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,;,	 ABSTRACT

Spur gear stress analysis results o,e presented for a variety of loading
conditions, support conditions, fillet radii, and rim thicknesses. These
results are obtained using the SAP IV finite-element code. The maximum
stresses, )ccurring at the root surface, substantially increase with decreasing
rim thickness for partially supported rims (that is, with loose-fitting hubs).
For fully supported rims (that is, with tight-fitting hubs), the root surface
stresses slightly decrease with decreasing rim thickness. The fillet radius
is found to have asig M cant effect upon the maximum stresses at the root
surface. These stresses increase with decreasing fillet radius. The fillet
radius has little effect upon the internal root section stresses.

INTRODUCTION

During the past decade there have been a number of investigations into
the nature of spur gear stresses. References [1-12]* summarize some of these
efforts. They include a variety of theoretical and experimental approaches to
determining the stresses, but the results are reasonably consistent. Of par-
ticular interest is the fact that the results obtained using finite element
techniques are consistent with results obtained using vastly different theo-
retical and experimental techniques. For example, in 1955, Jacobson [13j
studied bending stresses using photoelastic techniques. In 1913, his results
were matched by Wilcox and Coleman [11] using finite element techniques. In
19b2, Aida and Terauchi [14] studied bending stresses using stress functions
and classical elasticity theories, and more recently (1981) Cordou and Tordion
[2] studied the stresses using complex variables. Their results also confirm
results obtained using finite element techniques. Uther noteworthy theoreti-
cal studies which confirm finite element results are those of Baronet,
Tordion, and Premilhat [1,1] and of Shotter [8].

Regarding the use of the finite element method itself in gear stress
analyses, there have recently been a number of notable achievements. For



example, Chabert, Dang Tran, and Mathis [3] have used finite element tech-
niques to examine the stress distribution across the root section. Tobe, Kato
and Inoue [9,10], Winter ano Hirt [12], Cornell [5], and Wilcox and Coleman
[11] have studied root stresses using finite element methods. Finally, Oda,
Nagamura, and Aoki have examined the effect of rim thickness on the root
stresses using the finite element method.

In view of this, the objectives of the research effort of this paper are

to determine (a) the surface stress distribution for the entire tooth profile

for tip and pitch point loading; (b) the fillet stresses and the root section

stresses for a variety of loading positions and fillet radii; and (c) the
effect of rim thickness and mounting support upon the root stress. The SAP IV
finite element technique [15] was used in the analysis.

ANALYSIS

The Model

Figure 1 shows typical finite—element grids used in the analysis. The

number of elements used was varied depending upon the particular loading and
geometry being considered. Typically the grid had approximately 190 elements
and 120 nodes.

The gear tooth itself had a modulus M of 5 (pitch

number of teeth). It was a member of an 18—tooth gear

thus being 90 mm. The tooth sides are involute curves
was 20% The fillet radius and hub thickness were var

material was steel with an elastic modulus of 2.11x105

diameter divided by the

with the pitch diameter

and the pressure angle
iables. The tooth

N/mn2.

Loading and Support

The tooth was loaded with a 400 N/mm concentrated line load applied

normal to the tooth boundary at various points as shown in Figure 2. The hub

or rim was supported alternatively: a) at all points along the boundary, and
b) at only the radial points.

The Finite Element Procedure

The SAP IV technique [15] was used to assemble and solve the governing
equations

Ku=R
	

(1)

where K is the global stiffness matrix, u is the array of nodal displacements

and R is the force array. The solution is obtained using Gauss elimination
through the linear equation solver SESOL [15]. After the nodal displacements
are found, element stress displacement relations are used to obtain the
element stresses.

RESULT

Surface Stress Distribution

First, the stress distribution along the tooth surface was calculated for

a tip loading and for a load applied near the pitch point. Figure 3 contains
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a representation of the results for the maximum principal surface stress.

They show that, except for a local concentration, the maximum stress occurs at
the root of the tooth.

Root Surface Stresses as a Function of the Root Radius

.	 The above analysis led to a closer examination of the maximum fillet
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	 stresses as a function of the fillet radius. Specifically, the tooth was
loaded at the points shown in Figure 2. The fillet stresses were then calcu-
lated for radii of 0.2M, 0.3M, and 0.4M or 1.0 p an, 1.5 own, and 2.0 inn, respec-

tively. The results for the 1.0 mm and 2.0 own f illet radii are shown in
Figure 2. The results for the 1.5 mm fillet radii are intermediate to these.

An examination of the numerical values associated with these results shows the
stresses increase linearly with the inverse of the fillet radii, for the range

of radii considered. Also, the stresses are seen to increase linearly with
the distance from the fillet to the point of application of the load. These

results are consistent with those obtained and recorded by Chabert, et al.
[3], and with those of short beam theory as recorded by Roark and Young [16].

Internal Root Section Stresses as a Function of Root Radius and Loading

Position  --	 -----

Figures 4 and 5 show the principal stress distribution across the root

section for tip loading and for pitch point loading for the various fillet
radii. As expected, the stresses are smallest at the center of the section

ana the largest stresses occur at the surface. Interestingly, the fillet
radius has little effect upon the internal stress distribution.

Effect of Rim Thickness and Support Conditions

Figures 6 to 10 show the effect of the rim thickness and the hub or rim

support upon the fillet stresses and the stresses across the root section.
Specifically, Figure 6 shows the surface stresses for a gear tooth with a

fully supported rim (that is, supported at the rim base and along the radial

sides, simulating tight fitting hubs). The fillet radius was 2.0 nni ana the
rim radii were 35.0 mm and 37.1 nni. The loading was the same as that shown in

Figure 3.

Similarly, Figure 7 shows the fillet stresses for a gear tooth with a
partially supported rim (that is, supported only along the radial sides,

simulating loose fitting hubs). The fillet radii, rim radii and loading were
the same as with the fully supported rim.

These results show that when the rim is fully supported the fillet

stresses decrease slightlj as the rim thickness decreases. However, wher the
rim is on Ty partfally supported the fillet stresses increase substantiallz as
the rim thickness decreases. Moreover, for partially supported rims the
compressive stresses, at the fillet opposite the loaded side increase at a

greater rate than the tensile stresses at the fillet of the loaded side.
These results are sununarized graphically in Figure ft.

Finally, figures ya and 10a show the internal root section principal

stresses for a fully supported rim with the same root radii and rim radii as
above. The loading was at the tip as shown with a magnitude of 4UU N/nrn as



before. Similarly, Figures 9b and lUb show the internal root section princi-

pal stresses for a partially supported rim with the same fillet radii, rim
radii, and loading. These results also show that the stresses decrease
slightly with decreasing rim thickness for fully supported rims, but they
increase with rim thickness for partially supported rims.

These results are consistent with recent experimental findings recorded

by Drago and Lutthans [17]. 	 6

SUMMARY

1. The rim thickness and rim support have a significant effect upon the

stresses - particularly for partially supported thin rims, with the compres-
sive root stresses, opposite the loading side, being most affected. The

stresses increase with decreasing rim thickness for partially supported rims
(such as with loose-fitting hubs). However, for fully supported rims (such as
with tight-fitting hubs) the stresses decrease slightly with decreasing rim
thickness. For large rim thickness the rim support has little effect upon the

stresses.

2. The maximum stresses occur at the root surfaces, except for local

stress concentrations immediately beneath the load. These root stresses

increase with decreasing fillet radii.

3. The fillet radius has very little effect upon the internal root

section stresses.

4. The SAP IV finite-element method is a very effective procedure for

investigating gear tooth stresses with a variety of loading, support, and
geometrical shapes. This method can provide a benchmark analysis of year

tooth stresses, replacing many of the currently used handbook formulae.
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(a) Small fillet radius. lb) Small rim thickness.
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Figure 1. - Typical finite element grids.

Figure 2. - Surface stress distribution at the fillet
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Figure 3. - Surface maximum stress distribution.
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Figure 4 - internal root section principal stresses for 1.0 mm fillet radius.
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Figure 5. - Internal mot section principal stresses for Z Omm fillet radius.
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Figure 6. - Surface stress distribution at the fillet for a fully supported rim.
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Figure 7. - Surface stress distribution at the fillet for a partially supported rim.
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