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7.7 A QUANTITATIVE ASSESSMENT OF RESAMPLING ERRORS

Robert H. Dye

Applications Division
The Environmental Research Institute of Michigan
Ann Arbor, Michigan, 48107

INTRODUCTION

Applications associatec with digital geographic imagery are
subject to great diversity in required cell size, carto-
graphic projection, etc. The need for resampling remote
sensing scanner data 1is evident in all but the most unde-
manding cases. Past efforts [1] have shown that proper re-
sampling of such data is dependant in important ways on the
detailed knowlege of the original scanner's effective
point-spread function and tc the desired point-spread func-
tion of the resampled data. When both of these are known,
it is relatively straigqhtforward to compute the resampling
coeffients which do the best job of approximating the shape
and position of the synthesized point-spread function.

It is useful, however, to recognize that regardless of the
rationale used to generate interpolation coefficients and
apply them as a linear filter on a subset of the local data
the result can be viewed as a synthesis of a new point
spread function which is itself a 1linear combination of
shifted positions of the original psf.

The resulting synthesized psf can be compared with an ideal
psf located at various interpixel positions and any differ-
ences observed as errors.
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ERROR MODEL

It is assumed that imaging scanners of interest are ade-
quately modeled as a linear operator on the upwelling radi-
ance and that additive ncise is introduced. (The LANDSAT
MSS does deliberately introduce a non-lin2ar compression
prior sampling but this effect is approximately removed in
subsequent ground precessing.) Thus, the scanner to be mo-
deled is given by

y= Ax + n (1)

where x is a vector representing the two-d:mensional! upwel-
1ing radiance, A is a matrix describing the two-dimensional
shape and locaticn of the psf associated with each pixel
sampled. The noise vector n is then added to produce the
data vector y which can represent either all of the pixels
in an image cr only those in a locality of interest.

[t should be noted that the dimensionality of x is very much
greater than that of y in order to permit the A matrix to
represent the subpixel deteil of the point spread functions
and the effect of the dimensionality reducing sampling pro-
cess.

When an interpolation algorithm is used 1in the resampling
process it is normally intended to estimate the data value
that might have been obtained from a psf positioned at an
intermediate locaticn between the existing samples.

The desired result of the resampling process thus can be
given by

z= Bx (2)

where B is a new spatial responsivity matrix with the point
spread functions positioned correctly on the desired ocutput
grid and the vector z represents the resampled data. Note
that <the width and snape of the psf's in B need not be the
same as that of the original scanner when it s desireable
to alter the spatial resolution of the data as well as the
location.
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Restricting the interpolation process to a linear filter op-
erating on the available data leads to an approximation of
the desired scanner in (2) given by

z= Cy

z= (LA)x + Cn (3)

in which the interpolation coefficients C and the original
psf matrix combine to »produce a new psf matrix CA having
spatial resolution properties which can be either better or
worse than the original depending cn the method used to de-
termine the coefficients.

Any differences between the desired scanner (2) and the
achieved scanner (3) can be regarded as an error given by

e= z - 2 (4)

The mean squared error is easy to compute and relatively
easy to defend as a performance criterion particularly for
processes such as classification which may be sensitive to
radiometric errors. The mean squared error

E= <e'e> (5)

can be evaluated by substituting (2),(3), and (4) into (5).
The result, after the elimination of terms with expected
value of zero is

= Trace [CA<xx'>A'C'-2CA<xx'>B'+B<xx'>B'+C<nn'>] (6)
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This expression, when evaluated for various rules and inter-
pixel positions yields the data shown in Table 1. The rules
used were nearest-neighbor, bilinear, cubic convolution, and
least square. The LANDSAT along-scan psf was used for ma-
trix A and a rectangular psf with a width of 50 meters was
chosen for the desired psf matrix B. A signal-to-noise
ratio of ten was selected which established a ratio of 100
between the signal covariance matrix <xx'> and the noise co-
variance matrix <nn'>., Finally, to restrict the error de-
termination to the case of very fine local detail the sub-
pixel correlations were set to zero by use of scalar ma-
trices for <xx'> and <nn'>,

The numbers tabulated are relative errors, giving a maximum
of 100 for the worst possible case of no corresponance at
all between psf matrices (CA) and B. The relative error is
defined as

r.e.= 100 SQRT(E/2B'<x'x>B) (7)

The algorithms for generating coefficients for the first
three interpolation rules are well known and will not be re-
peated here. The least square coefficients are obtained
from

-1
C= B<xx'>A'[A<xx'>A'+<nn'>] (8)

In the table, positions 1 and 17 correspond to the cases of
the desired psf fallinag exactly on one of the original data
samles. All others are 1located at interpixel 1locations
differing by multiples of 1/16 of a pixel.

A1l four methods show the worst error near the center of the
interpixel interval where a narrow psf is the most difficult
to synthesize- that it is not the exact center is due to tlhe
asymmetry introduced by the lowpass presampling filter used
in the LANDSAT MSS.
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It is recogni.ed that all of the errors might be regarded as
undesirably large. Had the sampling rate been even slightly
better than the 56 meters used the errors for LS would have
been substantially reduced while the errors for the other
methods would, of course, remain unchanged.

To explore in the other direction, the case of wider synthe-
sized psf's may be considered. Such resolution-reducing re-
sampling would be the preferred method for the generation of
large area, small scale images. As the desired psf is in-
creased in width the errors for all four methods would de-
crease until an approximcte match with the original psf is
reached. After this the LS error would continue to decrease
while the other three errors would increase again because of
their failure to synthesize a psf suited to the resampling
interval.

As should be expected NN, BL, and CC all have the same error
at positions 1 and 17 since all three merely reproduce the
original data when no interpolation is required. By con-
trast, the LS solution has synthesized a psf more closely
approximating the desired psf and hence exhibits a smaller
error. The largest errcr occurs for NN at position 8, where
the psf is not only the wrong shape and width but also in
the wrong place by a half pixel. Perhaps it could be ob-
served that the BL and C{ algorithms do rather well for pro-
celures which provide no opportunity introduce information
about the original and desired psf's and the signal and
noise statistics.

Another measure of image quality is the modulation transfer
function. Although the MTF is merely the magnitude of the
Fourier Transform of the psf and hence carries less informa-
tion than the psf itself, it frequently invoked when image
quality is considered. The normalized width at the halr am-
plitude of the MTF at positions 1 and 8 for each resampling
scheme is snown in Table 2. It can be seen that LS shows a
broader MTF than the other methods for both positions and
that both BL and CC have degraded MTF's at the midpixel 1lo-
cation.

[1] R. Dye, "Restoration of LANDSAT Images by Discrete
Two-Dimensional leconvolution", Proceeudings of the Tenth
International Symposium on Remote Sensing of the Environ-
ment. ERIM, Ann Arbor,MI, October 1975,
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TABLE 1. RELATIVE ERRORS FOR VARIOUS INTERPIXEL
POSITIONS

POSITION NN BL cC LS
1 40.1 40.1 40.1 34.6
2 41.4 41.8 40.7 35.9
3 43.1 43.4 41.5 37.4
4 45.3 44.9 42.4 38.7
5 47.7 46.1 42.2 39.8
6 50.4 47.0C 43.8 40.4
7 53.2 47.5 44.1 40.6
8 56.0 47.7 44.2 40.2
9 49.8 47.5 43.9 39.4
10 47.1 47.0 43.4 38.2
11 44.6 46.1 42.7 36.8
12 42.5 45.1 41.9 35.3
13 40.9 43.9 41.1 34.1
14 39.8 42.6 40.5 33.2
15 39.3 41.5 40.0 33.0
16 39.4 40.6 39.9 33.3
17 40.1 40.1 40.1 34.3

TABLE 2. RELATIVE WIDTHS OF MODULATION TRANSFER
FUNCTIONS

POSITION NN BL cC LS
1 100.0 100.0 100.0 142.6
9 100.0 76.6 95.0 127.8
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