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ABSTRACT:

General discussion of extraction of metric information from scanner (par-
ticularly multispectral) data is presented. Consideration is given to:
data from both aircraft and spacecraft; singly scanned areas and areas
with multiple coverage; various mathematical models used up to the pre-
sent time; and published numerical results. Future trends are also dis-
cussed,

1. INTRODUCTION:

The emphasis in this paper is on the results from passive sensor (particularly
multispectral scanner) data, because another invited paper is given in this
Congress on active sensor data. It follows the excellent account by Konecny
(12) on the geometric restitution of remote sensing data where mathematical
models, procedures, and numerical results obtained by 1976 were given. For
ease in presentation, one section briefly describes all models used. Then, a
separate section is devoted to the applications with satellite and aircraft
data. Another section discusses multiseries data.

2. BASIC MATHEMATICAL MODELS

In the metric reduction of digital image scanner data, a mathematical model is
used to represent the platform/sensor imaging characteristics. All the pub-~
lished models can be classified into essentially two groups. In the first
group, a parametric model based on the well known collinearity condition is
used. On the other hand, the second group includes all models which are in-
terpolative in nature. Each of these groups, with its iudividual modeling
process, is discussed in separate section.

2.1 Parametric Models

The basis for these models is the collinearity condition that the center point
of an image element or pixel, the point representing the instantaneous projec-
tion center, and the center point of the corresponding terrain resolution ele-
ment, all lie on a straight line. 1In addition to the pixel locations (corres-
ponding to image coordinates) and the object point coordinates, the collinear-

ty equations usually contain six elements of exterior orientation. Theoreti-
cally, because the platform is continuously movirg, there are six elements for
each pixel (assuming a scanner). However, because of the relatively short
time period of scanning one line of imagery, it is common to ccnsider only one
set of six elements for each line (which makes it equivalent to linear array
scans). And even with this assumption, it is easily seen that there would be
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an excessive aumber of exterior orientation elements for any significant num-
ber of image lines. Since these elements are almost always unknown a more
practical approach is used.

For each element, some function is used to mathematically model its behavior
trend., Thus, for one element, the function selected represents its —-ariation
with time, or equivalently with the "lire" number in the digital image. (The
line number is used in a manner similar to the use of x image coordinate in a
frame photograph.)

The six elements of exterior orientation are Xo, Yo, Zo, which are positional,
and w,$,k which’ are rotational., While these elements are stochastically un-
cerrelated in the frame photography case, there are very high correlations in
scanner imagery between the w and Y, parameters and ¢ and Y, parameters. 1In
order to deal with the correlation between w and Y,, most scanners are roll
stabilized, thus constraining w to zero. Another possible solution for air-
craft scanner imagery is the use of sidelapping data sets, in order to makew
recoverable. The ability to recover both ¢ and Xc is directly dependent on
the terrain relief relative to the height of the scanner above the terrain,
The greater the relief differences, the lower the correlation. Another possi-
bility is to record the values of w,¢, Xc, or Y, in flight, then apply these
values during the geometric processing. However, the most common procedure is
to constrain both wand ¢ to zero during the adjustment and make no attempt to
recover their values.

2.1.1 QOrbit Modeling for Images From Spacecraft

Perhaps the most direct method for functionally expressing the exterior orien~
tation elements for spacecraft images is to model the vehicle motion by ideal
orbit parameters. Bahr (1,2) recommended the use of the six parameters of the
orbit: semimajor axis, a; eccentricity, e: inclination of orbital plane, i;
right ascension of ascending node {l: mean anomaly, MT; a.d the argument of
perigee(uT, If these parameters are known, then the satellite position ¢,A, r
as well as nominal heading (3n can be calculated as functions of time. round
points are then related to the image points using the collinearity equations.
In these, while the rotational elements (w,$,k) of exterior orientation ap-
pear, the positional elements are now replaced by functions of the orbital
parameters. Small angle approximations are used for w,¢,k thus avoiding their
trigonometric functions.

A further improvement over the orbital modeling is effected by Rifman et. al.
(5,22), where a linear sequential estimator, or a Kalman filter, is developed.
It is used to estimate 2 13-component state vector from ground control points.
Twelve of these components are the coefficients of cubic polynomials in time
for the sensor attitude, and one component is for attitude bias., This sequen-
tial estimation scheme offers several advantages: (a) fewer numbers of ground
control points are reguired to achieve a given performance level; (b) search
areas for ground control points become smaller in size with each state vector
update, permitting more rapid location of each successive point; (c¢) sequen-
tial editing of control points is possible without having to process all con-
trol points first, thus control points can be redefined or deleted as part of
the editing process.
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2.1.2 Vehicle/Sensor Modeling by Polynomials

Each of the six exterior orientatioi elements can be represented by a polynom-
ial of a suitable srder (3,9). The selected polynomial would apply to a seg-
ment of imagery with the corresponding set of coefficients. Another set of
coefficients would be calculated for the second image segment, and so on. The
degree of the polynomial depends, among other things, upon the length of the
segments. One possibility is to take long segments with higher order polynom-
ials; another is shorter segments with linear polynomials. The latter case
seems to work better, at least for aircraft MSS data (9).

The best application of the polynomial modeling is to replace the highly non-
linear collinearity equations by their differential, and thus linear, form.
Then the change in each element carried, (e.g., dY,, d¢, etc.) is written as a
polynomial in the image x-coordinate (which is essentially equivalent to
time). After substitution of these polynomials into the pair of differential
formulas and reduction to equations are obtained, one for X and the other for
Y coordinates of the object point. When several image sections are used at
the same time, constraint equationrs are written at the section joints to guar-
antee uniqueness of the object coordinates.

2.1.3 Sensor Modeling Using Harmonics

An alternative to using polynomials is to use Fourier series expansion foi
each of the exterior orientation elements. The sine and cosine functions are
usually in terms of ratios of the image coordinates and an equivalent of a
constant time interval which is appropriately chosen for the frequency of the
given data., The linearization of the harmonic equations requires a somewhat
different procedure than that use for the case of polynomials (12).

2.1.4 Autoregressive Model For Sensor

All the models discussed so far make use of a deterministic model by writing
specific functions to represent the behavior of the exterior orientation ele-
ments. Another alternative is to regard such behavior as stochastic rather
than deterministic and employ an autoregressive model for the purpose. Of the
many possible autoregressive processes, the Gauss-Markov, both first and se-
cond order, have been suggested (7) and applied to airecraft MSS data (8,9,10,
11,14,15).

A Gauss-Markov process is based on the Markovian assumption that the value of
the process at any time depends only on the previous one or two values, depen-
ding on whether a first- or second-order procers is assumed. Equations relat-
ing the the orientation parameters of each line to those of the one or two
preceeding lines are used to model the sensor behavior, Control point infor-
mation is included by the use of the differential collinearity equaticns.

2.2 Interpolative Models

In the procedures employing these models nou attempt is made to model the sen-
sor/platform behavior, as in the case of using the collinearity conditions in
the parametric approach. Instead, some function or relationship is selected
between the X,Y coordinates in the object space and x,y (or row, column) in
the image space, and assumed to represent the mapping from one space to the
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other, There are two groups of methods: one in which a general transforma-
tion is used for the entire image record (or segment thereof), and the other
i~ which a different function is used for each poirt to be interpolated. Each
of these will be discussed separately.

2.2.1 Interpzlation Methods Using Genaral Transformation:

The group of procedures here employ a pair of furctions (one for X, and one
for Y) which holds for all points in the image. This means that the numerical
values of the coefficients in the equations are the same for each of the
points of interest in the image. By image we mean one segment or record,
Thus, if we are’working vith only one image segment, there will be only one
set of transformation coefficients. However, if there are more image segments
(in other words, if the image record is segmented into several sections), each
section will have a set of cocfficients with different numerical values. It

is usually advisable to enfcrce constraints at the borders between successive
segments.

The transformations used include the following: (1) Four-parameter transforma-
tion which is al3o called two-dimensional linear conformal, Helmert, or simi-
larity transformation; it represents a uniform scale change, a rotation be-
tween Xy and xy axes, and two shifts, (2) Six-parameter or affine transforma-
tion, which includes two sc2le changes, one rotation, skewness or nonperpendi-
cularity of the axes, and two shifts, (3) Eight-parameter projective trans-
formation, wnich represents a rotation and two shifts in each of the two
planes (XY and xy), and a tilt betweern the planes which is combined with scale
to produce a continuously changing scale along lines of maximum tilt. (4)
General polynomials of varying degrees; these are usually of higher than the
first order (which would be the four- or zix-parameter transformation.) the
choice of degree depends on the lengt- of the image segment.

2.2.2,1 MWeighted Mean

For this technique, a weight function is selected which is inversely propor-
tional to a function of the distance between the point to be interpolated and
other reference points. Thus, the closer is a reference point the more is its
contribution to the interpolated value, and vice versa. At any point of in-
terest, the required vector (usually calculated in two components) is obtained
as the weighted mean of all vectors at reference points surrounding the point.
The choice of the weight effectively determines the limi%t of the region within

whick reference points are used to estimate at the central point of the re-
gion.

2.2.2.2 Moving Averages

This is a generaliration of the weighted mean procedure which allows greater
flexibility in point interpolation. The x- and y~-components of the interpo-
lated vector at a point are written as functions ¢f the coordinates of refer-
ence points surrounding the point. Six-parameter affine equations, or se-
cond-order polynomials may be used for the purpose. Usually a sufficient num-
ber of reference points is used to yield an over determination, and the coef-
ficients of the functions are estimated by weighted least squares. As before,
the weights are evaluated from a function with the distance between the points
in question and reterence pcints as the argument. Once these coefficients are

UHGINAL PAGE 1S
478  OF POOR QUALITY



calculated, they are substituted back intc the function to compute the desired
va.ue, It is important tc note that a new set of coefficients must be calcu-
lated for each point to be interpolated. This usually makes the procedure
computationally time consuming. Finally, it can be seen than when the select-
ed functions are truncated down to only the zero order terms the procedure
reduces to the weighted mean.

2.2.2.3 Meshwise Linear

In this method, the reference pocints are connected into adjacent cr contiguous
meshes such as triangles or quadrilaterals. The reference points forming the
mesh that includes the point to be interpolated are used for the purpose., Us-
ually a six-parameter affire transformation is used. The method is computa-
tionally efficient within each mesh, but the formation of the meshes may be
time consuming. Also unless a severe condition is plcced on the reference

points, the solution for pcints on the boundary of the image may not be accur-
ate due to extrapolation.

2.2.2.4 VUinear Least Squares Predic.ion

This method treats the vectors at the reference points as a randon field, Tr2
covariance function associated with this field jis either assumed a priori, or
its shape is assumed and the numerical psrameters calculaced from the data
(13). As applied, both stationarity and isotrcpy of the field are assumed.
Tris may be true for some data (e.g., Satellite MSS} but not for oiher (e.g.,
aircraft MSS). From the covariance function, the autocovariance matrix for
data at the reference points is evaluated. Also the crosscovariarce matrix
(or vector) bpetween the point to te intcrpolated and the reference poirts is
also needed. these, and the data vector at the reference points are us2d o
calculate the value at the point of point data directly or filtering the cata
for known error proportion. The amount of filtering can a.so ®~ selectcd.

3. APPLICATIONS TO SPACECRAFT DATA

The most widely used spacecraft data is that ovtained from the LANDSAT ueries
of satelli“es (see Ta le 1). Because of this, the majority ¢f work on (20me-
tric properties of satellite data has been expended on LANDSAT. Interest in

the Skylab conical scanner data has declined since the terminatio. of the Sky-
lab project.

Work on LANDSAT i‘magery has been mostly concerned with single scene proces-
sing, with some attempts at strip and block triangulation.

Bahr (1,2) used LANDSAT and NIMBUS imagery to compa‘e accuracies achieved by
using a conformal transformation, second-order prlynomials, the collinearity
condition, and linear least squares prediction.

Borgeson (4) reported on accuracy tests of bulk corrected images from the EROS
data center, using 3, 4, 5, and 6 perameter transformations to check residual
deformation left after bulk processing of the imagery.

Rifman et. al. (5,22) studies the use of a Kalman-filter-type estimator for
registration of images from LANDSAT 1 and 2, as well as for registration of
images from t..e same sensor.
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Derouchie (6) used a strip uf 11 image segments to study control densities
necessary for various accuracy levels. His conclusion was that the optimum
spacing of control was every 100 mirror sweeps, or 600 image lines.

Litile use has been made of overlapping satellite imagery. Welch and Lo (23)
report on the use of a l-micrcmeter parallax bar combined with a Bausch and
Lomb Zoom 70 Stereoscope to obtain elevation differences. Up to nine control
points were read in each model, then a poiynomial was used to correct for sys-
tematic errors. Due to the small scale and low base/height ratio cf the imag-
ery, accuracies of only 200 to 300 meters were obtained.

The Skylab S-192 scanner, with its ccnical scan pattern, presented special
seometric problems. Murphrey, et. al. (18) published a paper explaining the
geometry of the scanner and giving a method for geometiric correction of ¢
data. The suggestion was to use the orbital parameters of the satellite .n
collinearity equations to determine a fifth-degree polynomial to transform the
image space into object space. This polynomial is used to transform a dense
grid of image points, then the remaining points are determined ty linear in-
terpolation due to economic considerations. No predicticus or checks were
made of accuracy achieved.

Malhotra (16,17) conducted accuracy tests on the Skylab scanner imagery. The
first phase of his work involved using a parametric model and obtained accur-
acies of 4 pixels, or abcut 300 meters. Another phase involved testing tne
accuracy of generated film images using an affine transformation to test for
residual distortions. Accuracies ranged from 105 to 250 meters.

4. APPLICATICGNS TO AIRCRAFT DATA

Littie work is presently being done on aircraft data, due to the widespread
use of LANICAT imagery (see Table 2).

At Purdue University, the research has followed the early work of Baker and
Mikhail (3). Ethridge and Mikhail (9,10,11) investigated the accuracy of var-
ious sirgle-strip rectification methods, including the collinearity, piecewise
polynomials, weighted mean, moving average, meshwise linear interpolation, and
Gauss-Markov. After testing all methods on four data sets, Analysis of Vari-
ance (Anova) and Neuman-Keuls statistical testing procedures were used to con-
clude that there was no statistically sigrificant difference between the re-
sults of the best five methods, with only the meshwise linear interpolation
being significantly worse. When the methods were ranked in terms of their
restitution results, the Gauss-Markov was best, collinearity and piecewise
polynomial were second, the weighted mean was fourth, and moving averages
fifth. Division of the strips into sections when using th2 parametric methods
was shown to have a significant effect. Consideration of other factors in-
volved, such ¢s8 computational economy and control recuirements, led to the
conclusion that the piecewise polynomial was the optimum method.

Ethridge also investigated the use of sidelapping flight lines in a block ad-
justment procedire. Since ro real data was available, randomly perturbed and
unperturbed simulated data was usei. Two algorithms were used in the tests,
one a rigorous simultaneous solution while the other involved using the con-
trol points to solve for the corientation parameters, then obtaining pass point
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coordinates by intersections. The resection-intersection method gave results
nearly equivalent to those of the rigorous simultanous method.

McGlone, Mikhail, and Baker (14,15) reported on further tests with single-
strip methods, comparing the plecewise polynomial, weighted mean, and Gauss-
Markov methods. The piecewise polynomial m:ethod using multiple sections and
second-order polynomials was shown to be the optitum method. Further compari-
son tests run on the first- and second-order Gauss-Markov methods showed in
general no significant difference between the two, but the second-order tended
to be slightly worse.

Ebner and Hossler (8) studies the use of second-ordeir Gauss-Markov processes,
using simulated data. It was concluded that redundant control within an image
line did not improve rectification accuracy, that the control within an image
line did not improve rectification accuracy, and that the control distribution
could be random as long as the bridging distances were not too great. Tt was
also concluded that the correlation time parameter of the modeling process
could be chosen as infinity with no effect on the results.

5. ADJUSTMENT CF MULTISERIES DATA

Nasu and Anderson (20,21) reported on the development of a multiseries adjust-
ment procedure. This involved the ad justment of photography of various scales
along with aircraft and spacecraft scanner data in sequentiai and simultaneous
procedures, using tie points selected on images. Digital tie point selection
between the various data sets is also possible. Tests with simulated data
showed a 16—~ to 20-percent improvement over the direct adjustment of each im-
age separately. Tests with real data were less conclusive but did show some
improvement.

Tests were also conducted on the block adjustment of sidelapping data. It was
shown that planimeteric accuracy is increased by having multiple ray intersec-
tion and that elevations can be obtained, although not of sufficient accuracy
in this case to use for pixel elevation assignmment for geometric processing.
For three strips, divided into three sections each, the RMSE in x was 15.4
meters (2.0 pixels), in Y 13.2 meters (1.74 pixels), and in Z 3W.0 meters
(4,46 pixels). Division of the strips into sections again increased the ac-
curacy. Calculation of covariance information for the parameters allowed the
assessment of correlations between the orientation parameters. The w orien-
tation angle was recoverable using multiple strips, while the ¢ was not re-
coverable, due to lack of relief of the terrain. The inclusion of w increased
the accuracy of the adjustment.

Nasu (19,20) studied the positioning of thermal IR scanner data using a para-
metric orientation model. He reported residual errors at the ground control
points of 3 to 4 pixels in a test on a volcanic area with large relief differ-
ences.
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Table *

Restitution Results fi.a Spacecraft Data

Investigator Data
Bahr LANDSAT
1976 bulk image
NIMBUS-3
NIMBUS-4
Malhotra, Skylab
1976
Borgeson LANDSAT
System
1979 Corrected
LANDSAT
Image
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Number of RMSE,Y
Method Control pts. Pixels
Y-par 234 2.M
2 order poly 7 1.15
9 0.68
13 0.60
40 0.61
234 0.54
L.S. filt-
ering after
Y-par. 40 0.56
L.S. filt-
ering after
poly. 40 0.53
col. 67 0.68
approx.method 67 0.89
col. 84 0.83
approx.method 84 0.92
col. 81 0.79
approx.method 81 0.74
col. 40 0.81
apprcx.method 40 1.08
col. -_— 4.0
col. -— §.0
col. - 3.7
RMSE, XY
Meters
3 par 151 159
4 par 151 130
5 par 151 82
6 par 151 51
3 par 53 165
4 par 53 143
5 par 55 84
6 par 53 kg

RMSE,Y

Pixels

4.52
1.1
1.15
1.02
0.89
0.83

0.87

.
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Table 2
Restitution Results for Single

Coverage Aircraft Data

Data
Investigator Description Method
Ethridge, H=1500m col. 1 sec,
1977 IFOV=.006 rad v 2 sec.
1550 lines " 3 sec.
p.poly 1 sec.
2 sec.
3 sec.
w. mean
m. avg.
mesh. linea
G. Markov,
H=1500m Col. 1 sec.
IFOV=.006 rad 2 =
1400 lines "
p.poly 1 sec.

2 L

Q "
w.mean
M. avg.
mesh. linea
G. Markow,

H=900m Col 1 sec.
IFQV=.006 rad 2 "
1970 lines 3"
p.poly 1 sec.

2 n

3 [ ]
w.mean
m.avg.
mesh. linea
G. Markov,

H=Q00m Col. 1 sec.
IFOV=.006 rad 2 "
2700 lines 3"
p.poly 1 sec.

2 ”

‘; "
w.mean
m.avg.
mesh. linea
G. Markov 1

Mcglone, H=3050m p.poly 1 sec 1
Mikhail, IFOV=0025 rad 1 v 2
Baker 1450 lines 2 " 1
1680 2 v 2
3"
3 " 2

4383

RMSE X RMSE Y  RMSE XY
pixels pixels pixels

1.57 2.03 1.80

1.51 1.68 1.59

1.42 1.36 1.39

1.58 2,01 1.79

1.51 1.69 1.60

1.42 1.37 1.40

1.56 1.23 1.4

1.32 2.04 1.72

r 1.35 2.26 1.86
1st 1.18 1.44 1.32
2.70 2.19 2.45

2.57 1.82 2.19

2.70 1.37 2.04

2.68 2.38 2.5%

2.57 2.18 2.37

2.1 1.36 2.03

3.2 1.52 2.55

2.7 1.65 2.38

1 2.50 2.42 2.46
1st 2.05 2.33 2.20
7.33 9.66 8.58

3.69 5.17 §.49

2.89 3.08 2.99

7.32 8.7 5.0%

3.66 4.74 4.24

2.89 3.15 3.02

3.0% 4,4y 3.81

2.62 3. 3.33

r 4.35 4.82 4.5¢9
18t 2.43 2.80 2.62
.10 y.2n 3.90

4.23 3.76 3.34

.16 4,01 3.63

4k.09 4,32 y.21

k.18 3.16 3.7

3.83 3.10 3.ka

3.75 2.9 3.36

5.33 3.58 4.54

r 4.23 7.65 6.18
st 3.66 3.77 3.72
order 2.76 4,76 4.14
v oo2.72 1.9 2.35
*2.82 2.49 2.66
woo2.23 1.74 2.00
w22 1.98 2.10

" 2.06 1.89 1.98



Table 2 (Continued)

Data RMSE X RMSE Y RMSE XY

Investigator Description Method pixels pixels pixels
w.mean 3.34 1.90 2.72

G. Markov 1 order 1.75 5.47 4.06

2 " 3.80 11.20 8.36

H=3050m p.poly 1 sec 1 order 2.14 3.85 3.1
IFOV=.0025 rad 1 v 2 n 2.1 3.79 3.08
1450 lines 2 " 1 " 2.1 3.78 3.06

2 w2 n 1.57 3.39 2.64

3% 1w 1.86 3.63 2.88

3 v 2 " 1.69 3.50 2.75

W. mean 3.28 3.85 3.58

G.Markov 1 order 1.13 65.63 4.75

2 u 1.18 7.13 5.1

H=3050m p.poly 1 sec 1 order 2.12 5.33 4,05
IFOV=.0025 rad 1 " 2 " 1.31 5.38 3.92
1450 lines 2 " 1 " 1.43 5.41 3.96

2 »= 2 n 1.28 5.26 3.83

3 0 {1 " 1.42 5.21 3.82

3 = 2 = 1.08 7.43 5.31

w.mean 2.80 4.17 3.55

G.Markov 1 order 1.03 10.48 7.45

2 " 1.67 10.11 7.25

H=1500m G.Markov 1 order 1.27 1.32 1.30
IFOV=.906 rad 2 " 1.33 1.49 1.42
H=1500m G.Markov 1 order 3.2% 2.34 2.83
IFOV=.006 rad 2 " 3.86 2.53 3.26
H=900m G.Markov 1 order 0.90 2.10 1.62
IFQV=.006 rad 2 " 1.64 2.72 2.25
H=900m G.Markov 1 order 1.99 1.80 1.90
IFOV=.006 rad 2 " 2.15 5.95 .47
H=900m G.Markov 1 order 3.16 2.26 2.75
IFOV=.066 rad 2 " 3.30 2.28 2.84
R=900m G.Markov 1 order 6.64 3.77 5.0
IFOV=.006 rad 2 " 14,46 4.76 10.76
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