flow is in pure swirl become

spiral instabilities when the flow is itself a spiral. This gives the spi-

ral flow a central place in hydrodynamic theory along with axisymmetric

straight and rotating Couette f!ow. Ludwieg's work was extended by Pedley (38)

who showed that Ludwieg's results do not depend on the particular profile

chosen. These experiments and theory may point to the proposition that the
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axisymmetric disturbances are not always the most unstable and the intro-

duction of a swirl component will not always mean a more stable overall

system. In a paper dealing with the globa! stability of spiral flows,

Joseph and Munson (39) developed a linearized theory that was able to obtain

some results for the small gap approximation.

There is little hope that the above type of an analyses can be exten-

ded much beyond the results of chapter two. These would limit the appli-

cability of stability theory to a small number of problems actually observed.

It is possible under certain conditions to formulate the problem in Lag-

rangian coordinates by letting the characteristics of the steady flow be

functions of the position only. An equilibrium trajectory through space

would then be a description of a steady state flow. Perturbations would

then relate to the relative displacement of a fluid particle from the equi-

librium trajectory. Thus, stability would be determined by the condition

under which the displacement would decay to zero in time. This type of an

approach was developed from plasma physics where the importance of the vei-

(41)(42)
ocity field would be of the first or second order. Severa! papers

deal with this type of stability. The method called the "configurational

stability" approach will be followed in chapter three with the basic theory

derived for viscous effects in the direction of the velocity vector. Such

a system has the advantage of being in conservation form and allows !ooking

at the behavior of a particle of constant mass to see how its motion and

energy are affected by its interaction with the steady state field. The

resulting energy integral is taken over all the particles on a stream sur-

face to determine if it will decay in time.
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The present analysis is twofold. In the first example the condition

of the swirling flow described by Lallas is extended to include the swir-

ling jet. This problem is more difficult first because the domain is

unbounded; and therefore, the energy integral must be redefined as was shown

by Carmi (48) This involves not only defining the rate of decay of the

perturbation function as r -_, but also verifying that the integral does

not have a singularity at r = 0. The boundary conditions must be redefined

so that the continuity equation is satisfied at r = 0. This analysis while

being fully compressible, inviscid and adiabatic in the perturbation quan-

tities still is restricted by the condition that the steady state depends

only on r. The second part of the analysis is used to find the condition

for which a stability condition can be determined for steady flows which

do not depend on the single coordinate but may vary in space. For this

purpose the mathematical formulation of Burshtein and Solov'ev (42) was

extended for compressible flow. These equations are cast in a Lagrangian

representation and all steady state variables are defined relative to the

equilibrium trajectory via a displacement vector 7. For the present example

it is assumed that _ is normal to the stream surface at the point of interest.

The coordinate system chosen was in the shear surface and the normal to it.

This greatly simplified the equation of stability and allowed using an

integral method to obtain the condition that the imaginary part of _ is

zero. This completed the stability analysis.
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CHAPTER I. BASIC EQUATIONS AND ASSUMPTIONS

In the introduction several sources were quoted that implied that the

production of noise and the appearance of large scale vortical structures in

a flow field are related. By inhibiting or reducing growth of these dis-

turbances, it is hoped that a favorable reduction in the noise measured in

the far field could be achieved. Even though there are multiple sources

with different strengths and frequencies Michalke and Fuch_ 28) showed that

a substantial part of the overall noise spectrum and magnitude could be

associated with the first few modes of the expected disturbances. This leads

immediately to the appropriateness of a stability argument. If it is possible

to determine the modes of instability and the associated flow field causes,

the flow field may be tailored to give the most favorable over-all result.

Before any meaningful analysis can be made, certain basic assumptions

regarding the flow field must be made. The most basic fluid dynamic equations

weigh all the flow properties equally and thus produce a horrendous problem

if all are retained in the stability analysis. This paper will deal with

problems in which the mean or unperturbed flow depends only on space. The

perturbed or fluctuating field may depend on both space and time. It will

be assumed that the perturbations themselves are infinitesimal. This simpli-

fication eliminates the need to consider the magnitude of a disturbance when

writing the equations of motion. It is also assumed that even though the

derivatives and the perturbed quantities are not necessarily small, they will
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always remain finite and will never be of sufficient size to alter the lin-

earity assumption. This was discussed in the introduction concerning the

basic assumptions regarding linearized stability theory. In general a dis-

turbance may exhibit a number of properties that were described by Chandra-

sekhar (52), as unstable, marginally stable damped or marginally stable

undamped. For linearized non-dissipative systems oscillations that are

imposed on a conservative system either grow exponentially in time or are

neutrally stable. If the growth in magnitude of the system is included, the

oscillations can be limited in magnitude by the non-linear interactions that

become important when the perturbations reach finite size. For dissipative

systems the growth of a disturbance may be damped by the viscous forces, but

for certain phasing of the viscous and thermal diffusion, the disturbance

may be driven unstable (See Yih(33)).

Further "assumptions must be made to make the perturbation system re-

duceable. At this point it is necessary to distinguish between the two

methods employed. For the first or standard perturbation method the assump-

tions are: I) Constant edge conditions or edge conditions that may be made

constant via an integral transformation, 2) Constant momentum surplus. This

is similar to the above except that it also eliminates sources of momentum

or energy in the flow, 3) High Reynolds number. This assumption makes the

free surfaces nearly straight so that assumption one is physically plausible

for jet flows, 4) Ideal gas with no chemical reactions. Additional assump-

tions relate to the type of flow. The flow is assumed to be non-dissipative,

fully compressible, with a basic flow that does not depend upon time. Each

f!ow variable may be written as the sum of a mean steady state component plus
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a fluctuating component with zero mean and separable time dependence. Thus:

where q' may be made independent of time using an integral transform or an

assumed form for the time dependence. To limit the complexity of the flow

considered, the flow will be assumed to depend only on the radial direction.

The problem will be solved in the entire plane using an integral approach

with boundary conditions that give finite perturbation energy integral over

the entire space. Because the integration takes place over all space the

solution gives the sufficient condition for global stability. Since the mean

flow depends only on r, the perturbation form in the remaining space variables

is arbitrary. These will be assumed to be complex harmonics with constant

wave numbers.

The higher order terms as well as the viscous terms are dropped for

simplicity. The linearization assumption allows the first, and the second

is possible because the viscous and inviscid solutions have been shown to be

similar in the high Reynolds number limit. It has been shown by other authors

that the effect of viscosity on the perturbation is small except in the vis-

cinity of the critical layer. In the inviscid problem there exists a singu-

larity at this layer. The effect of the viscosity is to reduce the gradient

observed there over a finite region and to reduce their magnitude from infin-

ity to a finite value. In examining the limit of instability (going from

unstable to stable direction), the results should be very similar in either

case. For damped oscillations the effect of the viscosity plays a very impor-

tant role in determing the neutral stability curve as was shown by Tollmein (8)
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The second example uses a Lagrangian approach to the stability problem.

As before the properties of the flow field depend only on the space coor-

dinates. The fate of a fluid particle of constant mass will be considered

subject to the forces that act on it as it is displaced from its equilibrium

trajectory. The entire flow field may thus be replaced by a variable force

field that depends on the relative displacement from the equilibrium trajec-

tory. The particle is identified by the trajectory that it is on at time to.

Since the mass remains constant, the effect of compressibility is to change

the volume of the fluid. The shape of the fluid volume made up of identi-

fiable fluid elements is arbitrary; therefore, it is possible to define a

coordinate system that describes its shape at time t on the initial trajec-

tory and also its shape on the displaced trajectory via a curvilinear

coordinate transformation. It is thus possible to define the effect of a

laminar shear force in the perturbed and unperturbed examples. The result

is that the entire stability problem is cast into a form that depends only

on the relative displacement of the fluid particle.

This Lagrangian representation of stability is,therefore,a much more

tenable conceptual approach to difficult stability problems because the

number of unknowns is immediately reduced from seven to three. The inviscid

equation that is produced is self-adjoint. This results in being able to use

a whole class of mathematics developed for self-adjoint operators to deter-

mine the stability criteria. The viscous equations are not self-adjoint;

and therefore, the results are not so easily obtained. The real part of the

energy must be examined to determine the stability criteria. This method

has been developed for use in plasma physics where the use of the inviscid
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equations and or small relative fluid velocities are applicable. This is not

necessarily the case in fluid mechanics. For this reason the fully viscous

compressible stability equation was developed in chapter three. The assump-

tion of isentropic flow that was carried for all the previous inviscid methods

had to be dropped. Hence, the energy equation was altered substantially.

Two examples were carried because they result in substantially the same flow.

The first is to assume that Che energy integral is a constant throughout

the flow and the second is to replace the isentropic relationship between

the pressure and density with one that depends locally on the entropy produc-

tion. The third alternative of using the entropy production form of the

second law of thermodynamics could also have been employed but it is left

for another analysis not to be presented here.

The starting equations of motion that will be used throughout are based

on the laminar form of the Navier-Stokes equations. These are given as

follows:

_'g = D_ (1-4)

The perturbation equations are written by using the assumption of

equation (I-I) and retaining only the linear terms in the perturbation

quantities. The equation (1-2) and (1-3) are then written:
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+ J_ _ -O (l-2a)

The divergence of the dyadic product may be expanded:

a._(__)= _._,_ __._ (1-5)
Differentiating equation (l-3a) with respect to time gives:

With the continuity equation this becomes:

* a_',J[ _'_ "D" ' . "' j,'i_ffl, t" '_ = 0 (1-6a)i

Expanding the above equation:

_ _ -$ '_ _ " , * (].-7)

t' ' P

The above equation may be further expanded to give the equation:

Where ,_ = curl V and A = d_ . Also from the steady state equa-

tion diem = 0 was used to simplify equation (1-8). Taking the curl of equa-

tion (1-8) results in:

iwt -_
Let _ = e f(_) where w ,.maybe complex, then A = _divm + iwm

curlI-_q--_ _,_-_'__-_)_.i __l_i_.;'._ (1-10)
- )]
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Combine the above coefficients of w to determine the basic stability

equation:

o_:t[.r(7.u,-o.,qe)JJ, _,_,.,_t[ _.,i.:io.r.,_,,a_o_L,,,7)-

--- j0C_;€ ('_,{/:) /- : de"V' t (' I'///0 : (1-!Oa)

The less complicated vector equation in Lmis obtained if some assump-

tions are made regarding equation (1-4). Differentiate this equation with

respect to time to obtain:

From the continuity equation it is possible to eliminate p':
• i

"0 ._. 2 D div _'- -- r/D (i-12)

Find the total integral of equation (1-12):

0___

-" a2ApIf V • (AP' - ') = 0, then:

,.97° Cz --D_"_--- Jl"v _ (1-14)

With this assumption equation (1-8) becomes:

_:rL

Again substituting for m yields:

' '-Y" f _ "" "_ (1-16)
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Either equation (I-i0) or (1-16) may be used to evaluate a stability

criterion subject to the appropriate boundary and initi_l conditions. The

difference between the two is that (i-I0) is the exact linear equation for

inviscid, non-heat conducting, compressible fluids; whereas, equation (1-14)

says something about the type of perturbations that will be admitted. If

Doaks analogy of fluctuaters that are either rotational o_ irrotationa]

are assumed thelz furt[_r simplification of the equations are possible.

£qcatlon (I-I0) for irrotational disturbances loses the leading term and

is written as follows:

i
Similarly for rotationa! perturbations the equation becomes:

Equation (I-16) is similar to (I-18) for rotational disturbance, but

does not lose the highest order term for irrotational flow.

The equations are somewhat different from those used by other authors

because the full compressible, inviscid equations have been used, and the

main dependent variables are the mass flux, the pressure, and the density.

Also the problems solved earlier dealt primarily with rotating Couette flow.

The boundary conditions are of course different because the perturbation

quantities must go to zero as r -_. Since the boundary of the region is

not changing,'the perturbation coefficients must approach zero in a pre-

scribed manner in order for the conservation equation to be satisfied. The

initial conditions are also to be specified in order to have a well-posed

problem.
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The above equations are put into linear perturbation form with the

assumption that all perturbation quantities have the form:

The boundary conditions are rather complex. Since the surface of the

jet is not assumed to fluctuate as a function of time, the velocity compon-

ent and the fluctuating quantities must approach zero as r -= in a pre-

scribed manner.

The velocity fluctuations have conditions as follows:

, i pm i |

Furtherfor Z # 0 P = u' = 0 at r = 0

For % = i p' v' ', , w , may be finite at r = 0

# i v', w' = 0 at r = 0

No condition on P' and T' can be made at r - 0 except the continuity

and energy must be satisfied. The initial conditions are that at time t = 0

the perturbations are finite.

The statement of the problem using the Lagrangian approach will be

left to Chapter three where it will be discussed in its entirety.
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C_IPTER 2. STABILITY OF STEADY FLOWS WITH RADIUS DEPENDENT PROPERTIES

In the previous chapter we outlined the works of authors that con-

cerned themselves primarily with axisymmetric flows. The earliest papers

dealt exclusively with incompressible media such as water; and therefore,

the equations that were used to determine the stability limits were rather

simple. There are several particular flows whose stability has been examined

for a variety of conditions. These are Couette flow between two concentric

rotating cylinders, pipe or Poisuelle flow and the axisymmetric jet. Each

of these flows had been examined experimentally much earlier than the first

mathematical theories that could give some insight on the behavior of the

steady state subjected to a variety of perturbations and boundary condi-

tions (I)(2) As stated previously, Lord Rayleigh was the first to describe

the behavior of the jet and a rotating flow field and proposed several

theorems that govern the behavior of the stability of a variety of more

general fluid dynamic motions. These were stated concisely as: 1) An

inviscid rotating flow is unstable if the square of its circulation de-

creases outward, 2) The flow with a ve!ocity disturbation such that it

has a point of inflection insures instability. The first is known as Ray-

leigh's criterion for rotating flow (4). Karman explained the first law

by stating that a radially displaced particle would encounter an insuffi-

cient pressure gradient to return it to its original condition. Adding

viscosity to the fluid would add retarding force against the particle motion
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and thus weaken the criterion. For the second theorem Rayleigh was only

able to show that the condition of a point of inflection was a necessary

condition for instability. It was not until much later that Tollmien (8)

was able to show that this was also a sufficient condition for the ampli-

fication of disturbances. The inflection point criteria could be related

to the pressure and its effect on the behavior of the flow. The influence

of viscosity on the above discussion changes the conclusions only slightly;

therefore, these instabilities may be regarded as "frictionless instabili-

ties" because the flow proves to be unstable even without accounting for

the effect of viscosity. (Fig. 3)

By considering only amplified or neutral disturbances, the effect of

viscosity is small in that the disturbances satisfy the inviscid equation
o

of motion. This is seen by assuming that I/R is very large in the viscous

Orr-Sommerfeld equation. The effect on these disturbances is small provided

that when the singularity appears at the critical point, the same branch

of the logarithm is retained on either side of the singularity. Lin (9)

has shown that for damped oscillation, the path of integration switches

to the other side of the real axis at the critical point. Thus only ampli-

fied and neutral disturbances can be found by a straight-forward integration

of the stability equation. In either case the viscous layer is thin and

thus the effect of viscosity in the limit on the axisymmetric flow is the

same as for a two-dimensional flow.

Instability of a given flow usually implies that several types of

changes take place after the steady flow has been subjected to an arbitrary

disturbance of undetermined amplitude and wave form. For any system there
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is always a disturbance amplitude, regardless of the restoring forces pre-

sent, that will completely alter the flow field character. This corresponds

to a particle in a potential well that has just been given enough kinetic

energy to escape from the well. Instability may also result from the inter-

action of a steady flow and the perturbation. In this example, the initial

amplitude of the disturbance may be important but its wave shape also has

significance and may determine whether the disturbance will grow or decay.

This is typically the phenomenon that is postulated when instability results

after imposing an infinitesimal disturbance. A flow may be locally stable

as described by a particle on a wavy surface going from one stable state

to another but not necessarily returning to its initial state. Each low

point on the surface corresponds to a local minimum of the potential energy.

Thus, as far as the particle is concerned, stability is determined by a

minimum potential energy. For fluid dynamic aspects the same situation holds

except that the definition of the potential and kinetic energies is much

more complex than for a single particle on a surface. Examples that cor-

respond to each form of instability are (l) a dam bursting, (2) a f!ow

becoming turbulent after a finite transition length and (3) _ flow field

is still laminar but a new solution has bifurcated that satisfies all the

boundary conditions of the original solution. This was the problem that

was considered by Kirchgassner and Sorter (13) for Couette flow.

In this chapter we will deal only with a flow that has radius depen-

dent steady state variables. This is the problem that has been solved in

various forms by virtually all authors who have considered a stability

analysis. This assumption reduces the problem to either a one-dimensional
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or a quasi one-dimensional steady state flow as was done by Lin (9) and

Sommerfeld (56). The differential equation of stability is in the form of

an eigenvalue problem that can be solved for the eigenvalues to determine

the stability limits.

The next more difficult problem consisted in the superposition of

rotating Couette and Poisuelle flows for which the steady state velocity

components were functions only of the radial coordinates. Most of the

above examples involved flows with finite domains, but it was extended to

infinite domains for incompressible flow by Carmi (48). Density stratified

flow was also studied by Leibovich (31) resulting in a Richardson number cri-

teria that was similar to the one obtained by Yih (33) in the approximation

of a viscous fluid in a thin layer between two rotating concentric cylinders.

By assuming imstability Lallas (44) was able to derive a condition for

compressible flow that contained the Brunt-Va'isal_ frequency in an integral

manner. The Richardson number and Brunt-V_isal_ (17) frequency are para-

meters that were derived by meteorologists studying the stability of the

earth's atmosphere and the behavior of large air masses. Both apply to

density variable flows in the presence of a central force field. Since they

appear in other compressible and rotational flows, the universal nature of

the underlying causes for the instability must be involved in the creation

of a buoyancy force.

We will now consider a radius dependent, non-heat conducting inviscid

flow sufficiently far removed from its source so that it is established and

axial changes in the steady flow properties over one wavelength of the

disturbance are negligible. For an incompressible jet, the conditions
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were fully discussed by Batchelor and Gill (20) and the reader is asked to

read their paper for a further discussion. The present will be an extension

of their and others work to a fully compressible flow.

We will start by assuming that the primary flow conditions are steady

and hydrodynamic equation of motion are satisfied. The steady flow in addi-

tion is assumed to be nearly parallel so that the x-dependence is unimpor-

tant.

As in chapter one, the steady state variables are perturbed to obtain

the system of equation that needs to be solved to obtain the condition for

the stability of the stationary hydrodynamic system. The governing equa-

tions are linearized in the perturbation variables, with an arbitrary per-

turbation variable in the form: q' = q(r)e i(_t + _x + _). Stability in

time is desired; therefore, conditions are determined for which m is a real

quantity.

For a jet two forms of instability are very apparent. The first is

observed near the exit of a jet and is the axisymmetric ring vortex that

forms when there is an inflection in the steady velocity. These were

observed by Wille and Wehrmann (21) for a liquid into liquid jet. The next

is an instability of a spiral nature that was examined by Ludwieg (36). The

global nature of the instability demonstrated by Ludwieg was studied mathe-

matically for incompressible flow by Joseph and Munson (39).

The starting equations for the perturbed variables are assumed to be

the non-heat conducting, time dependent Euler equations. The energy equation

used has no dissipation terms which implies that the entropy _nd its pertur-

bations are constant along streamlines. The coordinate system chosen is
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cylindrical:

Continuity: 6t r_ (prv (P w (p,u_=0r_ 0= (2-i)

(3u , 3u, w Ou 3u) OP (2-2)x-momentum: P _t-rvr-_r_--_-_0+'u -_z -- 3z

(Ov _ 0v w0v w2+ av) 3P (2-3)r-momentum: p -_, V-_r + r _0 u_ =--0-7

@-momentum: /aw__ c)w+waw+___g +u Owl= 1_p (2-4)
p_-, var r _ r a=/ .raO

[ - ]Energy: ,_=• _ :f;_v I/_r + ? -" -rP r _ _r a_._r '_ _ (2-5)

The above equations are expanded in a Taylor series for the quantities

p, P, u, v, and w. Only the linear terms are retained in the above system

of equations. Because of the assumption that the flow is nearly cylindri-

cal the steady state velocity component v is much smaller than the remaining

velocity components. Therefore, it is possible to assume that v _ 0 within

the scope of this problem. The steady state properties are a function of

the radial distance only; this allows replacing the perturbation functions

with the fol!owing form:

The circumferential velocity may be written w = r_. The derivatives

with respect to r will be denoted by the symbol D = d-'-r' Df = r _r _

and D*f = 1 d
r dr (rf). An operator that is useful in contracting the equa-

tions is L = _ + u_ + _. Finally, it is possible to define a new variable

zv' = m, the normal mass flux perturbation. The equations of motion are
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then written for the linearized perturbations.

p j_O_') f-_rrL O (2-6)i.L _o .,._,pc._' =

i,,Lu.' .t. _DLL "t (.o[_/_ ",, 0 (2-7)

LLt,'_ - ,°'J_"_ ,.--21_,,o_..(Z'r" .t- D'i"l. "--0 (2-8)

1

L, Li_ 4- 0!. 1:)*(rJ'L_Ir._.t,i.,_tl //lp_z..,,-C (2-9)

Now eliminate the perturbation quantities u' and :]' Then the three

equations are given by:

Ld'l'_ ' - (:$k'l"1' "Lgr2" ) l?- -," (dD_ t" ,_D'l'('r'_')/t')/_. t LD_'fft =o (2-11)

- - ,.Le'_c ,L (2-12)

Again it is possible to simplify the above equations by defining a

new operator B = _Du + %De(rD)/r = DL + _ The angular momentumr

gradient is given by _R = $2D*('rD) = D(r2_)2/r3 and the angular Math number

gradient or the normal pressure gradient is given by M = _2r/a2. The wave

2
number of the disturbance is given by e = _ + %2/r2. It is now possible
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to eliminate the density perturbation 0' from equations (2-11) and (2-13).

After substitution for iLa', equation (2-12) becomes:

7

l- I.,

Equation (2-13) may be rewritten:

Combining terms gives:

Ut_t = L (l)_p-N)m. _m_ - l_0"_ (2-_3')

(_z;.£),_ .-_._tL_ , _O.'rD_ =Zg-_.<lt--2,_S_4,-(2-14)

. _L_

This reduces the number of equations and unknowns to two. The pres-

sure perturbation, _, may be eliminated by substituting for _ from equation

(2-13') into equation (2-14).

_£. ) 1, ML-B_-'-- (J_I.,4..-M)I'X_i (2-15)

M b ,_ /n
A r#lL

In order to determine a sufficiency condition that is applicable to

the most general situation that can be described based on the initial assump-

tions, a new variable is defined given by L '3= m. Divide through by Po and

substitute into the above equation; then divide by the coefficient of

D L D_f . Now the equation becomes:

DE Z_:%
Let C = _- + --r

-31-



L C_

(2-16)
..L

The mean flow is axisymmetric but the disturbances may be either

axisymmetric or have a circumferential distribution. In the above equation

are several terms that represent physical quantities that are present in

flow for which there is a force field. The term (M - D%nPo) is the numera-

tor of the Vaisal_-Brunt frequency. This frequency was first observed in

the calculation of the stability of the stratified atmosphere. Vaisala

showed that in order for the atmosphere to be stability stratified the

balance of the gravitational force and the bouyancy force must be related

in a particular manner. For adiabatic flow the relationship results in

particular distribution of the temperature, density and pressure with alti-

tude. This distribution results in a decay of the temperature known as

rate. The terms _R.N 2 and C2 combine to form the Rich-
the adiabatic lapse

9

(_R+N-)iC 2. This number relates the stability of a flow that
ardson number

has a velocity gradient in the direction of a force field. In this case

the force field is generated by the centripetal acceleration.

The above equation differs from those of the authors that have assumed

density stratified flow in that the speed-of-sound becomes an important

parameter in discussing the behavior of the stability of the flow. Here,

the operator A is a complex quantity, but for density stratified flow this

operator reduces to the expression -e, a real number. As a result, the

stability parameter must be more complicated than those derived for density
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stratified flows. The most recent has been by Lallas (44) Though he starts

with the same basic equations, he uses several different transformations

that reduce his dependent variable to a complicated expression of the velo-

city, pressure and speed-of-sound. In our case, the dependent variable is

simply a function of the normal mass flux. Therefore, the expressions of

stability must be somewhat more complicated than his. After a substantial

amount of mathematical manipulation we derive the result:

i + _,z

z

,. ',P,,)>o
The above does contain all the terms of Lallas plus a few extra ones.

Stability is an intrinsic quality of the flow field and its limits should

not be altered with a different choice of dependent or independent variables.

Since the two analyses have the same initial starting point, the inviscid

equation of motion and appropriate boundary conditions, the two results

should be identical.

Let : C = Z

Then equation (2-16) may be written in integral form:

!

I

The derivatives D, and LD, are the ones that lead to diffi-

culty. Since they are given as a derivative of a complex quantity, the

first term may also be written as fol!ows:
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The last integral may be integrated by parts to yield:

"<. l'c _" _

Since the integral is to be taken from r = 0 to r -_, care must be

taken so that the value of r l'_12 C -_ 0 as r -__. This implies that regard-

less of the value of C/A as r -_o=, I'_I2 must go to zero as I/r. Therefore:

c q_f,-_,_.t_3_o-2,f,_,+l_,-_.-J:_ 1,._._, D_')_"
The condition at r = 0 forces the value of _ to approach zero as:

Z_

If

The second integral is written as:

Equation 2-17 becomes:

-_%-__'_'__'__+f_ I-_ _ _"-_.-'/-)'_-'c_.._--
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Integrating the first integral by parts yields:

where

i Lr Then the above integralIDOl2div
The above integral becomes _

relationship becomes
2

$i_i_ ___ j_l_i_/- __ _i-, _) ,L(,, _'_,{. )

C L
There is a common factor given by Z + _ (DLpo - M) in the above equation.

Find the imaginary part of the above expression to determine a condition

that will yield gI as a common factor:

_."la - - c_77_J_

i i z _.

._ _j'_ (_ -_,-_<,.)- _-_ ,- _ _ _-Q_I'-

I

The imaginary part of the above integral becomes:

' "- • " -" /£1 ' ILl o
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The last integral could prove troublesome because even though TDY* +

y*Dy is real, its sign and magnitude are not determined. By forming perfect

squares with the term in the first integral it can be shown that the contri-

bution of the last interval is less than that of a comparable term with

!Y[ID*_I as its multiplier and a positive sign. Elimination of the last and

first integrals simplifies the expression to one of proving that the value

of the integral of the second term is greater than zero for al_ r to guaran-

tee that LI is not zero. With a little rearranging it can be shown that

the condition to guarantee that the flow is stable is first to prove that

only a value of LI2 < 0 can make the integrand zero and that the integrand

of the second equation is positive, i.e.;

If the thermodynamic equations are examined it is possible to show that:

which is the gradient of the entropy from streamline-to-streamline of the

steady state or mean flow. The method used to generate the distribution is

left to the imagination of the reader for a particular problem. The only

assumption on the steady fl_¢ is that the effects of the shear do not affect

the perturbation quantities:

The above criterion for stability differs in sign from the results

of previous authors because the choice of the pressure operator A was chosen

to have the opposite sign. In the incompressible limit the results compare
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with those of Fung and Kurzweg. The fully compressible result is somewhat

different from that of Lallas (44) because of the inclusion of terms that

relate to the entropy gradient normal to the streamlines. Lallas used the

normal velocity perturbation as his final parameter, whereas, the normal

perturbations mass flux was used in this analysis. This recasts the equations

to one in which the changes to a fluid element as it moves from streamline

to streamline are included. The final stability criterion is then written

in terms of the primary quantities. The effect of rotation is included

directly through the Rayleigh discriminant _R and through the V_is_la-Brunt

frequency N2. In the latter an acceleration field is produced by the rota-

tion and as Hiles (23) and Chimonas showed, this provides an effect that is

similar to having a centralized force field such as gravity. The additional

terms involve the ve!ocity gradient, the square of the circulation M and

the entropy DS/Cp.

t

The above should be taken in the context that the definition of effects

the siomn. As stated before, the above condition for nonaxisymmetric dis-

turbances reduces to the criteria of density stratified axisymmetric and

non-axisymmetric flows and also reduces in the limit of incompressible non-

rotating jets to the results of Batche!or and Gill (20) if the starting point

of the analysis is equation (2-14) the fina! differential eigenvalue equation

in the stability variable m. The expression that a point of inflection

with respect to the steady state properties ar_ the wave numbers of the

flow are given by the term D, (_. For the incompressible flow this reduces

I
\_/

to D , and this recovers the condition regarding points of
_ + £2/r21
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inflection. One of the simplest problems should be that of two uniform

flows separated by a contact discontinuity. In the two "outer" regions,

the differential equation of motion is given by a reduction of equation

(2-14) or (2-17) in the transformed variable. For no rotation this reduces

to:

The above is a Bessels equation if the geometry cylindrical and an

equation for exponentials if the surface is straight. In order to obtain

the condition across the surface one may integrate or transform it directly:

Fz_s ;,- - LD. .

., <i., _ i= m <'<:* <,,k _ _'c+

Because the flow is assumed constant on either side of the boundary,

the derivatives must be equal to zero and the condition reduces to:

where

The solution must go to zero as r -_ 0 and as r -_oo. For a cylindrica!

surface, this condition is not sufficient to eliminate a constant for the

region r > r . Thus an additional constant such as the Sommerfeld radiationo

condition must be imposed to reduce the equation. Across the boundary the

displacement of the surface must be the same. Thus, the second condition

is that:
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<2-21)
The outer solution is written in terms of the Hankel function or cyl-

inder functions:

)
Condition (2-21) gives the condition:

or

And condition (2-20) gives:

t_. .

M"

The above transendental equation is to be solved in such a manner such

that w is real. Even for this very simple problem the introduction of the

cylindrical geometry leads to a very complicated problem that cannot be

solved for the nonaxisymmetric case _ # i. If _ = 0, ,_= I, and the above

condition becomes:

. : 7: J, _1_
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Even in this very simplified statement a solution is possible only for

the two dimensional limit. In chapter four the same problem will be repeated

using a potential inner and outer flow. It will show that for the cylindri-

cal geometry there are regions of stability and instability if there is no

central force or acceleration field.

This example shows that as soon as more complicated shapes for the

discontinuity are assumed the equations become most difficult to solve

analytically. Therefore, in order to obtain any information regarding the

stability of a flow field regardless of the frequency, wave number and the

numerical form of the steady state variables, the results of a simplifying

analysis is required.

No_ all forms of stability are necessarily related to the growth of

a disturbance in time. The more likely condition for some problems is that

a disturbance appears at a point in the flow field and due to the inter-

actions that occur between it and the steady flow the disturbance grows

as it is convected with the fluid. If the steady state properties depend

only on the radial distance from a centerline then the differential equa-

tion of stability retains the same form as equation (2-16). The difference

is that the operators L and A have real and imaginary components of the

axial wave number _ rather than the frequency. For this problem stability

in space may also be ascertained by using a difference energy approach as

was done earlier in the chapter. The new definitions of the real and ima-

ginary parts of the operators must now be determined to find the new criter-

ion.
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The procedure that is used follows directly from the above analysis

whereupon we arrive at the integral relationship as before:

£

The above equation must be divided into real and imaginary parts. For

stability in time DL = DLR, but for stability in space LI = U_ I and the

derivative with respect to r is not only a real number. The additional

terms that must be evaluated are then given as follows:

C "= "O/.. .€ .2_c_.____"= _L 4cm(r.D_. ,_ J2..Cg(_ = "_C_:_" Z._-?-C 4i-d7 Zb_.t..
_- Z¢ - "--_ -'--_ z -

c

z _//r_ =z_._-_x _ "__

_= L_4,: _ LiAm _ (_-.zA,_-,4,I._.)__q

A& = i1__1 z
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In operator form the imaginary part of the stability integra! may be

written as fol!ows:

"_" 14 1" ' i+.-_IL

;2_ C.- - _
__ ..__L4 ....(L_4+r -L_.4p ) . C/_'I-,_/_-)(_:4+'-c_<4r) r /-Z /'z ) >iLA I_ . - 7. ""

+ ._-'-_,-L_-_L_+J_- (k_.,tp-,_t)(,Vl+% ) + _,_ -c,+.4:_,+1=_z'j':_L_-2.+_,:_(

J +.f"[ - +.o-,.,+,-- -,+oJt/+l z" I+I z.. +

["+"t>++++- ++++.7j+ = °
In order for the above integral not to admit any _I other than zero

the sum of the above integrals cannot be zero. Assuming that the sign of

the first integra! is positive, the sign of the sum of the remaining integral

must be positive also. This will prove that _I can only have a zero value.
2_

- Z. P"
.,

By this deduction one can already show that _I is a multiplier of all

the above integrals. Thus, if _i(Ii + 12 + 13) = 0 and II + 12 + 13 _ 0 then

_I = 0. The sign of the integrals is unaffected by the factor IAI2 as it is

positive. Similarly:
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This equation can have a zero if the multiplier is zero.

__,___,__) _/;_ --_L_t__2_L_)/c__ o

" _ _)/_ -_2L_/u _] _

The solutions for _I for which the above argument fails are given by:

Z,_/4z- " i._ __ L .
- I-*h

If M2 > I, the value under the square root is greater than zero and

thus there are real roots for _I" This shows that there are always unstable

modes for supersonic flow based on this criterion.

-lL9 (L:,_- _._) _LI_ (L_ __L,_) ' t,,4'_)(

t d__. - _ _ + /I_PLr - P_/_r

The condition that czI does not satisfy the solution required to obtain

a zero in the denominator, allows multiplying by LIAR - AIL R.

f l ' qI LI _- + I ' - i "

_:_. (,_?__/_-) _- G,_, lp_,:_/, -) _ _,__L_. _-_u_(__._,,_:)!
ill ,-

•t- (D_,-,.x_-#"l) ( I_z.PLz -- AT_Die.) _/ C'
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The above equation may be evaluated by dividing by LI = _iU and evaluating

the remaining terms:

(_-_;_o_)L_-_-__+c_-l;-_")(_'_/,-)]/c'_'__'-_-_,Z)[-

The above equation is a rather complicated representation for the

stability in space of the disturbance that was initiated at the point X = O.

In order to obtain some meaningful results the above is restricted to the

axisymmetric case (i.e. % = 0). Then the expressions simplify to the fol-

lowing:

- ., ,l__ ) -_"
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The condition of stability acquires that ¢_I= O. The above equation

then becomes a function only of _R and _.

>++7"++'"Lm,-,_,-%")--,_"<+._-,.? ,'..'_)]*.'z ,..o'..'-+-(,--'-'-' " " "_'_' "- t..t-O.-_" i 1._.,..+-_+,.1)

-,"._.>I+,A," _ -1_-'_]+ t.,_. ' + I++++'_,,)' _ 0
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The form of the criterion for this type of a perturbation history is

similar to the one that is assymtotically stable for large times. The same

basic parameters govern the stability; namely, the buoyancy and angular momen-

tum given by the expressions _R + N2 and the entropy given by the expression

D%nPo - M. The expression M(D%n0o M) also appears. This parameter is

reminiscent of the Brunt-Vaisal_ buoyancy frequency and must be negative for

static stability as was shown in the stratified atmospheric problem.

Also appearing explicitly for the first time is the Mach number para-

meter (M2 - I). Since there is a zero crossing for M > i, there may be an

unstable mode associated with it for supersonic speeds. In a paper by

McLaughlin et al, it was observed that there are disturbances or modes of

instability present for the supersonic jet. There are also large scale

structures present in the stream that were observed by Scharton and White

and associated with sources of the emitted noise. This simple analysis shows

that for each wave number dR, frequency w and steady state velocity and pres-

sure fields, there may be instabilities in space even though instabilities

in time might be ruled out.
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CHAPTER 3. GENERALIZED CONFIGURATIONAL STABILITY ANALYSIS

The concept of stability concerns the behavior of an initially sta-

tionary or time independent state subjected to an arbitrary perturbation.

The system is observed after the disturbance is applied to see if it returns

to its original state. If the magnitude of the disturbing perturbation

is arbitrary, there will always be a set of perturbations greater than some

limiting value that will produce instability. A discussion of stability

which included finite perturbations to find this limiting value results in

attempting to solve a set of non-linear partial differential equations for

which even the existence of the solutions has not been proven. Therefore,

the complex equations are linearized by the assumption of infinitesimal

perturbations. These equations cannot describe the full non-linear problem,

but they can establish conditions for which the perturbations of the sta-

tionary quantities may grow in time. The non-linear terms thathave been

ignored may change their behavior _fter the magnitude of the perturbations

has grown to finite size but for the purposes of the analysis these are

ignored. Even the linearized equations are most difficult to solve, but

they allow the use of some powerful mathematical tools to determine limit

values for the solutions. For swirling flows, this simplified method was

used by most authors with the additional assumption of a steady flow with

- finite boundaries. The stationary flow was further assumed to depend only

on one space variables. Carmi (48) verified that the standard analysis of
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finding a stability criteria could be extended to infinite domains provided

that certain additional criteria were met. The lemmas stated further limit

the problem by adding more restrictive conditions to the behavior of the

steady state velocity profiles as r -_, so that the integrals of the func-

tions always remain finite.

The previous chapter used a modified energy approach to study the be-

havior of an axisymmetric flow in which the steady state variables were

functions only of the distance from the center line. This is indicative of

a flow in an infinite straight pipe or of a high Reynolds number jet far

from the exit as was shown in the introduction. The appearance of ring

vortices near the exit of _ straight jet and the birth and decay of other

large scale structures would indicate that transition from a top hat velo-

city profile at the exit to a normal distribution shape downstream might

have some effect on the overall stability. Real fl_ fields have finite

dimensions; therefore, their properties are at least weak functions of the

other coordinates. For particular physical problems, the axial gradients

are large, thus the analysis of chapter two may not give the true stability

of such a flow system.

The stability of more general problems is derived via a further exten-

sion of the energy approach. Since for moving fluids the stability is

determined by observing the behavior of the streamlines of the steady flow,

defining a coordinate system based on the stationary streamlines would be

advantageous. These streamlines are found by defining two stream functions

J'! & _2 that satisfy the equations and boundary conditions. The gradients

to surfaces of constant _. are found to determine the ve!ocity vector:
l
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= ! (grad _i x grad _2)P

It can be seen that the intersection of the constant surfaces of Y.
I

form a system of streamlines or flow trajectories in space. A coordinate

system is established that is fixed to a particular streamline and the space

variation of all flow properties are determined relative to it. This is

shown in the sketch in figure 3. The perturbation quantities are defined

such that each term has the form: (See the sketch for definition of _, t,

r , etc.)
o

All the steady state variables can be defined as referenced to this

streamline, by using the initial position _ and a vector relative to this
o

position, _. This vector is a function of the position on the equilibrium

trajectory and of course time. Thus, the linear perturbation equations

for the flow parameters at some point not on the streamline are given by:

The remaining parameter is obtained from the energy equation and the

assumption of an initially isotropic flow.

- _ _ = 0

This equation gives the perturbation for P to be:

" : t-
-- _ _oThe gradient operator is given at r + _ by the expression _ = &o _ . .

O
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The steady state quantities are evaluated at r along the equilibrium tra-o

jectory to obtain an equation that depends only on the local displacements.

In the Lagrangian representation, referring the steady state quantities to

makes the steady state properties depend only on _ . These definitions
o o

are substituted into the time dependent equations of motion as outlined

by equations (3-1) through (3-3). The equations are written with the mater-

ial derivative because it is defined as the derivative along a path line.

With the equations of motion in divergence form, it is possible to see that

they concern the local and convective changes along a stream line•

E eContinuity: _ _ V = O (3-1)

Momentum: _--_t_ -_ _4 L _ _ _ 7_] = O (3-2)

Energy: _ z k (3-3)D_

By focusing our attention to what happens to an individual fluid par-

ticle in the course of time, it is possible to determine if a particular

flow configuration is stable or not. The motion of each fluid particle

is a function of the particle parameters and time. Once the properties of

the flow field have been given as a function of position, the position vector

describes all the properties of the particle Therefore in this repre-O • '

sentation the location of the fluid element is the governing variable in

determining the behavior of the flow:
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The vector ro refers to the position along the equilibrium trajectory

at time, t = t . At this time _ = O. At some later time the particle isO

given by the vector r and _(r ,t) where r is the position it would have

on the equilibrium trajectory and _(T°,t) is the distance to the displaced

trajectory. By using the representation that T° and T ° depend on _ parti-

cular particle of _ fluid, the equations assume the Lagrangian representa-

tion with the steady state variables independent of time. Therefore, the

solution of the problem is the position of the fluid element as a function of

time. The equation may also be put into an Euler representation by evalu-

ating the flow properties at each of the positions _ and T° for all tra-o

jectories and as functions of the space variables.

These definitions apply only for small perturbations, and therefore,

are useable to find the hydrodynamic stability of stationary flows subject

to infinitesimal disturbances. The growth and decay of the perturbations

for large times determines the character of the stability of the system.

Stability thus can be determined for a problem by studying the assymtotic

behavior of the solution to the stability equation. This allows one to

establish stability limits or give a more general stability criteria in an

analytical manner, even though the general or a particular solution of the

governing equation is not known.

For most problems of interest, the method is possible because the linear-

ized equations are used. This is why much of the work of hydrodynamicists

has been through the analysis of these linearized equations. With respect

to their validity it can be stated that if the perturbations are small the

. non-linear terms are of second orders and may be neglected. This is true
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even though the non-linear terms involve derivatives and these in general

are not small, but there is sufficient experimental evidence that their

elimination is supported by the available data.

The application of the Euler equations (3-1) to (3-3) involves a fur-

ther assumption that the effects of the viscosity and heat conduction are

not important to the initial growth and decay of the perturbations. This

is assumed to be true because the flows that are considered to have small vis-

cosity behave nearly inviscidly except at a critical point r = _ wherec

the disturbance propagation speed equals the local magnitude of the velocity.

As far as the amplified disturbances are concerned, the effect of the fric-

tional forces is negligible in the limit r - r . It is also known thatc

neutral disturbances satisfy the inviscid equations, but that the singularity

at the critical point must be examined more carefully so that the solution

remains on the same branch on either side of the singularity. Damped dis-

turbances require the introduction of the dissipative terms, but since the

limits of stability are obtained in this text by the exclusion or non-exis-

tence of amplified disturbances, the dissipative terms may be dropped. The

neutral stability limit so obtained is then a sufficiency condition that

amplified disturbances will not exist.

Substitution of the assumed perturbation quantities into the full

momentum equation (3-2) gives the equation for stability. Firs_ evaluating

the substantial derivatives one has:
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f'P = C_'_--V_- _)r_?_-_:_( ,.- _-___J =

The momentum equation at r + _ is then given by:

_00._:_ _8_; _"
" - ._ lP,_.) _, v_) -rd- _/°-

Makinguse of the momentum equation and the equation:

= V(f. vPJ r _. _<pT._"e/)_. v'f':<c_',,'£)
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Thus the equation has the form:

where F(_) is the sum of the pressureand inertialterms,

The above equation shows some important differences from the equations

of Solov'ev (42) and Frieman and Rotenberg (43), that is, the appearance of

-k

the term&P x (& X _). If it can be shown that the pressuregradientand

the curl of the displacement vector are parallel, their equation is reco-

vered.

Equation (3-4) is the linearized perturbation equation that must be

evaluated to determine the stability of a stationary flow with the steady

state variable P, p and _ specified. The equation is a complex vector

equation that can be reduced to a scalar real equation by multiplying it

with _ , the complex conjugate of _, and integrating over an appropriate

volume.

We will begin by examining the convective and pressure terms. The

expression _ • grad 7Pdivg may be replaced by the equivalent expression

div [vP_* • dive] - 7Pldiv_[ 2. The total divergence integrates to zero over

a domain with _ equal to zero on the boundary, and the remaining term is-n

equal to the potential energy of a compressible fluid element that oscil-

lates as it travels along the trajectory.

It is possible to evaluate the pressure and convective terms by expan-

ding the divergence term in the equation of stability and by evaluating the
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gradient of the pressure in terms of the convective momentum. Thus:

The _bove terms are multiplied by _'" and interpreted over the boundary

with _n = O. The pressure term is:

The steady state momentum equation is given by pa = -AP. This leads

to the equation:

The expression 7 _'. (p_ • A_) may be integrated by parts and using the

fact that div 0_ = 0 yields:

J 76_,,. _<j cox -_ _ ,,>l_'#"_6zt" -

This leaves the terms p_ ( • Aa) + (_'" •"a)( • grad p) unaccounted

for. The last term is part of a vector cross product. Expand (7 " Aoa)

in terms of factors.

: _._ _<__z-T) - _.,<<,,,c..-_.<<,<,.,_.-'__<,,.<rs_z)
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Since time does not appear explicitly in the above equation _nd since

the equations are linear in the dependent variable 3, it is possible to

eliminate the dependence on time by use of either _ transformation on time

or by assuming that the time dependence is separable and can be written in

the form _ = e _(r). This changes the form of equation (3-4);

- (3-5)
This equation is multiplied by _* and integrated over all _ to obtaino

the equation as indicated below:

(3-7)

Integration by parts shows that the second is real. Thus:

Stability depends on the growth of the arbitrary disturbance _ with

time. This condition is satisfied only if w is real. Equation (3-6) is

quadratic and can be solved for w. Only the solution for large time is

required, thus all the needed information is obtained from the sign of the

discriminant.

[ $_(i_ _).__'_ _J_l_ J_(_)'._C._ _/ 0 (3-7)

In order for a steady fluid dynamic system to have internal stability

it must satisfy the steady state equation and the stability equation (3-5).

The stability equation deals with the behavior of the steady state fluid

elements subjected to infinitesimal perturbations. Apparent changes in the
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motion will be observed if the particles do not return to their initial

paths but to new ones that can satisfy both the steady state and perturba-

tion equations. Changes of this kind can be observed by the introduction

of disturbances into flows that result in the appearance of vortices in an

irrotational flow due to the pressenceofa lifting wing, the formation of

whirlpools and other similar phenomena. In most of these there is an initial

displacement of the streamlines such that _ • _ = O. Perturbations that

satisfy this criterion are the ones that introduce rotation into the system.

For a perturbation that is parallel to the velocity vector _ × _ = O. This

would leave only the gradient terms in the perturbation equation, and this

problem would reduce to potential oscillations about a given streamline.

The remaining terms act like a potential function. Thus, stability is

achieved if the potential energy attains _n absolute minimum or a local

minimum for infinitesimal oscillations. These are not as interesting as

the others that occur in nature, so in this section only the perturbations

normal to a stream surface will be considered.

For disturbances whose normal vanishes on the boundary, the integral

of _'_. F(_) is real because the operator is self-adjoint. The first term

in the discriminant is real and positive for all velocities _ # O. If _ = O,

the stability condition reduces to determining that the potential energy

given by _'_ • F(_)dt > 0 for all arbitrary displacements =_ that vanish

on the chosen boundary for the steady state flow.

The integrand y* F(_) is given by:

= "• _ . <38)

• -
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The condition for stability given by equation (3-7) may be simplified

slightly by assuming that the flow is between two stream surfaces separated

by a small distance 6. It is known that the first term in the stability

condition is positive by definition. Therefore, a restrictive condi-

tion for stability is to assume that the remaining integral over all appli-

cable space must be positive for the square root to have only positive

It is the purpose of this section to show that there are more

general conditions than the ones derived that allow the steady flow field

to depend only on one of the coordinates.

Consider a flow between two closely spaced stream surfaces for which

the distance between them depends on the axial distance. If the velocity

vector is not alligned with the _xial direction, then both metrics hI and

h3 must be functions of the axial distance. The metric h3 is a constant to

the order of the approximation. Equation (3-8) becomes:

- "-; Jt"aJ

:' ";" ) d_'a_' :13., 9,)
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It was shown earlier in Chapter three that the basic perturbation

displacement equation for an inviscid, non-heatconducting, compressible

flow may be written

In order to obtain the above it was assumed that the relationship between

pressure and the density is given by

.4? i d
Jc

The above equation is valid for these flows for which it is possible to

divide the speed of sound and integrate the above energy equation directly.

An integral for the momentum equation exists.

The second law of thermodynamics states that

Td5 tPd, =d u.-v4P

If the fluid is assumed to be thermally and calorically perfect, the above

integrates to:

The equation of motion given above states that the quantity PIpY must

be constant along a streamline for the result to apply. The remaining con-

dition,ds/dt = O, states that the exponential is a constant in the direction

of the streamline. This is equivalent to stating that unless there is a heat

loss or gain associated with the motion of the fluid element, its entropy

remains constant. Therefore, under the assumptions used to construct the

stability equation, entropy gradient normal to the direction of motion are

acceptable.

-59-



The coordinate system as defined relates the properties of the trajec-

tory. The velocity vector is in the direction of the tangent vector, the

other vector in the stream surface is in the direction of the principle

normal line and the _ vector is in the direction of the binormal. This

means that the derivatives of the unit vector satisfy the Frenet equations.

Thus, only particular combinations of derivatives of the unit vectors are

required to describe the behavior of the curve and thus the derivatives

of the metrics must be related. The describing quantities are the curva-

tures and the torsion of the velocity curve.

The first term in the expression of stability (equation 3-7) is posi-

tive; therefore, a more restrictive stability condition is to assume that

_* • F(_)d_ > 0. This also allows examining disturbances that are real

only. The above is the general stability equation for arbitrary small dis-

turbances of a flow with _ = 0 on the boundary.

The above expression is real as was shown by the Hermitian property of

the inviscid operator. The problem must be examined on a term by term

basis to find the criteria for a particular flow. Examination of the fur-

ther details of this problem will be left to the discussion in chapter 4.

Up to this juncture we have dealt only with the stability of flows

that satisfied the inviscid Euler equations, and have restricted the analy-

sis to those systems for which amplified or neutrally stable perturbations

are possible. The effects of viscous dissipation do not always lead to

greater stability compared with the inviscid flow as was shown by Tollmein (3)

for boundary layer type flows and by Yih (33) for the narrow gap rotational
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Couette flow. In order to analyze the effects that the frictional forces

will have on the disturbances, it is necessary to include them when deriving

the equations for stability. For incompressible media the work of Reynolds

and later on Orr gave the fundamental results that the viscous forces can

be important when compared to the inertial force. The stability limits

obtained experimentally were later computed for simple incompressible flows

in a more rigorous mathematical manner by Serrin (50) Prodi (15) Velte (ll)

and Sattinger (3) among others. These were based on the growth of an infini-

tesimal velocity disturbance. Their stability equation determined the energy

difference function, K, via the integral equation:

= - _ (3-10)

It can readily be seen that extending the energy difference integra! to

include full compressibility would be a formidable task. Another approach

is the configurational stability method that reduces the number of unknown

dependent variables to only the displacement vector, _, relative to the

equilibrium trajectory. It is more suited to determine the stability of a

system to small disturbances. The difference of energy is a positive

dK

quantity; thus the condition _ _ 0 assures that K - 0 as t -_. The fully

compressible viscous problem of configurational stability is treated simi-

larly except that the conservation form of the equations are used to elim-

inate the perturbation equations as a function of the displacement of a

particle and the integration takes place over all the individual particles

along an equilibrium trajectory. These fluid elements are defined by their

position vectors _ and 7, where _ depends on the particle. The perturba-o

tion equations are then obtained and an energy integra! approach is developed.
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Because the addition of viscosity the entropy production now changes

the energy equation to:

DT J_
t _-_ = _;grad u - div "_ (3-11)

where

._I :)-_ r Dcj_) is a symmetric tensor.

If the heat transfer rate is small, then the entropy production mechan-

isms are the shear stresses. The energy equation has an integral for Prandtl

number equal to one that eliminates the need for a complicated representa-

tion of the relationship among all the thermodynamic variables. This inte-

gral requires that the total temperature be constant. This assumption is

valid approximately for more complicated flow fields also and is given as

follows:

2 (3-12)

One may also assume a thermal and calorically perfect gas and use the

thermodynamic pressure-density relationship to derive a relationship that

can account for entropy changes.

'= _'t_ ,!t d._ ,,.

where the exponent C is now governed by the magnitude of the entropy

production. Thus :

dP= -ad:P P
(3-13)

The perturbation quantity defined via equation (3-12) is given by:

1 \
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The perturbation of the density is determined from the principle of

conservation of mass and the pressure perturbation is determined from the

conservation of energy.

- - -'_ _" ? _ " - V. v,i7_ _'7_ -1-
! -'#_ P'

:_: j ,._?,

p = - dZz.

The viscosity perturbation depends on the temperature of the medium.

l---,--"_'/'_ ' "7"_ T ' m,' 'T '
,,L.{ _ --_-/ _ l '4"1"- T"

The temperature perturbation is obtained from the equation of state:

P = ¢' 7-
hence:

i

From the energy equation the above formula becomes:

The equation of motion contains the divergence of the sheer stress.

Up to this point, the divergence operator has not been defined. The contin-

uity equation also contains the divergence operator but all the remaining

terms have been previously defined. The continuity equation is written

as the sum of the substantial derivative of p' plus pdiv_. The substantial

derivative has been evaluated to give:
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This gives for the continuity equation:

which is evaluated at _o + _:

d,_ +¢'_e __:_) +t'_l'_'' #'_:'_"_'_ _(¢'_ =°__ .- V--
The above equation may also be written:

-_ _ , _ i ._ •

This leaves for the divergence operator:

We consider a continuum with identifiable material elements that fill

a volume T at time t . At some later time t they will occupy the volumeo o

T. The volume element will be displaced from the initial position. In

the course of the displacement the volume element will be displaced rela-

tive to some reference element within the volume. If we n_¢ assume that the

displacement takes place a!ong a path displaced from the original by the

vector _(_ t) The new deformation tensor will depend on the relativeO i

distortion of the volume element. A material point defined at timejt ° )
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relative to a globally defined cartesian coordinate system is given by:

At some later time this point will be given by the vector:

The base vectors in the coordinate system moving with the volume is given by:

*

and in the initial frame they are:

In the above, _. are the base vectors in the cartesian reference systeml

fixed with the space. In the displaced coordinate system the vector _ +

is given by:

In analyzing the displacement three coordinate systems are needed to

define the position of a material point P. The coordinate system fixed to

the point P is a curvilinear system whose deformation defines the rate of

strain tensor.

Now define, a, the local distance relative to P by P ' . Then the
0

vector _ _ = d_ is represented by the form: _'_ = _ _L
o _ o

and the length of the elements is:

= =
where a.a are the metric coefficients of the curvilinear coordinate system_j

_ to. Similarly it is possible to form the vector relative to _ by:

- _ ,_:

The displaced point in the moving coordinate system is defined by:

_ds)Z= d, .dy -_-__dzj
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rl iLet _ = - _, denote the components of _ relative to the basis _ by u and
i

components relative to the basis _. by w . Then:

Then the derivative of _ is given by:

oX d,-b,

Hence as was shown much earlier:

! !

The perturbation strain given by: g ij gij = 2__ ij is given by:

5":, _ .)XJ "+ '

We have already demonstrated that the left hand side of the equation

is self-adjoint. The shear terms give the result when multiplied by _

the solution of the adjoint equations',

,?

The full equation is multiplied by _", the solution of the adjoint

operator M and integrated over all _ . The nonviscous equations lead too

Hermitian operators that give real integrals. As a result the stability in

_ime could be obtained by solving for the real roots of the quadratic equa-

tions on m. The full viscous equations must be treated in a more extensive

manner. The individua! operators are evaluated via a generalization of
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Green's theorum stated as follows:

where P is an arbitrary tensor function. In the present example _ is multi-

plied to an arbitrary tensor quantity and integrated over all ro. Integra-

ting by parts and making use of the conservations principles gives:

j._ • ) _ •
For these results it is assumed that on the boundary the components of

normal to the surface is zero. For most instances this integral will then

be equal to zero if the divergence theorum holds. Other integrals are:

I_-'- .. ):_,2 J,'" '.v- _,(vvi v +_- _j" -" _-_v . ,_ dc - ..>;"z,-_-" _--'o.,-(,, .v_,.v

-v._<>_)-_,_-] J" 1"_-' : -_")-=2,."&- V_l"_" -.... (V-'7_-,.,-_ _ _1;-t"

The pressure perturbation is integrated by parts to give:

E.... _-'_--( 's _"-') i_.[,+_:V

" ) j - j

But the total divergence over the volume is zero because n is

assumed to be zero on the boundary. Therefore, only the last term in the

integral expression remains. Similarly:

-67-



The first viscous term is:

"._7. '- ( v-V -V, v, -.o_ ..,_) - 7z-(_'._'Z'.v

-] J:. L J_,. • ._ _7;i : ,._"_"

The second viscous term is given by:

Finally the integral involving the double inner product must be evalu-

ated on a term by term basis.

The displacement energy must be real, but the operator that defines

the shear terms is in general not symmetric and therefore not self-adjoint.

The stability limit must then be obtained by finding the real part of the

shear operator and adding it to the energy difference obtained from the in-

viscid equations to find the stability criterion. This is what was done by

Sattinger (3) in showing and verifying that the stability results of Serrin (50)

were true for more general problems. The use of the solution of the adjoint

equation was necessary because this al!ows using the mathematics developed

for the Fredholm alternative in Hilbert space. To obtain an approximation

to the eigenfunctions w of the integral equation determined from the above

system.

The general problem need not be solved and only real displacements are

necessary to determine a solution. This simplifies the mathematical approach

greatly, and allows using the real part of the displacement operator equation

without restriction. The individual integrals within the shear operator

may be integrated to determine the adjoint equation.
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Thus :

,,/

The boundary conditions are such that the surface integral goes to zero.

The first term under the integral is equal to the trace of _,_ • VEsym

an imaginary quantity. The second is equal to:

V = _I=¢L/_ Ve _,_z /

The above has terms'of the form_* • OX - _._ _gi.)_D_q_x ._ "_)

But _,, p "C_, _ _, where V_ " _* is a sy_etric tensor, Therefore,

only the symmetric part of tensors remain:

The term _'" "_ • _ "_ can be written as:

The integral of this term is-f_. V- [(_.'_)F_'_j,d_. The surface

integrals are given as boundary conditions so that they go to zero.

This shows that all of the terms in the shear stress perturbations are

either imaginary or complex. Combining all the terms that compose the sta-

bility equation results in a quadratic equation on _ with complex coeffi-

cients. The pressure perturbation and the fluctuating component of the

coefficient of viscosity can have terms that depend on_ . It has been

shown that the equation on _ is then:

, z

. _-_ " V"
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m_

The solution for w is given by:

"2.+ _B= I I . .....-,_=

The real and imaginary parts of the above solution must be evaluated

because the form of the time dependent part of the displacement vector is

i_Y_
given by e Thus, if the imaginary part of the solution is substituted

into the time dependent exponential, it becomes:

Since time goes from zero to t, the stability depends on the condition that

Wl i0.

The term r is the absolute value of the term in the square root. The

angle 6 is a measure of the value the imaginary part of the term within the

square root. If _ is continuously differentiable in V and has only bounded

..-+_i°

derivatives there, then the operator S is defined on all pairs _'" and _ such

that:

t.s,,:_Z...,_")i _ c,j,_ •+,f+,,,, _, +,g": 7fd+

and
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The stability equation and its adjoint are defined, but because the

operator on _ is not symmetric, more than the first eigenfunction of S

must be defined to form a basis in the Hilbert space. The adjoint is used

because it forms an orthonormal subspace to the one defined by S.

Then for a sufficiently large number of eigenvalues, the real value of

the above equation defines the energy of the system. The inviscid terms

are real as was shown before. The real part of the shear terms are retained.

This leaves the result:

Solving for _rgives:

m: .__J)rJ-_J2_L-_ ' a.f,£,__ii.&,., i, 7_._¢._,fJA
.f+c_f ?lTiWv] t

The condition for stability implies that the term within the square

root is greater than zero. An application using a simplified form of the

above equation is discussed in the discussion in chapter 4.
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CHAPTER 4. DISCUSSION

In the preceding two chapters the stability of an inviscid, non-heat

conducting primary flow was examined. In chapter two the approach is one

of dividing all the properties of the flow field into a steady state com-

ponent and a fluctuctuating component with zero mean. This problem was

further simplified by assuming that the steady state properties were func-

tions of the radial coordinate only. This simplification made it possible

to derive a stability equation for infinitesimal disturbances that was

reduced to finding the conditions for which the amplitude of the disturbance

could not grow in time. By either a Fourier transformation in time or the

assumption of a normal mode, the stability equation became _n ordinary dif-

ferential equation in the radial coordinate with variable coefficients.

Since there is no known general solution to this differential equation,

some other means must be employed to determine the behavior of the solution

in time. This was done by multiplying the equation by the complex conju-

gate of the solution and integrating overall r to eliminate the dependence

on the space quantities. The stability criterion is then obtained by finding

the condition for which the amplitude of the disturbance cannot grow. This

is a standard approach for problems of this type and has been used since the

earliest development of the stability of inviscid flows.

In chapter three configurational stability of a flow fluid is consi-

dered. This is done by assuming that the steady state properties m_y be
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characterized to first order by assuming the value a flow property depends

on is the displacement relative to the equilibrium trajectory. This dis-

placement is both time and space dependent. The problem formulated in this

manner becomes Lagrangian representation of stability. By picking an arbi-

trary element that was displaced at time t = t , stability is determinedo

by considering whether the element returns to the equilibrium trajectory or

not. Again the stability problem reduces to an equation for which the spa-

cial dependence must be eliminated to determine a quadratic equation in the

frequency. If it can be shown that the roots of the equation are real, the

amplification factor is less than or equal to zero.

The criteria developed by either of the two methods is very complex.

Even in the simpler results of chapter two, there are too many parameters

to be able to state conclusively that a certain combination of one or more

flow properties determines stability in all cases. A discussion of the

general problem will follow, but it is possible to extract some significant

information by considering very simplified examples. One of these is a

straight axisymmetric jet. This problem has been studied in detail over

the years. The earliest recorded analysis of the jet is given in a paper

by Rayleigh dated 1892 in which he developed the equation for an incompres-

sible jet. In later papers he developed additional theories on the behavior

of jet flow including the concept of mode of maximum instability that allowed

prediction of the actual manner in which the system tended to break up.

The development of Rayleigh was followed in the paper by Batchelor and

Gill (20) in which they considered the effect that the velocity profile has

on the stability. They showed that axial velocity profiles that had a
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maximum or minimum in the slope for _ value other than at r = 0 are inher-

ently unstable to axisymmetric disturbances. As an exampl_ ring-shaped

vortices appear at the boundary of the core very close to the orifice where

the velocity is nearly constant then r_pidly decreases to zero. These ring-

shaped vortices were observed by Wehrmann and Wille and presented _t a sym-

posium in 1958. The existence of these ring-shaped vortices in liquid into

liquid jet have been observed for years prior to their paper (21).

It is possible to apply the criterion developed for inviscid compres-

sible flow in chapter two to determine if in the limit it produces the same

results that were obtained in the classical papers mentioned. But it is

also possible to examine the stability of very idealized jets that have

been examined in the classical papers to see if simplified criteria can be

obtained that will reveal some information for more difficult problems.

Such problems include experiments on liquid into liquid jets and analytical

calculations for shear layers and discontinuities of the velocity and density.

The earliest experimental works for liquid-liquid jet were made by Savart (5)

. (6).
and analyzed later by Plateau who concluded that the stability of the flow

depends on the product of the radius of the jet and the wave number. Lord

Rayleigh analyzed the problem later in his "On the Stability of Jets" and

concluded that the system breaks up in its mode of greatest instability.

By assuming that the jet has a finite radius it is Fossible to determine

deparzures from its equilibrium state by a small perturbation approach.

Chandrasekhar considered both gravitational and capillary instabilities in

- his book _nd concluded that a cylinder of fluid is unstable in _ gravita-

tional field for _!i wavelengths exceeding ?. = 2_R'x* where x* is the root
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of Io(X*)Ko(X*) = ½ _x* = 1.0668, and is stable for all purely nonaxisym-

metric disturbances.

For a jet held together by capillary forces the exterior force that

has replaced the gravitational acceleration is the surface tension. Again

the conclusion that the jet is stable to all purely nonaxisymmetric distur-

bances is obtained. A later work by Batchelor and Gill approached the pro-

blem from a different point of view. They considered a cylindrical vortex

sheet for which both the inner and outer flow could be represented by a

potential function. The solution they did obtain was for the low frequency

limit because terms that would have included the second derivative with

respect to time and the cross term of time and space were ignored. They did,

however, arrive at a result that was similar to the one obtained by Chan-

drasekhar. The numerical result was different because there was no gravi-

tational potential. Their condition becomes:

The conlcusion was that the flow is unstable to small disturbances for

all values of n and _a. In the limit as _a - 0 the two dimensional vortex

sheet solution is recovered. For slow disturbances _a - O, (U - C)2/C 2 - i

for n # 0 and to zero for n = 0. Their conclusion of no changes in stability

if the jet velocity gradient takes place over a finite thickness, d. Then

disturbance 2_/_ << d are stable. If in addition d/a << I, the two dimen-

sional results should apply. The maximum growth rate of disturbances occurs

when _d_ I.

Since there is no gravitation or surface tension as in the work of

Chandrasekhar, the choices for developing a compressible approach depend on
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whether the method of Batchelor and Gill is retained or whether the analy-

sis provided in chapter two is used. In the first case the linear pertur-

bation equation comes directly from the generalized potential equation:

It is assumed that the total potential is the result of a steady state

plus a fluctuating component, the above equation may be reduced to the form

with w/_a = n and u/a = M:

J =o
This equation is valid for both the inner and outer flow. If the vor-

tex sheet is assumed to be a surface of zero thickness the boundary condi-

tions across this layer reduce to the continuity of the normal velocity

and the pressure. At the center of the cylinder the perturbation solution

must be finite and at infinity the Sommerfeld radiation condition must be

satisfied. This assumption implies that disturbances only travel in the out-

ward direction in the external flow field.

The perturbation equation has different solutions depending on whether

the term (n + M) 2 - I is greater than or less than zero. This means that

the effective Mach number defined by n + M is subsonic or supersonic. For

subsonic flows, the solution reduces to the one derived by Batchelor and

Gill. Thus, except for the actual functional relationship that the wave

speed and amplification factor may assume, the results are identical.

If the flow field is supersonic on one region or the other, then _he

solution in that region changes to a Bessel function of the first kind.

" These are oscillatory in the argument. Hence the condition that C = 0
l

is not uniformly satisfied for all possible combinations of the argument.
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For instance if the inner flow is supersonic and the outer is subsonic,

the inner solution is given by

-=P_-=AJ_(:-* _'---,.'_*_,-,_-I )
and the outer solution is

Let the surface displacement be given by _ = E ei(wt + x_ + _e)

The boundary conditions at the surface become:

The assumption of M >> n results in the condition that

)=_ )4 )

The value of n can be real only if the right-hand side of the above

expression is positive or zero. Since Ki/K' i is less than zero for real

arguments, the necessary condition for instability is that _'_/_ > 0.

This is true only for certain ranges of the argument. If the axisymmetric

disturbances are considered, i.e., % = 0, the expression becomesJ ' /3 =o o

_i/Jo . The values between which the expression is negative depends on the

zeroes of the functionsJ andJ Thus stability is achieved for argumentso i"

whose values lie between:

_m.-I _ ¢;_ l,_ _- I _ _o)_ u m__ 5 z_ .. -

The above formulation would be altered if there were a stabilizing or

destabilizing force because it would alter the zero value of the function.

Thus, as the result decays to zero, it would either fall above or below this
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new line, as is sh_n in the sketch:

......... unstable

T_/_./ ._- mini_m solution with stabilizing force

0 _-_-
-_------stable

In the above problem the stability condition being oscillatory is pro-

bably due to the geometry, because disturbances My travel through the cylin-

der and act as either amplifying or cancelling waves. For the subsonic

results the inner fl_ all_s only disturbances that gr_ rather than oscil-

late, thus they will a_ays have the same sign and thus be destabilizing.

Rayleigh (4) was able to develop the linear stability equation by apply-

ing a linearized perturbation approach to the equations of motion for inviscid,

incompressible, unidirectional, axisy_etric flow. This equation was later

rederived by Batchelor and Gill (20), and was given as a starting point for

their analysis of the straight jet.

--or / _L/= 0 (4-1)

They showed that the stability of the jet with no external forces de-

pended on the behavior of the term Q'(r) = _r Z2 +_2r 2 . This was accom-

plished by _Itiplying the above equation by the complex conjugate of G and

operating on the equation so that only the expression C. Q'(r) re_ined.i

This expression was equal to zero. The condition for stability in time

requires that the imaginary part of C be equal to zero. The only condition

that guarantees this result is that Q'(r) is not zero an_here in the flow

field.

Rayleigh considered several simple examples that were based on the

. ve!ocity profile:
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U = A + Br2 + D in r

For this profile the stability condition reduces to evaluatinB the deriva-

tive of Q(r) given by:

• _2.__r_
. rD

The function Q(r) is monotonic in r and the derivative, Q'(r), has the

same sign for r--_0. For axisymmetric flow with no inner tube or plug, i.e.

D = 0, Q' is zero throughout the region of interest and nothing may be said

concerning stability without solving the actua! stability equation itself.

The latter case comes from analyzing Poiseuille by this method.

Other conditions may also be derived. If a jet is assumed to have a

top hat profile, it is easy to see that the slope of the profile is initially

near zero, reaches a maximum at some r # 0 and again goes to zero as r -_.

In this case Q has a maximum somehwere in the flow field; and therefore, Q'

must have a zero for a critical value of r. The stability equation as

stated is then violated. The flow field is then subject to instability in

the axisymmetric mode. This type of instability has been found explicitly

in the form of ring-shaped vorticies near the orifice of a jet where the

velocity is nearly constant.

If the velocity profiles vary only slowly with respect to r, it is re-

quired to examine the nonaxisymmetric disturbances for a source of the insta-

bility.

Howard and Gupta (30) showed that if the particular jet experiences

instability, the amplification factor and the wave speed cannot have arbi-

trary values but are restricted to lie with the range:

-
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where a _ U(r) _ b.

The compressible jet with rotation requires a similar approach. In

either case the starting point is the differential stability equation, but

because the coefficient r/(l 2 + _2r2) has been replaced by a term that is

complex, the actual technique that was used by Batchelor and Gill cannot be

applied directly. An integral method is used that was developed in chapter

tWO.

Now consider the compressible flow problem as outlined in chapter two.

The general equation of motion is given by:

DL
Let C = T+ then the above equation reduces to:r
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If the primary flow is an axisymmetric straight flow with no rotation,

the above equation reduces to C = DL/2; M = 0; and i = 0. The stability

equation for the straight jet becomes:

D,_i_).-,# _ _ 1_ _ i__)_;_°_c_.'_, '-_;:"_-' _-_)
The operators L and A are complex; therefore, it is required to write

equation (4-2) by eliminating the imaginary parts from the denominator of

the expressions, thus forming the terms IAI2 and ILl2 which are positive

regardless of the choice of the frequency in the denominator. The equation

is then multiplied by the complex conjugate of the solution _* and integrated

over r to eliminate the spacial dependence:

The operators may be expanded into real and imaginary parts:

L k

,_ = /4,(4t.A_ - t.._-L,. "Z.i '2Lf-LZI" c'I._,1¢I1,4"12=4z..z".ri,Ij_2-C:e ---!F:-"
The imaginary part of the integral thus becomes:

.... u_J") - L7 DK._ -C

£,_t..i= ] i¢1 e,-_l,¢ =o

Dividing the entire expression by LR/a2 , the first integral is a posi-

tive definite quantity and the second integral can vary depending on the

particular steady state flow and the wave number of the disturbance. The
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amplification factor is zero if it can be shown that LI is zero. Since LI

is the multiplier of the entire expression, this condition reduces to show

that the integrand of the second integral does not change sign anywhere in

the flow field.

• - _. >to

As can be readily seen both the density gradient and the speed of

sound play important roles in this criterion. Since IA]2 is positive defi-

nite, it plays no role in the actual stability criterion other than to

change the magnitude of the various terms. Only in the terms that have AR

as a multiplier does LI appear. Because of the form of the above expression

there is a possibility that the equation may have more than one root. This

condition exists if

L-_ - I--,/i-g ---O (4-3)

where FI is all the quantities that do not have LI multiplier and is all

the quantities that are multiplied by LI2. If FI/F 2 is less than zero, then

there are no real values of LI, and the only solution is the trivial one.

• )o ?_. (z.'_ _-e_,,._j. _..l,_l_ _L_P_,_), .__, -l)_(pJ._. )' it-l/ ,

.-_<'_h_olc_ i-_t ,.;- :._.._,,)-_kp _l_,) - c _ __Z- ,_T i_Li ? c.

The above integrand must be less than zero or the flow may have

components that grow in time. There is still a possibility that there may

- 0

be a zero in the integrand. This is true because LI- appears in the inte-

grand with a sign opposite to _2. This gives an equation that is in the
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form:

LL - k-,

with solutions given by LI = _I/F2. If FI/F 2 is positive, the solutions

for L_. are real. Thus, the stability criterion is a dual condition. The

two coefficients FI and F2 are given by:

/2c2_A__ (_:

Thus the two conditions are FI F2LI 2 < 0 and FI/F 2 < 0 for stability.
2 .

Since LI is positive or zero, the stability condition is then:

F,/ 6o

Cz£'1 ;41_

The addition of gravity to the equation of motion gives a perturbation

potential through the term p'g. Depending on which momentum equation con-

tains the gravitational body force, effects the stability of the entire

system. If the gravity vector is aligned with the r direction, the gravity

vector and any centrifugal force are interchangeable. In equation (4-4),

C2e C2

there are several terms composed of the sum of squares, am!ALl 2 and IALI2a2 .

For incompressible flow, the condition for instability as given by Batchelor

and Gill is that the expression C e has a turning point in the flow field.

This condition is satisfied for all velocity profiles that have a maximum

in the s!ope for r # O. For this condition the first term in the numerator
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has a zero somewhere in the flow field, and therefore, yields the condition

that the flow field may be unstable. For compressible flow with C2 much

greater than the remaining terms reduces to:

This auxiliary condition is obviously satisfied if LR2
<< e, but there

is a speed at which the sign of the expression changes and instability is

possible even if the incompressible flow were stable to the same perturbation.

It has been shown that for supersonic flows disturbances that travel faster

than the local speed tend to be destabilizing. This is true of compression

waves that steepen as they propagate. For a jet it has been shown experi-

mentally that disturbances that are stable in form for incompressible flow

may in fact act as destabilizing ones supersonically. (55)

Examining the full equation for rotation and axial flow the condition

for stability is given by:

z _!!._l i. _" "'_ " _" "

• _. /.., _.

a-r i (4-s)

+ I,_L,.I_.

Again it is possible to define dual conditions on the stability of the

appearance of LI2 with a sign that is opposite to _2,
flow because of the

the above equation also reduces to one with the form:

F"_- F_.L_"• C,

" where FI is the condition if it is assumed that LI2
0. Therefore, stabil-

ity can occur only if two conditions are met. These are given by evaluating
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the coefficients FI and F2 and giving the limits as follows:

(__s__%._ _:ta-i-_-'..... J l&l_ .-.

c"-- e._ _c,_'c_) _ _i _ a_l_l,

In the above expressions the term (%nPo M) appears. It is one of

the components of the Brunt-Vaisal_ frequency that determines the static

stability of a compressible gas in a force field. Its first use occurred

in a paper discussing the stability of the atmosphere by V_is_la in 1925.

He developed an equation relating the displacement of a fluid element rela-

tive to its initial position and found that the buoyancy ratio appeared as

a frequency in the equation of motion. The second order differentia! equa-

tion that he derived had either oscillatory or exponential solutions depen-

ding on whether this frequency was positive or negative. As a result he was

able to establish the distribution of the density in the atmosphere for

adiabatic conditions. For swirling flow the gravity vector is replaced by

the centrifugal acceleration. Therefore, static stability here depends on

the sign of the expression. In the present form the expression is not recog-

nizable, but using the steady state normal momentum equation it can be cast

into more easily recognized form:
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The corresponding frequency is then given by: -_-"- _,_-'-_
w

I D_-,_I_ _ _I (_-hd_ _ for static stability.

In the above equation the buoyancy term acts as a dynamically desta-

bilizing expression if the flow is assumed to be statically stable. But

like the atmosphere where the stable dry air results lead to the adiabatic

lapse rate, the sign of the derivative of the buoyancy is the critical para-

meter.

In deriving the above equations (4-6) and (4-7) it is determined that

some of the terms are the derivatives of positive quantities. The Richard-

son number criterion as originally developed implied that for a swirling

flow to be stable:

This condition is satisfied in equation (4-6) via the third term. In

addition there are terms which depend on the behavior of the velocity profile.

The first term in (4-6) is the same as the one derived by Rayleigh (4) and

Batchelor and Gill (20) for incompressible flow. If all other effects are

negligible it states that the flow is stable or unstable depending on whether

the term D. OoCLR has a zero in the flow field for r _ 0 or that the ex-
_ 2 2

a IAI poLR

pression is positive throughout the flow field. For a jet x - a21A12 is a
_ L

positive number if there is no reverse flow.

Thus D,(xC) < 0 _ rD(xC/r) < O. Stability is achieved only if xC/r

decreases outward from the center line. For a profile that has a zero C for

some 0 < r < rC and again for r > rc, the expression has a minimum or maximum
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in the flow field. This yields a zero for the first term. The second term

is the derivative of a positive definite quantity (if the flow is statically

stable). Thus the only possibility of a stabilizing effect is for the term

to be growing faster than r. This is unlikely; therefore, the effect of a

statically stable buoyancy is to have a destabilizing dynamic effect. The

fourth term depends on both the velocity profile and the effective Mach num-

ber, _/a. Disturbances that are stabilizing at one effective Mach number

are destabilizing above the critical Mach number and vice versa.

The last term is stabilizing if the rotational velocity increases out-

ward from the center line and is basic to the theorem stated by Rayleigh.

The dual criterion is then first that:

21

( - )Lczq e_1 c_, _j

The second condition is that:

) + (4-9)

The conditions state that in order for the flow to be stable (4-8) must

be satisfied. Stability is possible provided that the shear plus rotation

are sufficiently small so that the numerator is always greater than the de-

nominator. Excluded from the above are the conditions near the singular

3LR 2
point --Z- = e, because non-linear terms that were dropped are needed to

a

eliminate the singular nature of the problems. Equation (4-8) is not suf-

ficient to guarantee stability if (4-9) is not satisfied, because non-trivial

solutions will be possible given by LI = ±_I/F2. The condition of
nO

rotation reduces the expression to the one derived earlier and simply states
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that the density gradient must increase in the direction of decreasing axial

velocity. This is similar to the Richardson number criterion that states

that:

£

where g is in the negative z direction. This states that the density must

increase more rapidly than the square of the velocity for stability. With

no force field the condition becomes one on the density gradient and the

velocity gradient alone.

The above results are new. Even to go this far greatly complicates the

analytical process. We will now examine the proposed method given in Chap. 3.

The method of perturbing the flow and thermodynamic variables, then elim-

inating components until only one remains does not allow considering pro-

blems that go much beyond the scope of one-dimensional examples. An actual

steady flow satisfies both the equations of motion but also identically

satisfies the stability conditions as well. If the stability conditions are

not satisfied, the configuration of the flow will change so that it will

approach a more stable condition. This type of stability is defined as

configurational stability. This type of instability is exhibited by a physical

change in the observed flow field. An example of such a flow is the appearance

of circulation in the f!ow about a profile in a circulation-free stream.

The first part of chapter 3 follows the deve!opment of Burshtein and

Solov'ev (A2) , and Frieman and Rotenberg (43) . In this method the steady

state solution is assumed to be known throughout the entire space.

These properties are then associated with a particular collection of elements

that compose a fluid volume that travels on an equilibrium trajectory in
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this space. A particle, composed of identifiable fluid elements, is

displaced from its trajectory at an earlier time, to, and the forces acting

on it are derived to determine if the fluid volume will return to its tra-

jectory or follow a new path. The trajectory is defined by the vector
o

+ _. Since the fluid elements within theand the displaced trajectory by _o

volume are the same, the principle of conservation of mass is satisfied

identically. The incremental forces acting on the body are given to the

first order in terms of the displacement vector _ by using the conservation

of mass principle and the remaining conservation equations. If the flow is

inviscid, the deformation of the fluid volume is the result of the pressure

and convective momentum gradients that are defined via the steady state

solution. If the fluid has viscosity the deformation of the fluid volume

must also include the rates of strains of the volume. Since the shape of

the fluid volume examined is arbitrary, the effects of the viscous forces

may be represented by the transformation of a local coordinate system defined

on the fluid volume as it is translated through the assumed force field. The

coordinate system will in general experience a rotation and a non-uniform

stretching. The definition of the strain tensor is given by the difference

of the metric tensors for the two local coordinate systems. We will assume

that there are no rotational discontinuities or angular momentum sources in

the fluid; therefore, by the conservation of angular momentum, the strain

tensor must be symmetric. The deformation tensor is composed of both a

rotational antisymmetric component plus the strain tensor, but only the

symmetric component is needed to determine the force due to the shear. The

time rate of change of the deformation times the coefficient of viscosity
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gives the shear stress tensor.

In the equations of motion the resulting force that acts on the surface

is the product of a material quantity (viscous coefficient) and the time

rate of change of the deformation. These are surface integrals that describe

the kinematic relationships. The coefficient of viscosity may also change

because it depends on both the material and the associated thermodynamic

quantities such as the temperature. Thus, when the surface integral is

changed to a volume integral via the divergence theorem, more terms appear

in the equation of motion. The fact that the divergence changes as a func-

tion of _ can be demonstrated by using the continuity equation. It can also

be demonstrated with a straight-for%-ard application of the transformation

matrix. The last term that involves the shear stress is obtained by elimin-

ating the static pressure gradient. The energy equation for the fully vis-

cous problem is not the isentropic relationship. It may be obtained via

one of three approaches. The first is to assume that the total temperature

is constant along streamlines. This results in equations that involve the

Bernouli equation for compressible flow. The second is to assume that the

pressure density relation may be approximated locally by letting the expon-

c
ential _ go to a new number c to account for the entropy production. The

final way is to write the second law of thermodynamics such that:

In most cases, we are dealing with q assumed to be zero. Therefore,

the entropy production is equal to dissipation energy which is a positive

DS De i Do
..... _ one or both of the terms is positive.

quantity. Since Dt Dt a" Dr'

Effectively, all of the viscous contribution to the equation of stability

is composed of the difference in total shear force between the volume at
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or _ + 7. Depending on the type of a steady state the entire energy

addition is either positive, negative or zero. Conceptually, the viscous

expression should act as forcing functions that will increase or decrease

the value of the quantity F(_) in the non-viscous expression. The energy

is a real quantity; therefore, as was shown by Sattinger (3) the real part

of the operator is retained in the stability analysis.

In the present analysis, the form of the eigenvalue equation is not

2
standard because of the appearance of terms multiplied by _ . If it is

assumed that _ is an eigenvalue of S, it is possible to write the equation

in an integral representation. The form of the equation then is:

If g(x) + kfK(x,r) g(r) dr belongs to L2 and K2(x,r ) belongs to L2,

then the Fredholm theory in Hilbert space applies. This was shown to be the

case in the problem solved by Frieman and Rotenberg. Thus they were able

to write:

£f -

and _ = _" _ " _ _',_ =0

The problem for which we may state that:

The problem of determining the conditions for which there may be growing

solution of S requires solving the quadratic equation based on the integral

of the linearized perturbation equation. Then by defining F'(_) as the
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entire set of terms that do not explicitly depend on time, _becomes:

•- >dc7 )
For those conditions for which all the surface integrals are eliminated

by the homogenous boundary condition, a sufficient condition for the stabi-

lity of a particular flow reduces to the condition the term under the inte-

gral is positive. The time dependent contribution resulting from the

kinematic shear condition is imaginary and therefore drop from the equations

f",of motion. By limiting the sufficiency condition to - _F dE (a more severe

restriction than the above) it is possible to consider only real perturba-

tions.

The result may be integrated over an arbitrary path and time to form

the action appropriate for the system. Since we are considering only real

perturbations, the integral will be identical to that of Frieman and Roten-

berg in form but the F' function is much more complicated due to the addition

of the viscous and non-isentropic process results. Additionally, the real

part of the time derivative which originates from the shear stress terms

adds to the second term in the integral. But because the more restrictive

condition given by S_*- F(7)d_ a 0 is used, the variational problem becomes:

J
We will introduce a curvilinear coordinate system that is defined rela-

tive to stream surfaces about a central axial streamline. Then there will be

only two velocity components _ = (VI,V2, 0). The vector given by _rad "3
Igrad _! is in

the norm_ _ Joordinate direction. The problem may be solved bv lettin£ the

displacement vector [ be represented by a series of orthogonal eigenfunctions

that define the basis for the Hilbert space.
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The perturbation equation that was developed in chapter three and is

stated above, gives a method whereby combinations of steady state properties

may be examined to find the boundaries of stability to infinitesimal pertur-

bations. It is desired to find the growth or decay of these disturbances

in time. Therefore, since time does not appear explicitly in the resulting

equation, it is possible to assume a harmonic form for the time dependence

of the displacement vector. It is assumed to be separable and does not
imt

enter into the actual computations. By writing it as e , stability reduces

to finding those conditions for which _ is real, or if complex for which

only decay is possible.

The perturbation equation itself gives the force acting on a fluid

element as it is displaced from its equilibrium trajectory by the vector, _.

Since we are interested in the fate of the particle of fluid itself, the

equations are written following a particular fluid element. It can be

shown to the order of the approximation that the form of the equations in

either the Lagrangian or Eulerian representations are similar. The meaning

is different because a particular fluid element is followed in the present

problem. To the order of the approximations used the substantial derivative

is independent of the perturbation path. The individual terms within the

perturbation equation may be divided into those terms that make up the

second total derivative with respect to time, terms that represent the

changes in volume or density of the element, terms that depend upon the ener-

gy that is stored as a pressure, and those terms that represent losses to

the system in the form of entropy production or viscous effects. All of these

terms are given as forces that act on the named particle. These distur-

bance forces are multiplied by the displacement length and integrated over

a time interval or path length. Those terms that are derived from the sub-

d2_ dE 2
stan_ial derivative become _:_t _ =>l_I . If this quantity is multiplied

by the mass of the fluid element it becomes the kinetic energy of the per-

turbation motion. The remaining terms give the potential energy and the

viscous dissipation energy. The latter is a measure of the losses genera-

ted as a result of letting the fluid be both viscous and heat-conducting to

the order of the perturbation.
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If the flowfield is inviscid, it was shown in chapter three that the

operators that make up the equation of motion for the disturbed element

are Hermitian. This means that the equation for _ has only real coeffi-

cients. The resulting quadratic equation may then be solved, and the condi-

tion for stability is reduced to finding those discriminants that are

positive. If the viscous terms are included, then it is no longer possible

to guarantee that the individual operators are self-adjoint. This means

that it is possible to find flow fields for which a more involved analysis

is required. The possibility exists that the terms from the viscous

dissipation operator are all real with the exception of those terms that

involve the partial derivative with respect to time explicitly. This is

the same condition that is obtained in kinematics of particles subjected

to both conservative forces and dissipative forces. In that example

whether it is possible to diagonalize the system of equations or not, the

dissipation function is always positive and the effect of the dissipation

is always damping regardless of its magnitude. The only exceptions to this

rule are those limited values of the disturbance frequency that coincide

with the natural frequencies of the system. The arguments that were used

to derive the motion of a particle or system of particles may be extended

to continuous media by replacing the summations by integrals and by re-

placing the point functions by continuous functions on position.

In the case of a fluid motion the magnitude of the dissipative terms

and the non-viscous destabilizing forces may be such that even though the

effect of time contribution to the motion may be stabilizing, the discri-

minant introduces imaginary components of m, and the flow field is desta-

bilized by the addition of the viscosity.

The argument above allows one to obtain qualitative information about

the stability of a general flowfield subject to a given disturbance. This

may not be sufficient for the particular problem that is to be examined.

For this reason it is often necessary to find criteria that are independent

of the perturbation applied to see if such flows are unconditionally stable.
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To derive such a condition for the general viscous flow is left to a future

work. This paper will stop at an equation from which such an analysis may

take place. It is possible to derive such information for a class of

inviscid flow fields.

This problem reduces to a simpler form because of the Hermitian proper-

ty of its operators. As stated earlier the sufficiency condition is derived

by examining the discriminant of the quadratic equation on _. The two parts

that make up this expression are given as follows:

Ij:,_"._.._ /_ j_,l_ _ .

The integral of _*.F(_) is given after combining several terms to give a

positive definite expression plus several other terms of undetermined sign.

• -_ ,7' _. " " ""fl_ "
__r _-op _

It can be shown that the first term in the magnitude of the first

integral above may be dropped in comparison to the second term in _*.F(_).

This is shown by use of the Schwartz inequality as follows:

This shows that the stability condition abbreviates to

c.?/,.4,o_- _ '--c,_/a _ _,_,;. Wi• _ (_ __i_--;,?_._._,-"-',_,-(_._;..7,;1>pc' GP

where 0 < K 1 < 1

.->

In the above expression, the displacement vector $ appears both as a

derivative and by itself. Unless these may be grouped such that $ does

not appear except as a multiplier, the criterion cannot be achieved. It is

known that the above expression must be equal to or greater than zero for

stability. It is also easy to see that several of the above terms are

negative definite. Thus, a condition for minimum stability is derived by
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letting the positive definite expression go to zero. The new condition is

then given by

!

This gives a relationship between some of the derivatives of,the dis-

placement vector and the displacement via the steady state quantities. This

term also demonstrates a very interesting property of a variable density

flow field. In the initial derivation of the equations of motion it was

shown that the volume of the fluid element and its density were related.

It was shown at that time that the div_ was equivalent to the density per-

turbation that the fluid element undergoes during the motion from point a

to point b. For an inviscid fluid not in a force field the pressure force

and the inertial forces are in equilibrium. As a result the expression

0(v'? _)'_ is approximately equal to the rate of change of the pressure

force acting on the fluid element as it is displaced. If the pressure

field is assumed to act as a stationary force field associated with the

space, then the expression is a buoyancy force acting on the fluid element.

This is shown by considering that the pressure field acting on the displaced

particle remains equal to that of the undisturbed motion. When it is

assumed that there is a change in the pressure with position, the force

acting on the particle after translation is different from the one at its

equilibrium position. If the new force tends to return the parcel of

fluid to its origina! trajectory,+th_ effect is to enhance stability. Thus,

stability implies that dive > _.0v'_$ This is a side condition on stabi-
CP "

lity for compressible flows. Because in this derivation there could be a

small entropy production the ratio of the specific heats was not y.

The first negative definite term may be expanded to give

I,_.7_t2=_i_ __ -¢_c_,_-.___,-I_:-_,,_i__i)*_,_ -_,('_,I_

Stability is an intrinsic property of the flow field. Therefore,

changing the reference coordinate system should not in any way alter the

outcome of the analysis. As a result it is possible to write the steady
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state variables in a coordinate system that is related to the steady state

stream surfaces. In this way, the steady state solution depends primarily

on the curvature of the stream surfaces themselves. Let the stream surfaces

be defined relative to some reference streamline in the flowfield. Let

there be a single stream function such that grad_.v = 0. The components of

v are defined by the continuity equation. Thus

5

The continuity equation and the definition of a stream surface give the

condition of no mass flux normal to the surface. The displacement vector

is arbitrary, so for this example it is assumed to be in the direction of

grad_.v. For this condition only certain of the terms in IV.V_i2 remain.

The result is a criterion that depends primarily on the curvature of the

stream surface itself. This is true of the effective rate of change of

the pressure gradient in the direction of the displacement and in the vor-

ticity of the steady flow as defined by the curvature of the surface. The

derivative of _ with respect to ql is the rotation of the displacement

vector. It is assumed to be of smaller magnitude than the other terms in

the expression.

By dividing the remaining rate of change of the pressure gradient by

the vortical terms squared, one obtains a criterion that is similar to the

Richardson number. In this equation the standard value of 1/4 has been

replaced by kl, a number between zero and one.

7_

The above problem may be solved again, but this time the displacement

is in the plane of the stream surface but normal to the velocity vector.

Again the only undefined term comes from v._. For this example the coor-

dinates were chosen such that the velocity vector was in the ql direction,

e2 was in the direction of the displacement and e3 was normal to the surface.
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Again because the stability must be an intrinsic problem of the motion, it

is possible to derive the criterion

The final condition that may be analyzed is to allow the displacement

to be in the direction of the velocity vector. This condition becomes:

The Richardson number normally contains derivatives of the axial velo-

city normal to the direction of motion. This is in actuality the square of

the circulation or vorticity. Thus, for a compressible flow, stability

depends first on the direction of the buoyancy forces and secondly on the

magnitude of the vorticity of the flow field. The first expression may be

positive or negative depending on the various parameters of the problem,

but the vorticity terms are always positive; therefore, they act to desta-

bilize the flow.

The previous development of this criteria by other authors was res-

tricted to the case in which the steady state properties were a function of

the coordinate normal to the direction of motion only. Further, they were

restricted by the type of geometry that could be used. The above develop-

ment does not have these drawbacks. It is therefore, a generalization of

the previously derived results. It also shows that the primary driver for

instability is the vorticity of the fluid motion. If the flow field is

to remain stable for all time, a mechanism must be present that will over-

come the destabilizing effects of the circulation. The equations for

irrotational flows must be examined using the basic equation as a starting

point and a slightly modified analysis must be used. For rotational flow

this can be a favorable centrifugal force field. For the stability of the

atmosphere, the dual conditions of a gravity field and a favorable buoyancy

force must be present. In genera! the stability of the types of flows that

have been considered require that the force increment tending to return a

- fluid parcel to its equilibrium position be greater than the sum of the
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effect of the vorticity percent in the steady state flow and pressure

gradient that accelerates the particles away from equilibrium.

The criteria defined above do not resemble those of other authors

because of the coordinate system chosen. By reverting to a more generally

used system, it can be shown that the metric derivatives are more complex

representations of velocity gradients. To get to the new system, avon

Mises type transformation was performed. Each coordinate is defined via

the solution of the Pfaffian differential equation ds x v = 0. The contin-

uity equation has the solution given by divpv = div (curl _) = 0. If a trans-

formation is made that cancels only the mass flow across a surface p_=

pv I + pv 2 = pv I + curl A. But the definition of a stream function is

d_(grad_l x grad_2) = O. Since this is curl AI, grad_l = e2 and curl AI =

x (grad_21 g .e3 g-+ grad_21 1). Now q3 is the parameter in the solutione2
3 I

of the differentia! equation. The remaining coordinate ql and q2 are

defined via the function 12 and the Serret-Frenet equations on the surface.

They must have a common normal and be perpendicular to each other in the

tangent plane. Then the metrics hi, h2, and h3 in the new coordinate

system can be defined relative to the old system and the definition of the

stream function.

J j

The reduced form of the metric is

• i . I

Then -- _ ' ' = -- -- -- -- for the

simplest example. The end result is that both equations depend on the

velocity gradients. Hence, the forms are, in fact, similar.
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Consider the _". F' function given by

-- _"-r ' .= cp i<t,;_ i<:- f l ; v_l _- _ _f ,.. _";i_'<_,_;")

For cylindrical symmetry it is possible to define the orthogonal func-

tions as a Fourier series and to consider only a particular harmonic:

Combining some of the above terms:

_ • 4,v_'_"_7_c, PId,o:_f" _'+.._>17._,?_"+_X_.;_2-_= e_/" d_bf - _." ' <..:--7-..,
The minimum value of this expression is given when: I-'-_'_'__ I%1

ai__ = c---;
Only the normal pressure is balanced. Thus:

L

• p_

Another term is derived from the last inviscid expression:

The viscous forces act to retard the motion and balance the pressure

forces in the normal direction only via the terms that indicate a departure

2u
from the cylindrical geometry, such as -_--_0 " In the example of cylindri-

cal flow these terms are zero.

The convective terms that do not express themselves via the curvature

. (_ "V','O,_ 'VV._) are zero in the anlaysis. If the components of the velocity
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and the thermodynamic quantities depend on both r and x then the additional

avo
terms V I _ and VI 0X must be included in the equation for stability.

The shear stress tensor has but four terms T32 = T23 and 713 = 731. These

are a measure of the velocity gradients in the direction normal to the stream

=. a__
surfaces. In order to evaluate the terms that involve the expression _ aX i

we use the integral equality:

The most important of the shear terms are then:

l -_ g

+ positive kinematic shear terms

The resulting expresion for stability is then given by:

or

lp. )- rc._7- -' ) q'--

The above is true for the case of closed streamlines and a small gap

between layers. This allows one to make the expansions required to reduce

the gradients of _ into an expression that involved only products of _. The

alternate approach which is equally valid if _ and its derivatives to the

third order all remain finite in the space over which the integration takes

place is to replace the integral of the derivatives by a constant times

the integral over the volume. The value of the constant is not arbitrary

but must meet criterion such that if:
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where _ = liT If"A _ II

For the rotational problem the shear stresses tend to slow the motion

of the fluid particles away from the trajectory. Therefore, they can be sta-

bilizing. This is shown by the fact that the kinematic shear terms are

shown to increase the magnitude of the positive terms in the stability

criterion. The non-viscous solution reduces to the Rayleigh-Synge condition

that the angular momentum has to increase for increasing radius. The sta-

bility of the rotating flow to small perturbations is the result of the
o

pressure gradient V_ that is present to return a displaced particle tor

its initial state. For viscous flow the shear stress and the pressure both

tend to slow the motion of a displaced particle. This means that the flow

field will be slightly more stable for viscous flow than for non-viscous

flow.

The compressible viscous flow problem has several shear perturbations

that do have the same sign as the angular momentum gradient. These will

tend to act to destabilize the motion of a particle leaving the trajectory.

Another problem that may be solved easily using this method is that of

a compressible fluid in a temperature field. If there is no motion initially

i.e. _ m 0, the problem reduces for an isentropic process to

This term is the potential energy density as obtained by resorting to

a Hamiltonian formulation. Taking a variation with respect to the energy

yields the potential energy part of the Lagrangian density functions. In

order for the oscillations or the displacements to yield stable results
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the potential energy must have an absolute minimum for arbitrary displace-

ments _. This is shown to be true because the variation of the integral

is the potential energy, equal to zero yields the minimum value of a quan-

tity that is positive definite.

There are more difficult problems that can be solved using the method

that is indicated but they will not be given here. The obvious extension

that this method allows is also including the dependence of quantities in

directions other than the radial one for problems such as the swirling jet.

This is because in the final form of the stability equations all the deri-

vatives of the steady state variables occur as gradients. If one is examining

the motion of a particle of fluid for which the dependence of the proper-

ties in two directions are needed, the form of the simple problem of rota-

tional flow remains unaltered. The stability will depend on the relationship

of the velocity V @ in both the r and X directions for the more complicated

problem . The other velocity component VX enters via the term VX a--_ Forax •

these problems the functional relationship of a-_ must be known to determineOx

whether a flow is stable or not. For this problem the additional term to

be considered is:

:, !

In addition the expression for the convective term is:
&

with corresponding changes in the viscous shear term. Hence:

). -
This shows the flow field is more unstable if the flow field has components

that depend on X for cylindrical geometries.
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The above development does not produce a parameter such as the Richard-

son number because in order to obtain this parameter, the equations must be

reduced by serially eliminating the individual components of the perturba-

tion quantities. The definition of constant mass elements eliminates some of

the interdependence of components that were used to make up the ratio. The

Richardson number for fluid flows with swirl is a measure of the ratio of

the induced pressure gradient and buoyancy to the vorticity of the flow

field as given by the square of the velocity gradient. In the present analy-

sis, it is impossible to develop the last term without trying to reduce the

equations to one that depends on one of the components of _ only. Doing

this would destroy the simplicity of the method and add little to the infor-

mation derived.

The need for a method that will compute the stability of a flow field

that depends both on the radial and axial direction, is exemplified if the

velocity components are examined. The velocity components may be written

in functional form as:

= _ _ (_%/ fig. (4a, 4b)

_J = _tC_) _,_) fig. (5)

where: _-

where aI is the location of the effective origin of the flow. Let the

swirl number S be given by the formula:
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This number is the ratio of the axial flux of angular momentum to the

tota! head due to the axial flow which is the sum of the axial momentum flux

and the pressure at a given station. As the swirl number increases from 0

to .6, the radial spread of the jet increases and the maximum centerline

velocity decreases untilthe axial adverse pressure gradient exceeds the

magnitude of the forward kinetic forces, pu2, and a recirculating region

forms on the axis. This is accomplished by a reduction in the length of

the potential core, a displacement of the maximum velocity to an off-axis loca-

tion at S = .5 and finally reverse flow above S = .6. Above this critical

value of S, large shears and intense turbulent mixing take place. This is

the process that is desired for a swirl combustor. For intermediate swirl

rates the velocity gradients are reduced. The pressure gradient is favor-

able with regard to the buoyancy forces and the flow is stabilized. This

stabilization is the same as is obtained in the density stratified atmos-

phere and is due to the fact that more dense fluid elements will fall and

lighter ones rise in an increasing "gravity field". If the density is in-

verted with respect to the force field, the system is unstable.

Most jets diverge after they leave the exit due to the actions of the

pressure and viscous forces. This introduces a significant axial velocity

gradient in all the flow parameters of the jet. For a flow exiting a diver-

gent nozzle, the radial growth of the jet is enhanced. Therefore, the axial

gradients are even greater. The decay rate of the swirl velocity of the jet

with swirl imposed in the nozzle is twice as fast as the decay rate of the

axial velocity. Thus, the importance of the terms depending on X derived

from the terms of the expression _ _*: V(_ •V_) can diminish in the problem.bD

-105-



The quantity p_ • V_ may be represented by a vector _ that represents the

equations of motion. The symmetric part of the tensorv_ is retained. If

the second derivatives with respect to the coordinate directions are ordered

in magnitude, then certain of the terms of V_ that contain derivatives with

respect to the axial direction are included. These will have the opposite

d

sign that _r (pw2/r2) has and thus contribute to destabilize the flow. This

is in fact what happens with any flow that has a positive axial pressure

gradient. Thus, the result is more general than the current application.

The manner in which the stability criterion was applied was to try to

eliminate the gradient of _, the perturbation displacement, by applying it

locally over a small interval. This results in global considerations that

are applicable for stability in time as long as the approximation employed

is applicable everywhere. The alternative is to determine a _ and do the

actual integration over all applicable regions of configuration space. Al-

ternatives are to use the Schwartz inequality relationships for integrals to

eliminate the terms that are unimportant and obtain a somewhat more restric-

tive criterion. These applications will be left to a later work.
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CONCLUSIONS

The objective of this report was to determine the conditions for

which a flowfield in equilibrium would be stable to infinitesimal distur-

bances. Two analytical methods were chosen. In chapter two, the classical

method of perturbing the equations of motion was used to determine an equa-

tion that could be analyzed to determine the assymtotic behavior of its

solution in time. It was determined that the solutions which do not grow

in time are stable. The second was to examine the forces that are acting on

a particular mass of a fluid that was initially contained within the boundary

S(to). The mass was to remain within this surface for all time. It was

also assumed that all the steady state properties of the fluid were func-

tions of the position only. The behavior of the fluid element was examined

as it was displaced from its equilibrium trajectory by the perturbation

displacement, $. A number of interesting simplifications are possible

because the conservation of mass principle is satisfied identically. For

compressible flows, it is possible to relate the change in the density to

the elastic change in the volume of the element as it moves in time.

Through the integral of the energy equation, the perturbation pressure and

the perturbation density are related to the Jacobian of the transformation

of the element from its equilibrium system to its displaced system. By

retaining terms only to order _, it is possible to write the equations in

a form that is similar whether the coordinate system of the perturbation is

relative to the equilibrium trajectory or the displaced trajectory. The

resulting equation gives the forces acting on the parcel of fluid as a

function of time and position in space. The form of the equation is in the

Lagrangian format because the solution of the problem will yield the position

of the fluid element as a function of time and all the properties of the

fluid element are then derived via the equations that relate the steady state

and the displaced state.

-107-



Having determined the form of the equations of motion in the pertur-

bation sense, it is shown that it is not always necessary to solve the

differential equation to determine whether the flow-field in question is

stable or not. For a restricted set of problems it is possible to show

that the stability depends only on the steady state properties. Several

such problems were examined using both methods. These were primarily

attempts to show that the classical results could be determined. There

are several drawbacks to either method, the classical one is the result of

perturbations of the thermodynamic quantities and the velocity. For a

fully compressible problem there may be as many as seven dependent vari-

ables that must be eliminated in a serial manner before the basic differen-

tial equation may be found. This elimination proves most difficult except

for those problems for which the linearized equations are represented by

flow properties that depend only on one of the coordinate directions.

The perturbation quantities must be represented as either a harmonic in

a form that allows elimination by integral transforms. Any other formats
t

would require the use of digital means. This greatly limits the applica-

bility of the method because each new set of conditions would require a

new solution to the entire problem. The problems that could be solved are

primarily those classical problems that exist in the literature. This

method of course can be extended if a suitable transformation can be found

that reduces the problem to a more apparent form.

The problems that were examined using this method were the compressible

rotating jet and the compressible cylindrical shear layer. The results of

the computations were compared with the results of Fung and Kurzweg in the

density stratified limit for rotating flow in finite domains. It was

shown that a Richardson number type of criterion was possible. The stability

was shown to depend on the ratio of the density and centrifugal force gra-

dients divided by the square of the shear terms squared. This of course

was the solution that was obtained by Fung and Kurzweg. In the case of

fully compressible flow it is possible for the density to change as the

fluid is displaced. As a result it is possible to have an additional effect
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due to the buoyancy of the fluid. Each of the equations is solved by

multiplying the perturbation equation by a perturbation velocity component.

The result is akin to the mechanical energy balance of the fluid. Lallas

was able to derive a transformation using a particular part of the energy

integral to reduce the complicated fully compressible result to one that

resembled the old density stratified criteria except that it contained the

Brunt-_isNilN frequency as an integral part of the criteria. In the

present analysis the assumptions were slightly different from those of

Lallas and no simple transformation could be found that was as effective as

Lallas's in reducing the final form of the criteria. As a result, the

present analysis showed that the Burnt-_isNilN must be positive indepen-

dently of the Richardson number. There were also several additional terms

that involved the gradient of the operator L in the criteria. The two act

in the same manner as the single stability statement of Lallas. In either

case the qualitative result is that the ratio of the angular momentum gra-

dient and the square of the rotational velocity derivative must be greater

than _ for stability. This shows that a central force field such as is

. induced by the rotation can increase the inviscid stability of a flow field

provided that the buoyancy force tends to restore displaced particles to

their equilibrium positions and the force is large enough to overcome the

action of the vorticity.

The basic compressible equation as derived here could also be reduced

in the limit to the Rayleigh problem of a shear layer. The point of inflec-

tion theorem was based on these results. Lord Rayleigh was able to show

that the appearance of an inflection point in the gradient of the axial

velocity was sufficient condition to give instability. Because the equa-

tions were sufficiently alike, it was possible to show that this was the

case for compressible flow also.

The stability of a cylindrical vortex sheet was determined by assuming

" that the Sommerfeld radiation principle applied. The inner and outer media

were assumed to be uniform but with different properties. Unlike the

° incompressible result shown by Batchelor and Gill, who were able to show
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that the solution was based on Bessel functions with real arguments.

The current solution consisted of a series of Hermite polynomials with

complex arguments. As a result stability was determined to be a function

of the frequency of the disturbance. The stability depended on which range

of the polynomial were examined. The character of the solution depended

also on whether the inner and outer flow were both supersonic, subsonic, or

one of each. It was determined that under the conditions of the problem

the stable solutions for fully supersonic flow were excluded. It was not

determined whether this was a shortcoming of the analysis or the equation

of motion.

The results derived in chapter two have several important shortcomings.

The most significant is that the properties of the flow field may not vary

in the axial direction. This is a valid condition to impose if the flow

field is confined in a straight pipe, but if the flow is in an unbounded

medium, the axial velocity gradients are very important. It was shown by

Chigier that imposing a rotational component from the outside of the jet

using a screen does indeed increase the stability of the jet edge. It is

also known that naturally imposed rotation will decay much more rapidly

than the axial ve!ocity; therefore, it is important to see if these gradients

will in fact affect the overall stability of the flow. It is impossible to

do so using the method outlined in chapter two. Therefore, the configura-

tional stability approach was extended in chapter three to provide a means

of answering these questions. This method was developed to find some of

the stability problems associated with plasma physics. It was adapted

to be used for fluid mechanics to be able to extend the analytical results

to more general problems. As was stated earlier, the basic method is based

on a Lagrangian approach to the problem. The equations of motion as derived

are multiplied by the conjugate of the displacement vector and integrated

over a suitable space. A more rigorous mathematical analysis would use the

adjoint of the displacement vector as a multiplier. The result is that the

above gives the mechanical energy of the volume over which the integration

takes place. The inviscid convective terms yield the kinetic energy, the
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the surface integral gives the work done by the shear forces acting on the

surface, the pressure times the divergence of the elastic energy and the

remaining shear terms give the viscous dissipation. For the inviscid flow

problem, it was possible to obtain several criteria that resembled the

Richardson number for rotational flow. These could be balanced such that

the potentially stabilizing forces were listed in the numerator of the

expression and the negative definite quantities in the denominator. As

was expected there are only a limited number of situations for which the

stability is entirely free of the frequency of the applied disturbance.

But the form of the condition as given does not differentiate between a

flow field that depends on more than one independent variable. Even for

the more general cases as outlined in chapter four, it is still the vor-

tical nature of the equilibrium flow that gives the mechanism for insta-

bility.

If the flow is either density stratified or incompressible, then the

energy equation as given does not apply. Therefore, it is necessary to

use the curl of the above equation to eliminate the arbitrary pressure

perturbation. Even though the form of the equation is not greatly changed

the resulting equation is much more difficult to integrate. As a result,

the simple two dimensional problems such as the Kelvin-Helmhotz instability

are more complex. It is not possible to divorce the form of the perturba-

tion of the stability criterion. If it is possible to use the simplest

example of a shear layer in a gravitational field, the stability solution

depends on the wave number in the axial direction for two-dimensional flow.

This result can be derived as well as the inflection point criteria without

too much difficulty and was left out of the paper.

The result is that a method was developed which is especially suitable

for compressible flows. This method gives a vector equation that relates

the force on the fluid parcel to the perturbation displacement vector. As

a result the basic differential equation depends only on the components of

° the displacement vector. This in itself is a great simplification. The
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conditions for incompressible or density stratified flow are much more

complex because the curl of the perturbation equation is used to eliminate

the arbitrary perturbation pressure. The resulting form is much more

difficult to integrate to get meaningful results.

The full equation for compressibly viscous force with laminar shear

and small departures from isentropic flow was developed using the Lagran-

gian approach. This method can yield stability in two manners even if it

cannot be shown that the equation on the frequency, _, is real. If it

can be shown as in the case of a particle in kinematics that the sign of the

imaginary term in the shear stress components is positive, then the viscous

terms would give an exponential decay with time. Under these circumstances

the magnitude of any imaginary part resulting from the discriminant of the

equation must be examined closely to determine if the conditions of stability

are met. A more rigorous variational principle might be a desirable exten-

sion of this method.
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Unstable Dat.a /_ f"
/Theory, 2- _:_

Stable //' 1.292-I
d 0 1 2

" (a) (b)

Fig. 1 Theory and experiment by Taylor (1923) for the instability of Couette flow
between rotating cylinders: (a) Taylor vortices; (b) theory and experiment for
r, = 4.035 cm, r_ = 3.55 cm.
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EFFECT OF SWIRL ON STABILITY

e;STATIONARY SCREEN b_ROTATING SCREEN
FIG.2 Laminarization of a turbulent jet flame by usinga wire screen to rolnle surrounding air. Schlieren pholograph_, la!

stationary screen,(b) rotating screen
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Fig. 3a Variation along the jet of unresolved frequency
components of the pressure, r = D/2.
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Fig. 5a. Radial distribution of swir"

velocity component.
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