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NUMERICAL SIMULATION OF WALL-BOUNDED TURBULENT SHEAR FLOWS

Parviz Moin

NASA Ames Research Center

Moffett Field, California 94035 U.S.A.

i. Introduction

Advances in computer hardware and numerical methods in conjunction with care-

fully designed computer programs have made meaningful numerical simulation of
."

wall-bounded turbulent flows possible. The physical realism of the resultant

computer-generated data has been validated by detailed structural and statistical

comparisons with experimental measurements. These calculations have proven to be

a very useful complement to the laboratory experiments.

This paper reviews some recent developments in three-dimensional, time-

dependent numerical simulation of turbulent flows bounded by a wall. We shall be

considering both direct and large-eddy simulation techniques within the same com-

putational framework. In the following section, we have outlined the governing

equations. In Section 3, the computational spatial-grid requirements as dictated

by the known structure of turbulent boundary layers are presented. Next, we review

the numerical methods currently in use. Some of the features of these algorithms,

including spatial differencing, time advancement, and data management, will be dis-

cussed in some detail. In Section 5 we provide a selection of the results of

recent calculations of turbulent channel flow, including the effects of system

rotation and transpiration on the flow structure. Finally, in Section 6 we shall

make our concluding remarks.

2. Dynamical Equations

To date, attention has been largely focused on the incompressible flows

_° governed by the Navier-Stokes equations:

_u. _2u.
l _P i l

+ (la)
_---_-CijkUj _k = _xi Re _xj_xj

_U.
1

--= 0 (ib)
_x.
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where Re is the Reynolds number. To satisfy the incompressibility constraint

(ib), certain numerical techniques use the Poisson equation for the dynamic pressure:

_2p = _ I_ijkUj_kl (ic)_x. _x. _x.
i 1 I

obtained from application of the divergence operator to Eq. (la).

In the direct simulation (DS) approach, the above equations are solved numeri-

cally with appropriate boundary conditions. Aside from errors due to numerical

implementation, no further approximations are required. In the large-eddy simula-

tion (LES) technique, the dependent variables are the resolvable portion of the _-

velocity and pressure field. Every flow variable f is decomposed to large-scale

and subrid-scale components.

f = f+ f' (2)

The large-scale component is defined by

f(x) = !G(x,x') f(_') d5' (3)

where G is a filter function with a characteristic length A, which is a function

of the computational grid resolution. Applying the filtering operation (3) to

Eqs. (la), (ib), or (Ic) leads to the exact equations for the large-scale field.

The major difference between the filtered and unfiltered equations of the direct

simulation is the inclusion of the additional terms associated with the subgrid-scale

stresses (SGS) in the governing equations for the large eddies. These terms are

modeled to close the system of equations. Different eddy-viscosity models [I, 2, 3]

as well as multi-equation models [4] have been successfully used to relate SGS

stresses to the resolvable turbulence. These models should display an important fea-

ture: as the grid resolution is refined, the characteristic length of the SGS eddies

becomessmaller. ""

In this paper, most of the discussion will be in reference to a Cartesian coor-

dinate system. The x and z (xI, x3) axes are parallel to the wail, with x

increasing in the mean-flow direction. The y axis is normal to the wall. We shall

primarily discuss numerical simulation of flows that are homogeneous or nearly homo-

geneous in the x and z directions. This is the area where most of the current

effort has been concentrated. Some computations of unidirectional flows in cylindri-

cal geometries have been performed [2, 5]. Currently, however, numerical simulation

of the turbulent flows in complex geometries involving generalized coordinate systems

has not been undertaken. Other notions used in this paper include: _, the channel
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half-width or boundary-layer thickness; Uo, free-stream velocity or centerline

velocity in channel; uT, shear velocity; Um, average mean velocity; Re, the

Reynolds number based on Uo and _; Rer, the Reynolds number based on ur

and 6; _, the kinematic viscosity; Yw, the distance to the wall; and Ni,

number of grid points in the xi-direction.

3. Spatial Resolution Requirements

Generally, numerical simulation of wall-bounded turbulent shear flows requires

a large number of grid points in all spatial directions. This requirements is much

more stringent than the corresponding one for free-turbulent shear flows (e.g., jets

and wakes). The difference stems from physical observations that locally large

eddies near the wall are much smaller than those away from the wall. Moreover, in

free-turbulent flows, large-scale structures exhibit an appreciable degree of

Reynolds number independence, whereas, near the walls, the important large-scale

structures decrease in size With increasing Reynolds number.

In the direction normal to the solid boundary, one should and can easily dis-

tribute grid points with variable spacings. A sufficient number of grid points

should be placed near the wall to resolve the viscous sublayer and the buffer layer.

As the Reynolds number increases, more points are required in this region. The grid

size can be increased in the regions away from the walls; however, it should be

bounded by the Prandtl mixing length (~0.i _).

In the lateral (spanwise) direction, the required number of grid points can be

prohibitively large. The difficulty arises due to the fine spacing of the streaky

structures [6] in the vicinity of the wall. Kline and his co-workers have shown

that streaks play a significant role in the production and dynamics of turbulence in

the entire flow field. Therefore, it is important that the numerical simulation of

wall-bounded turbulent shear flows resolve these structures or account for their

effects. For a limited range of Reynolds numbers, laboratory observations, as well

as some quantitative measurements indicate that the mean spacing of the streaks, Im'

_+ _mU/_is about i00 wall units, i.e., = _ i00, and their most probable spacing is
"" m

about 80 wall units. The mean width of the smaller of the high- and low-speed

_ streaks can be at most 50 _/uT. In fact, from the measurements of Blackwelder and

Kaplan [7], one can deduce that the mean width of the high-speed wall-layer struc-

tures is about 20-40 wall units. These values are based on an ensemble of measure-

ments, and, at a given instant, structures with smaller (as well as larger) widths

are formed. Therefore, in order to capture the wall structures at their proper

scale, it is not unreasonable [8] to require that the computationa! grid resolution

in the spanwise direction be fine enough to resolve eddies with a spanwise extent of

20 wall units. In the numerical integration of the governing nonlinear equations, if

we assume that at least four grid points are required to represent an eddy and its
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evolution for a short period of time, the computational grid size in the z-direction

should be about 5 wall units, i.e., h_ _ 5. It should be pointed out that this

estimate is based on experimental data for moderately low Reynolds number turbulent

flows and may not apply at very high Reynolds numbers.

In the absence of physical boundaries in the spanwise direction, the extent of

the computational domain in this direction, L should be large enough that arti-Z _

ficialities introduced by the use of periodic boundary conditions do not seriously

affect the statistics of the flow. Based on two-point correlation measurements [9],

L should be at least three times the boundary-layer thickness [3]. With these two
z

estimates, the required number of grid points in the z-direction, Nz, is

3
N _--= 0.6 Re
z 5/Re T

T

Using the universal velocity-distribution law [i0] we may relate Re to Re

Re = Re T (i _n ReT + 5.0 + E)

where _ _ 0.4, E TM 0 for channel and pipe flows, and E = 2.8 for the boundary

layer. Figure I shows the required number of grid points in the spanwise direction

vs. the Reynolds number for channel flows.

3000 ' ' ' ' ' '''I '

1000

Nz

100 , , i , ,,Izl , J ......
103 104 105

Re

Figure i. Grid-point requirements in the spanwise
direction.



The computational grid requirement is not as stringent in the streamwise

direction as in the spanwise direction. Similar considerations of the physics of

turbulent boundary layers tend to indicate [3] that, in the streamwise direction,

the required number of grid points is about half that for the spanwise direction.*

As an example, for the moderate Reynolds number Re = 104 64 nonuniformlv

spaced grid points appear to be sufficient in the direction normal to the wall(s).

For this case, therefore, about 4 x 106 mesh points are necessary to resolve the

energetic turbulent structures. The computational effort required for this calcu-

lation overly taxes the capabilities of the presently available supercomputers. On

the other hand, low Reynolds number flows, such as the channel flow experiment of

" Eckelmann [ii] with Re = 2800, is definitely within reach of such computers. For

this f!ow, less than half a million grid points are required.

It is emphasized that the spatial resolution requirements just given are based

on the experimentally determined "large" eddy sizes. In the above calculations, one

must use subgrid scale (SGS) models to represent the small dissipative eddies. It

is difficult to characterize the size of these very small eddies. As a reference,

however, we may consider the Kolmogoroff length scale n = (v3/g)I/4 as their

typical length scale. For channel flows based on the mean dissipation rate per unit

mass for the entire flow field, n can be expressed in the wall units as
+

[Re (uT/Um)]I/4_ For the low Reynolds number, Re = 2800, that was just con-=

sidered, _+ is approximately 2 wal! units. Based on the wall value of E, the

limiting value of _+ is slightly less than i (n+ is exactly equal to l, if only

the dissipation due to mean motion is considered). Clearly, if eddies whose extent

is about n+ in all the spatial directions are to be resolved, the required number

of grid points is prohibitively large. Thus, it appears that, with the present com-

puters, direct numerical simulation of wall-bounded turbulent shear flows is not

feasible, and calculations should incorporate subgrid scale models to represent

the dissipative eddies. However, this conclusion has been based on using n+ as

the characteristic size of the dissipative eddies that must be resolved. The

question arises as to whether eddies of this size make significant contributions to

the local dissipation rate in turbulent boundary layers. With the available experi-

mental data, it is difficult to answer this question conclusively. A rough estimate

of the dissipation spectra obtained from the one-dimensional energy spectra measure-

ments of Bakewell and Lumley [i_ seems to indicate that these eddies do make appre-

ciable contributions to the local dissipation rate. Perhaps, the easiest wav to

answer this question is to attempt a direct simulation of a very low Reynolds number

*This estimate is based on the typical streamwise extent of the wall-laver struc-
trues [12]. In visual studies [6], the "lifted" sublayer streaks were observed

to oscillate. Depending on the wavelength of these oscillations, more points in
the streamwise direction may be necessary.
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turbulent channel flow and validate it by detail structural and statistical compari-

son with the available experimental data.

The demand for a large number of grid points for resolving the wall-layer

structures can be significantly reduced by the grid-imbedding technique [14]. One

can place a large number of grid points in the x and z directions only in the

vicinity of the walls. Since implicit time advancing will generally be used in con-

junction with derivatives in the normal direction, this approach is not as conveni-

ent to implement as one where the same number of grid points in the x and z

directions are used at all the y-locations. However, careful grid imbedding can

lead to enormous savings on computer time and storage. If at moderate Reynolds num-

bers the wall-layer structures are to be resolved at their proper scale, grid imbed-

ding appears to be the only course of action at present.

Another method for alleviating the need for a large number of grid points in

the simulation of wall-bounded shear flows is that of Deardorff [i] and Schumann [2].

In this method the flow in the vicinity of the walls is ignored. The calculations

are carried out to a point in the logarithmic layer where boundary conditions con-

sistent with the logarithmic velocity distributions are applied. For high Reynolds

number flows and certain practical problems, this approach is very promising. With

considerably less effort than is required to extend the calculations to the wall,

successful comparison of the mean velocity and turbulent stresses with experimenta!

data has been obtained. However, the applicability of these empirical boundary

conditions to other flow situations has not been established. Moreover, the effect

of perturbations to these boundary conditions on the computed flow field is not yet

known. If a two-dimensional, time-dependent "wall function" can indeed be con-

structed with a sufficient degree of generality, then this type of calculation can

be of considerable practical value for the numerica! simulation of high Reynolds

number, wall-bounded turbulent flows. The calculations that do extend to the wall

can serve as a viable testing ground to validate the proposed wall conditions.

A novel and inexpensive method for evaluating these conditions is described by

Chapman and Kuhn _ . They calculated the inner region of a turbulent boundary

layer by specifying space- and time-dependent boundary conditions at the outer edge

of the viscous sublayer. Considerable care was exercised in assuring that these

conditions were consistent with the known dynamics of the near-wall turbulence. The

appropriate "outer" boundary conditions used in this work can be used as wall condi-

tions in the large-eddy simulation of the outer region of turbulent boundary layers.

4. Numerical Methods

In this section we shall discuss the numerical methods used to solve the three-

dimensional, time-dependent, Navier-Stokes equations for wall-bounded turbulent

flows. As a result of modeling the subgrld scale stresses, the dynamical equations
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in the large-eddy simulation approach are somewhat more complicated than Eqs. (i).

However, when eddy-viscosity models are used, these equations can be recast into a

form for which virtually identical numerical methods can be used. Equation (la) can

be written as:

_}u. _2u.
l _P I i

_--_-= H. - -- + (4)l 3x. R _x._x.
3 J

where H. represents the nonlinear terms (including the subgrid scale terms) andl

the dependent variables (ui,P) are to be interpreted either as the full velocity and

pressure field in DS, or their resolvable portions in LES.

4.1 Spatial Derivatives

Finite-difference and spectral (pseudospectral) methods have been used to

approximate the partial derivatives _/_x.. Deardorff [i] and Schumann [2] used
l

second-order finite differences in conjunction with staggered grids _6] in all

spatial directions. Moin and Kim [3] evaluated partial derivatives in two of the

spatial directions (Xl, x3) pseudospectrally, whereas, derivatives in the direction

normal to the walls were evaluated by second-order central-difference formulae.

Orszag and co-workers [17, 18], Moin and Kim [19], Kleiser [20] and Taylor and

Murdock [2_ computed all the spatial derivatives by pseudospectral methods. When

using pseudospectral methods, the dependent variables are expressed as a linear com-

bination of a set of orthogonal functions. Fourier series is the appropriate repre-

sentation of the flow field in the directions for which periodic boundary conditions

are used. In other dierctions, orthogonal polynomial decompositions generally lead

to a high convergence rate, irrespective of the nature of boundary conditions _2].

For smooth functions, pseudospectral methods are much more accurate numerical dif-

ferentiators than the conventional second- and fourth-order finite-difference approxi-

mations. However, this superiority of the spectral methods may not be very pro-

nounced when turbulent flows which often involve small-scale fluctuations are calcu-

lated. In numerical simulation of two-dimensional, Navier-Stokes equations in a

periodic box, Herring et al. [23] have systematically compared their results obtained

with second-order finite-difference and spectral methods. They showed that spectral

calculations are approximately equivalent in accuracy to finite-difference calcula-

tions with only twice the resolution in each space dimension. It is quite likely

that a more favorable comparison can be obtained if fourth-order finite-difference

methods are used. Another important conclusion from their study was that the accu-

racy or inaccuracy of spectral methods can be deduced from the computed energy

spectra, whereas, the spectra obtained from the corresponding finite-difference calcu-

lations tend to hide their inaccuracy. To illustrate this property of spectral



methods, we shall consider two numerical simulations of turbulent channel flow, one

inadequately resolved and the other with sufficient grid resolution.

Figure 2a shows the one-dimensional lateral energy spectra in the vicinity of

the wall (yw/6 = 0.025) from a turbulent channel-flow simulation at Re = 13800,

Ref. [3]. In this calculation, the pseudospectral method with 128 grid points was

used in the lateral direction. However, for this Reynolds number the resulting com-

putational resolution was not adequate to resolve the wall-layer streaks at their

proper scale. The energy accumulation at the high wave-number portions of

Ei(k3,Yw/6 = 0.025) signals this inadequacy. Note that the longitudinal spectra

obtained at the same vertical location (Fig. 2b) do not have energy buildup at high

wave numbers. In this calculation, 64 grid points were used in the longitudinal

direction. These appear to be sufficient to resolve the streamwise variation of

turbulent structures (which, incidentally, suggests that the streamwise grid resolu-

tion estimate given in section 3 may be too stringent (see below)). Figure 2c shows

the one-dimensional, lateral energy spectra Ei(k3,Yw/6 = 0.389) at a distance away

from the wall. In this region, the finely spaced near-wall structures are absent,

and no resolution problems are expected. This is reflected in the behavior of E.z

and the absence of excessive energy buildup at high values of k3. Figure 3 shows

the corresponding near-wall (yw/_ = 0.025) one-dimensional spectra from a channel

flow simulation at the relatively low Reynolds number Re = 3850. In this calcula-

tion, 128 grid points were also used in the spanwise direction and were apparently

sufficient to resolve the wall-layer structures. For this case, no excessive energy

accumulation is evident at the high-wave-number end of Ei(k3, yw/6 = 0.025). One

should be cautious in using energy spectra as the sole indicator of grid resolution

adequacy or inadequacy. Insufficient computational resolution may totally suppress

certain instability mechanisms and the subsequent formation and growth of the corres-

ponding turbulent structures. This phenomenon may be concealed from energy spectra.

If the spatial grid resolution is sufficient to resolve all the important scales

of motion, spectral or pseudospectral methods certainly are the best possible numeri-

cal differentiators. However, in some cases the accuracy afforded by spectral

methods should be balanced against inherent inefficiencies in the data-management

process and difficulties encountered with application of these methods to complex

geometries.

4.2 Explicit Time Advancement

The three momentum Eqs. (4) must be integrated in time, subject to the incom-

pressibility constraint. Explicit methods offer the advantages of low cost per step

and ease of formulation and computer programming. In calculations where the wall-

layer dynamics have been excluded _I, 2] , only explicit time advancement has been



Figure 2. One-dlmenslonal energy spectra at Re 13800. m EI spectrum
of the streamwise fluctuating velocity; --'--,E2 spectrum of

spanwise fluctuating velocity; .... , E3 spectrum of normal
fluctuating velocity. (a) lateral spectra, yw/6 = 0.025;

(b) longitudinal spectra, yw/6 = 0.025; (c) lateral spectra,

yw/_ = 0.389. Note that in (a) the ratio of the peak value

of E2 to its value at the highest resolved wave number is

only 4.2. 9
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Figure 3. One-dimensional lateral energy spectra at

Re=3850. Yw/6 =0.025 (see caption of Fig. 2).

used. In these simulations, due to the use of relatively few uniformly or nearly

uniformly spaced grid points, the stability restriction (especially those of the

d_ffusion type) on time step is not severe. Both leapfroz and second-order Adams-

Bashforth methods have been employed. The latter method has better overall accuracy

and stability properties and is more popular now.

To enforce the incompressibility condition at the next time step, usually,

the Poisson equation (ic) for pressure is used rather than the continuity equation.

For several flow geometries of interest, noniterative, elliptic solvers are available

[24] for exact solution (to within round-off errors) of the discretized Poisson equa-

tion. It is important, however, to note that the finite-differenced V2 operator

for the Poisson equation cannot be chosen arbitrarily [25]. In order to ensure com-

pliance with the incompressibility condition, the numerical gradient operator used

to approximate _P/_x i in Eq. (4) and the divergence operator must be the same.

(When a staggered grid is used, a combination of forward and backward difference

schemes for the divergence and the gradient operators also leads to the incompressi-

bility condition.). Except when second-order finite-difference methods on a stag-

gered grid are used, there is some ambiguity with the choice of boundary condition

for the Poisson equation (Ref. [19]). Usually, one uses the Neumann boundary condi-

tion for pressure (which is obtained from the normal momentum equation). It is also

possible to obtain a Dirichlet condition from the boundary evaluation of the tangen-

tial momentum equations. In general, the Neumann and Dirichlet problems for pressure
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may not have the same solution. It can be shown [19] that, when pseudospectral

methods are used in the direction normal to the boundary, in order to satisfy the

boundary conditions and the equation of continuity at the wall, it is imperative

that both Neumann and Dirichlet conditions for pressure be satisfied. However, only

one of them can be used to solve the Poisson equation. This inconsistency leads to

serious numerical difficulties if pseudospectral methods are used. With standard

finite-difference techniques, although the above ambiguity is still present, the

corresponding numerical difficulties can be avoided [26, 27]. If second-order

finite-difference methods are used in conjunction with staggered grids, the incom-

pressibility condition at the interior cell adjacent to the boundary provides the

additional boundary relation needed to solve the system of algebraic equations for

pressure. In this case it is not necessary to extract pressure boundary conditions

from the momentum equations.

4.3 Partially Implicit Time Advancement

The calculations that have extended to the wall and applied the no-slip bound-

ary conditions have used semi-implicit numerical methods. These numerical schemes

circumvent the prohibitive time-step restrictions arising from the viscous term and

the necessity of using very fine mesh spacing in the vicinity of the wal!. Moreover,

when spectral methods are used to approximate the derivatives in the direction normal

to the boundaries, implicit methods provide the means for convenient imposition of

boundary conditions. This is because, in contrast to the fully explicit methods,

at each time step the problem is treated as a boundary value rather than an initial

value problem.

The flows considered to date have been restricted to those that are homogeneous

in two space dimensions. The direction of inhomogeneity is normal to the wall(s).

Specifically, plane channel flow, pipe flow, axial flow between two concentric cyl-

inders, plane and circular Couette flows have been simulated numerically. For these

cases, the use of periodic boundary conditions in the homogeneous directions allows

the application of Fourier transforms, which alleviate the need for split or

factored-type algorithms. Perhaps, the most direct approach for the solution of

Eq. (4) and the continuity equation is to solve them simultaneously. For simula-

tion of turbulent channel flow, Moin and Kim _, 19] used the second-order Adams-

Bashforth method for H. and the Crank-Nicolson method for _P/_x. and _2u./_x._x.
i l i j j

in Eq. (4). This, together with the continuity equation at the new time step,

n + i, led to a system of four coupled, linear, partial-differential equations for

u. and P of the form
l

L(un+l pn+l = F(u_ n-1i ' ) , ui , pn) (5)
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where the superscripts denote the time step. Fourier transforming Eq. (5) in the

xI and x3 directions produces linear, ordinary differential equations of the form

c_,^n+l @n+l
_U i , ) =

where _ denotes Fourier transform. To solve these ordinary differential equations,

both finite-difference operators on a modified staggered grid [3] and Chebyshev

polynomial expansions _9] were used to approximate _/_x2 and _2/3x_. The result

is a system of algebraic equations for the Fourier transform of the dependent vari-

ables at the new time step. For the case where finite-difference operators were

used, this system is of block-tridiagonal form; and for the case where Chebyshev

polynomials were used, it is nearly block-tridiagonal. Both systems can be solved

with O(N 2) operations, where N2 is the number of mesh points in the x2-direction.

For their study of transition to turbulence in plane channels and Couette flows,

Orszag and Kells [i_ used a three-step fractional step method. Chebyshev poly-

nomials and Fourier decomposition were used to represent the dependent variables

spatially. In the first step, the Adams-Bashforth method is used for the nonlinear
~n+l

terms, H.. The result is a set of intermediate velocity field u. Next, the
1 ' 1

pressure correction (incompressibility condition) is applied, leading to another set
=n+l

of intermediate velocity field u. that satisfies the continuity equation
i ~ n+l

_n+I/_x.. = 0. This step involves solving a Poisson equation for uo with the
1 i =n+l

boundary conditions u2 = 0 at the walls. The velocity field at the new time

step is obtained by applying the viscous correction which involves the solution of

three Helmholtz equations for the velocity field. The velocity boundary conditions

are applied at this stage. This method has a global error of order 0 [At2 + (l/Re) At].

Thus, strictly speaking, it is a first-order method. In addition, the velocity

field at the new time step does not satisfy the continuity equation. Onlv the inter-

mediate velocity field, _i' is solenoidal. If the last two steps were interchanged,

the velocityfieldwould be divergence-free,but the boundaryconditionscould not

be enforced. Apparently,having the exactboundaryconditionswas preferredover

the continuity equation. Another characteristics of note is that, to solve the

Helmholtz equations in the final step using Chebyshev-Fourier expansions, one must

transferthe forcingterms in theseequationsto the wave (Chebyshev-Fourier)space.
zn+l

include _[_.I Thus, to carry out the transformation, u. must beThese terms
i 1

defined at the boundaries as well as in the interior of domain. It is necessary,
zn+l

therefore, to concoct boundary conditions for the intermediate velocities, u.1

Recently, Leonard [53 developed a partially implicit method based on a special

vector-function decomposition. An important feature of these vector functions is

that each vector is solenoidal and satisfies the boundary conditions. When this

seriesexpansionfor the velocityvector is used in Eq. (4) and the inner productof

12



the result with a set of adjoint vectors is formed, the pressure terms are elimi-

nated. In fact, since the velocity bases functions satisfy the continuity equation,

only two dependent variables per mesh point remain. This leads to considerable

savings in computer-memory requirements. Like the previous methods, the nonlinear

terms are treated by an explicit method, whereas, the Crank-Nicolson scheme is used

for the viscous terms. Leonard and Wray [28] have applied this method to the pipe-

flow problem. They rigorously treat the behavior of the flow variables near the

computational singularity at the pipe centerline wNich leads to the use of the

Jacobi polynomial expansions in the radial direction. Moser et al. [27] applied

this method to plane and curved channel flow problems. In the direction normal to

the walls, a particular combination of Chebyshev polynomials was used as bases

functions. With this choice, for each Fourier mode, the resulting system of alge-

braic equations was solved with 0(N2) operations.

4.4 Data Management

Limitations of the high-speed central memory of presently available computers

and the large number of grid points required for numerical simulation of turbulent

flows necessitate the use of secondary memory. Generally, the entire data base

must reside on secondary memory (SM) and only portions of it are successively trans-

ferred to the core memory (CM) for processing. In order to minimize the data trans-

fer (I/0) time, an efficient data-management algorithm should be an essential part

of each computer program.

The particular choice of data-management technique depends on the numerical

method and the computer used for the calculations. However, all the algorithms have

the objective of overlapping the data transfer from SM to CM with arithmetic opera-

tions. It is also important to minimize the number of passes over the data base.

In general, one or two passes are required at each time step.

As an example of a data-management algorithm, we consider the scheme employed

in Ref. [3]. In order to solve Eq. (6), a two-pass, double-buffer, data-management

algorithm was used. In the first pass over the data base, the required pressure-

velocity data from previous time steps are transferred to CM, and F (Eq. (6)) is

computed and transferred to SM. Since second-order finite-difference formulas were

used to approximate the derivatives in the x2-direction , each time only three

(xI - x3) planes of data are required to compute F in one plane. In the second

pass, (x2 - x3) planes of F were transferred to _M, and the block-tridiagonal

system was solved. Note that, with this algorithm, the data were accessed in two'

different ways -- first in the xI - x3 planes and then in the x2 - x3 planes.

Since the data are stored sequentially in, say, the xI - x3 planes, the second

access (x2 - x3 planes) is nonsequential; therefore, it is not as efficient.

Alternatively, another data-management scheme can be used for solving the same set
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of equations. With this algorithm, in the first pass, in addition to computing F,

the forward sweep portion of the Gauss-elimination process can also be performed.

In the second pass, the backward sweep portion is performed again, using xI - x3

planes. Thus, the data base is accessed sequentially. In fact, the entire process

can usually be accomplished with only one pass through the data base per time step

[30]. It should be pointed out that, if pseudospectral rather than finite-

difference methods are used in the x2-direction, two passes through the data base

(one of them nonsequential) are required.

We emphasize that the numerical methods discussed here have been largely

designed for and applied to the simplest wall-bounded, turbulent shear flows,

namely, those that are homogeneous in two spatial directions. The flow homogen-

eity has led to the use of periodic boundary conditions as a reasonable approxima-

tion to the unknown flow conditions at the "open" boundaries. The use of

Fourier transforms converts the task of solving a partial differential equation to

that of solving a set of uncoupled ordinary differential equations. This is a very

significant fringe benefit associated with periodic boundary conditions. In order

to calculate flows with two or more directions of inhomogeneity, in addition to

having to specify the unknown (turbulent) inflow and outflow conditions, one should

use split- or factored-type algorithms. An adaptation of the fractional step method

appears to be an attractive candidate for this purpose.

5. Results

To illustrate the versatility and usefulness of the aforementioned calculations,

we briefly present here a selection of recent results from the large-eddy simulation

of wall-bounded turbulent flows. The main calculations were performed on the ILLIAC

IV computer with 64x63x128 grid points in the x, y, and z directions, respec-

tively. The total computational time ranged from 20 hours to 92 hours.

Figure 4 shows the mean velocity profile, <u>, from numerical simulation of

turbulent channel flow at Re = 13800, Ref. 3. Different symbols represent calcula-

tions with different grid resolutions and different sizes of the computational box

in the x- and z-dlrections, where periodic boundary conditions are used. The cal-

culations have predicted the logarithmic region with the proper slope. The agree-

ment with the experimental data [31] is good. The distributions of the Reynolds

stresses (Fig. 5) and higher-order statistics are also in good agreement with mea-

surements. The contribution of subgrid scale turbulence to second- and higher-order

statistical correlations is appreciable only in the vicinity of the walls. This is

a consequence of the grid-resolution inadequacy in this region to represent the wall-

layer turbulence structures at their proper scale. Figure 6 shows a contour plot of

the instantaneous normal component of vorticity fluctuations, _2 = (3w/_x - 3u/_z)

in an x - z plane close to the wall (y+ _ 6). It is clear that, in accordance
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x

Figure 6. Contours of _2 in the (x, z)-plane at y+ = 6.26. The rectangle on the
lower right-hand corner of the figure represents the computational grid
cell in the (x, z) planes. The streamwise extent of the figure is 2_6
and its spanwise extent is _6.

with experimental measurements [6], this region is composed of flow structures which

are long in the flow direction and narrow in the spanwise direction. The rapid

spanwise variation of _2 is due to the existence of elongated regions of high-

speed fluid ((u - (_>) > O) located adjacent to the low-speed regions [6, 3].

This figure is a vivid display of that particular characteristic of wall-bounded

turbulent shear flows which requires a large number of grid points in the lateral

direction. As was pointed out in section 3, in this calculation, the spanwise grid

resolution was not adequate to resolve the wall-layer streaks at their proper scale.

However, it is quite significant that, in spite of this, the computed flow field -.

did display the streaky structures but at a larger scale.

The data generated from these calculations are currently being used to study

the physical structure and dynamics of turbulent channel flow. In one study, for

example, our aim is to identify large-scale, energetic structures in the flow field.

In particular, we wanted to investigate the frequency and dominance of horseshoe or

hairpin vortices that have been observed to originate at the wall and extend to

outer regions with the characteristic inclination angle 40° - 50° (see, e.g., Ref.

[32].) The vorticity field at several points in time was computed. At each grid

point in various x - z planes, the angle e = tan-l(m2/ml), and
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= was calculated. Figure 7 shows the resultant distribution at

yw/6 = 0.2. The contribution from each grid point was weighted by I_121. Indeed,

the distribution attains its maximum at e = 45°. However, the probability of find-

ing vorticity vectors with inclination angle in the range 0 _ 0 < 90° is also

appreciable. A detailed description of the results of this study will be presented

elsewhere. In another investigation, Kim [33] has used the computed velocity-

pressure field to examine the struc:ture of the flow by conditional sampling tech-

niques. Figure 8 shows the conditionally averaged, streamwise velocity obtained by

using the VITA technique [7]. It is remarkably similar to the experimental results

of Blackwelder and Kaplan [_. The figure displays the burst and sweep events and

their vertical extent. Kim has extended the experimental findings utilizing condi-

tionally averaged pressure, vorticity, and the spanwise velocity component.

By simple modifications of the channel flow code described above, the effects

of transpiration and spanwise rotation on the flow were computed. In the former case,

uniform blowing through one wall and uniform suction at the same rate was applied

through the other wall. Figure 9 shows that, in agreement with experimental measure-

ments, the calculations predict the wall-shear-stress diminution caused by blowing

1.50 I I , i I

1.25

1.00

.75 F
i

.50

.25 J
0 30 60 90 120 150 180

_, deg

Figure 7. Distribution of the inclination

angle of vorticity vectors (weighted

by Im121) at yw/_ = 0.2.
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velocity fluctuations at various dis-
tances from the wall.

and its augmentation resulting from suction. Other features of the computed flow

field, such as the effect of transpiration on the distribution of Reynolds stresses,

are also in agreement with measurements. In the case of the rotating channel, the

computational results [35] are in good agreement with the experimental data [36] and

reproduce the detailed structural features of the flow as observed by flow-

visualization techniques. The primary effect of rotation is that the flow is stabi-

lized on one wall and destabilized on the other. The skin friction is reduced on

the "stable wall" and is increased on the "unstable wall" (Fig. i0). One of the

objectives of these studies was to examine the relationship between the changes in

skin friction and flow structure in the vicinity of the wall. In both flows, it

has been shown that there is a definite correlation between the characteristic

dimensions of the wall-layer streaks and viscous drag.

6. Concludin$ Remarks

The results of the numerical simulation of wall-bounded turbulent shear flows

have been most encouraging. For geometrically simple cases, it has been possible to

predict many of the statistical and time-dependent features of the flows considered.

The potential of these calculations for increasing our understanding of the physics

of turbulent boundary layers is just beginning to be tapped.
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The large number of grid points required to resolve the wall-layer structures

is a formidable hindrance to numerical simulation of high Reynolds number flows.

The grid-imbedding technique can significantly ease this burden. Consideration of

the bursting frequency and the frequency spectra of streamwise velocity fluctua-

tions [37, 13] indicates that, for moderate Reynolds numbers, it may be possible to

perform accurate LE___Scalculations with larger time steps than is currently permitted

by numerical stability restrictions. Thus, further improvements in numerical

methods are likely to yield high dividends.

Extension to more complex geometries requires progress in our ability to pre-

scribe turbulent inflow and outflow boundary conditions. Another practical diffi-

culty in calculating these inhomogeneous flows is acquiring adequate ensemble

averages. In contrast to homogeneous flows, one cannot integrate turbulence quanti-

ties over spatial grid points to secure a better statistical sample. To obtain

adequate statistics, the only resort is time-averaging or, in the case of
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nonstationary flows, averaging over several independent calculations. In both

cases, the computational cost is significantly higher than for flows with one or two

directions of homogeneity.
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