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1. Introduction

One of the advantages of automated cartography is that map data stored in
the digital computer can be plotted or displayed at any scale or projection by
recomputing the coordinates of the data. This is especially easy in the case
of vector (graphics) data but in the case of digital image (raster) data,
remapping is a more difficult operation. Examples of the remapping of digital
imagery would include rectification of a Landsat MSS to an orthographic or
Mercator projection, warping of one image to register with another, or
rotation, scale, or aspect changes of a digital image. Inputs consist of the

digital image and geometric control information. Control information can
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include scanner location and pointing, ground truth, and the map transfor-
mation. Digital remapping consists of two major steps. First, a distortion

model is computed from the control information. Second, the image is warped

according to the distortion model.

The first stcp involves traditional mathematical techniques of estimating
a surface from sample points. Several approaches persist because of varying
needs of different applications. The second step involves highly specialized
computational methods for efficient warping of large images according to a geo-
metric distortion model. Use of general purpose computers and array processors
for this task will be covered. Data processing error will be discussed for

each modelling/warping approach.
2. Determination of geometric distortion model

Mathematically, a geometric distortion is a mapping from the plane i to
the plane. The mapping is usually one-to-one and continuous but there may be
discontinuities. Orthogonal components of the mapping {the x and y coordin-
ates) are independent and each can be viewed as a surface over the plane. For
a point p, the value of the x-distortion surface at p specifies how far the
data at p must move in the x direction in the remapping. Some simple geometric
distortions are used to rotate images or change pixel size. In this case the
general transformation is called affine or linear and the x and y components
are planes. Map coordinate conversions (for example UTM to Transferse Mer-
cator) are given by formulas which can also be viewed as distortion surfaces
over a plane. Singularities and zone boundaries are not a problem here but

are dealt with in sectioning images for a data base.
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A wore complex geometric distortion problem is the “"rubber sheet”™ case
where a set of control points relating the input to the output is known. A
number of techniques are known for generating surfaces to fit the control
points and give a distortion model over the entire surface. Some are general
in nature: polynomial fit, rnearest-neighbor interpolation, finite element
method, and the method of potential functions. These are used in cases where
there is no need or desire to use a_priori knowledge of the nature of the geo-
metric distortion. If one knows (from physical considerations) the general
functional form of a distortion, then there are methods (least squares, Kalman
filtering, etc.) of fitting the functional form to the obs: :vations. Table 1
compares some basic properties of these methods.

The most complex distortion models arise from sensor geo;etry correction.
Taking the Landsat MSS to be a basic example, the raw data are perturbed by
earth rotation, mirror scan nonlinearity, spherical eartn, variations in plat-
form altitude, roll, pitch,and yaw. Most of these components can be modelled
by continuous functions, but one compcnent, the line-to-line skew induced by
earth rotation is discontinuous at every sixth line. Furthermore, the distor-
tion model is no longer a simple function but a composite of several functions
that are applied in order. The first correction function calculates uniform
sample spacing in orthographic or Mercator projection along single scan lines.
Then a second correction function moves entire lines according to the sensor
and earth rotation skew for each line. A third correction tor map projection
could now be performed if desired. Two basic techniques for model fitting are
in common use today. The first is to use nominal values for spacecraft loca-

tion, etc., and produce a corrected product which has slight deviations from a

perfectly mapped product. Note that the largest deviation is a simple lateral
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translation, which can be fixed later by a single point observation. The

second technique is to fit the model according to control points determined by

external means. These methods are covered in other reports in this workshop.

3. Representation of geometric distortion model

Digital computation requires that the geometric distortion be represented
in an efficient manner. Three methods are covered here. The first method is
to leave the model in its functional or natural form. Model fitting provides
coefficients or data for a subroutine F which can be invoked at a point p to
give the distortion F(p). The second method is to convert the model to a
gridded approximation. A rectangular grid ayys 839y sees 8y ey Ap

is set up and the subroutine F is calculated at these points. The values aij

and F(a,.) are stored in a data structure so thet the value F(p) can be gen-

1j
erated by interpolation in an efficient manner. The third method is a highly
specialized one for scanner type data such as MS55. 1In cases where some compon-
ents of F are functions of one variable (separable compcnents) a "dope vector”
can be set up to represent the shift. As an example, the mirror scan nonlir.
arity is a function of position along a scan line only. A dope vector o: the
same length as a scan line can represent this correction on a per pixel basis.
Earth skew offset and sensor readout delay can be represented by a dope vector
with a per line lookup. Both of these corrections are “along track”, that is,

in the direction of scanning. It is possible to have dope vectors for across

track correcticrs as well, if needed.

Direct computation of F for each pixel is a slow method, although it may

be helped by array processor techniques. Gridded representation offers great
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speedup simply because a 50 x 50 grid, for example, requires a factor of 3072
times fewer evaluations of F than a 2400 by 3200 image would by direct

computation. Gridding introduces a data processing error, however (see later

section on error). In general, discontinuous functions and functions which
are not approximated well by interpolation on a grid are poor candidates for

gridding. Dope vectors can only be used on separable functions, of course.

A special strategy for MSS involves a combination of dope vectors to. the
discontinuous and highly nonlinear elements of F and a gridded approximation
for the remainder. Evaluation at F(p) would involve several table lookup oper-

ations in the dope vectors followed by the grid interpolation.

4. Large image warping computation

Regardless of method, the remapping of a digital image can be an enormous
computation. For example, an MSS input contains over seven megabytes of data
per spectral band and yields over ten megabytes of data for 57-meter square
pixels. Executing ninety machine instructions per output pixel at one micro-
second per instruction would occupy about 16 minutes of processor time. Yet
this slim number of cycles must accomplish the following:

(1) For each output pixel, calculate the location of the input point

that maps to it (the inverse of the mapping).

(2) For each output pixel, calculate tiae pixel value based on inter-

polation of input pixel values neighboring the input point.

(3) Buffer the input and output so that a reasonable main memory region

can accommodate the calculation without excessive disk head motion

or file rereading.
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Computational aspects of these steps for an ordinary digital computer will be

covered in order.

The first step requires that for an output pixel location p and an inverse

mapping F that F(p) be calculated. If F is a composite function, then each
component must be calculated in order. Functions represented by formula are
evaluated by their subroutine. There are some opportunities for speeding up
function evaluation, for example, by use of table lookup for parts of a func—
tion (such as a cosine). Another example is incremental evaluation where
F(x + dx) = F(x) + G6(x,dx)
and G(x,dx) is faster to compute than F(x). A concrete example of this is
cos(x + dx) = cos x cos dx - sin x sin dx
so for uniform dx a cosine can be calculated with two multiplies and an add,
assuming that sin x is maintained in a similar fashion. The incremental evalu-
ation can even be an approximation if care is taken to restart with an exact
evaluation frequently enough to limit the error to an acceptable range. Func-
tions represenied by a grid are amenable to a much faster treatment. Within

each grid cell an :incrementing scheme can be set up --onsisting of

F(x »y,) an initial point
Ax
Ay increments
A xy

which allow for recalculation of F for a series of increments in the x direc-

tion

F(x + dx,y) = F(x,y) +Ax
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and for a move to the next line of output

F(x,y + dy) = F(x,y) +Ay

Ax =Ax +Axy
This corresponds to bilinear interpolation on the grid. If non-uniform incre-
ments are needed because of function composition, additional multiplications b
dx and dy will be required. When dope vectors are used it is usually accurate
enough to use the correction value from the nearest pixel. As an example, the
along-track correction for an across track dope vector is

F(x,y) = x + D(round (y))
One special problem arises from discontinuities in the mapping function. For
purposes of pixel value interpolation, it is necessary to know about local
discontinuities in the neighborhood ¢ F(x,y). Hence for cubic spline inter-
polation for MSS a point (x,y) maps into four locations for four lines which
are offset from each other. Fortunately in this case, the samples are uni-

formly spaced (Figure 1).

The second step of warping computation is the actual interpolation rfor
the output pixel value from the neighboring input. Methods for this are dis-

cussed elsewhere in the workshop.

The third problem involves the allocation of limited main storage to stor-
age of a part of the raster input so that the raster output can be computed
efficiently. Two previous methods did not work weli for large or highly
rotated input rasters (for example 3000 x 3000 rotated 110). Method 1
stores a band of raster lines internally as shown in Figure 2. Because of
rotation an output line will only have a short intersection with this band.

Therefore, it is only possible to calculate an extremely large number of short
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output segments which mus' be written to disk and later reconstructed into the
output raster. The later reconstruction involves excessive disk head motion
for large cases. If the raster is n by n and available storage is fixed, then
the length of calculated segments is 0(1/n), the number of cells is O(nz),
hence the number of short segments is 0(n3) and disk head motion will in-
crease by this factor under a simple reconstruction scheme. Method 2 avo.ds
the reconstruction of short segments by storing all of the input raster in the
neighborhood of an output line. But because the stored input area is not a
band, the input file must be reread as many times as there are plateaus in the
lower part of the stored area. The thickness of the stored area is 0(1/n) and
the length of the line is O(n) hence the number of rereads of the input data
set is O(nz). Since the amount of data is O(nz) the disk head motion will
increase by O(nA). The new method developed computes a uniform vertical band
of optimal width in the output by storing a corresponding swath of input. The
output segment width is indgpendent of n hence disk motion depends on the num-
ber of times the input has to be read which is O(n) times amount of data yield-
ing 0(n3). The reconstruction stage is O(nz). Thus mechod 2 is unsuitable
for large cases and methods 1 and‘3 appear the same. A closer analysis reveals
that method 1 forces a head motion for sequential passes over the data which
minimizes head motion and rotation latency. Methods 1 and 3 are implemented
in the VICAR routines LGEOM and MGEOM respectively, and method 2 was reported

by H. K. Ramapriyan (1977).

Unusual approaches to this problem have been proposed. One is to resample
horizontally, rotate the image 90° and then resemple vertically (which 1s

horizontal after rotation). Good methods for 9()(J rotation are available
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(Twogood and Ekstrom, 1976). Resampling techniques and experimentation are

reported by Friedmann (1981).

S. Data processing error

Image registration and rectification error analysis is the subject of
another report in this workshop. Therefore, model errors will not be con-
sidered here. Data processing error includes unly the error introduced in the
following ways:

(1) errors in calculation of the inverse mapping F(x,y)

(2) errors introduced by interpolation on a grid or dope vector

representation of F(x,y)

(3) errors in the location of neighborirg pixels of F(x. 7) for input

to the interpolation scheme.
Ther: may also be error in the interpolation scheme, but this is not a location
error. with regard to the three errors, note that a 1/10 pixel error on a 3000
x 3000 iyage requires an accuracy of ore part in 30,000. Gridding methods are
the most.Qifficult to hold within such an error budget. One component of grid
error is thy deviation of the bilinear surface from the model surface. A
second compon:nt is accumulative error in the incrementing scheme described in
the last sections. Both of these errors are controlled by keeping the grid
size small. The accumulative error necessitates the use of computer arith-.ic

with greater precision than 32 or 36-bit floating point.
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Figure 1. Incerpolation in the Presence ot Discontinuities in Input Data
Along a Line
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