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SUMMARY

An integrated thermal-structural finite element approach for effi-
cient coupling of thermal and structural analysis is presented, New
thermal finite elements which yield exact nodal and element tempera-
tures for one-dimensional ]inear steady=~state heat transfer problems
are developed. A nodeless variable formulation is used to established
improved thermal finite elements for one-dimensional nonlinear transi-
ent and two-dimensionai linear transient heat transfer problems, The
thermal finite elements provide detailed temperature distributions
without using additional element nodés and permit a common discretiza-
tion with lower-order congruent structural finite elements, The accu-
racy of the integrated approach is evaluated by comparisons with anal-
ytical solutions and conventional finite element thermal-structural
analyses for a number of academic and more realistic problems. Results
indicate that the approach provides a significant improvement in the

accuracy and efficiency of thermal-stress analysis for structures with

complex temperature distributions.
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Chapter 1
é INTRODUCTION

The finite element method 1s one of the most significant develop-
ments for solving problems of continuum mechanics. It was first
applied by Turner et al, (1L]* in 1956 for the analysis of complex
aerogpace structures. With increasing availability of digital
computers, the method has become widespread and well recognized as
applicable to a variety of continuum problems. Applications of the
method to thermal, problems were introduced in the middle of 1960's
for the solution of steady~state conduction heat transfer {21,
Thereafter, extensions of the method were made to botli transient and
nonlinear analyses where nonlinearities may arise from temperature
dependent material properties and nonlinasar boundary conditions.
Important publications of finite clement heat transfer analysis
appear in references [3-12]. With these developments and consider=~
able effort contributed during the past decade, the method has
gradually increased in thermal analysis capsbility and become a

practical technique for analyzing realistic thermal problems.

*

*The numbers in brackets indicate references,



1.1 Current Status of Thermal-Structural Analysis

Thermal stresses induced by aerodynamic heating on advanced
space transportation vehicles are an important concern in structural
design, Nonuniform heating may have a significant effect on the
performance of the structures and efficient techniques for determining
thermal stresses are required. Frequently, the thermal analysis of
the structure is performed by the finite difference method.
Production-type finite difference programs such as MITAS and SINDA
have demonstirated excellent capabilities for analyzing conyplex
structures (13], 1In structural analyéis, however, the finlte element
method 1s favorable due to better capabilities in modeling complex
structural geometries and handling various types of boundary condi-
tions. To perform coupled thermal-structural analysis with efficiency,
a computer program which includes both thermal and structural analysis
codes is preferred, and a single numerical method is desirable to
eliminate the tedious and perhaps expensive task of transferring
data between different analytical models.

Currently, the capabilities and efficiency of the finite element
method 1is analyzing typical heat transfer problems such as combined
conduction-forced convectlon is about the same as using the finite
difference method [14]. With the wide acceptance of the finite
element method in structures and 1its rapid growth in thermal analysis,
it 1is particularly well-suited for coupled thermal-structural
analysis. At present, several finite element programs which include
both thermal and structural analysis capabilities exist; e.g.

NASTRAN, ANSYS, ADINA and SPAR are widely used. These programs use

e 3 ke i o A



a common data base for transferring temperatures compute¢ from a
thermal analysis processor to a structural analysis processor for
determining displacements and stresses, With the use of a common
finite element discretization, a significant reduction of effort in
preparing data is achieved and errors that may occur by manually

transferring data between analyses is eliminated,

1.2 Needs for Improving Finite Element Methodology

Although the finite element method offers high potential for
coupled thermal-~-structural analysis, further improvements of the
method are needed. Quite often, the finite element thermal model

requires a finer discretization than the structural model to compute

(1]

the temperature distribution accurately. Detailed temperatur
distributions are necessary for the structural analysis to predict
thermal stress distributions including critical stress locations
accurately. Improvement of thermal finite elements is, therefore,
required so that a common discretization between the two analytical
models can be maintained,

Another need for improving the method includes a capability of
the thermal analysis to produce thermal loads required for the
structural analysis directly. At present, typical thermal-structural
finite element programs only transfer nodal temperatures computed
from the thermal analysis to the structural analysis. These nodal
temperatures are generally inadequate because additional information,
such as element temperature distributions and temperature gradients,

may be required to compute thermal stress distributions correctly.
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These needs are important in improvement of finite element
coupled thermal-structural analysis capability. The use of improved
thermal finite elements can reduce model size and computational
costs especially for analysis of complex aerospaceé vehlcle structures.
Improved thermal elements will also have a direct effect in increasing
the structural analysis accuracy through improving the accuracy of
thermal loads.

To meet these rejuirements for improved thermal-structural
analysis and to demonstrate benefits that can be achieved, this
dissertation will develop an approach called integrated finite
element thermal-structural analysis. ¥irst, basiec concepts of the
integrated finite element thermal-gtructural formulation are intro-
duced in Chapter Z. Finite elements which provide exact solutione
to one-dimensional linear steady-~state thermal~structural problems
are developed in Chapter 3. Chapter 4 demonstrates the use of these
finite elements for linear tranéient analysis. Next, in Chapter 5
a generalized approach for ilmproved finite elements is established
and its efficiency is demonstrated through thermal-structural
analysis with radiation heat transfer, Finally, in Chapter 6
extension of the approach to two dimensions is made with a new two-
dimensional finite element. In each chapter, benefits of utilizing
the improved finite elements are demonstrated by’ both academic and
realistic thermal-structural problems. '

Throughout the development of the improved finite elements,
detailled analytical and finite element formulations are presented.
Such details are provided in the form of equations, finite element

matrices in tables and computer subroutines in appendices.



Chapter 2

AN INTEGRATED THERMAL~-STRUCTURAL FINITE
ELEMENT FORMULATION

2.1 Basic Concepts

Before applying the finite element method to thermal-structural
analysis, it is appropriate to establish basic concepts and procedures
of the method. Briefly described, the finite element method is a
numerical analysis technique for obtaining approximate solutions to
problems by idealizing the continuum model as a finite number of
discrete regions called elements. These elements are connected at
points called nodes where normally the dependent variables such as
temperature and displacements are determined. Numerical computations
for each individual element generate element matrices which are then
agsembled to form a set of linear algebraic equations (for
steady state problems) to represent the entire problem. These
algebraic equations are solved simultaneocusly for the unknown
dependent variables. Usually the more elements used, the greater
the accuracy of the results., Accuracy, however, can be affected by
factors such as the type of element selected to represent the con-

tinuum, and the sophistication of element interpolation functions.




2,2 Element Interpolation Functions

The first step after replacing the continuum model by a
discrete number of f£inite elements 1s to determine a functional
relationship between the dependent variable within the element and
the nodal variables. The function that representa the variation of
a dependent variable is called the interpolation function. In thermal
analysis, the element temperature T(x,y,z,t) are generally expressed

in the form
T(x,¥,2,t) = LNT<X1Y»2)J {(T(t)} (2.1)

where LNT(x,y,z)J denotes a row matrix of the element temperature
interpolation functiong, and {7T(t)} denctes a vector of nodal
temperatures. Similarly, in a structural analysis, the element

displacements, {8}, are expressed as,

{8(x,y,2,8)} = [Ng(x,y,2)] {8(t)} (2.2)

where [Ns(x,y,z)] denotes a matrix of structural displacement inter-
polation functions, and {g(t)} denotes a vector of nodal
displacements.

Usually, polynomials are selected as element interpolation
functions and the degree of the polynomial chosen depends on the
number of nodes assigned to the element. Regardless of the algebraic
form, these interpolation functions have a value of unity at the node
to which it pertains and a value of zero at other nodes, For example,

linear temperature variation for a two-node one-dimensional rod
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element with nodal temperatures Tl and T2 at x =0 (node 1) and

% =L (node 2), respuctively, can be written in the form

¢ )
T, ()

T(x,t) = [1 - % F1 < S

sz(t)’

By comparing this equation with the general form of the element

temperature variation, Eq. (2.1), the element interpolation functions

are

X X
Nl(x) 1 - T and Nz(x) T

These element interpolation functions, therefore, have the properties

of N, =1 at node i and Ni = 0 at the other node.

2.3 Finite Element Thermal Amalysis

Once the type of elements and their interpolation functions have
been selected, the matrix equations expressing the properties of the
individual element are evaluated. In thermal analysis, the method of
welghted residuals (15] is frequently employed starting from the
governing differential equations. For condution heat transfer in a
three~dimensional anisotropic solid @ bounded by surface T
(Fig. 1), an energy balance on a small element is given by,
34y + 39y + CLP)

- (=

3T(x,¥,2,¢t)
Ix 3y oz

3t

) + Q(x,y,z,t) = pc (2.3)

where dyr dyr 9, are components of the heat flow rate per unit area,

y

Q is the internal heat generation rate per unit volume, p is the
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density, and ¢ 18 the specific heat. Using Fourier's Law, the
components of heat flow rate for an anisotropic medium can be written

in the matrix form.

¢ N r~ - r “
Ay kll klz k13 aT/ax
{9 } o | Ry Ry Ky | 4 9T/0y (2.4)
k q, / L_k31 k32 k33 |1 3T/3z |

where kij is the symmetric conductivity tensor, Figure 1 shows -
several types of boundary conditions frequently encountered in the
analysis. These boundary conditions are (1) specified surface
temperatures, (2) surface heating, (3) surface éonvection, and

14) surface radiation:

T =Ty on  § (2.5a)
q.n. + qyny +q,n, - qg on 8§, (2.5b)
q.n, + qyny + q,n, = h(Tg - T,) omn 83 (2.5¢)
R + qyny +qunz = osTg - aq, on §, .. (2.5d)

where Ty 1s the specified surface temperature; o ny, n, are the
direction cosines of the outward normal to the surface, qg is the
surface heating rate unit area, h 4s the convection coefficient,

T, 1is the convective medium temperature, o is the Stefan-~Boltzmann
constant, € 1s the surface emissivity, a 1s the surface absorp-
tivity, and g, 1is the incident radiant heat flow rate per unit

area.
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To apply the finite element technique, the domain § i1s first
diseretized into a number of elements, For an element with r
nodes, the element temperature, Eq, (2,1), can be written in the

form

T
T(x,y,2z,t) = L N, (%,y,2) T,(t) ' (2.7a)
fml i i

and the temperature gradients within each element are

r ﬂ(xr}'»z) Ti(t)

_Q_'E_(X,Y,Z,t) -
I iEl FE (2.7b)
AT(x,y,2,t) . ; Eﬁi(x,y,z) T (t) (2.7¢)
) 3y *
y i.l 7
X
_e_’l_?_(x,y,z,t) = % E_I\_‘_'-_{-_(x’y’z> Ti(t) (2.7d4)

3z i=] 2dz

These element temperature gradients can be wri:sten in the matrix

form,

aT (%,¥,2,t)
9x

y,28 L o [B(x,y,2)] (T(8)} (2.8)

A
o>
<15

@
3

(%,y,2,t)

L )

where [B(x,y,z)] 1is the temperature-gradient interpolation

Q>
N

matrix:
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3% ax 3%
3N, N aN
1 2 r
B IR NN 2.9
(B(x,y,z)] = 5 3y T (2.9)
3z 92z 9z

and, therefore, the components of heat flow rate, Eq, (2.4), become

q, = ~[k] [B] (T} (2.10)

where [k] denotes the thermal conductivity matrix.
In the derivation of the element equations, the method of
weighted residuals is applied to the energy equation, Eq. (2.3), for

each individual element (e), This method requires

3q aq 3q »
be v z _ T -
f(e)(ax+ay+az Q +pc ) Nda =0 (2.11)
2

1.1,2 veee T

After the integrations are performed on the first three terms by

using Gauss's Theorem, a surface integral of the heat flow across

the element boundary, I‘,<e>, is introduced, and the above equations
become
q
L. aN, BN, N *
(\J @ 8) N dr - T a, ¢ 49 )
r(e) ofe)
q
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3T .
~f QN dn-i-f pe=— M, d% = 0 (2.12)
gfe) i gle) "7 et ML

where q 18 the vector of conduction heat flux acroass the element
boundary and fi is a unit vector normal to the boundary. The

boundary conditions as shown in Eqs. (2.5a -2.5d) are thea imposed,

([ @owar - q N dre [ neren N ar
Sl 32 33

q
aN, 5N, BN X
+~f (ce’r4 - aqr) dar - J‘ L ai a; Q:J qy df )
s ale)
4

aT .
- J‘( QN e+ J.' pe o N, d2 =0 (2.13)
o(8) Q&e>

By substituting the vector of heat flow rate, Eq: (2.10), the above

element equations finally result in the matrix form,

[CI{T} + [[K.] + [Ky] + [K.II(T}
(2.14)

= (R} + {Ro} + (R} + (R} + (R}

where [C] is the element capacitance matrix; [K ] , [K ] and
[Kr] are element conductance matrices corresponding to conduction,
convection and radlation, respectively., These matrices are expressed

as follows:



LARTEE 23

ORIGINAL PAG L e
OF POCR QuALITY

(c] " J;(e) pe (N} (N,) dn
k] = jﬂ(e, (81" Ll (3] d

(kg = J;S h (N} [Np] P

[Kr](T} w J;4 oeT? (Np} dr

13

(2.15a)

(2.15h)

(2 ¥ 154:)

(2.15d)

The right~hand side of the discretized equation (2.14) contains

heat load vectors due to specified nodal temperatures, internal heat

generation, gpecified surface heating, surface convection and surface

radiation. These vectors are defined by

{R} = - j; (q-8) (N} dr
1

{RQ} = j;(e) Q {Np} do

(R} = f qg {NT} dr
Sy

f h T, {Ng} dr
S5

(R)

(R3 = [ aq (ny ar
%

(2.16a)

(2.16b)

(2.16¢)

(2.16d)

(2.16e)

where q is the vector of conduction heat flux across boun&ary that

is required to maintain the specified nodal temperatures.
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2.4 Finite Element Structural Analysis

In a finite clement structural analysis, clement matrices may
be derived by the method of weighted residuals, or by a variational
method such as the principle of minimum potential energy (17~19].
For simplicity in establishing these element matrices and understand-
ing general derivations, the last approach is presented herein.
The basic idea of this approach is to derive the static equilibrium
equations and then include dynamic effects through the use of
D'Alembert's principle. '

Consider an elastic body in a three-dimensional state of streés.
The imterna} strain energy of an element (e) can be written in a

form,

i --% S;(e)LE -€g) (o} do (2.17)

(e)

where @ is the element volume, {¢} denotes a vector of stress
components; |e| and LeoJ denote row matrices of total strain and
initial strain components, respectively., Using the stress-~strain

relations,

{0} = [D] (¢ = eo} (2,18)

where [D] is the elasticity matrix, the internal strain energy

becomes

U -%fn("‘) le - eol (D] (e - ey} da



or

U --% J;(O) le) (0] {c} da - J;(Q) le] (0] (ey) an

+-%»j;(e) leo) (D) Leg) dn (2.19)

For each element, the potential encrgy of the external forces
may result from body forces and boundary surface tractions. The

potential energy due to body forces can be written in a form,

' Vg = = j;(e> |8] (£} dn (2,20)

where (£} denotes a vector of body force components., Similarly,

the potential energy due to surface tractions is,
Vg = - L(e) ls] (g} dr , (2.21)

where {g} denotes a vector of surface traction components, and

(e)

r denotes the element boundary., The total element potential

energy, T the sum of the internal strain energy and the potential

e ’

energy of the external forces is,

1
Te "2 J‘ﬂ(e) le] [p] (e} dn - fQ(e) le] [D] {gy} da

+‘% J;(e) Lsoj (D] {eg} da - J;(e) L&) (£} da

r
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For a three-dimensional finite element with r nodes, the

displacement f£ileld can be expressed as

r N
- 3 r
u(x,y,z,t) ) Ni(x,y,z) Ui(t)
im]
r’ -
(8} = 3v(x,y,z,8) p = 4 L N (x,y,2) v, (t) » = [Ng] (8} (2.23)
1m]
r
wix,y,2,t) L Ni(x»Y)z) Wi(t)
\ / \i"‘l J

where u, v, w are components of displacement in the three coordinate

directions. The vector of strain components can be computed from

r 4 r R

€ du
x 3%
€ v
y 3y
£ oW
z ~Z ‘
{e} =4 > = < r = [Bgl{3} (2.24)
Y 3u , 3v
xy 2y + ax
Yy, v, 3w
yE 3z * 3y
Y du , 3w
Xz 9z + 9x
\ /
~ /

where [Bs] is the strain~displacement interpolation matrix. By
substituting the element displacement vector, Eq. (2.23), and the
vector of strain components, Eq. (2.24) into Eq. (2.22), the total
element potential energy is expressed in terms of the nodal displace-

ment vector {6} as
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v« [5) Lz“*’ (5,17 (0] I8 a0 (3) - (§) §Q(e,[nsﬂ (0] (ey}
b2 {0 Leo) 101 teghan= 3 [ ) 1l® o) a0
2 Q(e) C ’ 0 Q(e.) 8
- (8) f (e) (N6} T (g} dr (2.25)
r

The principle of minimum potential energy requires,

T
{8}

=0
which yields the element equilibrium equations,

[Kg] (8} = {Fc} + {Fg} + {Fg} + ({Fy} (2.26)
where [KS] 13 che element stiffness matrix defined by

(K] = j'<e> [BS]T (D] [Bg] df (2.27a)
Q

The right hand side of the equilibrium equations contains force
vectors due to concentrated forces, body forces, surface tractions
and initial strain, resﬁectively. The nodal force vectors due to
body forces and surface tractions are

]T

{Fg} = J;(e> [Ng] ™ (£} de (2.27b)

T
{Fgl = J;(e) [Ng]™ (g} dr (2.27¢)
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For initial strains from thermal effects, the corresponding nodal
vector (FT} is due to the change of ¢emperature from a reference

temperature of the zero-stress state and may be written as

{(Fp} = jﬂ<e> [Ba]T [p] {a} (T =T_,p) do (2.27d)
where {a} 1s a vector of thermal expansion coefficients, T is
the element tamperature distribution, and Traf is the reference
temperature for zero stress.
For elastic¢ bodies subjected to dynamic loads, the effects of
inertia and damping forces must be taken into account. Using
D'Alembert's principle, the inertia force can be treated as a body

force given by

(£} = = p{8} (2.28a)

where p 1s the mass per unit volume. By using element displacement
variations, Eq. (2.23), this inertia force is expressed in terms of

nodal displacements as

(£} = - p [Ns] {fs:} <2._28b)

Similarly, the damping force which is usually assumed to be propor-

tional to the velocity can be expressed in thé form,

(£} = - niNg] (8} (2.28¢)

where U 1s a damping coefficient. By substituting these inertia
and damping forces, Eqs. (2.28b -2.28c¢c), into Eq. (2.27b), the equi~-

valent nodal body forces shown in Eq. (2.27b) become
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T T 2
jﬂ(e) Ng]™ (£} d@ - jg(e) [Ng1™ o [Ng] do (8}
oy Wal®u [] a0 ) (2,29)

Finally, by using the static equilibrium equations, Eq. (2.26), with
the above équivalent nodal body force, the basic equations of struc-

tural dynamics can be written in the form,

(M) (8} + [Cg) {8} + [Rg] (3} = (R} + (Fg) + (Fg} + (Fp}  (2.30)

where [M] and [Cg] are the element mass and damping matrices,

respectively, and defined by

j(e) 1% o [Ng] 4@ (2.31a)

[

[Cs] = f( ) [Ns] M [Ng] do (2.31b)

In a general formulation of transient thermal-stress problem,
the heat conduction equation (2.3) contains a mechanical coupling
term in addition [16]. This coupling term represents the mechanical
energy associated with deformation of the continuum and in some
highly speciaiized problems (see Ref. 16) can affect the temperature
solution. In most of engineering applications, fortunately, this term
is insignificant and is usually disregarded in the heat conduction
equation. This simplification permits transient thermal solutions
and dynamic structural responses to be computed independently.

For a structural analysis where the inertia and damping effects

are negligible, the static structural response, Eq. (2.26), can be

e i oo Ao S o a8 et o



20

computed at selected times corresponding to the transient thermal
solutions. Such a sequence of computations, widely used in thermal=-
structural applications, is called a quasi-static analysis. Results
of temperatures directly enter the structural analysis through the
comput?tion of the thermal nodal force vector, Eq. (2.27d). Tempera-
tures also have an indirect effect on the analysils through the
structural material properties, since the elasticity matrix [D]

and the thermal expansion coefficient vector {a} are, in general,
temperature dependent, Temperature dependent propertiles may result

in a variation of the structural element stiffness'matrix, Eq. (2.27a),

throughout the transient response,
2.5 Integrated Approach

The representation of the element temperature distribution in
the coﬁputation of structural nodal forces is an important step in
the coupled thermal-structural finite element amnalysis. In typical
production~-type finite element programs, element nodal temperatures
" are the only information transferred from the thermal analysis to
the structural analysis. Thils general procedure is shown schemati-
cally in Fig. 2(a) and herein is called the conventional finite
element approach. Since the conventional thermal analysis only
provides nodal temperatures, an approximate temperature distribution
is assumed in the structural analysis which results in a reduction
in accuracy of displacements and thermal stresses,

To improve the capabilities and efficiency of the finite
element method, an approach called integrated thermal-structural

analysis is developed as illustrated by Fig. 2(b). The goals of
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the integrated approach are to: (1) provide thermal elements which
predict detailed temperature variations accurately, (2) maintain
the same discretization for both thermal and structural models with
fully compatible thermal and structural elements, and (3) provide
accurate thermal loads to the structural analysis to improve the
accuracy of displacements and stresses.

These goals of the integrated approach require developing new
thermal finite elements that can provide higher accuracy and effi-
clency than conventional finite elements. The basic restriction on
these new thermal elements is the required compatability with the
structural elements to preserve a common discretization. Detailled
temperature distributions resulting from the improved thermal finite
alements can provide sceurate thermal loads required for the
structural analysis by rigorously evaluating the thermal load

integral, Eq. (2.27d).

22
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Chapter 3

»

EXACT FINITE ELEMENTS FOR ONE~DIMENSIONAL
LINEAR THERMAL~-STRUCTURAL D523 .(EMS

In general, polynomials are selected as element interpolation
functions to describe variations of the dependent variable within
elements, In one-~dimensional anavlys:[.s, the simplest polynomial which

provides a linear variation within an element 1s of the first order,

¢ = C3 + Cyx (3.1)

where ¢ denotes the dependent variable such as temperature or
displacement; C; and C, denote constants, and x is the coor-
dinate of a point within the element., A finite element with two

nodes is formulated by imposing the conditions at nodes,
¢(x =0) = ¢q o(x =L) = ¢y (3.2)

where L 1is the element length; ¢; and ¢2 are nodal values at
node 1 and 2, respectively. The dependent variable, therefore, can

be written in terms of nodal values as
X X
$ = (1 - L) ¢l + GE) ¢2

or in the matrix form,

23
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2]
X X
= l-H @) 1%
P‘bl
- [N No| 1
L 1 2J ¢2
= N] (¢} (3.3)

where |N| is the row matrix of element interpolation functions.

The type of finite element where the dependent variable is assumed

to vary linearly between the two elsment nodes is often used in one-
dimensional problems and is called a conventional finite element
herein., With the linear approximation, a large number of elements
are required to represent a sharply varying dependent variable. 1In
some special cases, however, conventional finite elements can provide
exact solutions when the solutions to problems are in the form of a
linear variation. For example, a linear temperature variation is the
exact solution of one~dimensional steady-state heat conduction in a
slab; therefore, the use of the conventional finite element leads to
an exact solution. TFurther observation [20] has shown that, under
some conditions, exact nodal values are obtained through the use of
this element type. Temperatures for steady-state heat conduction
with internal heat generation in a slab and deformations of a bar
loaded by its own weight are examples of this case. In the past,

the capability of conventional finite elements to provide exact
solutions has been regarded as a property of the particular equatiom

being solved and not applicable to general problems.
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In this chapter, finite elements that provide exaet solutions
to one~-dimensional linear steady-state thermal-structural problems
are given, The fundamental approach in developing exact finite
elements 1s based on the use of exact solutions to one-dimensional
problems governed by linear ordinary differential equations. A
general formulation of the exact finite element is first derived and
applications are made to various thermal-structural problems,
Benefits of utilizing the exact finite elements are demonstrated
by comparison with results from conventional finite elements and
exact solutioms.

3.1 Exact Element Formulation

In this sectlon, a general derivation of exact finita elements
is given. Exact finite elements for various thermal and structural
problems are derived and described in detall in the subsequent

sections, Consider an ordinary, linear, nonhomogeneous differential

equation,
n n-1
.d_.ib. .El_._.—.i s e E-I-Q 2 ]
an = e an-l n—l 4 40 1 e al dx + dO'b r(x) (3-4)
dx dx

where x 1s the independent variable, ¢(x) is the dependent
variable, ay, 1=0, n are constant coefficients, and r(x) is
the forcing function. A general solution to the above differential

equation has the form

n
$(x) = ¢ C; £;(x) + g(x) (3.5)
im]
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whare C; are arbitrary constants, ﬁi(x) are typical functions in
the homogeneous solution and g(x) dis a particular golution. For
example, a typlcal one-dimensional steady-state thermal analysis is
governed by second order differential equation of rhe form of

Eq. (3.4) and has a general solution

$(x) = Cp £1(x) + Cy £5(x) + g(x) (3.6)

By comparing this general solution with the solution in the form of
polynomials used to describe a linear variation of dependent variable
in the conventional finite element, Eq. (3.1), basic differences
between these two solutions are noted: (1) the function £4(x) in
the general solution to a given differential equation can be forms
other than the polynomials, and (2) the general solution contains a
particular solution g(x) which 1s known in general and depends on
foreing funection r(x) on the right hand side of the differential
equation (3.4). .

3.1.1 Exact Element Interpolation Functions and Nodeless
Parameters

Once a general solution to a given differential is obtained,
exact element interpolation functions can be derived. For a typical

finite element with n degrees of freedom, n boundary conditions

are required. With the general solutiuvn shown in equation (3.5),

the required boundary conditions are

¢(Xi>=¢i i’l, 2,‘.-..,n. (3-7)

where x is the nodal coordinate and ¢i is the element nodal

i



unknown at node 1. After applying the boundary conditions, the

exact element variation of ¢(x) has the form,

n
$ (x) = G(x) + 151 Ny by
where Ni(x) {s the clement interpelation function corresponding
to node 1., The function G(x) 1is a known function assoclated with
the particular solution. In general, this function can be expressed
as a product of a gpatial function No(x) and a scalar term ¢0
which contains a physical forcing parameter such as body force,

surface heating, etc.;

G(x) = N0<X) Q"‘o

and, therefore, the exact element ¢(x) variation becomes,

27

n
or in the matrix form
f 4
)
o
%
(x) = LN N, N N J LI ¢2 > = LN Nj JfQ_ (3.8b)
d’ X 0 l 2 LR n ‘ 0 ¢ .
¢n
. /

Note that the element interpolation function Ni(xi) has a value
of unity at node 1 to satisfy the boundary conditions, Eq. (3.7),

thus the spatial function No(x) must vanish at nodes. Since the
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term 99 16 a known quantity and neither relates to the clement
nodal coordinates nor is identified with the element nodes, it is
called a nodeless parameter, Likewidse, the corresponding spatial
function No(x) 18 called a nodeless interpolation function.
Comparison between element variations cf a typical nodeless para=
meter finite element, E¢. (3.8), and the conventional linéar finite

element, Eq., (3.3), is shown in Fig. 3.

3.1.2 Exact Element Matrices

After exact element interpolation functions are obtained, the
corresponding element matrices can be formulated. For the governing
ordinary differential equation, Eq. (3.4), typical element matrices
can be derived (see section 2,2) and element equations can be written

in the form,

= | - P ) , ~
[, —1_ ) o . . . o o DUy W90 By WS s Sm - - - - -
]
K10 | K1z ¥y Kin 2] Fy &
1 > o= < (3.9)
Koo | Kan Kpp Ron 7 Fy
) ' 'y ’ .
. I 'Y : .
s . ‘ .
1 ] : . .
KnO ] Knl an Knn ¢n Fn
Lo - \ p, > /

where Kij’ 1, § =0, n are typical terms in the element stiffness
matrix; Fi’ 1 =0, n are typical terms in the element load vector,
¢i, 1 =1, n are the element nodal unknowns, and ¢0 is the element
nodeless parameter. Since the element nodeless parameter is knowm,

the above element equations reduce to
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' elements.
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"1 r h 4 h ¢ "

Kll Klz E N 2N BN BN B AN 2 &l‘n ¢l Fl Klo

Kap  Kap Kon * Fa K20
: 1+ =19 >-¢0'4 Lo (3.10)

Knl an Knn ¢n Fn KnO

L. - L ) S \ )

3.2 Exact Finite Elements in Thermal Problems

In one-dimensional linear steady-state thermal problems, typical
governing differential equations can be derived from a heat balance

on a small segment in the form,

é%-(az(x) %%) + al(x) %2 + ao(x) T = r(x) (3.11)

LT
-

where T denotes the temperature, x denotes a typical one-
dimensional space coordinate in cartesian, cylindrical or spherical
coordinates; as i =0, 1,2 are variable coefficients, and r(x)
is a function associated with a heat load for a given problem. A

general solution to the above differential eguation has the form,
T(x) = Cl fl(x) + C2 fzéx) + g(x) (3.12)

where fl(x) and fz(x) are linearly independent solutions of the
homogeneous equation, Cl and 02 are constants of integration,
and g(x) 1is a particular solution. Since the particular selution
g(x) is known, the above general solution has two unknowns to be
determined. A finite element with two nodes, therefore, can be

formulated using the conditions,
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T(Xl) = T (3.13a)

1

T(xz) = T, (3.13b)

where X4 1=1, 2 are nodal coordinates and Ti’ im= 1,2 are the
nodal temperatures, Imposing these conditions on the general solu~-

tion yields twc equations for evaluating Cl and 02,
T(xl) - Tl - Cl fl(xl) + Gy fz(xl) + g(xl)
T(xz) - T2 - Cl fl(xz) + C2 fz(xz) + g(xz)
or in matrix form
£, (%) £, (x,) ¢, T, - g(x,)
£, (x5) £,(xy) C, T, - g(x,)

After C1 and 02 are defermined and substituted into the general

solution, Eq. (3.12), the exact element temperature variation cav

be written as

T(x) = No(x) To + Nl(x) Tl + Nz(x) Tz (3.14a)

or in the matrix form,

T(x) = [Ny N, Ny < Ty 0 (3.14b)

where No(x) is the nodeless interpolation function and Tg 1s the
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nodeless parameter; Nl(x) and Nz(x) are element interpolation
functions corresponding to node 1 and 2, respectively. These element
interpolation functions including the nodeless parameter are known

functions defined by

£.(x) £,(x9) £, (x,) £,(x)
N () =t 2. 172 2 (3.15a)

£,(x,) E,(x) - £.(x) £,(x,)
NyGx) w2 L 2d (3.15b)

£, (x,) g(x,)) = E,(x,) g(x,)
Ng(x) T, = gl) + 2 —2 22 L ¢ ()
W

W

fz(x) (3.15¢)

where W = fl(xl) fz(xz) - fl(xz) fz(xl) .

Using the exact element interpolation functions shown in
Eq. (3.14), and the governing differential equationm, Eq. (3.1l1),
élement matrices can be derived through the use of the method of

weighted residuals;

)

dT
S‘ [ ( a4 dx) + 2 dx 0T -r] Ni dx = 0 i=0,1,2 (3.16)

Xy .
Performing an integration by parts on the first term and substituting

for element temperature in terms of the interpolation functions,

Eq. (3.14), yields element equations in the form,
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[[ke] + &) + [kl] 4 7y ¢ = (Qc) + (Q) (3.17)

where ([K.], [Ky], and [Ky] are the element conductance matrices
associated with the second, the first, and the zero-order derivative
term on the left hand side of the governing differential equatiomn
(3.11), respectively; {Qc} is the element vector of conduction
heat flux across element boundary, and {Q} is the element load
vector from the heat load r(x) in the governing differential

equation. These matrices are defined as follows:

)

- dN, | dN s
[k ] = S - ay () | 4] g (3.18a)
*1
X2
k] = g a, (M | dx (3.18b)
*1
*2
[k 1 = S ay (N} [N] dx (3.18¢c)
*1
r ~
*2
(Q} = <[-ay N1 T (3.184)
: X
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{Q} = g r{N} dx | (3.18e)

Depending on the complexity of element interpolation functions, the
element matrices may be evaluated in closed foim or they may require
numerical integration. However, after the element matrices are

computed, typical element equations can be written in the form,

(koo ko] [1.] (g, ]
o0 Xo1  ¥o2 0 Q9
Ko Ky Kpp| 4 Ty p = Q)+ 3 Ql$ (3.19)
Koo Ko1 Ko T Q
e o - / b P,

Since the nodeless parameter 1s known, the first equation is uncoupled
from the nodal unknowns in the second and third equations. Thus,
the exact element matrices have the same size as of the conventional

linear finite element and element equations can be written as

rK K T Ql K

11 12 1 10

= {q} + - T ' (3.20)

K Ka2 Ty Q, K20

21

L
Note that, in general, the above conductance matrix is an
asymmetric matrix. This asymmetry is caused by the conductance
matrix [Kv] shown in Eq. (3.18b) associated with the first-order
derivative in the governing differential equation, Eq. (3.11). To

obtain a symmetrical conductance matrix, the first-order derivatiye
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1s eliminated by casting the governing differential equation in self-

adjoint form,

2 [rw £ +am T = RO (3.21)
where
da.2
P(x) = exp(I[(al +}:E;) /a2] dx) (3.22a)
Qx) = ff; (3.22b)
R(x) = £2 (3.22¢)
)

Element matrices can then be derived using the method of weighted
residuzsls in the same manner as previously described. In this case,

element equations have the form,

[[R.] + [Ryl1 $ T, p = (T} + (T (3.23)

by

= _ dN, | dN
[Kc] = .E - P {E;} LE;J dx (3.24a)
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*2
['ﬁh] -f Q {N} |[N] dx (3.24b)
1
"
[ X
- dT
Q=9 -2gxV| ¢ (3.24c)
*2
{Q} = X R {N} dx (3.24d)
1
Similarly, element equations for the two nodal unknowns are
K11 Koo gl ) % K10
. _ = Q) +q9_ ¢ - Ty 9. (3.25)
K12 Ko Ty Q K20
where Eij’ i,j =0,1,2 is the summation of the corresponding
coefficients in the conductance matrices [Kc] and [Eh];
x x
) 2 ang aw 2
Kij = —P—a';—d'; dx -+ QNi Nj dx (3.26)
*1 1
i,3=0,1,2

An additional advantage of using the self-adjoint differential

equation is that the coefficients KlO and RZO shown on the right

hand side of Eq. (3.23) are identically zero. This result can be

proved by observing that the element interpolation function Ni’

g e o s et et
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i=1,2 are the solution of the homogeneous differential equation,

Eq. (3.21), because N, 1s a linear combination of the homogeneous

i
solutions fl(x) and fz(x) as shown in Eqs. (3.15a-b), i1.e.

—-d— ib-l-i 3 t ]
dx[P de +QN, =0 i=1,2

Multiplying this equation by the nodeless parameter interpolation

function NO and performing integration by parts on the first term

yields
X X X
an, 2 2 an, dny 2
P—= N, +§-P—d-}-‘-dxdx+g Q N, Ny dx = 0
*1 X1 X

Then since the nodeless interpolation function N0 vanishes at
nodes, i.e. at the coordinates Xy and Xy the above equations

yield

Rig =0 1=1,2

and the element equations, Eq. (3.25), become

= {Q} + (3.27)

After element nodal temperatures are computed, exact temperatures
within an element can be obtained using the exact element temperature

variation, Eq. (3.14).
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To demonstrate the exact finlte element formulation previously
derived, exact finite elements for eizht heat transfer cases in
several solids of different shapes and a flow passage (Fig., 4) are
presented., In the first seven cases, heat transfer may consist of:
(1) pure.conduction, (2) conduction with internal heat generation,
(3) conduction with surface heating, and (4) conduction with surface
convection., Case eight is a one~dimensional flow where heat transfer
may consist of fluid conduction and mass transport convection with
surface heating or surface convection. For these cases, the boundary

conditions considered are:

T = Constant (3.28a)
™ é—l Py (] [+}]
or =k il (3.28b)
dT = -
or -k p” h(T -T,) {3.28c)

where k is the material thermal conductivity, q i1is the specified
surface heating rate per unit area, h 1s the convection coefficient,
and T, 1is the convection medium temperature. In each case, the
derivation of exact finite elements for appropriate heat transfer
cases are given for clarity. Governing differential equations and
the corresponding nodeless parameters, exact element interpolation
functions, and element matrices for all cases are shown in Tables 1

and 2 and Appendices A and B.

3.2.1 Rod and Slab

A rod element with arbitrary cross-sectional area A, circum-

fer.. .ial perimeter p and length L as shown in (Fig. 4, Case 1)
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Table 2

Nodeless Parameters for Thermal Problems

To
Case Convection Source Surface Flux
(b) (c) (d)
2 2
1 T QL_. ﬂE.I:_
o 2k 2kA
2
2 — QL_ —
2k
2
3 — Qb —_—
4kw
— Q. —
4 Bk
2 2
s T aL qL”
o 2k, 2kt
2 2
6 T b~ 9b
« Gkw 4ktw
2 2
7 — Qa_ Qa_
k kt
_— gqpL
8 T, o
where w = 1n(b/a).
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is subjected to internal heat generation, surface heating, and
surface convection., Governing differential equations for each lLieat
transfer case in self-adjoint form are shown in Table L., For example,
the governing differential equation for the case of conduction with

gurface convestion is
d dT -
- 55 (kA 32) + hpT = hpT, (3.29)

where k 1s the material thermal conductivity, h d1s the convection
coefficient, and T 1s the convective medium temperature. A general

solution to the above differential equation is

T(x) = Cy sinh mx + Gz cosh mx + T

where m = vhp/k4A, and Cl and C2 are unknown constants. Applying

the boundary conditions at the nodes, i ’

T(x=Q) = Tl and T(x=L) = Tz

the two unknown constants are evaluated and the above solution

becomes

- sinh m(L-x) sinh mx
T(x) (1 sinh mL sinh mL) T

sinh m(L-x) sinh mx
e 0 Tt Gimna) T2 (3.30)

This exact element temperature variation can be written in the form
of Eq. (3.14) where the element interpoation 4 inctions and the node-

less parameter are:
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o (1 . Binh m(L-x) _ sinh mx,,
Nolx) = (L = = " st To " Te

(3.31)
Nl(x> . 8inh m(L-x) | Nz(x) - :inh mx

sinh mL ' inh mL
As described in the previous section, element equations for a
typical self-adjoint differential equation have the form of Eq. (3.23),
and using the definitions of the element matrices shown in Eq. (3.24),

the element matrices for this problem are:

’

L

= dN, 1 d

[K’c] - j kA {-a;;} L'a'g'_l dx {3.32a)
0 iy

L
(%] = 3 hp (N} |N] dx (3.32b)
o

L |
{g} = S hpT,, {N} dx (3.32c)
0

where [Kc] and [Ky] are conductance matrices corresponding to
conductien and convection, respectively, and (5} is the load vector
due to surface convection., With the exact interpolation functions
shown in Eq. (3.3l), the above element matrices can be evaluated in
closed form., Exact nodal temperatures and element temperature varia-
tion can then be computed using Eqs. (3.27) and (3.30), respectively.
For the cases where the rod is subjected to an internal heat
generation or specified surface heating, exact element interpolation

functions and element matrices can be derived in the same manner as
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described above, It should be noted that only the conductance matrix
associated with conduction and heat load vectonrs corresponding to
internal heat generation or surface heating exist in the two cases,
The exact conductance matrix and heat load vectors are found to be
identical to those from the conventional linear element, Therefore,
exact nodal temperatures can also be obtained through the use of

the conventional linear finite element in such cases. However, since
the linear temperature varlation is not an exact solution to these
problems, the conventional linear finite element can not provide the
exac£ temperature distribution within the element.

The derivation of exact finite elements for one~dimensional heat
transfer in a slab follows the derivation for the exact rod element.
A slab with thickness L subjected to an internmal heat generation
(Fig. 4, Case 2) where both sides of slab may be subjected to a
specified surface heating or surface convection. In Table 1, the
governing différential equations are shown only for the case of pure
conduction and conduction with internal heat generation because the
effects of surface heating and surface convection enter the problem
through the boundary conditions. For example, a governing differen~
tial equation describing heat conduction in a slab with specified
temperature T, at x = 0 (node 1) and surface convection at x =L

1
(node 2) is

=0 | (3.33)

where k denotes the material thermal conductivity. After solving

for the general solution to the governing differential equation above
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and applying nodal temperatures as boundary conditions at x = 0

and x = L, the exact element temperature variation is (see

Appendix A)

T(x) = (L= T+ E) T, = NG Ny(x)]

T
1 (3.34)

I,

With the corresponding element conductance matrix shown in Appendix B,

exact element equations for this problem are

o

R r 3 ('

dr ..
T ch -~k Ix (x%=0)
J > - < }‘ " <

. 4t
L 2‘ L CZJ | dx

(x=L)

since at x = L (node 2) the boundary condition is

-k

dr (x=L)

dx = h(TZ = Tw)

where h is the convection cs3fficient and T, is the surrounding

medium temperature, therefore, the above element equations become

P

1
ol i

the exact nodal unknown

.k 1 4T(x=0)
L Tl k dx
= . (3.35)
k
T +h T2 hT,,

T2 can then be computed and the exact

element tempterature distribution is obtained using equation (3.34).

The same procedure

can be applied for the case when the slab is

subjected to surface heating. In this case, the boundary condition

is
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dT

-k —-

dx

where q denotes thg gspecified surface heating. When the slab
consists several layers with different thermal conductivitiles, an
exact element can be used to represent each layer. If the slab is
subjected to surface heating or surface sonvection .a additiom, the
above procedure applies for the elements located at the outer

surfaces,

3,2.,2 Hollow Cylinder and Sphere

A thermal model of a hollow cylinder with radial heat conduction
subjeéted to an internal heat generation is shown in Fig. 4, Case 3.
Specified heating or surface convection are considered through the
boundary conditions at the inner and outer surfaces of radili a and
b, respectively. Governing differential equations corresponding to
each heat transfer case are provided in Table 1. For example, the

governing differential equation for the case of pure conduction is

d . dT,y _
kg [egpl=0 (3.36)

.

where k is the material thermal conductivity, and r dis the radial

coordinate. A general solution to the abecve differential equation is

T(r) = C, + C2 inr

1

Nodal temperatures are imposed on the element boundary conditions,

T(r =a) = Tl and T(r=b) = T2
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and the exact element variation is obtained as (see Appendix A),

w
Ty

T(r) =

where w = ln(b/a). Note that the exact element variation for this
case is completely different from the linear element vwariation, there=-
fore, the conventional linear finite element can not provide exact
element or nodal temperatures. Applying the method of weighted

residuals to the governing differential equation, element equations

are
[K,] {1} = {Q.} (3.38a)
where
| b
[K.] =S k{%;:l\l} L%—E—J r dr (3.38b)
a
b
4T

Q) = <kr o N (3.38¢) |

Using the exact element interpolation functions shown in Eq. (3.37),

element equations for this case are

dT .
) 1 -1 T, ~ka -
= = (3.39)
v dT
-1 1 T, kb <=
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When the cylinder is subjected to surface heating or surface
convection, the same procedure previously described for the slab
can be used, For example, in case of convection heat transfer on

the outer surface, the boundary condition is
dT
r = by -k ar h(T?. - T,)

where h is the convection coefficient and T, i1s the surrvunding

medium temperature. Thus, the element equations, Eq. (3.39), become

k P I : dr )
v "W Ty -ka 3¢
< o= > (3.40)
-k ko T hbT )
174 w 2 @
. st g F, - ’

Exact finite elements can be formulated for conduction heat
transfer in the radial direction of a hollow sphere with intermal
heat generation. A thermal model of a hollow sphere with inner and
outer surface radii a and b, respectively, is illustrated in
Fig. 4, Case 4. The hollow sphere may be subjected to surface
heating or surface convection on both inmer and outer surfaces.

For heat conduction with internal hea£ generation, the governing
differential equation is (see Table 1)

d 2 2
=< et 4

-k ir i = Qz (3.41)

where k is the material thermal conductivity, Q i1s the heat
generation rate per unit volume, and r is the independent variable
representing the radial coordinate. A general solution to this

differential equation is
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c 2
1
O

Due to the presence of the particular solution in the above general
solution, a nodeless parameter exists, and the exact element

variation 1s written in the form

T(r) = No(r) TO + Nl(r) Tl + Nz(r) T2 (3.42a)

where the element interpolation functions including the nodeless

parameter are:

No(r) =-%(r-a)(b-r)(r+a+b); T =2

0 6k
a(b-r) b(r-a)
Nl(r) = m')- Nz(r) = m (3.42b)

Element matrices can be derived using the method of weighted residuals

and element equations are resulted in the form

[K.) (T} = (3} + (@ (3.43a)

where these element matrices are defined by:

b
- dN dN 2
[Kc] =y k{-a-;} LE‘E.'J r” dr (3.43b)
a
b
- 2 dr
{Qc} =<kr I N (3.43¢c)
a
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b
(3} = S QN} % dr (3.43d)

a

If surface heating and surface convection are applied on the inner
and outer surface, the same procedure described for the cylinder is

required.

3.2.3 Thin Shells

Three thermal models of thin shells of revolution with cylin-
drical, conical and spherical shapes are presented (see Fig. 4).
These shells may be subjected to thermal loads such as surface
heating, surface convection, and internal heat generation as shown
in Fig. 4, Cases 5~7, 1In Case 5, a cylindrical shell of radius a,
thickness t and meridional coordinate s i1s considered. Governing
differential equations corresponding to different thermal loads are
shown in Table 1. These governing differential equations are in the
same form as for the rod element (Case 1). Therefore, the exact
rod element interpolatioun functions and element matrices previously
derived can be modified and used for the exact cylindrical shell
element.

A truncated conical shell element with thickness t 1s shown
in Fig. 4, Case 6, Governing differential equations corresponding to
internal heat generation and surface heating are given in Table 1.
These differential equations are in the same form as for the hollow
cylinder (Case 3) with surface heating, and therefore, element
interpolation functions and element matrices are similars. For

the case of the shell subjected to surface convection, a form of
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nonhomogeneous modified Bessel's differential equation results,

2

d“r 14T _ h .. _ b
2t TR T T (3.44)

A general solution to the above differential equation includes
modified Bessel functions of the first and second kind of oxder zero.
A nodeless parameter also exists in this case due to the nonhomo-
geneous differential equation. Applying nodal temperatures as the
boundary conditions at s = a and s = b, exact element interpola-
tion functions are obtained as shown in Appendix A.

Fig. 4, Case 7 shows a tr;ncated spherical shell with radius
a and thickness t. The spherical shell may be subjected to
internal heat generation or surface heating., Governing differential
equations corresponding to thase thermal loads are in the form of .
Legendre's differential equation of order zerc. For example, the
governing differentlal equation for the case of uniform surface

heating q is

2 2
1-n?)Sfg-m = (3.45)
dn n

where 1 = sin (s/a). A general solution to the above differential

equation is

c 2
e | 1+n qa _nl
T=->1n [l-n] +Cy + o In [1-n7] (3.46)

where Cl and C2 are unknown constants. By imposing nodal

temperatur<s as element boundary conditions at s =0 and s =1L,
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exact element interpolation functions are obtained as shown in
Appendix A.

Due to the complexity of the exact element interpolation func-
tions that arise from the truncated conical shell with surface
convection and the truncated spherical shell, the corresponding
element matrices in closed form are not provided. The element
matrices, if desired, can be obtained using the element matrix
formulation shown in Equations (3,l4a-d) and performing the integra-

tions numerically.

3.2.4 Flow Passage

A thermal model of fluid flow in a passage with conduction and
mass transport convection is illustrated in Fig. 4, Case 8. The
fluid may be heated by surface heating, or surface convection.
Governing differential equations corresponding to these heat transfer
cases are gilven in Table 1. For simplicity, consider the case without
heat loads where the governing homogeneous differential equation is

given by

d dT . dT
-2 dly v g S0 (3.47)

where k is the fluid thermal conductivity, A dis the flow cross-

sectional area, m 1s the fluid mass flow rate, and c¢ is the fluid

specific heat. A general solution to this differential equation is

T(x) = C1 + C2 exp (2ax)

where Cl and 02 are arbitrary constants and o = me/2kA. An

exact finite element with length L and nodal temperatures Tl and
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T2 at x =0 and x = L, respectively, can be formulated., The

exact clement temperature variation is

20%
l~ae
T(x) = |1 -

1 - eZaL 1 -

20x
l =~e
e‘,,_od‘J (3.48a)
Iy

As previously described, the appearance of the first-order derivative
term in the governing differential equation results in an unsymmetrical
conductance matrix (see Eq, (3.18b))., In this case, the corresponding

element conductance matrices are

(e2aL + 1) P .
[Kc] = kAo ( T m . . (5.48b)
e - —
~1 1
me
[KV] = _"2_' (3048C)
-1 1

where [Kc]' and [Kv] denote conductance matrices representing
fluid conductlion and mass transport fluid convection, respectively.
It has been shown that 1f the conventional finite element with
an optinum upwind weilghting function is used, exact temperatures at
nodes can also be obtained [21]. With upwind weighting functions

the element temperature variation is expressed as,

T(x) = Ll - %'+ F(x) %-- F(x) ] . (3.49a)

where F(x) d1is the optimum upwind weighting function defined by
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2
F(x) = [coth (2uL) = =+] [3(—’-;—2- -]

With these element interpolation functions, element conductance
matrices corresponding to the fluid conduction and mass transport

convection are

L
[k, - 3,490
¢upwind L P ( )
-1 1] 1 -1]
« He fic _L
(’y] g ™ 72 + 8 (coth (aL) - =) J (3.49¢)
-1l -1 1

It can be shown that the combination of these element conductance
matrices are identical to those obtained from the exact finite
element, Eqs, (3.48b-c). Therefore, the conventional finite element
with the optimum upwind weighting function provide exact nodal
temperatures. However, since the upwind element tewperature varia-
tion differs from the exact element temperature variation shown in
Eq. (3.48a), the finite element with the optimum upwind weighting
function does not provide the exact temperature variation within an

element.

3.3 Exact Finite Elements in Thermal-Structural Problems

With the general exact finite element formulation described
in section 3.1, exact structural finite elements can be developed
for problems governed by ordinary differential equationms. For

example, exact finite elements for a rod loaded by its own weight
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or a beam with a distributed load can be formulated, However, for
the purpose of demonstrating benefits on exact finite elements in
coupled thermal-structural problems, exact structural finite elements

subjected to thermal loads are considered herein.

3.3.1 Trussg

Typical thermal and structural models for truss elements are
gshown in Fig. 5. For a steady-state analysis, exact thermal finite
elements for internal heat generation, surface convection and
specified surface heating are presented in section 3.2, In this
section the exact element temperatures are used in the development
of truss elements for computations of displacements and thermal
stresses.,

For a truss element subjected to a temperature change, thermal
strain is introduced in the stress-strain relationm;

o = E[E _ o (1(x) - T,0p)] (3.50)

X dx

where Oy is the axial stress, E 15 the modulus of elasticity,

u 1s the axial displacement which varies with the axial coordinate
x, o is the coefficient of thermal expansion, T(x) is the
temperature, and T.of 18 the reference temperature for zero stress.
The rod equilibrium equation with an assumption of negligible body
force is

do

X -
o 0 ‘ (3.51)

which when combined with the stress-strain relation, Eq. (3.50), and
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multiplied through by the truss cross-scctional area A, yields
the governing differential equation,
d2u dT
dx dx

Since the tomperature T 418 known from the thermal analysis, a
general solution to the above differential equation can be obtained,
An exact finite element can be fcrmuiated by applying the nodal
displacements Uy and u, as the boundary conditions at % = 0

and x = L, respectively., In this case, the exact element displace=-

ment variation is

x L
r
u(x)-(aJ de-'a-;-;-'-j‘ de)-i-(i.--’ff-) ul#(%) ty (3.53)
0 0
or in the matrix form
u
a(x) = LNo(x) Nl(x) Nz(x)j u - [st {u} (3.54a)
u
2

where No(x) is the element nodeless interpolation function;

Ni’ i=1,2 are typical element interpolation functions, is

%0
the nodeless parameter, and Uy, i =1,2 are the element nodal

displacements. The element interpolation functions are

® L

Ny (%) =a5 de-—a% S T dx (3.54b)

0 0



N (%) = 1 --% N, (x) = %- (3.54c)

where, for convenienge, the nodeless parameter U, is taken as unity
in this case. Note that the element nodeless interpolation functionm,
No(x), vanishes at nodes and depends on the integrals of element
temperature variation obtainaﬁ from the thermal analysis.

To derive exact element matrices, the method of weighted resid-
uals is applied to the equilibrium equation (3.51). After performing
an integration by parts and using the stress-strain relation,

Eq. (3.50), element equations and element matrices are obtained.
These element equations are in the same form as those‘obtained from
the'variational'principle described in section 2,3 and can be

expressed as
[R] {u} = {Fp} (3.55)

where [Ks] is the structural element stiffness matrix, {u} is
the vector of nodal displacements, and {FT} is the equivalent
nodal thermal load vector. The elemert matrices are defined by (see

Eqs. (2.27a) and (2.27d))

L dN_ AN
(k] = AEg {—&;} LKJ dx (3.56a)
0

{F

L dNS
T} = AEag {—E;& (T - Tref) dx (3.56b)
0



Using the exact displacement interpolation functions, Eq. (3.54a),
the element stiffness matrix above is a three by three matrix which
conzains coefficients Kij’ 1,j =0,1,2, Since the governing
differential equation, Eq, (3.52), can be cast in the self-adjoint
form (see section 3.2), this element stiffness matrix is symmetric
and KOi’ i=1,2 are zerov, Both the element stiffness matrix and

the equivalent nodal thermal load vector can be evaluated in closed

39

form as,
1 -1
* S—A—E-
[k == (3.57a)
-1 1
( -1
{FT} = FT (3.57b)
1
where
L
FT = AEaq g (T ~ Tref> dx (3.57¢)
0

Once exact nodal displacements are determined, exact displacement

variation within an element can be computed from Eq. (3.53). Exact

element stress can also be obtained by substituting element displace-

ment variation, Eq. (3.53), into the stress-strain relation,
Eq. (3.50). In this case, the exact element stress in terms of

nodal displacements is
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L
Un U
gx = E [._‘?'_f__l ..% j‘ (T - Tref> dX} (3.58)
0

.

Using the exact element temperature variatiles obtained from the
thermal analysis (cases la-ld), both element nodeless interpolation
functions No(x), Eq. (3.54b), and the equivalent nodal thermal load

F Eq. (3.57¢), can be evaluated in closed form as shown in Téble

T’
3 and Appendix B, respectively.

3.3.2 Hollow Cylinder

For a hollow cylinder where the temperature T varies only in
the radial direction (Fig. 6), the only non-zero displacement is
u(r) and all shearing stresgses are zero. The radial stress 9.

and circumferential stress 0y satisfy the equilibrium equation [22]

do g -0
r T 8
rreali = 0 (3.59)
The stress-strain relations are
1
e =g [0, =V(og+ 0,)] + a(T = Tpep) (3.60a)
1
e, = F [9g = V(o + 0] +a(T = Trep) (3.60b)
1 .
€, =% [0, =vo + gg)] +a(T = Tpee) (3.60c)
where V is Poisson's ratio; €. € and €, are the radial,

circumferential and longitudinal strain, respectively.
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Tahle 3

Truss Element Displacement Interpolation Functions, NS(X)*

Case N (X)
a(T,~-T.)L oT.L
1(a) e S (x2_x) +—9 (=X + 3x? - 2x3)
2 6
TZ-Tl cosh mL + To(cosh mL-1)
1(b) a{ [(cosh mLX ~1)
m sinh mL
T1-Tg
- X(cosh mL -1)] + ~ (sinh mLX - X sinh mL) }
a(T,~T.)L aT. L
1(e) ——«—32—1‘-— x2-x) + —2 (=x + 3%% - 2%9)
a(T,-T.,.)L aT,.L
1(d) —21 (xp) + —2 (x + 3% - %)

*For all cases: Nl(X) = 1-X, Nz(X) =X where X = x/L.
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For the case of a thin hollow cylinder, the assumption of plane
stress (oz = 0) 41s used, Substituting the stress-strain relations,
Eqs. (3.60a~b), into the equilibrium Eq. (3.59) and using the strain-

displacement relations,

= du -4
e =T and €g = (3.61)

where u denotes the radial displacement, the governing differential

equation for the case of plane stress is

4 (Lduw; 4T
% F ) = L+ Ve (3.62)
A general solution to this'differential equation is given by
r
u(r) = (L+v) 2 (T = Tpgg) rdr +Cyr + EZ (3.63)
r ref 1 r *
0.

Since the radial temperature variation T i1is known from the
thermal analysis (see section 3.2.2), the exact axisymmetric element
displacement variation can be derived by applying the nodal displace-
ments uy and u, as the boundary cond’tions at r =a and r = b,

respectively. The exact element displacement variation is

r
u(r) = (l+v)% g (T»Tref) r dr

a

b

-1+ ) %_Eri - aii S (T = Tpeg) T dr
b4 - a

a
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b ra®iorhy b (r2 - a?)

Tl ey Yt L ) Y (3.64)
or in the matrix form
%o
u(r) = [N(r) N (r) Ny(r)] 4w p = NG| (u} (3.65a)
u
2

where No(r) is the element nodeless interpolation function; Ni’
i=1,2, are typical element interpolation functions, u, is the
nodeless parameter, and Uy 1 =1,2 are the element nodal displace-

ments, The element interpolation functions are

T v
No(r) = (1L + v) %-j. (T - Tyeg) T dr

a

b
2 2
a (r4 = a%) p
- (l -l-\)) —;m X (T - Tr8f> r dr (3-65b)
a

2 _ 2 2 _ 2 ‘
Ny (r) = [%(b——r——)—] and N, (r) =[%L;..__§_l] (3.65c)

Like for the exact truss element, the nodeless parameter uy is
taken as unity, and the element nodeless parameter No(r) vanishes
at nodes. Element matrices can be derived by following the same
procedure described for the truss element. In this case, the element

stiffness matrix and the equivalent nodal thermal load vector are
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b
k) =[ 07 01 18] ¢ e (3.66a)
a

b
{FT}.-S [BS]T [D] {a} (T = Tpee) r dr (3.66b)

a

where [Bs] is the strain-displacement matrix obtained from

Eq. (3.61),
'e 1 rﬂ&l rfﬁi S§Z ’ul~
o dr dr dr ,
{ =< = < > = [Bg] (u} (3.67a)
. u v T "2
\ 9 J | T | T I R

[D] 1is the elasticity matrix (plane stress),

(D] = 1_%—\)7 (3.67b)

-

and {a} is the vector of coefficients of thermal expansion,

{a} = a (3.67¢)

Using the exact element interpolation functioms, Eq. (3.65),
the element stiffness matrix and equivalent nodal load vectors
- corresponding to the heat transfer cases (see section 3.2.2) can be

derived in closed form. Due to complexity of the element interpolation
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functions, a computer-~based symbolic manipulation language MACSYMA
was used to perform the algebra and calculus required for these
elemont matrix derivations, Results of these element matrices and
exac’ element interpolation functions are shown in Appendix B and
Table 4, respectively.

Once nodal displacements are computed, exact thermal stresses
in both radial and circumferential directions can be determined.
Using the stress-strain relations, Eq, (3.60), and the strain-
displacement equations in the form of Eq. (3.67a), the element

stresses can be written in terms of nodal displacements as

= [D] < [Bg] {u} = (1 + v) a(T = Tpeg) (3.68)

99

For the plane strain case (€, = 0), all equations formulated
for the case of plane stress above may be used by replacing
E.(l-vz) for E, v/(l-v) for v, and (l+v)a for a. In addi-

tion, the longitudinal stress exists in this case and can be computed

from the last equation of the stress-strain relations, Eq. (3.60c),

Oz - V(Ur + Ue) - 0E (T - Tref) (3069)

3.4 Applications

To demonstrate the capabilities of the exact thermal and
structural finite elements developed in sections 3.2 -3.3, the finite

element thermal analysis program TAP2 [23] and the finite structual
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Table 4

Axisymmetric Element Displacement Interpolation Functions

2 2_2, 2
(1+v) a 2, b (b"=rYa“w
Mol = e 1y 4 o2 ") [Fla@) - (62-ad) ]

2_ 2,2
+ (T, + wI) [rzlncf) - -‘-ﬁ]
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# w1y [ (el
2b

2 2
N, (£) = a(b®~-r )
1 r<bz_a2>

2 2
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analysis program STAP [24] are used, Elements discussed in this
chapter were added to these programs. Conventional finite elements are
also available in these programs, so comparisous between exact finite

elements and conventional finite elements could be made.

3,4,1 Coffee Spoon Problem

The exact rod element for conduction and convection described
in section 3,2,1 is used for one-dimensional heat transfer in a
coffee spoon [25], Fig, 7. The lower-half of the spoon submerged in
coffee 1s convectively heated by the coffee at 339 K, and:the upper~
half is convectively cooled by the atmosphere at a temperature of
283 K. The ends of the one-dimensional spoon model are assumed to
have negligible heat transfer,

Three finite element models are used to represent the spoon:
(1) two exact finite elements, (2) two linear conventional finite
elements, and (3) ten linear conventional finite elements. Tempera-
ture variations computed by these three finilte element models are
compared in Fig, 7. The figure shows that two conventional finite
elements predict nodal temperatures with falr accuracy but are unable
to provide details of the nonuniform temperature distribution includ-
ing the zero temperature gradients at both ends of the spoon. The
temperature variation obtained from ten conventional finite elements
is in excellent agreement with the result from two exact finite
elements. It should be noted, however, that an approximate solution
results from the use of conventional finite elements since the exact
solution to the problem is in terms of hyperbolic functioms, which
were used in the exact element interpolation function (Appendix 4,

Case 1b).
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3,4,2 Thermal Stresses in Hypersonic Wing

A 136 member txuss model of a hypersonic wing [26], Fig. 3, was
chosen to illustrate the use of exact truss finite elements. The wing
is assumed to have varying convective heat along the leading edge, top
and bottom surfaces and is convectively cooled internally. Tempera-
tures along the wing root are specified. Two finite element thermal
models are used to represent the wing truss, The first model
consists of 136 exact condution-convection rod elements (see
gsection 3,2,1) with one element per truss member, The second model
is identical to the first model, but linear conventiorial finite
elements are used, Fig. 9 shows a comparison of temperature distri-
butions along the bottom members of the center rib of the wing truss,
Results show that the exact finite element model provides a realistic
temperature distribution which £9 characterized by higher temperatures
near the center of each truss member and lower temperatures at the
nodes. The conventional finite element model underestimates the
actual temperatures and 18 not capable of capturing the highly
noglineur temperature distribution along the rib. Therefore, further
mesh refinement of the conventional finite element model is needed
if a realistic temperature distribution 1s to be predicted.

For the structural analysis, both models employ the same
discretization as in the thermal analysis. The structural boundary
conditions consist of constraining the nodes along the wind root.
Truss member temperatures obtained from the exact finite element
thermal model are directly transferred to the exact finite element
structural model for computations of displacements and thermal

stresses (see section 3.3.1)., Likewlse, displacements and thermal
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stresses computed from the conventional finite element structural
model are based upon linear member temperatures obtaired from the
conventional finite element thermal model., Comparison of the thermal
stress distributions for the two analyses are made as shown in

Fig. 9. The figure shows that conventioual finite elements under=-
estimate member stresses with a relatively large error. This error
is caused by the use of the inaccurate temperature distribution
from the conventionsl finite element thermal model. Comparative
temperature and stress distributions of other wing sections (not
shown) have similar trends. The results clearly demonstrate that
improved thermal-structural solutions can be obtained through the

use of exact finite elements.
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Chapter 4

MODIFLCATION OF EXACT FINITE ELEMENT FORMULATION FOR
ONE-DIMENSIONAL LINEAR TRANSIENT PROBLEMS

In the preceding chapter, exact thermal finite elements for one-
dinmensional steady-state heat transfer problems were presented.
Steady-state element temperature interpolation functions were
formulated in closed form based upon solving ordinary differential
equaticns, In transilent analysis, exact element temperature inter-
polation functions cannot be obtrained in closed form since generzl
solutions to typical transierit problems are infinite series. However,
by modifying the steady-state element temperature interpolation
functions for the transient analysis, improved transient temperature
solutions can be obtained as described in this chapter.

In steady-state analysis, finite element temperature distribu-
tions are a function of only the spatilal coordinate, but for transient
analysis, the element témperature distribution are a function of both
space and time. For example, a one-dimensional transient heat conduc-

tion is governed by the partial differential equation,

2
&Aé—g = pea 2L (4.1)
. x 3t

where k is the material thermal conductivity, » is the density,

¢ 1is the specific heat, A 1is the conduction area, and T is the
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temperature which varies with the spatial coordinate x and time t.
A two-node linear conventional finite element may be used in the
analysis where the element temperature variation T 1s expressed

in the form (Fig. 10(a))

Tl(t) T, (t)
T(x,t) = [L - F| = () N, ()] (4.2)
Tz(::) Tz(t)J

where Ni(x), i=1,2 are the element interpolation functions which
are a function of the spatial coordinate =x; L i1is the element length,
and Ti(t), i=1,2 are the time-dependent nodal temperatures.

With the heat equation shown in Eq. (4.l1), the corresponding
element equations and element matrices can be derived as described

in section 2.3. Typical element equations have the form

[c] (T} + [K] {T} = {Q} (4.3)

where (T} and {T} denote vectors of nodal temperatures and the
time rate of change of nodal temperatures, respectively. The matrix
[K] and the vector {Q} represent the conductance matrix and the heat
load vector, respectively, and have éhe same meaning as previously
described for the steady-state analysis in the preceding chapter.

The additional matrix [C] is called the capacitance matrix and defined

by (see Eq. (2.15a))

L
(c] =f pcA {Ni} [N| dx (4.4)
0

1IN
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For the linear interpolation functions shown in Eq. (4.2), the

capacitance matyix can be evaluated as

(0] = 22k (4.5)

This form of the capacitance matrix, Eq. (4.5), is called a consistent
capacitance matrix because its definition is conmsistent with the
matrix formulation, Eq. (4.4). Quite often, the above capacitance
matrix is approximated by lumping the off-diagonal terms with the

diagonal terms to give,

1 0
[c] = 2% | (4.6)
0 1 |

and is called a lumped capacitance matrix. It should be noted ghat
degradation of the solution accuracy may result from the use of the
lumped capacitance matyrix compared with the consistent capacitance
matrix. However, computational advantages (e.g. explicit time
integration algorithms) may be achieved using the lumped capacitance

matrix whereas the loss of solution accuracy may be insignificant

[5].
4.1 The Nodeless Variable

In the preceding chapter, exact finite clements for steady-
state analysis are formulated based upon solving ordinary differential
equations. Exact element temperature variations after imposing nodal

temperatures as boundary conditions are written in the form,
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T(x) = No(x) TO + Nl(x) Tl + Nz(x) T2 (4.7)

where Ni’ i =1,2 are element interpolation functions; Ti’ i=1,2
are unknown nodal temperatures, No(x) is the element nodeless
interpolation function, and TO is a known nodeless parameter,

For transilent thermal problems, it is not possible to formulate
exact element interpolation functions in closed form because general
solutions to typical transient problems are infinite series, However,
since the transient response may approach exact steady-state solutions
as time becomes large, the use of the exact steady-state.element
temperature variation in the form of Eq. (4.7) may provide better
accuracy of solutions than those obtained from the linear conventional
element, Eq. (4.2).

To use the steady~state element temperature variation for

transient analysis, Eq. (4.7) is written in the form,

T(x,t) = Ng(x) Ty + N () T,(E) + Ny0x) T,(c) (4.8)

where the unknown nodal temperatures Tl and T2 become a function
of time t. Since the node}ess parameter TO is known and independent
of time, the pruduct of the nodeless interpolation function and the
nodeless par;meter, No(x) Ty retains the same shape throughout
the transient response. Characteristics of the element temperature
varjation expressed by Eq. (4.8) during the response are illustrated
in Fig. 10(b).

Equation (4.8) may not be a good representation for a transient

thermal respons: as will be shown by the following argument. As

described in section 3.1.1, the nodeless parameter TO is a scalar
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quantity which contains a physical parameter assoclated with a given
heat load. Tor example, the nodeless parameter for a slab subjected
to a uniform internal heat generation rate Ql is given by (see
Table 2)

2k
where &k is the material thermal conductivity and L i1is the
element length. If a slab 1s modeled by an exact finite element,
the element temperature variation is given by (see Appendix A,

Case 2)

2

Q.L
X x L X X
T=f Q- 5t Q- +PT,

where Tl and T2 are the element nodal temperatures. If both

surfaces of the slab have a specified temperature TS in addition,

the above equation becomes

QL2

X %, 'l x X
= = — ) cm—— - =) — .
T(x,t=0) =+ (1 - 3) - Q=D T DT (4.9)
For the case where the internal heat generation is raised instan-
taneously from Q1 to QZ’ the transient temperature variation
within the slab should gradually increase and reaches the new steady-

state temperature variation

2
(1-3‘-)%“—+'<1-i>o~ + & T (4.10)
L' 2k L’ “s L’ s ’

T(x,tae) = X
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where the new nodeless parameter is

2
Q,L

TO L -EE—
Since the nodal temperatures at both sides of the slab are fixed,
the above two temperature variations, Eqs. (4.9 ~4.10), suggest that
the nodeless parameter TO should vary with time so the element
temperature can change gradually during the transient response., This
argument leads to a modification of the element temperature varilation

employed in the steady-state sanalysis, Eq. (4.8), to the form

T(x,t) = No(x) To(t) + Nl(x) Tl(t) + N2<x) Tz(t) (4.11)

where the nodeless parameter becomes an additional time-dependent
element unknown and is called a nodeless variable. A typical element
temperature variation with the nodeless variable To(t) is illus-

trated in Fig. 10(e).
4,2 Element Equations and Matrices

in this section, element equations and matrices for both the
nodeless parameter approach and nodeless variable approach are
presented. In the nodeless parameter approach, the element tempera-
ture variation shown in Eq. (4.8) can be written in the matrix form
T

T(x,t) = [Ny(x) N (x) N, (x) T, (t) (4.12)
Tzﬁt)
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Using the definition of the element capacitance matrix shown in
Eq. (4.4), the capacitance matrix for the given element interpolation
functions can be derived. Element equations, Eq. (4.3), can then be

written explicitly as

~ - ) h r - h 4 N
Coo So1 Coz 3T4/ 5t Ko O 0 T, Q
Coz ®11 C12 |9 a'rl/at: >+ 0 K, K, T, r “90Q ¢ (4.13)
G0z C12 C2 aT,/at 0 X5 Ko || T Q

- N P be _ J \ J
vhere Cij’ i, =0,1,2 are typical terms in the capacltance matrix;
Kij and Qi’ i,j =0,1,2 are typical terms in the element stiffness

matrix and the heat load vector previously described in the steady-
state analysis. Since the nodeless parameter TO 1s constant, its
time-derivative BTO/Bt is zero. Therefore, the first equation
which involves the no&eless parameter 1is uncoupled from the nodal
unknowns in the second and third equations, Hence, the above equa-

tions reduce to

€11 Ci2 Ty K1 B || T J’Ql
. R n (4.14)
C12 Cy2 Ty K12 Koo | [ T, lqz

Note that these equations contain two basic element nodal unknowns
as for the linear conventional finite ele@ent. Once the nodal
temperatures at a typical time are computed, element temperature
variation can be obtained using Eq. (4.12).

In the nodeless variable approach, the element temperature varia-

tion shown in Eq. (4.11) can be written in the matrix form
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~

To(®)
TCoe) = gt NG N00) 4 (e ¢ (4.15)

P

where To(c) denotes the element nodeless variable which is a func-
tion of time as the unknown nodal temperatures Tl(t) and Tz(t).
Since the element interpolation functions are identdical to those
used in the nodeless parameter approach, the element matrices are

also identical. Element equations obtained using this approach have

the form
- T . - - W f
Coo %1 oz | To Ko 0 01 ]T %
Cop €13 Cip 3%+ | 0 Kyp Kpl3Typ =19 (4.16)
| S0z €12 S| | T2 J 0 Ky Kot 1 T Q
- L~ -\ p \ J

Because the nodeless variable is unknown, the equations are coupled
through the capacitance matrix due to the presence of To. Thus
typical element equations obtained from the nodeless variable approach
contain three unknowns, i.e. one more unknown than the nodeless
parameter apporach or the linear conventional finite elemeﬂt.

An advantage of the nodeless parameter and nodeless variable
approaches is that both can provide an exact steady-state solution
at the initial condition for the transient response, As time becomes
large and new steady-state thermal equilibrium Is reached, the exact
temperature distribution may be predicted by both approaches. It
should be noted that with the use of the nodeless varilable approach

the temperature variation within the nodeless variable element can
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vary with time even though the element nodal temperatures are fixed,
This feature is characterized by the term No(x) To(t) shown in

Eq, (4.11) and 1s different from the linear conventional finite
element where the clement temperature distribution 1s completely

controlled by riodal temperatures,

4.2,1 Rod Element

The rod element with heat conduction combined with surface
convection, internal heat generation, or surface heating previously
considered in Fig. 4, Cases la~d is extended for transient analysis.
For each heat transfer case, thé governing differential equation for
the temperature distribution T(x,t) can be derived using an energy

balanze on a small segment of the rod. These governing differential

equations are:

2
ocA %{- - kA 3—-} -0 (4.17a)
. 3x
2
pes 2 - ka :_.g + hpT = hpT,, (4,17b)
b9
pcAﬂ-kAﬁaczA 4.17¢c)
ot 3x2 ‘
och 2L _ a 2, ap (4.17d)
3t axz

where A 1is the element cross-section area, h is the convection

coefficient, p is the cross-section perimeter, T_ is the surround-

ing medium temperature, and q 1is the specified surface heating rate

i
-y

d wems
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per unit area., As one example, conduction with internal heat genera-
tion where the exact steady-state element temperature variation is

(see Appendix A, Case 1(b))

rxt) = EQ-Hrra-H+dr,
= [Ny (x) N, (x) Nz(x)J T, (4.18a)

where TO is the nodeless parameter given by (see Table 2)

2
- QL

Using the exact element Interpolation functions shewn in Eq. (4.18a)
above, the capacitance matrix 1s derived using Eq. (4.4). The
conductance matrix and heat load vector are derived using Eqs, (2.15b)

and (2.16b), respectively., Therefore, the element equations are

1 1 1 . 1

30 12 1z || Yo 3 0 01T, 6

11 1. ka 1

m— — —— arm—— ~ &- o . 9
PeAL | 77 3 6TT1’+L 0 1 17131 QAL42>(41)

101 1 1

iZ % 3 LTz 0 -1 1 | T2 7

- - J - - / \ /

In the nodeless parameter approach, the nodeless parameter Ty

1s constant and the above element equations reduce to
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1 1] (; L
) T o Y 2
peAL i b -‘% = QAL L (4,20)
11 . 1
5 3 sz N N Z |

with two unknown n¢dal temperatures Tl(c) and Tz(t). It should
be noted that the element equations obtalned from using the nodeless
paragmeter approach shown in Eq. (4.20) above are identical to those
obtained from the linear conventional finite element for this heat
transfer case., Thus, results of nodal temperatures during the
transient response are also identical, However, results of element
temperatures are different due to the differaence of their element
interpolation funections, Eqs, (4.2) and (4.18b). As the transient
response reaches the steady-state, the nodeless parameter approach
provides exact solution for both nodal temperatures and element
temperature variations where only exact nodal temperatures are
obtained through the use of the linear conventional finite element.,
In the nodeless variable apporach, the element equatilons with
two unknowns of nodal temperatures and an unknown of nodeless
variable shown in Eq. (4.19) must be solved simultaneously, It can
be seen from these equations that as the steady-state thermal
equilibrium is reached, the rate of change of nodal temperatures

and.the nodeless variable vanish., Then the first equation yields

2
T ..Q.Ti..
0 2k

which is identical to the nodeless parameter shown in Eq. (4.18b).

This means the nndeless variable variles during the transient response
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and provides the value required for computation of the exact
temperature variation when thermal equilibrium is reached.

For other heat transfer cases such as conduction with surface
convection or surface heating, the same procedure is applied.
Element matrices corresponding to each heat transfer case in the form
of Eq. (4.16) are given in Appendix C. Capabilities of the nodeless
parameter and the nodeless varilable finite elements for transient
analysls are evaluated by comparisons with an exact transient
conduction-convection solution and the linecar conventional finite

element in the first example at the end of the chapter.

4,2,2 Axisymmetric Element

Similar to the rod elemeunt, the axisymmetric element previously
described in the steady-state heat transfer (Fig. 4, Case 3) is
extended for the transient analysiz., Radial heat conduction is
combined with internal heat generation and specified surface héating
or surface convection on the inner or outer cylinder surfaces are
considered through the boundary conditions. The governing differ-
ential equatlons for the cases of pure conduction and conduction

combined with internal heat generation are

AT _k B . 3Ty,
PC 3t r 3r (x 8r) 0 (4.21a)

r==) =Q (4.21b)

respectively, where r denotes the radial coordinate.

ﬁ Element equations can be derived by the method of weighted

{ residuals applied to the governing differential equations.

Cee

-y
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Typical element aquations are in the form of equation (4,16). The
element conductance matrix and heat losd vector are identical to those
obtained in the steady-state analysis shown in Eqs. (J3,3d3b) and
(3.38¢c), respectively. The element capacitance matrix assoclated with

the rate of change of nodal tepperatures has the form

b
(c] = S pe () [Ny ¢ dr (4.22)
) .

For the element interpolation functions assoglated with the heat
transfer cases shown in Appendix A, the corresponding capacitance

matrix can be evaluated in closed form. Capacitance matrices in

the form of Eq. (4.16) are given in Appendix C.

4.3 Applications

4,3,1 Transient Heat Conduction in a Rod with Surface Convection

A rod with length L subjected to surface convection and
specified end temperatures is shown in Fig. 11(a). Initially the
rod is convectively cooled by a surrounding temperature at 255 K
and, at time ¢t = 0+, the sve¢rounding temparature is raised
ingtantaneously to 589 K. Transient temperature distributions along
rhe rod are computed using: (1) the exact solution [27], (2) two
linear conventional finite elements, (3) two nodeless parametey
finite elements, and (4) two nodeless variable finite elements. In
each finite element model, the element lengths are taken to be equal
(L/2) with an unknown of nodal temperature at the center of the rod.

Comparisons of the temperature variations obtained from these three
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finlte clement models and tha exact solution for t = 0, 0,01 and
0.3 s. are made as shown in Fig. 1ll(b-d),

At time t = 0 while the rod is in tharmal equilibrium, two
nodeless varlable finite elements provide the exact steady-state
temperature distribution. Two conventional finite elements are
unable to provide detaills of the nonuniform temperature distribution
due to the assumption of linear temperature distribution within the
element. At time t = 0.0l 8. (Fig. 11(c)) after the rod has been
convectively heated, the differences in the transient response
predicted by three finite element models are shown clearly. Two
linear conventional finite elements predict the unknown nodal
temperature at the center of the rod with fair accuracy but the
element temperature distributions are overestimated from the actual
temperature distribution with a relatively high error. Two nodeless
parameter finite elements yield the unknown nodal temperature with
the same accuracy as of two linear conventional finite elements but
predict extremely poor element temperature distributions, Two nodeless
variable finite elements provide the best approximation of the
unknown nadal temperature with excellent temperature distributions
within the elements., As the rod temperatures approach a new steady~
state solution at time t = 0.3 s, (Fig. 11(d)), two linear
conventional finite elements yield a fair approximation of the
unknown nodal temperature but crudely approximate the temperature
distribution. Both the nodeless parameter finite elements and the
nodeless variable finite elements provide excellent prediction of
the unknown nodal temperature and details of the nonuniform tespeva-

ture distribution,
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Even though the nodeless parameter approach employed in this
problem yields excellent representation of the temperature distxibu~
tions at the beginning (t = 0 s,) and near the end (t = 3.0 s,)
of the response, the approach is unable to provide reasonable element
temperature distributions during the response. As shown In Fig., 1ll(c)
at time t = 0,0l s., temperatures obtained from the nodeless
parametey finite elements are characterized by bumps within the
elements, These unacceptable results are caused by using the steady-
state element temperature distribution with the coustant nodeless
pa;ameter for the t;ansient analysis., Therefore, the nodeless
parameter apﬁroach should not be employed for transient rosponse
predictions., Instead, the nodeless variable approach should be used
since it glves accuracy superior to the Linear conventilonal finite
elemen. throughout the response and predicts exact steady-state
solutions,

4,3.2 Transient Thermal Stresses in a Rod with Internal Heat
Generation

To further illustrate the use of the nodeiess variable approach
for one~dimensional transient problems Pnd demonstrate additional
benefits that can be achieved, an analysis of transient thermal
stresses in a rod with internmal heat generation is presented.

A rod with constant cross-sectional area A and length L
encased between fixed walls is shown in Fig. 12(a). Both ends of
the rod have the specified temperatures at 311 K and 333 K at
x =0 and x = L, respectively. Initially, the rod is subjected
to a uniform internal heat generation rate Q = 353 kw/m3 and is

in the thermal equiiibrium. At time ¢t = O+, the internal heat

M
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generation rate increases abruptly to 1073 RWIm3 and remains
congtant thereafear, The rod is modeled using: (1) 20 linear
conventional finite elements, (2) two linear conventional finite
elements, and (3) two nodeless variable finite elements. Comparative
temperature distributions at time ¢t = 0, p.l and 1.0 hr. are
shown in Fig, 12(b). The figure shows that two nodeless variable
finire elements have the same cwpability in predieting transient
temperatures as 20 linear conventional finite elements, Two linear

conventional finite elements underestimate the temperature distribu-

- tions with relatively large error throughout the transient response,

In the structural analysis, three structural finite element
nodels with the same discretizations as for the thermal finite
element models are employed, Element temperatures obtained from
the thermal finite element model are transferred directly to the
structural finite element model for computation of displacements
and stregses. For the quasi-static analysis, the structural response
are computed at times corxresponding to the tramsient thermal solu~-
tions obtained previously. At each time, the equivalent nodal
thermal forces are computed using Eq. (3.57) and the element nodal
displacements are computed from Eq. (3,55)., Once the element nodal
displacements are obtained, element displacement distributions and
element thermal stresses are computed from Eqs. (3.53) and (3.58),
respectively.

Displacement distributions obtained from the three structural
finite element models are shown in Fig. 12(c). The figure shows
that two linear conventional finite elements are inadequate to

represent the details of nonuniform displacement distributions.
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Similar to the theemal analysis, displacement distributions obtained
from two nodeless variable finite clemsnts and 20 linear cenventional
finite eclements are in excelient agreement throughout the transient
response, Comparative thermal stresses obtained from these finite
element models at the times mentioned above are given in Table 5.
Thermal stresscs ;omputed from two nodelesr variable finite elements
and 20 linear conventional finite clements are equal since temperature
variations of these twn finite element models coincided, Two linear
conventional finite elements underestimate the thermal stresses and
the error increases with time with a maximum of 10% at ¢t = 1,0 hr.
These two examples clearly demonstrate benefits of using the
nodeless variable approach in one~dimensional transient thermal-
structural problems, Further applications of the nodeless variable
approach can be found in Ref. (28], The use of the nodeless variable
for improving temperature solutions in the transient thermal
anaiysis directly improves accuracy of displacement and stress
distributions in the structural analysis. Tha advantages of the
nodeless variable approach for linear trarnsient thermal=structural
problems have been demonstrated in this chapter. The approach will
be extended to nonlinear steady-state and transient thermal-structural

analysis which includes radiation heat transfer in the next chapter.



Table 5

Comparative Thermal Stresses for a Rod with
Internal Heat Generation
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Stress, MPa

20 Conv. Elements

Time, t 2 Conventional 2 Nodeless Variable
Hr. Elements Elements % DLff.
0 -507 ~531 4.5%
0.1 ~598 ~-640 6.5%
1.0 -652 ~724 10.0%




Chapter 5

ONE~DIMENSIONAL THERMAL~-STRUCTURAL FINITE ELEMENT ANALYSIS
WITH RADIATION HEAT TRANSFER

Due to their relatively low weight, high stiffness and ease of
fabrication, trusses have high potential for use in space structures
for solar collectors, antenna and space stations, Thermal analysis
of these structures includes conduction heat transfer combined with
gignificant radiation heat transfer. Radiation heat transfer intro-
duces a strong nonlinearity in the energy equation being solved.
Furthermore, a time dependent solution procedure is required for the
analysis due to the changing orientation of the structure during the
orbit.

In this chapter, finite element solution procedures for one-«
dimensional transient thermal analysis with radiation heat transfer
are presented. Three finite element types are formulated: (1) an
isothermal element, (2) a linear conventional eiement, and (3) a
;odeless variable element. Accuracy and efficiency of the finite
elements are evaluated using two thermal-structural examples at the
end of the chapter.

5.1. Solution Procedures for One~dimensional Transient Thermal
Analysis with Radiation Heat Transfer
In this section, transient thermal analysis for a one-

dimensional finite element with radiation heat transfer is presented.
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The radiation surface is assumed to be diffuse, gray and opaque
which means the emitted radiation energy is uniformly distributed,
independent of wave length and the material does not transmit
radiation. For convenilence all material thermal propecrtiles are
assumed constant,

For one-dimensional transient heat conduction in a rod with
surface radiation, the governing differential equation for the
temperature distribution T(x,t) can be derived using an energy
balance on a small segment., With the assumptions mentioned above,

the governing differential equation is

2

3T _ a8 T b .
pcA 3E kA . Feopg T a Py d, (5.1)

where p is the density, ¢ 1s the specific heat, A 1s the rod
crogs~sectional area, k 1s the material thermal conductivity,
o is the Stefan-Boltzmann constant, € 1s the surface emissivity,
a 1s the surface absorptivity, A, is the incident surface heating
rate from distance directional sources per unit area, Pg and pq
are the cross-sectional perimeters for surface emitted energy and
incident energy, respectively.

Finite element equations correésponding to the governing differ-
ential equation (5.1) can be derived using the method of weighted

residuals as described in section 2.3. For this case, typical

element equations have the form

[e]l (T} + [[K] + (K11 (T} = {Qc} + {Q,} (5.2)

where [C] is the element capacitance matrix; [K. ] and [Kr] are
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the element conductance matrices corresponding to conduction and
radlation, respectively, {Qc} iy the element vector of conduction
heat flux across element boundary, and {Qr) is the element heat
load vector due to incident radiation. These matrices are expressed

in the form of integrals over the element length L as follows:

L
(c] - S pcA (N} |Np) dx (5.3a)
0
L
dN.  dN
[k, -S kA {—3-}} L‘Z;E'J dx (5.3b)
0
L
fKr] (T} = g €op, Té {NT} dx (5.3¢)
0
L |
o) ={|-mfy, (5.4a)
0
L
(0 = apgq, e (5.4b)
0

where [NTJ denotes the element temperature interpolation functions,
As shown in equation (5.3c¢), the conductance radiation matrix

contains the element temperature within the integral. The element

equations, Eq. (5.2), thus constitute a nonlinear set of equations.

Since the time rate of change of the temperature vector {T} also
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appears in the element equatilons, a transient nonli. .ar solutilon
procedure is required for the analysis.

Typical techniques for transient nonlinear solutions combine
a linear transient solution method and a steady-state nonlinear
solution method. The solution technique here uses a time-marching
scheme where temperatures are computed at the middle of the time
step, the Crank-Nicolson algorithm. At each time step, Newton-Raphson
iteration 1is used to correct for nonlinearities., Further details of
thegse methods including other solution algorithms can be found in
the finite element text, Ref. [15]. '

Starting from the element equations, Eq. (5.2), the time-
marching scheme is first applled by approximating the time rate of

change of nodal temperatures as
() ==& (T}, = (T}) (5.5)
At n+l n '

where At is the time interval between the time step n and n+l

such that ¢t - tn + At {T}n and (T} are the vectors of

n+1 n+l
nodal temperatures at the time step n and n+l, respectively,
Since the Crank-Nicolson algorithm computes temperature solutions at

the middle of time steps, nodal temperatures at the middle of the

step are approximated by
1 .
(T} =5 (T, + (T} ) (5.6)

where {T} denotes the vector of nodal temperatures at the middle
of the step. From this equation, the vector of nodal temperatures

at the step n+l 1is
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(T} g = 20T} = (T} (5.7)

By combining Eqs. (5.5) and (5,7), the time rate of change of the
nodal temperature vector shown in Eq, (5,35) can be expressed in
terms of nodal temperatures at the middle of the step and step n

as
(1) =2 (1) - (1)) (5.8)
At n
Substituting Eq. (5.8) into Eq. (5.2), the element equations become,

(2 L] + [k] + (R 1] (T} = (Q ) + (Q ) + 5= ] (1} (5.9)

In Eq. (5.9), the vector of nodal temperatures {T}n that
appears on the right-~hand side is known from the previous step.
Since the unknown nodal temperatures contained in the vector {T}
are computed at the middle of time step, the heat load vectors must
be evaluated at the same time. Once the unknown nodal temperature
vector {T} is obtained, the nodal temperature vector {T}n+l at
the step n+l can be computed from Eq. (5.7).

The element equations obtained by applying the Crank-Nicolson
algorithm shown in Eq. (5.9) are in the form of nonlinear algebraic

equations
(k(T)] {1} = {q} . (5.10)

where

[K(D] (T} = [ (€] + (K] + (K] (T} (5.11a)



and
(Q} = (Qq) + {Q,)} + 5= [C] (T}, (5.11b)

For any temperature vector {T} that is not an exact solution to
equations shown in Eq. (5,10) above, an unbalanced nodal heat loads

exlst which can be written in the form of a vector (¥} as

{p} = [R(T)] (T} - (Q} (5.12a)
or In tensor notations,

r
= £ K, T, -Q (5.12b)
Pt R B

To develop the Newton-Raphson method a Taylor series expansion with

the first order-derivative accuracy is written as

2
2 (CTY™) #C g'rf'? )™ a1y = 0 (5.13)

A set of algebraic equations is obtained in the form

[J]m {AT}m+l - }m

{R (5.14)

where the superscript m denotes the mth  iteration. The matrices
[J1™ and {R}™ are the Jacobian matrix and the residual load vector,
respectively, defined by

Gwi

Jij = aTj (5.15a)
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Ry = =¥y (5.15Y)

At each iteration, the vector of nodal temperature increments

m+l

(AT} is computed using Eq, (5,14) and a new temperature vector

18 obtained from

}m+l m+l

(T = {T}™ + (AT} (5.16)

The iteration process is terminated when a convergence criteria
(such as the maximum nodal temperature increment is less than a
specified value) is met. For steady-state analysis, the equations
shown in Eq. (5.2) do not contain the time rate of change of nodal

temperatures, and only the Newton-Raphson iteration is required.
5.2 Element Formulatioms

In this section, three one~dimensional finite elements with
surface radiation are formulated., Crank-Nicolson and Newton-Raphson
methods described in the preceding section are employed for the

transient and nonlinear solutions, respectively,

5,2.1 1Isothermal Element

The isothermal element is a simple finite element suitable for
problems with negligible conduction heat transfer. A uniform
temperature variation is assumed along the element that varies only
with time (Fig. 13(a)). This element 1s different from the finite
elements mentioned in the previous chapters since element temperature

is the only unknown for the isothermal element., Since the element
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neylects heat conduction, the governing differential equation shown

in Eq. (5.1) becomes

dT b
peA GE +eopy T apg Py (5.17)

where T denotes the element temperature which is a function only
of time ¢,

The Crank-Nicolson algorithm is applied to the above differential
equation by first writing the rate of change of the element tempera-
ture in the form of Eq, (5.8),

dT _ 2 2
. E'T-An(T Tn)

where T denotes the element temperature at the middle of the step.
Substituting this equation into Eq. (5.17) yields a nonlinear

algebraic equation in the form

2 3 2
(At pcA +eop T7) T = a Pq 9y +gp PCA T (5.18)

After the element temperature T at the middle of the step shown in
the above equation is obtained, the element temperature at the end

of the step is computed from

T 2T - T (5.19)

n+l

Next, the nonlinear algebraic equation shown in Eq. (5.18) is
solved by applying the Newton-Raphson method. In this case, the

unbalanced element heat load is given by (see Eq. (5.12)),
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q, - o2 fcA T (5,20)

‘IJH(Z‘%'QCA-i-GOpBTS)T-ap it n

q

Using Taylor series approximation, an algebralc equation iz obtained

in the form

JB Apetl g (5.21)

where J® and R® are the Jacoblan and the vresidual load at the

mth  ireration defined by

3

) 2 .
Jm-f,%-z-gpc}& + 4ecps‘ T (5.22a)
m 2 4
R --tp--z-t-pcA (Tn-'r) -eops’r
(5.22b)

At each iteration, the element temperature increment AT is computed

from Eq. (5.21) and a new element temperature is obtained from

m+l m+1

™ = 1 4 AT (5,23)

After the convergence criterion is met, the element temperature
shown in Eq. (5.23) 4is used in Eq. (5.19) to compute the element
temperature at the end of the step, The use of the ispthermal element
does not require a set of simultanenus equations due to the assump=-
tion of negligible heat conduction as previously mentioned. The
transient response of e;ch element, therefore, can be computed

separately.
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The igethermal element iz useful for modeling truss membors
where heat conduction is negligible in comparison with the ineident
heating and cmitted radiation. Applications of tha isothermal '
element for transient analysis of truss-type structures with surface

radiation can be found in Refs, [29,30]. .

5,2,2 Conventional Element

For the conventional element, a linear temperature variation

is assumed between the two element nodes (Fig. 13(b)),

T, (t)
T,e) = [L-F £ = [N (T} (5.24)
T,(t)

where the unknown nodal temperatures 21{;) and ng;) ara a
function of time t., With the conduction-radiation differential
equation shown in»Eq. (5.1), element equatigmns czn be derived as
shown in Eq. (5.2)., The vector of unbalance nodal heat loads showa

in Eq. (5.12a) is written expliedtly in the form

2 ;
() = = [CI{TY+ [K (T} + [R T} - (@} ~ {q,}

2
- it [C] (T}n
or

2
(¢} = na fel{{T} - (T}n} * [Kc]{T} + [k ]{1}

(5.25)
- {Q} - Q)
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For convenience nodal heat lead veetors corrcsponding to each torm

on the right=hand side of the above equation are introduced to yield

{y} = (‘Ucc} + WKC} o+ (er} - W/Qc) - {l'r'Qr} (5.26)

The Jacobian matrices and the residual heat load vector can now be
formulated by using the definitions (see Eq. (5.15))
Wy
My -..W
Jij 1, and Ri i
For example, the first term on the right-hand side of Eq., (5.,26) is

the heat load vector associlated with the capacitance matrix,

thg,} = [ClUm) = (1)
L
- '52&' S ped (Ng} M) dx ({1} - (T} )
0

With the linear element interpolation functions shown in Eq. (5.24),

this term can be evaluated in closed form as

2
ch} -

wi- o
3
-
1
" a\__ﬁ
=
H

ol WLl

Using the definition of Jacobian Jij - awi/arj, i,y = 1,2, the

corresponding Jacobilan matrix is
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L1
30
2 2
(chl = 2% peAL - =% (el (5.27)
L 1
6 3

Similarly, the Jacohian matrix associated with the conductance econduc=

tien matrix 18 obtained Iin the form

1 -1
[ 1 = (k] =22 (5.28)
¢ -1 1

-
»

The thirxd term on the right-~hand side of Eq. (5.26) 48 the heat load

vector associlated with the radiation matrix,

L
ii’Kt'I = (K] (T} = g EQ Pg 'l'4 {Np} dx
0

I3
i

or
L
4
wi " g P, T Ni dx
0

Therefore, the corresponding Jacobian is

L
¥y 3

or

L
g 1 = ag eopg T° {Ny) [Ny dx (5.29)
0
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With the linear element interpolation functions shown in Eq. (5.24),

this Jacobian matrix can be evaluated in closed form as

' oy

3 2 2 4pd 3 2 2 3
lOTl +6T1T2 +3T1‘1'2 +’1‘2 2'1‘1 +3Tl’£‘2 +3’1‘1T2 +2'.l‘2

1
[JK}C] - E‘g SCPSL

3 2 2 4.9m3 3 2 3
2T1'+3T1T2-+3T1T2-+2£2 Tl-+3TlT2'F6T T .+10T2J

(5.30)

It can be geen that the Jacobian matrix associated with the
radiation conductance matrix is strongly nonlinear since the unknown
n;dal temperatures contribute to all terms in the matrix, The matrix
is sometimes [31] approximated By lumping these te;ms together
gimilar to the lumped capacitance matrix given in Eq. (4.6). The

lumped Jacobian matrix results in a much simpler form with zero off-

diagonal terms,

Hw

[T ] 2 2cop, L (5.31)

From Eqs. (5.15) and (5.26), the total residual load vector

is

(R} = - fuged = Chgh = o b+ (o b+ (v ) (5.32)

For example, the residual load vector associated with the radiation

conductance matrix is
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(Rg,} = = (Vg } = = [K.] (T)

L
- -S € 0Pg ’I.‘4 {N,} dx
0

Using the linear element interpolation functions shown in Eq. (5.24),

this residual load vector can be evaluated in closed form,

4 3 a2 3 4
5Ty + 41T, + 30T, + 2I,T, + T,

(R } = - 2 c0pg L (5.33)

"ot 3 2m2 3 b
Tl + 2T1T2 + 3T1T2'+ 4T1T2 + 5‘1‘2

After all Jacobian matrices and residual heat load vectors are

computed, a finsl set of algebraic equations is obtained in thz form

[01® (amy™ = (g)® (5.34a)
where the superscript m denotes the mth iteration and,

(3] = [Jcc] + [JKc] + [Ig, ] (5.34b)

{R} = {Rg.} + {Rg } + {Bg.} + {Rq.} + {Rq,} (5.34¢)

The solution of the temperature vector at successive times proceeds
as previously discussed for the isothermal element.

As shown in Eq. (5.34a), the transient and nonlinear solution
procedures lead to a set of algebraic equations., The Jacobian
matrices and the residual heat load vectors shown in Eqs. (5.34b-c)
are thus necessary for the analysis.. With the linear element inter-

polation functions shown in Eq. {5.24), these matrices can be
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evaluated in closed form and are giv.n as computer subroutines in

Appendix D.

5.2,3 1llodeless Variable Elemant

In the preceding chapter, the nodeless variable approach was
introduced for improvement of temperature solutions in one-dimensional
linear transient analysis. The basic idea nf the approach is the use
of the steady-state elemenf temperature interpoiation function derived
from the solution of a given ordinary differential equation. An
element nodeless variable is employed so that exact steady-state
solutions are obtained at the beginning and at the end ¢ the
transient with realistic temperature distributions prediced throughout
the response. For one-dimensional conduction-radiation heat transfer,
it is not possible to obtain a closed form solution to the governing
differential equation, Eq. (5.1). However, the nodeless variable
approach is still useful for the analysis to provide improved
temperature solutions for the thermal element while maintaining the
same discretization as the two node structural element. The element
temperature distribution with a nodeless variable is written in the
form,

, To(t)
T(x,t) = [Nj(x) N (x) Nz(x)_] T, (t) p = LNTJ {1} (5.35)
T, ()

where No(x) is the nodeless variable interpolation function,
Ni(x), 1i=1,2 are typical element interpolation functions; To(t)
is the nodeless variable, and Ti(t), i=1,2 are the nodal tempera-

tures.
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As mentioned earlier, the nodeless variable interpolation func-

tion N, must vanish at nodes in order to preserve continulty of

0
temperatury between elements. There arsz wide cholces for selecting
the nodeless variable interpolation function to meet ‘his requirement.
The simplest function is in the form of polynomials with one order

higher than the linear element interpolation functions used in the

conventional finite element,

Ng(x) = (1= (5.36a)
' N (x) =1 - ¥ (5.36b)
N, () =% (5.36¢)

With these element interpolation functions, the element temperature
distribution, Eq. (5.35), results in a parabolic distribution over
the element length as illustrated ia Fig. 13(c).

The use of the nodeless variable element for transient heat
conduction with surface radiation follows the same procedure
described for the linear conventional element. Typical element
equations derived from the method of weighted residuals shown in
Eq. (5.2) contain three unknowns. These element unknowns are the
nodeless variable To and two nodal temperatures Tl and Tz.
For tramsient solutions, the Crank-Nicolson algorithm is applied,
and a set of nonlinear algebraic equations is obtained. Next the

Newton-Raphson method is used and a new form of simultaneous

Eq. (5.34a) is obtained where the Jacobian matrices and the residual
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load vectors are defined by Eqs. (3.54b-c), respectively., For example,
the Jacobian matrix contributed from the radiation conductance matrix

has the form

L
3
g =6 [ e, 1 o) L] ax
r
0
Using the element nodeless variable temperature distribution and
their element interpolation functions shown in Eqs. (5.35) and (5.36),

respectively, this Jacobian matrix is written explicitly as,

L N
0
3
[JKr] 4 g €0 py (NgTy + Ny Ty + NoTp) Ny LNO N, N,| dx
0 N,

Due to the complexity of the Jacobian matrix as shown above and
other matrices that appear in Eq. (5.34), the computer-based symbolic
" manipulation language MACSYMA [32] was used to evaluate the matrices
in closed form. Results of the Jacobian matrices and the residual
load vectors are provided in the form of computer subroutines in
Appendix D.

After the Jacobian matrices and the residual load vectors are
computed, typical element equations shown in Eq. (5.34a) can be

written in the form,

~ -m , wm'i'l ’ \m
Joo Jor Jo2 AT, Ro
Jlo Jll le < ATl > = 4 Rl \ (5.37)
Ja0 Jo1 J22 AT, R,

- - \ J L /

123
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These element equations contain unknowns in the iIincrements of the
nodelss variable and the nodal temperatures, i.e. one more unknown
than those obtained from the linear conventional elemeni, Once thesge
unknowns are obtained, new values of the nodal temperatures and the
nodeless variable are computed using Eq. (5.16). After the iteration
process 1s terminated, the nodal temperatures and the nodeless
variable at the end of time step are computed from Eq, (5.7).
Finally, the temperature distribution within the element is computed
by using the element nodeless variable interpolation functions shoyn
in Eq. (5.35).

It should be noted that the nodeless variable interpolation
functions, Eq. (5.36), Introduced in this section are applicable
when other heat transfer modes (such ag surface convection) are
included in the analysis. The element temperature distribution in
the parabolic form can provide a more realistic .temperature distribu
tion than the linear conventional element., This type of the nodeless
variable interpolation functions suggests that the nodeless variable
approach can be generalized to other finite element types. To
investigate this possibility, a twc~dimensional nodeless variable

thermal element is developed in the next chapter.
5.3 Applications

The egfectiveness of the nodeless variable finite element
described in this chapter is demonstrated for two examples of conduc-
tion and radizticn heat transfer. The linear conventional finite
element described in section 5.2.2 is used in these two examples for

comparison of solution accuracy, Temperatures computed from the
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nodeless variable and linear conventional finite elements are used
in the structural analysis for computation of displacements and

thermal stresses,

5,3.1 Thermal Stress in a Rod with Surface Radiation

A rod with constant cross-section area A and length L
encased between fixed walls is shown in Fig. l4(a), The rod has
specified end temperatures at 311 K and 533 K at x = 0 and
x = L, respectively, and is cooled along the surface by radiation
to zero medium temperature. The rod is modeled using (1) 20 conven-
tional elements with consistent Jacobian matrices (see Eq. 5.30)),
(2) two conventional elements with consistent Jacobian matrices,

(3) two conventional elements with lumped Jacobilan matrices (see

Eq. (5.31)), and (4) two nodeless variable elements. The terms
consistent and lumped refer to the formulation of the Jacobian matrix
contributed by the radlation conductance matrix described in section
5.2.2,

Temperature distributions computed from these four finite
element models are compared as shom in Fig. 14(b). The figure shows
that two nodeless variable elements have the s§me capability in
predicting the unknown nodal temperature (at x/L = 0.5) and element
temperature distributions as 20 conventional finite elements. Two
conventional finite elements with consistent formulation underesti-
mate the unknown nodal temperature and crudely approx!mate temperature
distribution., Two conventional finite elements with lumped formula-
tion overestimate both the unknown nodal temperature and element

temperature distributions with relatively large error.
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In the structural analysig, four structural eclements with the
same disuretizations as for the thermal models are employed. Element
temperatures obtained from the thermal model are transferred directly
to the structural finite element model for computation of displacc-
ments and stresses, The conventional structural finite elements
employ linear clement displacement distributions as used in typical
finite element programs. The structural finite element for the
nodeless variablg thermal element uses the exact displacement
distribution, Eq. (3,53), derived based upon the parabolic element
temperature distribution shown in Eq. (5.35). Displaéement distribu-
tions obteained from these structural finite element models are
compared as shown in Fig., l4(c). The figure shows that two conven-
tional finite elements are inadequate to represent the nonuniform of
displacement distribution. In addition, two conventional finite
elements with consistent and lumped formulations overestimate the
thermal stress (not shown) by 12 and 23 percent, respectively.
Displacement digtributions obtained from two nodeless variable
finite elements and 20 conventional finite elements are in excellent
agreement where the difference in the thermal stresses ig negligible
(less than 0,05 percent).

5,3,2 Thermal Analysis and Structural Response of a Space
Truss Module

A three member ‘orbiting truss module shown in Fig. 15(a) is
used to demonstrate the efficiency of the nodeless variable finite
element. A typlcal truss member receives incident heating which is
a combination of: (L) solar heating, (2) earth emitting heating,

and (3) earth reflected solar heating. With the open-truss type
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structure as shown in the figure, member to member radiation exchangus
are relatively small and are neglected, A geooynchronous prbit
(perdod of 24 hr,) iz employed where solar heating 1s large comparcd
to the earth emitted heating, During the orbit, incident heating
normal to a typical truss member varies continuously due to the
changing orientation of the member., As the orbiting truss enters

and leaves the earth's shadow, the incident heating changes rapidly,
Member temperatures and structural deformationg thus depend strongly
on the time~dependent incldent heating.

To demonstrate the use of the conventional and the ;odeleas
variable finlte elements formulated in the preceding section, the
truss module with properties of aluminum is considered, Four finite
element models are employed where each truss member is represented
by: (1) 10 conventional elements with consistent formulation, (2) one
conventional element with consistent formulation, (3) one conventional
element with lumped formulation, and (4) one nodeless variable
element. Temperature distributions computed from these four finite
element models at a typical orbital position are shown in Fig. 15(b).
The figure shows that the nodeless variable finite element model
provides excellent prediction of the nodal temperatures and very
good element temperature distributions compared to the refined
conventional finite element model. The conventional finite elements
with consistent formulation tend to average the nonuniform tempera-
ture distributions and thus cannot provide accurate rodal temperatures,
The conventional finite elements with lumped formulation predict
nodal temperatures very well but yield large errors for member

Interior temperatures. Comparative temperature distributions of
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finite element models at other orbital positions also show a similar
trend; the nodeless variable finite elements predict nodal tempera-
tures and member temperature distributions very accurately compared
to the refined conventional finite elements.,

Temperature obtained from the four thermal finite element models
for a complete orbit are transferred to the structural finite element
models for computation of displacement histories. The quasi-static
analysis described in section 2.4 is employed for the computation
of the unknown nodal displacements. Fig. 15(c) shows a comparison
of typical member elongation histories computed from the finite
element models during the orbit. Since the temperature distributions
obtained from the nodeless variable finite element model and the
refined conventional finite element model are in very good agreement,
member elougation histories predicted by these two finite element
models almost coincide (maxiﬁum difference of 1 percent), Conven-
tional finite element models with consistent and lumped formulations
yield errors for member elongation up to 29 and 44 percent,
respectively. Such large errors result from the incapability of the
conventional finite element to provide realistlic member temperature
distributions. Since the conventional finite element with consistent
formulation trends to average the member temperature as previously
mentioned, accuracy of the member elongation history obtained is thus
higher than the conventional finite element with lumped formulation.

These two examples clearly demonstrate the benefits of using
the nodeless variable finite elements in one~dimensional radiation-~
conduction problems that are characterized by nonuniform temperature

distributions. The elements predict member temperatures accurately
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and are compatible with two-node structural elements to permit an
integrated thermal-structural analysis., Additional applications of
the nodeless variable finite element for one-dimensional thermal

problems with conduction and radiation heat transfer appear in

rRef. [33].
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Chapter 6
TWO~-DIMENSIONAL NODELESS VARIABLE FINITE ELEMENTS

In the two preceding chapters the nodeless variable approach
was applied to one~dimensional linear thermal-structural analysis
and to nonlinear radiation heat transfer. The unique feature of the
approach 1ls the use of an additional nodeless variable for a thermal
finite element. Improvement'of solution accuracy is achieved while
the same discretization is employed for both thermal and structural
finite element models.

In this chapter the approach is extended for development of
two-dimensional nodeless variable finite elements. Restrictions for
developing these finite elements are first discussed. Two nodeless
variable finite elements and their interpolation functions are
presented. Then the use of the nodeless finite elements for linear
thermal-structural analysis is described. Efficiency of the nodeless
variable finite element; is evaluated by comparison with the
conventional bilinear four-node finite element and exact solutions
in examples at the end of the chapter. ,

For simplicity in understanding characteristics of the two-
dimensional nodeless variable finite elements, a brief description
of a conventional bilinear four-node thermal finite element is
first given. The element temperature distribution for a bilinear

four-node element is expressed in the form,
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0
T
L)
T = LNl N, W, Naj < ; 5 = LNTJ {1} (6.1)
3
T,
. /

where Ni’ i =1,4 are the element interpolation functions which
are a function of spatial coordinates in two-dimensions, and Ti’
i=1,4 are the time dependent nodal temperatures.

Fig. 16(a) shows a conventional four-node element with a general
quadrilateral shape. As described in section 2.3, typical finite
element matrices are in the form of integrals over the element
volume or along the element bound;ry. Such element matrices for
a quadrilateral shape are difficult to evaluate. To simplify the
element integrations, the quadrilateral element in the Cartesian
coordinate system (x,y) is transformed to a natural coordinate
system (&,n) as shown in Fig. 16(b). The two coordinate systems

are related by

4
X = z Ni(g,n) x = IN] (=)} (6.2a)
i=1
4
y = Zl N;(Em) v, = (N] {y) (6.2b)
i=

where Ni’ i=1,4 are the element shape functions defined by,

§) = £(1-6) (1-n) Ny = Z(1+E) (1)

(6.3a)
Ny = F(14€) (L) N, = (1-5) (1+n)

o Ty
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Fig. 16. Four node isoparametric finite element in

global and natural coordinates.
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or in compact form,
1
N, =7 (1L + &5, )(L +nny) i=1,4 (6.3b)

where Ei and "i’ 1 =1,4 are the nodal coordinates in the natural

coordinate system, For example, El mn, w -1, 52 =1, n

1
atc.

When the shape functions Ni shown in Eq. (6.3) are used as
the element temperature interpolation functions in Eq. (6.1), this
conventional element is called an isoparametric quadrilateral element
because the same interpolation functions are used to interpolate
temperature and spatial coordinates.

Note that an element temperature interpolation function shown
in Eq. (6.3) has a value of unity at the node to which it pertains
and a value of zero at the other nodes. Along the element edge
(¢ = x1, n = x1), these element interpolation functions are linear.
Therefore, the temperature distribution élong a typical element
edge varies linearly where the magnitude depends on the temperatures
of the two corner nodes located at that edge. When elements are
connected, the conventional quadrilateral element preserves
continuity of temperature along the element interfaces. The conti-
nuity of the element interface temperatures is a basig requirement
to assure convergence of the temperature solution as element size
decreases. This continuity requirement must be met when a new
thermal finite element is constructed. Further details of require-

ments for a typical finite element to meet convergence criteria can

be found in Ref. [15].



134

6.1 Two-Dimensional Nodeless Variable Thermal
Finite Elements

In several thermal-structural applications, a more detalled
finite element thermal model is required than the finite element
strnctural model. To maintain the same discretization for thermal
and styructural models, new thermal finite elements are required. In
this section, two type of two-dimensional nodeless variable thermal
finite elements for improved temperature solutions are presented.
These elements predict more realistic temperature distributions than
the conventional finite element previously described. The basic
objectives for developing the new finite elements are: (1) the
elements should provide a nonlinear temperature distribution but
maintaln four element nodes to be congruent with the four node
structural element, and (2) compatibility of temperature along
element interfaces must be praserved. The nodeless variable concept
previously described for one-dimensional element is extended to

two-dimensions to meet these objectives.

6.1.1 ‘'"Bubble'" Nodeless Varilable

One approach [34] for constructing nodeless variable finite
elements is to add a '"bubble'" function which vanishes along the
element boundaries. The element temperature distribution is written

in the form,

24 sy (6.4)

T=I_Nl N, N, N4_|j o%o
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where N, is the nodeless interpolation (bubble) function defined

by
Ny = (= £ =) (6.5)

and T, is the nodeless variable.

Along the element boundary (& = %1, n = 1), the bubble
function, Eq. (6.5), is identically zero. Therefore, the element
boundary temperature reduces to ; linear variation as for the
conventional finite element and continuity of temperature along
element interfaces is preserved. Within the bubble nodeless variable
element, the temperature distribution is a combination of the
conventional element temperature distribution and a bubble function
where its magnitude is measured by the nodeless varaible To. The
combination thus permits a quadratic temperatﬁre distribution over
the element.

It should be noted that even though the bubble nodeless
variable finite element can provide a quadratic temperature distribu-
tion within the element, the temperature along the element boundary
is linear. To achieve further improvement of the temperature solu-
tion, the temperature distribution should vary nonlinearly élong the
element boundary. With the idea -of the bubble function, a nodeless
variable finite element with this behavior can be constructed. This
type of nodeless variable finite element is presented in the next

section.
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6.1.,2 Boundary Nodeless Variable

in order to establish a nonlinear temperature distyibution aleng
the four element edges as well as within the element interior, the
following four nodeless variable interpolation functions (see Fig. 17)

are employed

Ng = (L= = n) (6.6a)
Ng =% (L +£)(1 = n? (6.6)
Ny =g (= g+ ) (6.6¢)
Ng =% (L- =) (6.6d)

Py

where each interpolation function varies quadratically along one
edge and vanishes on the other edges., For cxample,’the nodeless
variable interpolation function N5 varies as 1 - 52 along the
edge n = -1 and is identically zero on the other three edges.

As mentioned earlier, continuity of the temperature along the
elemegt interfaces must be assured for convergence of the solution.
This restriction can be met by providing a nodeless variable for
each element edge. With a nodeless variable for each element edge,
element interpolation functions for a quadrilateral element can be

written in the form,

'd h . 3
Bl Ts
T= [N, N, Ny N9 (T [Ny N N, Ng| L (6.7)
3 T
7
T
4 Ty
\ / L )




-ty ‘{’%“i

OR‘G‘NAL {3 “‘t'i"le,.- a’u
OF POOR QUALITY

Ny = 2(1-4%) (1-n) Ng = F(1+8) (1=n?)

4 3 <,
/ g g
1 2 1 2

1 2 1 2
N, = (1~ (L+n) Ng = 3(1-£) (1=n?)

[}

Fig. 17, Nodeless variable interpelation functions for
two-dimensional quadrilateral finite element.
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where Ti’ i=1,4 and 4 =5,8 are the nodal temperatures and the
nodeless variables, respectively. Element interpolation functions

N;» i =1,4 are the same as for the conventional bilinear four node
element given in Eq. (6.3), and Ni’ i=5,8 are the nodeless variable
interpolation functions given in Eq. (6.6).

The combination of the conventional and nodeless variable inter-
polation functions, Eq. (6.7), provides a quadratic temperature
distributinrn over the elemerit but with only four element nodes.
Interelesar' compatibility is preserved since adjacent elements have
a common nodeless variable on adjoining edges, The magnitude of the
nonlinear variation on an element edge is measured by the correspond-
ing nodeless variable. Temperature distributions for the conventional
bilinear element and the nodeless variable element are compared in

Fig. 18,

.

6.2 Nodeless Variable Finite Element Formulation
for Thermal-Structural Analysis
In this section, the thermal finite element formulation for two-
dimensional linear transient analysis is described. The formulation
is valid for bpth the conventional element and the nodeless variable
element. A four node structural element which will be used in
junction with the thermal element for computation of thermal stresses

1s also presented,

6.2.1 Linear Thermal Analysis

In two~dimensional transient heat conduction, the governing
differential equation for the temperature distribution T(x,y,t)

may be expressed in the form of
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Fig. 18. Two-dimensional element interpolation
functions.
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3T 2T
Sx kx Bx) * 5y (ky ay) *Q = Pe T (6.8)

where kx and ky are the thermal conductivities in x and y
directions, respectively, Q i1is the internal heat generation rate
per unit volume, p is the density, and ¢ 13 the specific heat,

To derive the element equations and element matrices, the method
of weighted residuals (see section 2.3) is applied to the governing
differential equation (6.8). With the boundary conditions of
specified temperatures, surface heating and surface convgction as

shown in Eqs. (2.5a=-c), typical element equations have the form

[e] {1} + (Kc + Kh] {1} = {Qc} + {QQ} + (Qq} + {Qh} (6.9)

where [C] 1s the element capacitance matrix; [Kc] and [K ] are
element conductance matrices corresponding to conduction and convec-
tion, respectively. These matrices are expressed in the form of

integrals over the surface area A of an element with the thickness

t as follows:

(¢] = ¢ l; pc (N} (Mg dx dy (6.10a)
] -t L [BT]T [k] (Bl dx dy (6.10b)
(k) -£ h{N} [Np] dx dy (6.10c)

]

vhere [B;] denotes the temperature gradient interpolation matrix,

and h is the convection coefficient. The right-hand side of the
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discretized equation (6,9) contains heat load vectors due to
speclfied nodal temperatures, internal heat generation, surface

heating, and surface convection, These vectors are defined by

Q) =] @8 es (6.118)
1

(QQ} - tL Q{NT} dx dy (6.11b)

(Q} = _[\ q N} dx dy (6.11c)

{Q,} = L h T, (Ny} dx dy (6.11d)

where q is the vector of conduction heat flux across boundary Sl
that is required te maintain the specified nodal temperatures, q 1is
the surface heating rate per unit area, and T_, is the convectilve
medium temperature.

As mentioned earlier, a typical quadrilateral element in
Cartesian coordinates (x,y) 1is transformed to the natural coordi-
nategs (&,n) to perform the element matrix integration. 1In
computation of the conduction conductance matrix (Eq. (6.10b)), for
example, the chain rule is first applied to relate the temperature
gradients in both coordinate systems,

b —

T ax 3y | [ar
9E 1S 9 ox

A , (6.12)
aT ax ay | |2z

| an an an 3y
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Using the coordinate trasnformation shown in Eq. (6.2), the above

relations become

r - ¢ N
aT 3T
3& X
< Y = [J]‘ ’
T aT
3n 3y
- / > /
or
r » ' A
3T aT
% 9k
-1
P, , = (a7 ¢ S (6.13)
aT oT
y n
~ / \ J

where [J] 1s the Jacobian matrix defined by

P b
=1 %F 7L 1=y 2671
[J] = (6.14)
4 3Ni 4 93N
I ——=x I ==y
{=1 on "1 =1 oan

Substituting the element temperature, Eq. (6.1) or (6.7), into the

right-hand side of Eq. (6.13) yields

9 T
(ﬂ 1
Ix T2

< > = [BT(E;,n)} T (6.15)

3T .
3y '

\ J T
r

~ J/

where r 1is the number of the element unknowns; r =4 and 8 for

the conventional bilinear element and the nodeless variable
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element, respectively, The temperature gradient interpolation matrix

in the above equation is given by

5 BE 3E
[B.Cg,m] = [J17% (6.16)
T
?-bj-'-l‘- -a-EI.g- ooﬁ‘ano_a_bj_.
an an an

Using dx dy = IJI d§ dn where |J| is the determinant of [J],
the conduction conductance matrix terms of the natural coordinates

is

1 1
(K = ¢ g E [BT<s,n>1T [k] [BpC&,m] [J] dgdn  (6.17)
-1 -1

Next, the coefficients in the conduction conductance matrix
are computed by numerical integration; the Lagendre-Gauss method

is used where the above conduction conductance matrix is written in

the form,
NG NG T
[KC] - 151 jfl wi Wj [BT(Ei’nj)] (k] [BT(Eisnj)] |J(Ei’nj>l (6.18)

where wi, Wj denote Gauss weight factors, Ei’ nj

integration points and NG is the number of Gauss points in each

denote gauss
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coordinate direction. Gauss weight factors and Gauss integration
point coordinates can be found in Ref, [15].

Other clement matrices shown in Eqs., (6,10 =6.1l) can be
formulated in the same manner., For example, the conductance

matrix and the heat load vector associated with surface convection

are expressed as

144

NG NG T
NG NG T
(Q,} = T, L jfl Wy Wy INp g, n) T (36 ) | (6.19b)

In performing the numerical integration, the accuracy of the
matrices depends on the number of Gauss points used. In general,
the use of n Gauss points provides exact integration when the
integrand contains polynomials of order up to 2n -1, For the
conventional bilinear finite element, two Gauss points (NG = 2)
in each coordinate direction are normally used. Since the nodeless
temperature interpolation functions contain higher order of |
polynomials than those for the conventional bilinear element,
more Gauss points should be used., For the linear thermal analysis

presented herein, three Gauss points in each coordinate direction
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was found by numerical tests to be appropriate for accurate node-
less variable element matrices.

After element matrices are computed, typical element equations
can be written in the form

Al

{c] (T + (K] T} = (Q} (6.20)

The conventional bilinear element has four nodal temperatures as

the unknowns, thus the above element equations contain four

unknowns. The nodeless variable element has four nodal tempera-
tures and four nodeless variables as the element unknodns, therefore,

the element equatiory contain eight unknowns. In transient

it+]

analysis, these eight equations must be solved simultaneously

similar to the one-dimensional nodeless variable described in the
preceding chapter. In steady-state analysis, the four nodeless
variable unknowns can be eliminated from the element equations
using the matrix condensation technique [35]. The final number

of element equations thus reduces to be the same as of the conven=-

tional bilinear element.

6.2.2 Structural Element

In this section, the congruent structural element is briefly
described. The element contains four nodes and permits the same
discretization with the conventional and nodeless variable thermal
elements described in the preceding sections. The element stiff-
ness matrix Is the same as used in conventional four node structural

elements. However, the improved element temperature distributioms,
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Eq. (6.7), are incorporately consistently in the thermal force
vector computation to yleld an integrated thermal structural
element.

The structural element at each node has two in-plane displace=-
ment unknowns u and v which may vary with the element local
coordinates x, y and time t, Element displacement distributions

are assumed in the form (see Eq. (2.23)),

u(x,y,t) N, O N, O N

: > = [Ns]{E}
v(x,y,t) 0 Nl 0 Nz 0 N3 0 N4 u, !
(6.21) :

where Ni’ 1 =1,4 are the element displacement interpolation
functions which have the same form as for the conventional finite
element temperature interpolation functions shown in Eq. (6.3).

For the quasi-static analysis, typical element equations shown

in Eq. (2.26) reduce to

(K] (8} = {F} (6.22)

where [Ks] is the element stiffness matrix, and {FT} is the
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equivalent nodal thermal load vector. These matrices are expressed

in the form of integrals over the element volume V as

k] = fv (8,7 (0] (8] dv (6.23a)
{FT} - Jv [13‘5]T (D] {a}(T(x,y,t) - Toeg) 4V (6.23b)

where [BS] is the strain-displacement interpolation matrix obtailned

from the strain-displacement relations,

F - ( -
x au
ax
1y ¢ 2 L =B1H (6.24)
Ju _av
Y au . 3v
Xy 3y * 9%
\ PV, \ /

[D] is the elasticity matrix defined by (plane stress),

1l v 0
== | v 1 0 (6.25)
1-v Lmy
°c 0 5

where V 1s Poisson's ratio. The vector {a} contains the thermal

expansion coefficients given by (plane stress)

{a} = o (6.26)

oo en
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T(x,y,t) 1is the element temperature computed using the conventional
or the nodeless variable thermal element and Tref 1s the reference
temperature for zero stress, The elasticity matrix [D] and the
vector of thermal expansion coefficients shown in the above equations
can be used for plane strain by replacing E/(l-vz) for E, v(l-v)
for v; and (l+V)e for a,

Similar to the quadrilateral thermal element, numerical Iintegra-
tion is required for computing the element matrices. Using the
Lagendre~Gauss method, the element stiffness matrix and the equivalent
thermal load vector shown in Eqs. (6.23a~b) are written in the form,

NG NG

T
(k1 =t 151. :jfl Wy Wy [Bg(8g,n )17 [D] [Bo(E;,n)] [3CE 00 (6.27a)

NG NG T
{Fp} = ¢t 151 jfl Wy WylB (83,n) 1" [D] {a} (T(Eg,ny) =T, 0) |JCE; 5]
(6.27)

where T(Ei,nj) is the temperature at the element Gauss integration
point £y and ny e

Unlike the thermal finite element previously described, the nodal
dispiacement unknowns of the structural element are the veétor
quantities. Transformation of the element matrices from the local
coordinates (x,y) to the global coordinates (X,Y,2) is required.
In three~dimensions, the element stiffness ;atrix becomes a 12 by 12
matrix and similarly with the nodal force vector. Thus the element
equations contain a total of 12 equations with 12 nodal displacement

unkonwns in the global coordinates. After the global element matrices

are assembled and the nodal displacements are computed, element nodal



149

displacements in the local coordinates can be obtained. Then the

element stresses can be computed from

[+]

g - N -
TY - [D] { [Bs] {8} = (a} (T(x,y,t) ‘ Tref>} (6.28)
Xy

6.3 Applications

To illustrate the performance of the two-dimensional nodeless
finite element presented in section 6.1.2, two examples are analyzed:
(L) a rectangular plate with surface convection, and (2) a simplified
wing section with aerodynamic heating. In each example, benefits
of the nodeless variable finite element are demcnatrated by comparison

with results from conventional finite element and analytical solutions.

6.3.1 Steady-State Heat Conduction in a Plate with Surface
Convection '

A rectangular plate (Fig. 19(a)) has a specified temperature
’1’0 along the boundaries. The plate is cooled by surface convection
to a zero medium temperature, T, = 0. Using symmetry, a quarter of
the plate is first modeled by: (1) one conventional element, and
(2) one nodeless variable element.

Fig. 19(b) shows:the comparative temperature distributions at
y = b/2 for an analytical solution [27], the conventional element
and the nodeless variable element solutions. For these models, the
conventional element gives a relatively high error compared to the
nodeless variable element. The largest error for both finite element

models occurs at the center of the plate (16% and 3% for the
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Fig. 19. Conventional and nodeless variable finite

element solutions for a plate with surface
convection.
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conventional element and the nodeless variable element, respectively),
At the center of the plate, both elements show a discontinuity of
conduction heat f£lux indicating a nced for mesh refinement. Next,

the plate is modeled by using four finite elements shown by the dotfed
lines in Fig. 19(a); comparative temperature distributions are shown
in Fig. 19(c). Four conventional elements provide a falr estimate

of the temperature variation, but four nodeless variable elements
yleld excellent prediciiions for both nodal and element temperatures,
Comparisons of temperatures at other sections of the plate (not shown)
demonstrate that four nodeless variable elements provide excellent

agreement with the analytical solution for the entire plate,

6.3.,2 Simplified Wing Section with Aerodynamic Heating

To demonstrate the usefulness of the two-dimensional nodeless
variable elements in aerospace therwmal-structural analysis, a simpli-
fied wing section 1s analyzed (Fig. 20(a)). Top and bottom skins
of thé wing section are connected by three corrugated spars and are
subjected to symmetrical, nonuniform time-dependent aerodynamic
heating.

Three finite element models are employed to computed temperatures.
For a unit depth in the spanwise direction, the first model consists
of seven conventional elements; two elements each for the top and
bottom skins and one element for each spar., The second model is
identical to the first model except nodeless variable elements are
used, The third model uses & refined mesh (not shown) with 35 conven~

tional elements.
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Comparative skin temperature distributions at t = 150 s. are
shown in Fig. 20(b); the number of elements cit. d is for the skin
only, The nodeless variable finite element model predicts a realistic
temperature distribution and gives very good agreement with the
result from the refined conventional finite elemenf model., The crude
conventdional finite element model underestimates the average skin
temperature and i1s unable to provide details of the nonuniform
temperature distribution.

In computation of the skin thermal stress, classical beam
theory [16] is employed for comparison with two finlte element stress
analyses. Detalled temperature distributions from the refined
conventional finite element thermal model are used to compute the
stress Oy from beam theory. Temperature distributions from the
crude conventional thermal finite element model and the nodeless
variable thermal finite element model are transferred to a structural
finite element model with the same discretization for the stress
computations. Comparative stress distributions at t = 150 s. are
presented in Fig, 20(e). The advantage of using the improved
temperature distributions from the nodelecs variable finite element
model in computing stresses is clearly demonstrated. These stress
distributions are in excellent agreement with the result from beam
theory with both the critical stress and its location accurately
predicted. Using the temperature distribution from the crude
conventional finlte element model yields significant errors in the
stress distribution and is unaccetable for this problem.

These two examples clearly demonstrate the benefits of the

two~dimensional nodeless variable finite element that can be obtained
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for thermal-structural analysis. Additional applications, a summary
of the nodeless variable approach and the thermal-structural finite

element formulation presented in this chapter appear in Ref, [36].



Chapter 7
CONCLUDING REMARKS

An integrated approach for improved thermal-struztural finite
element analysis is presented. The approach was motivated by aero-
space applications to improve thermal-structural finite element
analysis capabilities. An important goal is to eliminate the
incompatibility between thermal-structural analyses where a more
detailed finite element model is required for the thermal analysis
than for the structural analyéis. The integrated approach is
characterized by: (1) thermal and structural finite elements
formulated with common geometric discretizatioﬂ for full compatibllity
during the coﬁpling of the analyses, (2) accurate nodal and element
temperatures provided by improved thermal finite elements, and (3)
accurate thermal loads for the structural finite element analysis to
further improve accuracy of the structural response.

Rasic concepts and procedures of the intugrated thermal-structural
finite element analysis are described. New thermal finite elements
for improved thermal analysis accuracy are developed. Thermal finite
elements which yield exact nodal and element temperatures for one-
dimensional linear steady-state heat transfer problems are presented.
These thermal finite elements are formulated based upon using closed-
form solutions of the governing differential equations. For general.

heat transfer problems where closed-form solutions are not available,
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improved thermal finite elements are developed by employing the
nodeless variable formulation., The nodeless variable finite element
uses extra unknowns as element variables to permit higher order
element temperature interpolation functions. Detailed element
tempsrature distributions are obtained without using additional
element nodes while a common discretization with lower order congruent
structural finite elements are maintained.

Nodeless variable finite elements are formulated for the
following heat transfer cases: (l) one-dimensional linear transient
analysis, (2) one~dimensional nonlinear transient analysis with
radiation, and (3) two-dimensional linear transient analysis.

General formulations of the nodeless variable finite elements for

each heat tranefer case are described in detail. For comparison,
conventional finite elements customarily used in typical finite
element programs are also presented. Results of temperatures obtained
from the thermal analysis are transferred directly to the structural
analysis to compute displacements and stresses.

To demonstrate the capabilities and efficiency of the integrated
finite element approach, several examples in academic and more
realistic problems are employed. The accuracy of the approach is
evaluated by comparisons with analytical solutions and conventional
thermal-structural analyses. Results indicate that the integrated
finite element approach provides a significant improvement in the
accuracy and efficiency of thermal-structural analysis and nffers

potential for applications to other coupled problems.



LIST OF REFERENCES

Turner, M. J., Clough, R. W., Martin, H. C,, and Topp, L. J.,
"stiffness and Deflection Analysis of Complex Structures,”
Journal of Aerospace Science, Vol. 23, July 1956, pp. 805~-823.

Zienkiewicz, 0. C.and Cheung, 7. K., "Finite Elements in the
Solution of Field Problems,'" The Engineey, September 1965,
pp. 507-510,

Wilson, E. L. and Nickell, R, E., "Application of the Finite
Element Method to Heat Conduction Analysis,'" Nuclear Engineering
Design, Vol. 4, October 1966, pp. 276-286.

Emergy, A. F. and Carson, W. W., "An Evaluation of the Use of
the Finite Element Method in the Computation of Temperature,"
Journal of Heat Transfer, Vol, 93, May 1971, pp. 136~153.

Wilson, E. L., Bathe, K. J., and Peterson, F, E., "Finite
Element Analysis of Linear and Nonlinear Heat Transfer,"
Nuclear Engineering and Design, Vol., 29, November 1974,
pp. 110-124,

Bruch, J. C. Jr. and Zyvolosky, G., "Transient Two-Dimensional
Heat Conduction Problems Solved by the Finite Element Method,"
International Journal for Numerical Methods in Engineering,
Vol. 8, August 1974, pp. 481-494.

Tay, A. 0, and Davisg, G. De V., "Application of the Finite
Element Method to Convection Heat Transfer Between Parallel
Planes," International Journal of Heat and Mass Transfer,
Vol., 14, August 1971, pp. 1057-1070.

Gallagher, R. H. and Mallett, R. H., "Efficient Solution
Processes for Finite Element Analysis of Transient Heat Conduc~-
tion," Journal of Heat Transfer, Vol. 93, August 1971,

pp. 257-263.

Lee, H. P., "Application of Finite Element Method in the
Computation of Temperature with Emphasis on Radiative Exchanges,
AIAA Progress in Astronautics and Aeronauties, Thermal Control
and Radiation, Vol. 31, Edited by Tien, C. L., The MIT Press,
Cambridge, Mass., April 1973, pp. 497-520.

I

161



10,

1L,

12I

13,

14,

15,

16.

17.

18.

19.

20.

21.

162

Beckett, R, E. and Chu, S, C., "Finite Element Method Applied
to Heat Cznduction with Nonlinear Boundary Conditions," Journal
of Heat Transfer, Vol, 95, February 1973, pp., 126=129.

Lee, H, P, and Jackson, C. E. Jr., "Finite Element Solution for
Radiative Conductive Analyses with Mixed Diffuse-Specular
Surfaces," AIAA Progress in Astronautics and Aeronautics,
Radiative Transfer and Thermal Control, Vol. 49, Edited by
Smith, A. M., AIAA, New York, May 1976, pp. 25-46.

Thornton, E. A, and Wieting, A, R., "A Finite Element Thermal
Analysis Procedure for Several Temperature~Dependent Parameters,
Journal of Heat Transfer, Vol. 100, August 1978, pp. 551-553,

Wieting, A. R., "Application of Numerical Methods to Heat
Transfer and The.mal Stress Analysis of Aerospace Vehicles,'
Numerical Methods in Thermal Problems, Proceedings of the

First International Conference held at University College,
Swansea, Wales, July 2-6, 1977, Pineridge Press, pp. 634-643,

Thornton, E. A. and Wieting, A. R., "Evaluation-.of Finite=-
Element Formulations of Transient Conduction Force-~Convection
Analysis," Humerical Heat Transfer, Vol. 3, March 1980,

pp. 281~285,

Huebner, K. and Thornton, E. A., The Finite Element Method for
Engineers, Second Edition, John Wiley, 1982,

Boley, B. A. and Weiner, J. H., Theory of Thermal Stresses,
John Wiley, 1960.

Conner, J., "A Survey of Finite Element Method in Continuum
Mechanics,'" Variational Methods in Engineering, Department of
Civil Engineering, University of Southampton (Eds.), The
Gresham Press, 0ld Working, Surrey, Vol. I, April 1973,

pp. 4/1-4/32.

Desai, C. S. and Abel, J. F., Introduction to the Finite Element
Method, Van Nostrand Reinhold, New York, 1972,

Thornton, E. A. and Murray, K. H., '"Fundamentals of the Finite
Element Method," Notes for a Short Course on Finite Element
Analysis, School of Engineering, Old Dominion University,
Norfolk, Virginia, July 1973.

Zienkiewicz, 0. C., The Finite Element Method, Third Editioen,
McGraw-Hill, 1977.

Christie, I., Griffiths, D. F., Mitchell, A. R.,, and
Zienkiewicz, 0. C., "Finite Element Methods for Second Order

. Differential Equations with Significant First Derivatives,"

International Journal for Numerical Methods in Engineering,
Vol. 10, November 1976, pp. 1389-1396.




22,

23,

24.

25,

26,

27.

28.

29.

30.

31.

32.

33.

163

Timoshenko, 8. and Goodler, J. N,, Theory of Elasticity,
McGraw-Hill, 1951,

Thornton, E. A., "TAP2: A Finite Element Program for Thermal
Analysis of Convectlvely Cooled Structures," NASA CR 159038,
April 1980,

Bathe, K. J. and Wilson, E. L., Numerical Methods in Finite
Element Analysis, Prentice~Hall, 1976,

Arpaci, V. S., Conduction Heat Transfer, Addison-Wesley, 1966,
p. 173.

Adelman, H. M., Walsh, J. L., and Narayanaswami, R., ''An
Improved Method for Optimum Design of Mechanically and Thermally
Loaded Structure,’" NASA TN D-7965, August 1975,

Carslaw, H. §. and Jaeger, J. C., Conductdon of Heat in Solids,
Second Edition, Oxford University Press, 1959.

Thornton, E. A., Dechaumphai, P., Wieting, A. R., and Tamma,

K. K., "Integrated Transient Thermal-Structural Finite Element
Analysis," Proceedings of the AIAA/ASME/ASCE/AHS 22nd Structures,
Structural Dynamics and Materials Conference, Atlanta, Georgia,
AIAA Paper No. 81-0480, April 6-8, 1981,

Mahaney, J., Thornton, E. A., and Dechaumphai, P,, "Integrated
Thermal-Structural Analysis of Large Space Structures,"
Computational Aspects of Heat Transfer in Structures Symposium
Held at NASA Langley Research Center, Hampton, VA., November
3-6, 1981, NASA CP-2216, pp. 179-198.

Thornton, E. A., Mahaney, J., and Dechaumphai, P., "Finite
Element Thermal-Structural Modeling of Orbiting Truss
Structures," Third Annual Technical Review Large Space Systems
Technology held at NASA Langley Research Center, Hampton, Va.,
November 17-20, 1981, NASA CP-2215, Part 1, pp. 93-~108.

Marlowe, M. B., Moore, R. A., and Whetstone, W. D., SPAR Thermal
Analysis Processors Reference Manual, System Level 16, NASA

CR~159162, June 1979.

Bogen, R., MACSYMA Reference Yanual, The Mathlab Group,
Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, Massachusetts, Version 9, December 1977.

Thornton, E. A., Dechaumphai, P., and Wieting, A. R., "Integrated
Finite Element Thermal-Structural Analysis with Radiation Heat
Transfer," Proceedings of the AIAA/ASME/ASCE/AHS 23rd Structures,
Structural Dynamics and Materials Conference, New Orleans,
Louisiana, AIAA Paper No., 82-0703, May 10-12, 1982.



34,

35,

36.

37.

164

Sander, G. and Beckers, P., "Improvements of Finite Element
Solutions for Structural and Nonstructural Applications,"
Alr Force Flight Dynamics Laboratory, Wright-Patterson Air
For;e Base, Ohio, Technical Report AFFDL-TR-72-94, December
1972,

Wilson, E, L., "The Static Condensation Algorithm," International
Journal for Numerical Methods in Engineering, Vol. 8, No. 1,

March 1974, PP. 198~203.

Dechaumphai, P, and Thornton, E. A., "Nodeless Variable Finite
Elements for Improved Thermal-Structural Analysis," Proceedings
of the International Conference of Finite Element Methods,
Shanghai, China, August 2-6, 1982,

Adelman, H. M. and Catherines, D. S,, "Calculation of Temperature
Distributions in Thin Shells of Revolution by the Finite-~Element
Method," NASA TN D-6100, February 1971.



APPENDICES



£ A W RS

165

APPENDIX A
FXACT FINITE ELEMENT INTERPOLATION FUNCTIONS

Exact element interpolation functions in the form of equation
(3.14) for the thermal finite element Cases 1-8 (Figure 4 and Table 1,
pp. 39 and 40) are presented. Nodeless parameters are shown in
Table 2 (p. 41). The lower case letters in parentheses denote heat
load cases defined in Table 1. General solutions to the differential

equations for Cases 6 and 7 appear in reference [37].

Rod (Case 1)

X - X
Nl." 1l - I NZ T, (a,c,d)
X X
No = T - D)
N, = sinh m(L-x) N, = sinh mx (b)

1 sinh mL 2 sinh mx

NO » ] - Nl - N2

where m = vhp/kA.

Slab (Case 2)

X - X
Nl 1l - T N2 T (a,c)
p.4 X
Yo"t -t
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Hollow Cylinder (Case 3)

1 b 1
Ny =2 (D) N, = = ) (a,c)
2 2
Ny = 1n¢§) +-5§ lné%) -5 (a,c)
b b .
b
where w = lné;) .
Hollow Sphere (Case 4)
o a(b=r) w b(r=a)
Ny = T(b=a) Ny = Tloma) (a,c)
1l
Ng = Z(r-a) (b-r) (rtatb)
Cylindrical Shell (Case 5)
Ny =1 --% N, --% (a,c,d)
w3 .8
Nog =71 - 7)
o Sinh m(l-s) - sinh ms
Nl ginh mL Ny sinh mL (b)

where m = vh/kt ,
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Conical Shell (Case 6)

L in «lin@
. N1 - lnég) N2 o ln(u) (a,c,d)
2 2
NO ln(a) + 5 ln(a) i
b b
1 Io(ma) Ko(mb) - Io(mb) Ko(ma)
- Io(ma) Ko(ms) - Io(ms) Ko(ma)
No - l Al Nl had Nz
where w = 1n¢%), m = yh/KEt} Io and KO are modified Bessel '
functions of the filrst and second kind of order zero, respectively,
Spherical Shell (Case 7)
1n 1+Sing5/82
N - l - N N - l"sin(S/a) (a é d)
1 2 2 1pn Ltsin(L/a) '

1-sin(L/a)

Ny = In [cos(s/a)] = N, 1n [cos(L/a)]
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Flow Passage (Case 8)

“1'1'%:"{:‘;% Nz":t“f”j;“:; (a,d)
No =1 -

Ny = Q0% sigkit-nﬁ(l’é;xz N, & (x=1) _E%IP{%_%% (b)
Ng=1-N - N ’

where o = me/2kA, B = faz + mz, and n = Yhp/KA .

e ——— et o i BN et 520
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APPENDIX B

FINITE ELEMENT MATRICES FOR ONE~UTIMENSIONAL
LINEAR STEADY-STATE PROBLEMS

Exact finite element watrices for the thermal and structural
finite elements describmd in Chapter 3 are presented. Thermal
conductance matrices and heat. load vectors are given in the form of
equation (3.27) for Cases 1-6 and equation (3.17) for Case 8
(Figure 4 and Table 1, pp. 39 and 40). These finite element
matrices are derived using the exact element interpolation functions
shown in Appendix A. Similarly, structural stiffness matrices and
equivalent nodal forces due to thermal loads are derived using the
element digplacement interpolation fuﬁctions shown in Tables 3 and

4 (pp. 61 and 67). The lower case letters in parentheses denote

heat load cases defined in Table 3},



THERMAL FINITE ELEMENT MATRICES

Rod (Case 1)

Conductance Matrices:

= 222 = (hp cosh mL)/(m sinh mL)

Rpy = Rpp = ka/L

Ryp = - kAL

Ryp

Elz = - hp/(m sinh mL)

Heat Load Vectors:

where m = vhp/kA .

Slab (Case 2)

Conductance Matrices:

11

12

Qp = Q, = QaL/2

Q; = Q, = apL/2

=Kyp = k/L

= - k/L
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(a,c,d)

© (b)

(e)

(d)

(a,c)



Heat Load Vector

Q, = Q, = QL/2

Hollow Cylinder (Case 3)

Conductance Matrices

~1

11 = Kop = k/w

212 = - k/w

Heat Load Vector

61 = Q (- a%/2 + (%= a%) / bw)
3, = Q (b2 ~ (b2= &)/ 4w)

where w = ln(b/a)

Hollow Sphere (Case 4)

Conductance Matrices .

K., =K

11 99 = kab/(b-a)

KlZ = = kab/(b-a)

Heat Load Vector

3, = Qa(2a> + b3

- 3a%b) / (6(b-a))
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(c)

(a,c)

(e)

(a,c)

()



3

g, = @a® + 2 - 3ab%) / (6(b-a))

Cylindrical Shell (Case 5)

Conductance Matrices

Ky = Ky = k/L

K

12 = = k/L

Rll = §22 = (h cosh mL) / (mt sinh mL)

ﬁlz = - h/(mt sinh mL)

Haat Load Vaecgtors
Q = Q, = Qu/2

Q = Q, = aL/2t

51 = 62 = hT_ (cosh ml - 1) / (mt sinh mL)
where m = Yh/kt .

Conical Shell (Case 6)

Conductance Matrices

11 = Kpp = kfw

19 = Kl
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(a,c,d)

(b)

(e)
()

(b)

(a,c,d)



Heat Load Vectors

q, = 9(-a%/2 + (b2-a%)/4w)

Q(b2/2 = (b2-a)/4w)

Q, =
51 = q(-az/Zt + (bz-az)/éwt)
52 = &(b2/2t - (bz-az)/4wt)

where w = ln(b/a)

Flow Passage (Case 8)

Conductance Matrices

K
11

K
C12

K
€11

K
€22

K
€12

K,

11

Va1

20L 2oL
K 2 kaa (e + 1 e -1
¢y, ™ kan( )/( )

KAC(BH/ZG) - (a/2) = (BPE(E+F)/2aG2))

KA((BH/2G) + (a/2) = (B2E(E~F)/20G%))

kA (-(8%EH/206) - (BF/26))

]
~
u

=K, =~ tc/2

]
~
i

mc/2
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(e)

(d)

(a,d)

(b)

(a,d)
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K % - K = - me/2 (b)
Vi) Vo2

KV12 o szl " BE/aG

K, = BR(BH/O) + () - (8PE(EE) a6™)) /2(8% ~a®) ()

&, = BR((BR/0) = (@) = (8E(r-)/ac®)) /2(8% -a)

Ky, = n, = be((8%ER/ac?) - (87/6)) /2(87 -a®)

Heat Load Vectors

Q = qp(l ~e2aL+ 2aL) /Za(lt=e2aL) (d)
Q, = ap(-1 +e*%F ~2aL e?%Ly /201 -e2hy
Q) = hpT_(B(E+E-F) ~aG) /G(8% -a®) (b)
Q, = BPT, (B(H-E-F) +aG) /G(8% ~a®)

where o = fic/2kA, B8 = Ya“+n“, m=vhp/kA, £ = sinh oL,

F =coshalL, G = sinh BL, H = cosh BL .



STRUCTURAL FINITE ELEMENT MATRICES

Truss Element (Case 1)

Stiffness Matrices

Ky = Koo = AE/L
Kyg = Kyp = - AE/L

Force Vectors

F) = = F, = - GBA(Ty/6 + (T +T9)/2)

1

F, =-F

L = - GEA(C; Ty + Cp(T +T,))

2
where C; = 1 - (2(cosh mL - 1)/uwL sinh mlL).

C2 = (cosh mL - 1)/mL sinh mL

Axisymmetric FElement (Case 3, Plane Stress)

Stiffness Matrices

Ky, = E(®F+a?) - v(?- a®)) /(1 -vP) (b* -

Ky, = EC(6% -a%) + v(b? =a?))/(1 -v?) (b2 -

2

K,, = E(~2ab)/(L ~ v2) (b2 = a%)

12
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(a,b,c,d)

(a,c,d)

(b)

2 (a,c)

n
a“)



Force Vectors

F, = - aEa P/2w(l -v) (b% - a%)

1

F, = bEaP/2u(l - v) (b2 = a?)

2

where P = (-2a’w + b - a®)(1, + aPv To/bz)

2

+ (26w = b2+ a2) (T, + W Ty)

- (b4 - aa) w2 TO/ b2 - 2(b2- az) Wliag
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(a,c)



APPENDIX C

FINITE ELEMENT MATRICES FOR ONE-~DIMENSIONAL
LINEAR TRANSIENT PROBLEMS

Finite element capacitance matrices for the thermal rod and
axisymmetric elements described in Chapter 4 are presented, The

conductance matrix coefficients and heat load vector

Koo?
components QO are presented; the coeffilcilents Kij and Qi’

i,j = 1,2 appear in Appendix B, Cases 1 and 3., The lower case

177

letters in the parentheses denote heat load cases defined in Table 1.

*



Rod Element

Capacitance Matrices

COO = pcAL/30

COl = C02 2 p;AL/lZ

Gy = Gy = PeAL/3 , -

012 = ncAL/6

Cop ™ pcA(((cosh mL =~ l)/si;h mL) (L/sinh mL - 3/m) + L)
Gy = Cgp ™ PCA((L ~ cosh oL) (aL - sinh umL)/2m sinh’ mL
Cll = 022 = ncA((sinh mL cosh mL - mL)/2m sinhz mL)

Cyp = pcA((mL cosh mL - sinh mL)/2m sinh? mL)

Conductance Matr.ces

Ky = ka/3L

Koo = (hp/m) (mL - 2(cosh mL - 1)/sinh mL)

Heat Load Vectors
QO = QAL/6

Q = qpL/6

)
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(apc’d)

(b)

(a,c,d)

(b)

(c)

(d)



Q = hpT, (L = 2(cosh mL = 1)/m sinh mL)

where m = vhp/kA

’

Axisymmetric Element

Capacitance Matrices

oc(bz-az)(4w2(a4+ a2b2 + b4) + 9w(a4~b4)

o0

+ 6(a-b%)%y /240"

Coy = - pe(4a*e? + w(7a243b%) (a2-b2) + 4(a-b2)2) /16ub>

Cop = Pe(ib™? + w(7b2+3a%) (a%b?) + 4(a%-b%)2) /16w
Cll - pc(bz-az(l+2w+2w2))/4w2

Cip ™ pc(az-b2 + w(:.=.2--b2))/lm'2

C22 - pc(b2(1-2w+2w2) - 82)/4W2

Conductance Matrices

Kgg ™ kw(w(l-(a/b)a) - (l-(a/b)z)z)

Heat Load Vector

Qp = (@b/4) (a(1-a*/b%) - (1-a%/pH)?)

(a,c)

(a,c)

(c)



180

APPENDIX D

FINITE ELEMENT MATRICES FOR ONE-~DIMENSIONAL NONLINEAR
TRANSIENT ANALYSIS WITH RADIATION HEAT TRANSFER

Jacobian matrices and residual heat load vectors for the
conventional finite element and the nodeless variable finite
element described in Chapter 5 are presented. These element
matrices which appear in Eq. (5.34) are given in the form of computer
subro;tines. The subroutines are written in FORTRAN IV where the

definitions of variables used are provided.
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