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ABSTRACT 

A design methodology capable of dealing with 
nonlinear systems containing parameter uncertainty is 
presented. Fundamental to this procedure is the mapping 
from the parameter space to the index (or indices) of 
performance. Most often, to obtain the mapping a set of 
differential equations must be numerically integrated. 

For a fixed set of parameter values the system 
response (and subsequent performance measures) defines a 
behavior of the system. The behavior could be the 
satisfaction or nonsatisfaction of a design criterion or 
the occurrence or nonoccurrence of some qualitative system 
behavior. The parameter space is sampled a number of 
times resulting in m behaviors and n nonbehaviors. This 
binary classification and the KOlmogorov-Smirnov 
two-sample test statistic are the foundations for a 
generalized sensitivity analysis which is used to 
determine to what degree the behavior (or nonbehavior) is 
sensitive to the various parameters. This analysis 
depends upon the numbers m and n and is virtually 
independent of the number of uncertain parameters. 

The parameters are categorized into two groups; those 
which are adjustable and those which are nonadjustable. 
For a system with j adjustable and k nonadjustable 
parameters an adaptive random search strategy is used to 
determine the combination of j adjustable parameter values 
which maximizes the probability of the performance indices 
Simultaneously satisfying design criteria given the 
uncertainty in the k nonadjustable parameters. The 
sensitivity analysis is essential in determining what 
steps should be taken if the above probability is not 
sufficiently high. 

The methodology was applied to the design of 
discrete-time nonlinear controllers. These nonlinear 
controllers can be used to control either linear or 
nonlinear systems. Several controller strategies were 
presented while illustrating this design procedure. 
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CHAPTER 1 

INTRODUCTION 

The National Aeronautics and Space Administration 

(NASA) is currently pursuing a major new research program 

aimed at the development of life support systems for 

long-term space hab i tat ion. The obj ect i ve of the 

"Controlled Ecology Life Support System" program (CELSS) 

is the integration of biological and physio-chemical 

subsystems into a stable and reliable system to provide 

human nutritional needs as well as handling waste products 

and maintaining atmospheric composition. The fundamental 

goal is the survival of the system components including 

the human inhabitants. 

The mathematical models used to help design such 

CELSS systems will be nonlinear and poorly defined either 

structurally, parametrically, or both. With this interest 

in the design of nonlinear systems it is desirable to have 

a design method or strategy which does not depend upon the 

linearity of the system. 

as biological systems) 

Highly nonlinear systems (such 

can not be satisfactorily 

linearized with any meaningful conclusion attached to the 

results of such an analysis. In addition, when the system 

contains uncertain parameters the analysis becomes much 
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more complicated. The system response will no longer be 

deterministic and is usually interpreted in some sort of 

probabilistic manner. 

In general, the nonlinear (more accurately, not 

necessarily linear) system to be considered will contain 

parameters which are adjustable and those which are 

nonadjustable. The adjustable parameters are those over 

which the designer has control. They are the design 

parameters since at the beginning of the process, the 

designer does not know what combination of adjustable 

parameter values is necessary to satisfy a given set of 

design criteria. The nonadjustable parameters are the 

inherent system parameters, initial state, and input 

variables which are uncertain. 

to select these parameters. He 

information about them. 

The designer is not free 

can only obtain better 

Important to the design concept is the index (or 

indices) of performance. For a system containing no 

nonadjustable parameters, a given set of adjustable 

parameter values results in a unique deterministic state 

trajectory and subsequent measures of the performance. 

These measures need not be continuous functions of the 

parameters and are very often discrete as in the case of 

the occurrence or nonoccurrence of some behavior (such as 

survival). Assuming that these measures or indices can be 

obtained, the task of the designer is that of locating 

regions in the parameter space for which the performance 
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indices simultaneously satisfy some predetermined design 

criteria. Thus, vital to our efforts in the design stage 

is the mapping of the parameter space to the indices of 

performance. For a general system, however, this mapping 

is analytically unknown, complex, and not one-to-one. 

Therefore, the parameter space must be sampled. 

Also important to the design process is the idea of a 

sensitivity analysis. Knowing to which parameters the 

performance is sensitive and being able to quantify it is 

crucial. 

With this in mind the problem statement to be 

addressed by this thesis is as follows. 

Consider a system with j adjustable and k 

nonadjustable uncertain parameters for which the mapping 

from the parameter space to the indices of performance can 

be obtained. For the above system, determine the 

combination of j adjustable parameter values which 

maximizes the probability of the performance indices 

simultaneously satisfying design criteria given the 

uncertainty in the k nonadjustable parameters. 

The sensitivity analysis is essential in determining 

what steps should be taken next if the above probability 

of obtaining a desirable system response is not 

satisfactory. 

The methodology used to solve this problem is 

discussed in the second chapter of this thesis. 
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applied to nonlinear 

nonlinear controller 
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the title, this design methodology is 

controller design. The resulting 

can be used in 

either linear or nonlinear systems to 

conjunction with 

be controlled. 

There are many problems for which the designer of control 

systems would think that a nonlinear control strategy or 

scheme might perform better than a linear one. Among such 

problems are systems with asymmetric weighting functions 

and the control of an operating point near an unstable 

equilibrium point. The design of a controller for the 

survival goal of a CELSS system is another example. The 

problem that exists, however, is how to design such 

nonlinear controllers. This subject is addr~ssed in 

Chapter 3. 

The design methodology for the special case when all 

of the uncertain parameters are adjustable is presented in 

Chapter 4. Here, the number k of nonadjustable parameters 

is zero. The design methodology for the general case is 

considered in Chapter 5. Examples illustrating the 

methodology are given at the end of Chapters 4 and 5. 

Concluding remarks are left for the final chapter of 

the thesis. 
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CHAPTER 2 

FUNDAMENTAL CONCEPTS 

Fundamental to the design process is the mapping from 

the parameter space to the indices of performance. In 

general, this mapping is some rule that allows us to 

obtain values for the performance measures for any given 

point in the parameter space and is usually not 

one-to-one. The problem facing the designer, however, is 

the fact that. commonly this mapping is unknown. Most 

often, to obtain the mapping a set of differential 

equations must be solved. For the remainder of this 

thesis we consider systems described by sets of ordinary 

differential equations. Let these equations be of the 

form 

where ~(t) is the state vector, s is the vector of 

parameters, and u(t) is the set of time-dependent 

functions which include input or forcing functions. x(t) 

is the derivative of x(t) with respect to time. 

The vector s consists of the inherent system 

parameters, initial state, and input variables which are 

uncertain as well as the design parameters. For specified 
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~, u(t), and x(O) (if x(O) is not already contained in ~), 

~(t) is the solution of the set of differential equations 

and is deterministic or stochastic depending upon the 

nature of ~(t). Parameters from s may be associated with 

the input functions, ~(t). In this thesis we will 

consider cases where for fixed values ~k the functions 

u(t) are deterministic. 

To each element of s we define a probabili ty 

distribution which is a measure of our uncertainty in the 

value of the parameter. Thus, for a specific system all 

uncertainty is contained in the vector s. As stated 

above, every sample of s taken from the a pr iori 

distributions results in a unique state trajectory, x(t). 

We assume that there is a set of observed variables 

Z(t), calculable from the state vector, which is important 

to the specific problem of interest. Then, for each 

randomly selected parameter set ~k' there corresponds a 

unique observation vector Zk(t). This observation vector 

defines a behavior of the system. The behavior could be 

the satisfaction or nonsatisfaction of a design criterion 

or the occurrence or nonoccurrence of some qualitative 

system behavior such as the survival of a CELSS system. 

Since the elements of Z(t) are observed it is sensible to 

define behavior in terms of Z(t). Thus, we can think one 

step past the observation vector and define behavior in a 

binary sense, i.e., it either occurs or does not occur for 

a given parameter set ~k. In the design process this 
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binary classification is such that for any ~k and 

subsequent Xk(t), the observation vector either passes or 

fails some design criteria. 

Therefore, a random choice of the parameter vector ~ 

from the predefined distributions leads to a unique state 

trajectory ~(t), an observation vector X(t), and, via the 

behavior-defining algorithm, to a determination of the 

occurrence or nonoccurrence of the behavior. Repeating 

this process for many sets of randomly chosen parameters, 

~k' results in a set of sample parameter vectors for which 

the behavior (B) was observed and a set for which the 

behavior was not observed (B). The nature and degree of 

difference in these two parameter sets will form the basis 

for conclusions regarding the importance of particulap 

elements of the parameter vector. This is the foundation 

for a generalized sensitivity analysis which will be 

discussed below. The generalized sensitivity differs from 

the classical point sensitivity in that the sensitivity is 

a function of the regions defined by the parameter space 

and not by specific values of the parameters. 

In more general terms, the basic idea underlying the 

analysis concerns the degree to which the a priori 

parameter distributions separate under the behavioral 

classification (see Figure 1). Given a behavior Band 

parameter element si' if an individual distribution does 

not separate, i.e., 
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Figure 1. 

parameter 

F(s.IB) = 
1 

F(s·IB) = 
1 

Cumulative distribution functions for 

s .. F(s.) = parent (a priori) distribution, 
1 1 

distribution of s. in the behavior category, 
1 

8 

distribution of si in the nonbehavior category. 
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then we argue that the parameter s., taken alone, appears 
1 

to have no effect on the occurrence or nonoccurrence of 

the behavior. That is, the behavior appears to be 

insensitive to si over the multidimensional region of the 

parameter space defined by the a priori distributions. 

Unfortunately, the condition that 

F(s.IB) = F(s.IB) = F(s.) 
III 

is a necessary but not sufficient condition for 

insensitivity as can be seen from the example shown in 

F i gu r e 2 . [1] Here, the regions of the two-dimensional 

parameter space associated with Band B are such that 

neither the distribution of s1 nor s2 separate under the 

behavioral classification but any pair of values uniquely 

determines the occurrence of B or B. In this case it is 

the induced covariance between s1 and s2 that is of 

interest. Clearly, as a second step in our sensitivity 

analysis consideration must be given to the covariance 

induced by the behavioral mapping. [2] 

The sensitivity ranking is based on a direct measure 

of the separation of F(siIB) and F(silB). In particular, 

we utilize the Kolmogorov-Smirnov two-sample test 

statistic 

d = sup m,n 
x 

where Sm and Sn are the sample distribution functions 

corresponding to F(siIB) and F(siIB) for m behaviors and n 
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for which 

is total 
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s J~ 
2 

B B 

~ -
s1 

B B 

Schematic diagr~m of a two parameter case 

separation under the behavioral classification 

but for which discrimination by univariate 

tests is not possible. 



1 1 

nonbehaviors. Since the number of samples from the 

parameter space is finite, Sm and Sn are estimates of the 

unknown distributions F(si I B) and F(siIB) respectively. 

We see that d n is the maximum vertical distance between m, 

the two sample distributions. Large values of dm,n 

indicate that the parameter is important in obtaining the 

behavior (or not obtaining it) and, at least in cases 

where induced covariance is small, the converse is true 

for small values of the statistic. 

The Kolmogorov-Smirnov test statistic is 

nonparametric so it is possible to assign a confidence 

measure to the estimate of the true distribution given 

only that it is continuous. Values of d n for which to m, 
accept the hypothesis of homogeneity of distributions for 

various confidence levels are given in Table 1. One 

important property to notice of d is that the number of m,n 

samples required to estimate the separation of F(siIB) and 

F(si IB) is independent of the number of parameters in the 

vector s. [3] Thus, the number of samples from the 

parameter space necessary to obtain a given level of 

confidence of homogeneity is the same for one uncertain 

parameter or a thousand or more. This statement must be 

qualified, however. It is true that d n is a function m, 

only of the number of samples, m, leading to behaviors and 

the number of samples, n, leading to nonbehaviors. 

However, as the dimension of s increases (increasing the 

dimension of the parameter space), in general, the 



Confidence Level (%) 

80 

90 

95 . 

99 

dm, n < 1.22 ~ m + n 

dm n < 1. 36 ~ - + -, m n 

< 1. 63 ~ -+m n 

1 2 

Table 1. Values of the Kolmogorov-Smirnov two-sample 

test statistic at which to accept the hypothesis of 

homogeneity between sample distributions for m behaviors 

and n nonbehaviors for various confidence levels. 
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fraction of the total number· of samples leading to 

desirable system response tends to decrease. Thus, if 

desirable system response is associated with behavio~, the 

fraction (m/(m + n)) tends to decrease with the increase 

in dimensionality of s. So, to obtain a given level of 

statistical confidence the total number of samples (m + n) 

may have to be increased to achieve acceptable individual 

sample sizes for Sm and Sn. This will depend, of course, 

upon the sensitivity of the behavior to the parameters in 

the parameter space defined by the a priori probability 

distributions. Experience has shown this not to be a 

major effect, however, and the above statement of 

independence to be nearly true. 

As an aside, an interesting case occurs when there is 

a 'flat spot' in one of the sample cumulative 

distributions. This is shown in Figure 3 for hypothetical 

'Pass' and 'Fail' distributions. In this region of the 

parameter space the behavior (passing) is dictated by s .. 
J 

A 'flat spot' in the 'Fail' distribution is a sufficient 

condition for obtaining a 'Pass' (given freedom to select 

the value Sj) but certainly not a necessary one. Although 

this situation has been observed [4], in the general case 

the behavior will not be ruled by the value of anyone 

parameter. 

As previously stated, the vector s consists of the 

inherent system parameters, initial state, and input 

variables which are uncertain as well as the design 
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parameters. However, a distinction must be made between 

those parameters which are adjustable and those which are 

nonadjustable. The adjustable parameters are the design 

variables over which the designer has control. The 

nonadjustable parameters are the uncertain system 

parameters. The designer is not free to choose these 

parameters and can only obtain better information about 

them. The importance of this distinction is explained as 

follows. 

Consider a system 

nonadjustable parameters. 

distributions are a measure 

for which there are no 

Here, the a priori probability 

of the uncertainty of the 

combination of adjustable parameter values necessary to 

satisfy a given set of design criteria. The point to 

notice, however, is that for any random selection of the 

parameter vector, ~, information can be obtained as to the 

relative 'goodness' of the resulting solution. A sample 

point taken from this adjustable parameter space either 

results in a sys~em response which satisfies some criteria 

or it doesn't. We can, therefore, search the parameter 

space for desirable solutions with information being 

obtained for each sample point. 

Now consider a system for which there are both 

adjustable and nonadjustable parameters. In this case, 

one sample point taken from the parameter space provides 

no information as to the relative 'goodness' of the 

design. For a given set of adjustable parameter values 
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the satisfaction or nonsatisfaction of criteria will in 

general depend upon the values of the nonadjustable 

parameters. To what extent it depends upon these values 

is a function of how sensitive the satisfaction is to the 

nonadjustable parameters. So, rather than selecting the 

design variables that produce a given behavior, we must 

choose the adjustable parameters that maximize the 

probability of obtaining the behavior given the 

uncertainty in the nonadjustable parameters. Since we are 

concerned with binary criteria, the confidence limits for 

the binomial distribution [5J will be used to obtain 

estimates of this probability. For the given level of 

uncertainty in the nonadjustable parameters, however, the 

maximum probability may not be sufficiently high for a 

particular design problem. Then, the generalized 

sensitivity analysis must be utilized to determine which 

parameters and to what degree the behavior. is sensitive. 

Better information might be obtained for these parameters 

and the design process repeated to locate regions in the 

adjustable parameter space providing higher probability 

estimates. 

The details of this design methodology are given and 

illustrated through example in chapters 4 and 5. Chapter 

4 'considers the special case when there are no 

nonadjustable parameters present while Chapter 5 considers 

the general case. 
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CHAPTER 3 

NONLINEAR CONTROLLER DESIGN 

Historically, the approach to nonlinear controller 

design has been one of linearizing the nonlinearities in 

one way or another or of considering special cases. This 

is because, as stated by Garg in a survey article [6], at 

the present time no general approaches for controller 

synthesis exist. In many instances only the stability of 

the system is investigated. In this case, Garg states in 

another article [7] that "For handling generalized systems 

of any order and complexity the frequency-domain 

formulation is preferred since straightfoward synthesis 

techniques are available." In this thesis, a design 

methodology applicable to general nonlinear systems is 

presented based on ideas introduced in the previous 

chapter and some to follow. 

The most general controller produces control actions 

based upon the state of the system to be controlled. In 

many cases these actions may be based upon output 

variables. Consider a controller which produces a control 

action, u, which in a continuous-time system will take the 

form ~(t), where t is time. In a discrete-time system u 

will be of the form ~(nT), where n is the time step and T 
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is the sampling period. The input to the controller is 

the transformed state or part ial state given by 

in continuous-time and (e ,(e - e 1 )/T) in -n -n -n-
discrete-time. Here, ~ denotes the error vector. 

consider the continuous-time case. 

First, 

For some functions F1 = F1 (~,e) and F2 = F2(~,e) the 

proposed structure for the controller is 

Since F1 and !2 will in general be nonlinear functions of 

e and e, the above controller will also be nonlinear in 

general. For the special case when F1 and F2 are linear 

functions of e and e we have 

where the K. (i=1,4) are constant matrices. This reduces 
-1 

to 

u(t) = (K1 + K4)~(t) - K4 ~(O) + 

K3 J : e ( t) d t + K2 e ( t) 

which is a proportional plus integral plus derivative 

(PIn) controller where -K
4 
~(O) is a constant vector. The 

problem, of course, is to determine the functions F1 and 

F2 such that the controller produces desirable system 

response. 

For the discrete-time case, the control action is 



u -n 

and F2 are linear functions 

~n-1 ) /T we have 

u -n = K1 e -n + K2 ~e + -n 
n 

{;1 (K3 e. 
-1 + K4 ~ei)T 

where 

~~n = (~n - ~n-1 )/T 

This reduces to 
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of e and (e --n . -n 

which is a discrete PID controller with the constant 

vector - K4~. For the general controller, then, F1 and 

F2 will be nonlinear functions of the state. 

In the remainder of this thesis we will concentrate 

on discrete-time controllers. The concepts and procedures 

presented, however, are equally applicable to 

continuous-time controllers. 

Consider a nonlinear control strategy obtained by 

discretizing the pseudostate space (~,~e). Figures 4 and 

5 show such a discretization for a two-dimensional state 

space to determine the scalars F1 and F2 · The 

discretizations used to determine F1 and F2 need not be 

the same (and generally are not). The values F1(n) and 
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e 

Figure 4. Discretized 'state Space' used to determine 

the value of F1 ~t time step n. 
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e 
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Figure 5. Discretized 'State Space' used to determine 

the value of F2 at time step n. 
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F2 (n) at time step n are those associated with the region 

which contains the 'state' (e ,6e). This illustrates a 
n n 

noninterpolating controller since only one parameter is 

associated with each region. The control problem, then, 

is one of determining these parameters such that the 

design criteria will be satisfied. 

If no inherent offset exists in the particular system 

of interest we could take F2 = 0 without altering the 

performance of the controller. However, this term is 

usually taken as nonzero to offset unknown loads or 

disturbances. We call the graph in Figure 5 an 

integrating table. We could also take F2 to be a function 

of e only; disregarding information contained in 6e. For 

the scalar case shown in Figure 5 this would mean 

replacing the two-dimensional integrating table with a 

one-dimensional table. Since a two-dimensional table can 

always be constructed from a given 'one-dimensional table, 

information has been lost in the determination of the 

value for F2 at time step n. If F2 is taken as a linear 

function of e (and F1 is again taken as a linear function 

of e and 6e) this is equivalent to setting K4 = 0 in the 

expressions above. The interesting point to notice is 

that a linear PID controller still results. Thus, 

incorporating the 6e information in the determination of 

F2 only 'makes sense' for a nonlinear control strategy. 

Next, an interpolating control scheme will be 

considered. Here, the values of F1 and F2 at time step n 
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are obtained by interpolating between the parameters 

associated with the region which contains the 'state' (en' 

~en). Figures 6 and 7 show such a controller for a 

two-dimensional state incorporating rectangular regions. 

In this case we must interpolate between the four 

parameters associated with the particular region 

containing the 'state'. This region is shown in Figure 8 

where the horizontal and vertical axes have been 

normalized so that the ranges of x and yare [0,1]. The 

parameters are the fi (i=1,4). 

obtain the interpolated value, f. 

It is desired that we 

First, considering 

uniqueness and symmetry requirements, we assume a 

polynomial of the form 

Then, using the constraints that f = fi on the corners 

(i=1,4) the a i (i=1,4) can be obtained. This results in 

the expression for f as a function of the fi given by 

where the fi are contained in the vector, !, and the 

transposed vector N is 

N
T

=[(1-x)(1 y), x(1 y), xy, y (1 - x)] 

The reason for contemplating this interpolating 

strategy is that a 'smoother' control action will result 

and possibly better system response. Of course, a price 
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.. -e 

Figure 6. Interpolating control scheme used to 

determine the value of F1 at time step n. 

~e • ~ 

.. -e 

Figure 7. Interpolating control scheme used to 
determine the value of F2 at time step n. 
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Figure 8. Two-dimensional rectangular region 

used in interpolating control scheme. 
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has been paid. First, since four variables are associated 

with a given region rather than one, the dimension of the 

parameter space will be greater for the interpolating 

controller than the noninterpolating controller. Second, 

the control algorithm for the interpolating scheme 

requires multiplication and division. Thus, if the 

controller is implemented with a microprocessor, increased 

overhead in computation will be incurred over that for the 

noninterpolating controller. Finally, since the 

interpolating control algorithm requires more computation 

time, for a given microprocessor the sampling period, T, 

may have to be increased to accomodate these extra 

calculations. 

A one-dimensional integrating table can also be used 

to determine F2 in Figure 7. In this case, the 

two-dimensional interpolation will reduce to a 

one-dimensional or linear interpolation. 

Examples of these control strategies are given in the 

following chapter. 
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DETAILS OF THE METHODOLOGY WHEN ONLY 

ADJUSTABLE PARAMETERS ARE PRESENT 
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When the system we are concerned with contains only 

adjustable parameters (i.e., no nonadjustable uncertain 

parameters) our goal is that of locating regions in the 

parameter space which lead to desirable system response. 

Here, the adjustable parameters are treated as uncertain 

since we do not know at the beginning of the design 

process what combination of adjustable parameter values 

will lead to favorable response. A priori probability 

distributions are assigned as a measure of this 

uncertainty. Selection of these distributions (which have 

been taken as uniform in the examples to follow) should be 

such that extreme values in the sampled parameter space 

produce undesirable solutions. The parameter space under 

consideration should not be unduly restricted. Such 

restriction could mean the overlooking of regions which 

produce highly desirable response. 

As was previously stated, of vital importance to the 

design process is the mapping from the parameter space to 

the indices of performance. If this mapping or rule were 

known for a particular system of interest the design task 
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would be virtually accomplished. All that remains is to 

analytically determine a satisfactory design. However, 

for a general nonlinear system this mapping is not known 

and can be very complicated. Therefore, the parameter 

space must be sampled and the resulting performance 

measures obtained (usually through a numerical algorithm). 

Since the number of adjustable parameters could be large 

with an apparent design unclear, the space will be sampled 

randomly. This procedure may at first seem inefficient 

but as will be seen in the examples produces excellent 

solutions in very short time. An example taken from 

Richard Dawkins' The Selfish Gene illustrating why this 

random sampling method works follows. 

"One oarsman on his own cannot win the Oxford and 

Cambridge boat race. He needs eight colleagues. Each one 

is a specialist who always sits in a particular part of 

the boat--bow or stroke or cox etc. Rowing the boat is a 

cooperative venture, but some men are nevertheless better 

at it than others. Suppose a coach has to choose his 

ideal crew from a pool of candidates, some specializing in 

the bow position, others specializing as cox, and so on. 

Suppose that he makes his selection as follows. Every day 

he puts together three new trial crews, by random 

shuffling of the candidates for each position, and he 

makes the three crews race against each other. After some 

weeks of this it will start to emerge that the winning 

boat often tends to contain the same individual men. 
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These are marked up as good oarsmen. Other individuals 

seem consistently to be found in slower crews, and these 

are eventually rejected. But even an outstandingly good 

oarsman might sometimes be a member of a slow crew, either 

because of the inferiority of the other members, or 

because of bad luck--say a strong adverse wind. It is 

only on average that the best men tend to be in the 

winning boat." 

So, a procedure that could be followed is one of 

sampling the parameter space until a satisfactory design 

is found. However, experience has shown that there exist 

two types of solutions. First, there are responses which 

basically do the 'right' thing and mayor may not satisfy 

the design criteria. Second, there are those system 

responses which are qualitatively unacceptable. Thus, an 

alternative procedure is one of initially accepting less 

restrictive criteria and subsequently reducing the size of 

the parameter space about the 'best' solution and 

'converge' to a design which satisfies the original 

criteria. This could be accomplished by first sampling a 

given number of times. The parameter space would then be 

reduced in size and centered about the best solution 

found. This process would be repeated until a 

satisfactory design was found. Since the 'volume' in the 

parameter space leading to desirable response for the less 

restrictive criteria is greater than or equal to that for 

the original criteria one would expect solutions to be 
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found more readily with this procedure. This was, in 

fact, the case when the procedure was applied. How much 

more readily solutions are found using this procedure will 

depend upon the particular system and mapping. However, 

through experience, initially accepting criteria which 

were about 50% less restrictive provided ultimate designs 

much more rapidly than maintaining the original criteria 

from the start. No absolute quantities can ever be 

specified since a satisfactory design could be achieved 

after only one sample of the parameter space. This should 

not be counted on, however. 

Several examples will now be presented where the 

adjustable parameters are the 'state-dependent' controller 

outputs. 

Example 1 

Consider the system shown in Figure 9. The mass, m, 

is to be positioned by a servosystem modeled as a velocity 

source with first order dynamics. The equations of motion 

are 

· x1 = x2 
· 1 1m [k(X

3 
- x1 ) - b x2 ] x2 = 

x3 = x4 
· c(VEL - x4 ) x4 = 

Where (assuming a compatible set of units) 

m = 1 
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k = 3 

b = 

c = 5 

VEL = desired velocity from controller 

IX41~ 1 

A schematic of the control system is shown in Figure 

10. The set point, R, is taken to be 3 while the sampling 

period, T, is taken as 0.4. The initial conditions, 

Xi(O), (i=1,4) are zero. Although linear damping and a 

linear spring force are incorporated, the saturation 

condition on x
4 

makes this a nonlinear system regardless 

of the form of the controller. 

The design criteria are overshoot and settling time. 

Overshoot should be such that the controlled position is 

less than or equal to R + 0.1 (3.1). This simulates 

position control near a wall. The settling time, Ts' is 

that time for which 

where t is time. Here, we would like to make the settling 

time as small as possible while still satisfying the 

overshoot criterion. 

First, let us consider a linear discrete PID 

(Proportional + Integral + Derivative) controller. For an 

error at time step n defined as 
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Figure 9. Schematic of controlled system for Example 1. 
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Figure 10. Schematic of control system. 
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the PID control algorithm is given by 

where VELn is the desired servosystem velocity at time 

step nand Kc' Ti , and Td are the controller gains to be 

determined. The best design found was obtained as given 

in [4J by randomly sampling the three-dimensional 

parameter space. The equations of motion were then 

numerically integrated with a time step of 0.05 until a 

time of 20.4 was reached. The process was repeated one 

thousand times taking approximately ten minutes on a 

PDP-11/60 minicomputer. This gave a best case with an 

overshoot of 0.05 and a settling time of 9.65. The values 

for the controller gains which produced this response to 

three significant figures are 

10-1 , and Td = 0.228. 

K 
c 

= 3.31, T. = 0.218 X 
1 

We will now consider a discrete nonlinear controller. 

One of the infinite number of ways to section the x1-x2 
space is shown in Figure 11. Four of the design 

parameters indicated by circled numbers are the locations 

of boundaries between regions in the space. The various 

regions (1 through 17) are indicated by the uncircled 

numbers. Since there is no inherent offset, an 

integrating table is not used for this example. The value 

of VELn will be that associated with the region which 

contains the pseudostate of the mass (x1 , AX 1 ) at time 

step n. Since the controller is discrete only an 
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Figure 11. 'state'-dependent discrete nonlinear controller for Example 1. 
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approximation to the state is available. The pseudostate 

at time step n is (x1 (nT), (x 1 (nT) - x1 ((n-1 )T) )/T). For 

simplicity we let ~x1 = (x1 (nT) - x1 ((n-1 )T))/T. Here, we 

take VEL = 0 in the region defined by 2.95 ~ x1 ~ 3.05 

and -0.05 ~ ~x1 < 0.05. With the initial settling time 

criterion equal to about 6 the 21-dimensional parameter 

space was sampled (with subsequent integration) until a 

design was found whose performance indices satisfied the 

criteria. The ranges of the a priori uniform 

distributions where then halved and centered about this 

solution. A number (100) of samples were then taken in 

this restricted parameter space. Again, the ranges were 

halved and centered about the best solution found. This 

process was repeated until taking an additional 100 

samples did not result in a better controller design. The 

final design was obtained after approximately 500 samples. 

For this system this took about 5 minutes using a 

PDP-1 1/60 minicomputer. The solution gave an overshoot of 

0.05 and a settling time of 3.70. This is 2.6 times 

faster than the PID controller. Although the time-optimal 

control has not been calculated for this problem the 

minimum time to reach the set point with maximum control 

is approximately 3.25. The time-optimal solution will 

give a settling time greater than 3.25, of course, since 

maximum control will result in the nonsatisfaction of the 

overshoot criterion. 



Boun r18.ry Location Region VEL X 10 

1.00 9·97 
2 1. 93 2 7.29 

3 2.50 3 3. 11 

4 3.54 4 3.66 

5 -0·50 
6 0·30 

7 1. 65 
8 0.83 

9 -0.73 
10 -1 .21 

1 1 0.10 

12 -0.68 

13 1. 61 

14 -2.29 

15 0.36 
16 -0.21 

17 -0.16 

Table 2. Final design for the nonlinear controller 

of Example 1. 
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The final design for this nonlinear controller (to 

three digits) is given in Table 2. The controller output 

(VEL) times 10 is shown for each of the 17 regions. A 

value of 10.00 corresponds to VEL = 1.00 which, due to the 

saturation condition on is the maximum obtainable 

velocity for the velocity source. The four boundaries and 

design locations are also given. Notice that the location 

for Boundary 4 (3.54) eliminates Region 5 since its value 

is greater than the set point, R = 3. This could not have 

occurred if the a priori probability distributions on 

boundary locations were unduly restricted at the beginning 

of the problem. 

In the examples to follow in this chapter only the 

results will be presented. The actual designs will not be 

given due to the number of parameters associated with the 

control schemes. We will next look at an example which 

incorporates an integrating table and examine various 

nonlinear controller strategies. 

Example 2 

Consider the system shown in Figure 12. The mass m2 
is to be positioned by a servosystem modeled as an effort 

or force source. The equations of motion are 

· x1 = x2 
· 1/m1 [F - (k1 + k 2 ) x1 + k2 - b1 x2 J x2 = x3 

· x3 = x4 
· 11m2 [k2 x1 - k2 - b2 x4 - FuJ x4 = x3 
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where (assuming a compatible set of units) 

m1 = m2 = 

b1 = b2 = 

k1 = 1 

F = desired force input from controller with 

Fu = 0.25 (unknown but constant force) 

Fu is modeled as a constant wind load which is unknown to 

the controller. Thus, an integrating scheme for the 

controller is necessary. 

The schematic of the control system is the same as 

that shown in Figure 10 with the exception that the output 

is x3 rather than x1 . Also, the controller output, F, 

replaces VEL. As in the previous example the set point, 

R, sampling period, T, and initial conditions, xi(O), 

(i=1,4) are 3, 0.4, and 0, respectively. The design 

criteria are overshoot of the controlled position, x
3

' to 

be less than or equal to 0.1 while minimizing the settling 

time as defined in Example 1. The numerical integration 

time step and duration are 0.05 and 20.4. 

The best linear PID controller was designed as in [4] 

by sampling the parameter space a thousand times. This 

gave an overshoot of 0.02 and a settling time of 10.8. 

Now consider the nolinear controller termed a 

noninterpolating controller illustrated in Figures 13 and 
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Figure 12. Schematic of controlled system for Example 2. 
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Figure 13. 'State'-dependent noninterpolating table used to 

determine the value of F1 at time step n for Example 2. 

, , 
/ 
/ 
/ ,,-
/ 
/ 
/ 
/ 

/ 
/ 

/ 
/ 
/ ,. ,. 
./ 
/ --,. 
,- x3 / ,. 
./ ,-,. ,. 
*' ./ ,-,. 
./ ., 
/ ,-
./ 

*' 
3.1 



.1x
3 

~. 

0.10 

0.05 
0.02 

-0.02 to 

-0.05 f-

-0.10 

0) ® 

r h 
L U 

2.9 

Figure 14. 'State'-dependent noninterpolating table used to 

determine the value of F2 at time step n for Example 2. 
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14. The control signal, F, at time step n is 

n 
F = F1 (n) + E F2(i) T 

n . 1 1= 

where F1 and F2 are determined from tables illustrated in 

Figures 13 and 14. Again, the circled numbers in these 

figures represent locations of boundaries which are 

allowed to vary. Since the F2 sequence is summed to 

offset the unknown load, Fu ' Figure 14 is called an 

integrating table. A total of 34 parameters are 

associated with this particular controller. 

With the initial settling time criterion equal to 5 

the 34-dimensional space was sampled until a response was 

found which satisfied both the settling time and overshoot 

criteria. The ranges on the 34 uniform probability 

distributions were then halved and centered about this 

design. The parameter space was then sampled 100 times. 

Again the ranges were halved and centered about the best 

solution found. This process was repeated until taking an 

additional 100 samples did not result in a better 

controller design. This design produced an overshoot of 

0.05 and a settling time of 3.35 (3.2 times better than 

the linear controller). It should be noted that due to 

the constraint on the input force, the minimum time for 

the mass m2 to reach the set point is approximately 2.75. 

When the settling time criterion was set to 10 and an 

integrating table was not used, i . e . , 0, no 

satisfactory response was obtained, as expected. 
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The role of the two-dimensional integrating table was 

investigated next. Projecting tqe integrating table of 

Figure 14 onto the x3 axis, the number of controller 

parameters is reduced to 30. Thus, information of 6X
3 

is 

disregarded in determining the value of F2 . Applying the 

above process a design was found for which the overshoot 

was 0.03 and the settling time was, again, 3.35. Thus, so 

far it does not appear that the two-dimensional 

integrating table provides better results than the 

one-dimensional table. 

Finally, a two-dimensional interpolating scheme was 

considered. Here, and are determined by 

interpolating between the parameters associated with the 

region containing the pseudostate (x3 ' 6x3 ). The control 

strategy is shown in Figures 15 and 16 in which there are 

49 design parameters. This increase in the number of 

controller parameters is solely due to the fact that 

interpolation is being used. The basic framework of the 

controller is the same as that in Figures 13 and 14. The 

best design was found to give an overshoot of 0.05 and a 

settling time of 3.05. This is about 1.1 times better 

than the noninterpolating controller and 3.5 times better 

than the linear controller. Although a slight improvement 

in performance has been achieved a price has been paid. 

The interpolating control strategy is more complicated 

than its noninterpolating counterpart and requires more 

computational time to determine the controller output. 
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Figure 15. Interpolating table used to determine 

the v~lue of F1 at time step n for Example 2. 
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Figure 16. Interpolating table used to determine 
the value of F2 at time step n for Example 2. 

v 
" ,. 
" / 
,-
/ 
,-
,-
~ 
,-
/ 
/ 

,. 
" " " ;' 

~ --/ -
" x3 ,. 
" ,. 
,/ 

V 

" " ;-

" ,. 
,-
,/ 
,/ 

" ,/ 
", 

" 3.1 



46 

Controller Overshoot Settling Time 

Linear (PID) 0.02 10.8 

Noninterpolating 

1-dimensional 
integrating table 0.03 3.35 

2-dimensional 
integrating table 0.05 3.35 

Interpolating 

1-dimensional 
integrating table 0.04 3.05 

2-dimensional 
integrating table 0.05 3.05 

The minimum time to reach the set point with F == 5 

is approximately 2.75. 

Table 3. Summary of results for Example 2. 
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Thus, depending upon the controller, the sampling period 

may have to be increased to accomodate these extra 

c alcul at ions. Also, multiplication and division are 

required for the interpolating controller. Thus, when 

this strategy is implemented, the computational costs will 

be greater than those for the noninterpolating scheme. 

Again the integrating table of Figure 16 was 

projected onto the axis to investigate the 

effectiveness of the two-dimensional strategy. For this 

case linear interpolation was used to determine F2 

reducing the dimension of the parameter space to 37. The 

best design produced an overshoot of 0.04 and a settling 

time of, again, 3.05. For this problem, therefore, the 

two-dimensional strategy to determine F2 was not any more 

effective than the one-dimensional strategy. We will see 

in the next example, however, that this is not always 

true. A summary of results for Example 2 is given in 

Table 3. 

Example 3 

Consider a class of problems for which it is desired 

to control an operating point which is near an unstable 

equilibrium point. One particular problem in this class 

is the control of the idle speed of an engine operating 

near the stall speed. Static curves for load and input 

torque versus engine speed for such a problem are shown 

schematically in Figure 17. For a given input curve in 
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Figure 17. Schematic of the static curves for load 

and input torque versus engine speed for Example 3. 
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the family of input curves (solid line) the unstable and 

stable equilibrium po ints are P1 and P2 respectively. 

While we would like P1 and P2 to be close to each other to 

lower the idle speed we do not want the engine to stall 

when sub jected to an increase in load. This increased 

load could be the sudden operation of the air conditioner. 

In this case the input would have to be increased (in the 

direction of the arrow) to avoid a stall. For a given 

load curve the input can be decreased (shown by the lower 

dashed curve) until P1 and P2 converge to a single point. 

This point, Pcr' represents the critical speed for which 

the engine can not physically run slower. 

The dynamics associated with the static curves of 

Figure 17 are taken as first order for this example. The 

equations of motion are 

X1 = 1 (c1 - x1 ) 

x2 = 2(u - x2 ) 

*3 = x1 - LOAD 

where (assuming a compatible set of units) 

x1 = actual torque (input) 

x2 = actual input 

x3 = engine speed 

c1 = (x2 /1 00) (0. 055x3 
0.46x10-4 (x

3
)2) 

u = desired input from controller 

The schematic of the control system shown in Figure 10 is 
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applicable to this problem with the output x3 replacing x1 
and the input from the controller, u, replacing VEL. The 

initial conditions are such that the engine is idling at 

steady state and x3 = 520 for a load given by 

LOAD = 50 + (0.1 )x
3 

when the load increases to 

LOAD = 100 + (0.1 )x3 

simulating perhaps someone turning on the air conditioner. 

It is desired that the controller maintain the idle speed 

while taking the following criteria into consideration. 

First, the engine should not stall. Thus, the first 

criterion is binary; 0 for no stall and 1 for stall. 

Second, the controller should minimize the 'integral of 

the error squared'. For an error defined as 

with R = 520 and T = 0.4 this performance index is given 

by 

n 
ESQ = A ~ (e.) 2 T 

n i=1 1 

where A is a scaling factor. It should be noted that the 

set point of 520 is fairly close to the critical speed of 

482. 

Again, a linear PID controller was designed as in the 

previous examples resulting in an 'error squared' of 26.2 
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(with Stall = 0). The equations of motion were integrated 

numerically with a time step of 0.05 for a duration of 30. 

A noninterpolating controller was considered next. 

Figures 18 and 19 show the structure of the tables to 

determine F1 and F2 defined in Example 2 where ae = (en -

en_1 )/T. The circled numbers indicate locations of 

boundaries which are allowed to vary. For this particular 

controller the dimension of the parameter space is 38. 

The best design gave an 'error squared' of 21.6 (21% 

better than the linear controller). 

When the table of Figure 19 was projected onto the 

Ie' axis (reducing the dimension of the parameter space by 

4) so that information regarding the pseudoderivative of 

the error was neglected in determining the value of F2 the 

performance was degraded. The best design for this case 

produced an 'error squared' of 22.6. This is still better 

than that achieved by the linear controller but not as 

good as using the two-dimensional inte.grat ing table. 

Finally, an interpolating controller was investigated 

and is shown in Figures 20 and 21. The basic structure is 

the same as that shown in Figures 18 and 19. Here, there 

are 58 controller parameters. The best design gave an 

'error squared' of 21.3 (23% better than the linear 

controller) . 

Again, when the ae information was disregarded in the 

F2 determination the performance index was degraded to 

22.6. 
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Figure 18. Noninterpolating table used to determine 

the value of F1 at time step n for Example 3. 
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Figure 19. Noninterpolating table used to determine 

the value of F2 at time step n for Example 3· 
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the value of F1 at ti~e step n for Example 3. 
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Fi~ure 21. Interpolating table used to determine 

the value of F2 at time step n for Example 3. 
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Thus, for both the interpolating and noninterpolating 

controllers a two-dimensional integrating table performed 

better than a one-dimensional table. A summary of results 

for Example 3 is shown in Table 4. 
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Controller Stall 'Error Squared' 

Linear (PID) 0 26.2 

Noninterpolating 

1-dimensional 
integrating table 0 22.6 

2-dimensional 
integrating table 0 21 .6 

Interpolating 

1-dimensional 
integrating table 0 22.6 

2-dimensional 
integrating table 0 21 .3 

Table 4. Summary of results for Example 3. 



CHAPTER 5 

DETAILS OF THE METHODOLOGY WHEN BOTH ADJUSTABLE 

AND NONADJUSTABLE PARAMETERS ARE PRESENT 

58 

When nonadjustable as well as adjustable parameters 

are present the qualitative nature of a system is 

drastically altered. In considering problems in the 

previous chapter each sample of the parameter space 

provided information as to the relative 'goodness' of the 

resulting solution. This is not true when nonadjustable 

parameters are present since the satisfaction or 

nonsatisfaction of design criteria is usually affected by 

these parameters. Thus, anyone sample of the parameter 

space taken by itself is meaningless. We must then 

estimate the probability of obtaining desirable system 

response given the uncertainty in the nonadjustable 

parameters. The best design is the one which maximizes 

this probability. 

In the context of a CELSS system the nonadjustable 

uncertain parameters are those system parameters which are 

inherently poorly defined. These include growth rate 

coefficients, light shading coefficients, and diffusion 

parameters to name just a few. The adjustable parameters 

are those associated with the CELSS control strategy. 
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These might include nutrient flow rates, light intensity, 

and soil moisture. 

If the uncertainty in both the nonadjustable and 

adjustable parameters is considered from the beginning of 

the problem, it is clear that the number of samples of the 

parameter 

by the 

space required to specify a satisfactory design 

random sampling procedure illustrated in the 

previous chapter is impractical. Even if the number of 

samples taken from the nonadjustable parameter space for 

every sample taken from the adjustable parameter space is 

as low as 10, this means 10 times as many mappings will 

have to be performed as those in the previous chapter. 

This problem is solved as follows. 

Our first task is to locate 'desirable' regions in 

the parameter space as quickly as possible. Therefore, 

initially set all nonadjustable parameters to 

representative values (e.g., mean values). These are now 

considered as certain parameters. The sampling procedure 

of the previous chapter is then used to obtain a design 

satisfying the given criteria under the assumption of 

perfect knowledge of the uncertain nonadjustable 

parameters. Again, the criteria can be made less 

restrictive initially to obtain a solution more readily 

with subsequent 'convergence' to a design satisfying the 

original criteria. If a binary criterion is used (such as 

survival) this sampling stops after the first design is 

found satisfying the criterion. At this point, since the 
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nonad justab Ie parameters were set to representative 

values, a point in a region of the parameter space 

representing desirable system response has been located. 

We must then deal with the fact that we do not have 

perfect knowledge of the nonadjustable parameters. In 

light of this, we reassign the a priori probability 

distributions to these parameters; considering them, 

again, as uncertain. The problem still exists, however, 

of how to best locate a design which maximizes the 

probability of obtaining satisfactory system response. 

Here, the measure of performance is the estimate of this 

probability. For each sample of the adjustable parameter 

space a number (say, initially taken as 10) of samples 

from the nonadjustable parameter space must be taken to 

obtain the estimate. Our goal is to locate the design 

producing the highest estimate of the probability of 

obtaining desirable system 

total number of samples (and 

minimum . 

response while keeping the 

subsequent mappings) to a 

To illustrate this idea consider the two-dimensional 

parameter space shown in Figure 22. Here, 

considered as an adjustable parameter while 

considered as nonadjustable. For simplicity, assume 

is 

s2 is 

that 

uniform probability distributions have been assigned to 

each parameter. The enclosed areas represent regions 

which produce desirable system response for any (s1' s2) 

pair within the regions. These areas as defined by the 



Figure 22. Example of a two-dimensional parameter 

spa8e where s1 is adjustable and s2 is nonadjustable. 
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boundaries are, of course, unknown. Initially, s2 is set 

to a representative value, s2'. For this value, designs 

in the one-dimensional adjustable parameter space leading 

to desirable system response are shown by the heavy lines 

along the s1 axis. Thus, if s1 is chosen anywhere in 

these regions desirable system response will result given 

perfect knowledge of the nonadjustable parameter, s2' 

Dur ing the first part of the design process the ad justable 

parameter space is sampled until a value for s1 has been 

chosen within these regions. The uniform probability 

distribution is then reassigned to s2 and a search 

strategy implemented to locate the desired solution, s1*' 

As can be seen in Figure 22, this design maximizes the 

probability of obtaining desirable system response given 

the uncertainty in the nonadjustable parameter, s2' This 

concept is easily extended to higher dimensional parameter 

spaces and to general probability distributions. 

Since the 'desirable' regions in the parameter space 

are often di sj oint a global-local adapt ive random search 

strategy is used in this thesis. The first part of the 

search technique follows that given in [8J. The algorithm 

must first determine if it should search 'near' to or 'far 

away' from the point found above by suppressing the 

uncertainty in the nonadjustable parameters. For uniform 

a priori distributions on the adjustable parameters this 

is accomplished by assigning a standard range to these 

distributions and centering them about the above point. 
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Different ranges are then constructed by multiplying the 

standard range by various numbers (e.g., 1,2,3). The 

regions in the parameter space defined by these ranges are 

each sampled a given number of times (say 20). The region 

producing the highest estimate or performance measure is 

then sampled a number of times (say 40). So, by sampling 

3 ranges 20 times each and then sampling the 'best' range 

40 times, (3X20 + 40)10 = 1000 mappings have been 

performed thus far. (Remember that each sample of the 

adjustable parameter space requires a number (taken here 

as 10) of samples of the nonadjustable parameter space to 

obtain an estimate of the performance measure.) The 

uniform distributions are then centered about the best 

solution found. This procedure is repeated until the 

standard (smallest) region produces the best solution. 

The final desired solution is, therefore, 'close' to the 

current center of the adjustable parameter space. 

The algorithm then 'converges' to the 'best' solution 

as was done in Chapter 4. The ranges are halved and 

centered about the current best solution found and a given 

number of samples are taken. The only difference here is 

that to obtain a more accurate estimate of the probability 

of producing desirable system response the number of 

samples taken from the nonadjustable parameter space for 

every sample taken from the adjustable parameter space 

(previously 10) is increased (perhaps by 25%) each time 

the ranges are halved. In the beginning of the search the 
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estimate is usually small and increases as the procedure 

continues. Hence, the sample size starts out small and is 

increased with the need for more accurate information. 

This is done to keep the total number of mappings to a 

minimum while still obtaining a desirable solution. 

Finally, for the 'best' design, the nonadjustable 

parameter space is sampled a given number of times to 

achieve the desired statistical properties to be used with 

the confidence limits for the binomial distribution. 

So, the procedure is as follows. 

1. Center the adjustable parameter space about the 

solution found assuming certainty in the nonadjustable 

parameters. 

2. Sample a given number of times from each of the 

regions in the adjustable parameter space established from 

multiples of a standard range. This is done to determine 

if the algorithm should search 'near' to or 'far away' 

from the current center of the parameter space. 

3. Sample the region containing the 'best' solution 

obtained in Step 2 a given number of times. Then, center 

the adjustable parameter space about the 'best' solution 

found thus far. 

4. If the 'best' region is defined by the standard 

range (smallest), continue to Step 5; otherwise, return to 

Step 2. 

5· 

number 

'Converge' to the 'best' design by performing a 

of samples, reducing and centering the adjustable 



65 

parameter space, and increasing the number of samples from 

the nonadjustable parameter space for every sample of the 

adjustable parameter space. Step 5 is terminated when 

sampl ing the cur ,rent ad justable parameter space does not 

produce a design (and associated probability estimate) 

which is 'better' than that previously found. 

6. Obtain desired statistical properties by 

performing an additional number of samples of the 

nonadjustable parameter space using the final design from 

the adjustable parameter space. 

A schematic of this adaptive random search is shown 

in Figure 23. When the a priori probability distributions 

are not taken as uniform the standard deviation (or 

variance) is used to define the search ranges and is 

illustrated in [8]. 

During the second part of the design procedure the 

performance measure is the estimate of the probability of 

obtaining acceptable system response. Since the number of 

samples from the nonadjustable parameter space is finite, 

this performance index is only an estimate of the real but 

unknown probability. Thus, the confidence limits for the 

binomial distribution are used for statistical inference. 

(The binomial distribution is utilized due to the basic 

binary classification scheme of either obtaining or not 

obtaining the behavior.) These confidence limits are shown 

in Figures 24 and 25 for the 95~ and 99~ confidence 

levels, respectively. The charts in these figures have 



Center the ~djustable 

par~meter space 

Sample far away from or 

near to current center? 

Sample from region 

containing 'best' design 

Center the adjustable 

parameter space 

Yes 

'Converge' to 'best' solution 

Sample a given number of 

times to obtain desirable 

statistical properties 

Figure 23. Schematic of the 

adaptive random search strategy. 
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Figure 24. Chart providing confidence limits for p 

in binomial sampling given a sample fraction, c/n, 

where the confidence coefficient is equal to 0.95. 
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Figure 25. Chart providing confidence limits for p 

in binomial sampling given a sample fraction, c/n, 

where the confidence coefficient is equal to 0.99. 
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been reproduced, with permission, from the Biometrika 

Tables for Statisticians [9]. To illustrate the use of 

these charts consider an example for which the estimate of 

obtaining some behavior is 0.70 with a sample size of 100. 

The numbers printed along the upper and lower curves 

indicate the sample size, n. The probability estimate, 

cln, is given along the abscissa. Then, using Figure 24 

(with confidence coefficient equal to 0.95) we are 95% 

confident that the actual probability of obtaining the 

behavior, p, is such that 

0.60 < p < 0.78 

As the sample size increases the range of uncertainty of 

the probability decreases. If the above sample size was 

400 rather than 100, then we would be 95% confident that 

0.65 < p < 0.74 

Of course, for many problems the design providing the 

highest estimate of obtaining desirable response may not 

be 'good enough'. In this case, better information about 

the parameters to which the satisfaction of the design 

criteria (the behavior) is sensitive must be obtained in 

order to provide a 'better' design. This is where the 

generalized sensitivity analysis discussed in Chapter 2 

becomes extremely important. 

Example 1 of Chapter 4 is continued where two of the 

system parameters are now considered to be uncertain. 
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Example 1 (continued) 

The two parameters associated with damping and first 

order dynamics are now considered to be uncertain to 5% 

and 2% respectively. So, here 

b = 1 + 0.05 

c = 5 + 0.10 

with all other parameters remaining unchanged. Thus, the 

adjustable parameter space is still 21-dimensional. 

However, the nonadjustable parameter space is now 

2-dimensional, resulting in a total parameter space of 

dimension 23. When band c were considered as certain the 

best controller design produced an overshoot which was 

less than or equal to 0.1 and a settling time of 3.70. 

With band c considered as uncertain we wish to obtain a 

controller design which maximizes the probability that the 

overshoot will be less than or equal to 0.1 and the 

settling time will be less than or equal to 3.70. 

Initially, the center of the adjustable parameter space is 

the design obtained in the previous chapter. So, thus 

far, only about 500 mappings have been performed to locate 

this point in the parameter space. 

The adaptive random search procedure was then 

implemented which produced a design giving an estimate of 

the probability of obtaining desirable system response of 

0.73. 120 samples from the two-dimensional nonadjustable 

parameter space were taken for this design to achieve 
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satisfactory statistical properties. Approximately 3900 

total mappings were performed to obtain this result; 

roughly 8 times that required for the first part of the 

procedure. Here, initially 20 samples from the 

nonadjustable parameter space were taken for each sample 

taken from the adjustable parameter space. This means 

that after the initial 500 samples of the adjustable 

parameter space used to obtain the best design while 

suppressing the uncertainty in band c, less than 200 

additional samples were used to locate the design 

maximizing the estimate. It is clear that if the 

uncertainty in the nonadjustable parameters was considered 

from the beginning of the problem an extremely large 

number of mappings would result making this search 

technique impractical. 

With the sample size of 120 and the sample estimate 

(sample fraction) of 0.73 we can use the chart of Figure 

24 to say that 

0.64 < p < 0.81 

with 95% confidence. These numbers were obtained by 

interpolating between the '100' and '200' sample size 

curves. Using the chart of Figure 25 we are 99% confident 

that 

0·58 < P < 0.83 
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The final design producing this estimate (to three 

digits) is given in Table 5. The structure of the 

controller was presented in Chapter 4 and is shown in 

Figure 11. 

Again, the above estimate of obtaining acceptable 

response may not be sufficiently high. The generalized 

sensitivity analysis must then be used in order to specify 

a design providing a higher estimate. For this example, 

the uniform distribution ranges were taken about the best 

design found above with the given uncertainty in the 

nonadjustable parameters, band c. The distinction 

between the adjustable and nonadjustable parameter spaces 

is temporarily suspended while the parameter space as a 

whole is sampled a number (here, 400) of times. Each 

sample point results in a system response which either 

satisfies (passes) or does not satisfy (fails) the design 

criteria. For this example the number of passes was m = 

1 53 and the number of fails was n = 247. The 

Kolmogorov-Smirnov two-sample test statistic, was 

then calculated for each of the 23 parameters. The 

satisfaction of the criteria was overwhelmingly sensitive 

to the damping parameter, b, with d = 0.686 for this m,n 
parameter. From Table 1 (Chapter 2) we see that this 

value indicates that the ' pass' and 'fail' distributions 

for b separate at well above the 99% confidence level 

which gives d m,n > 0.168 for separation. On the other 

hand, for the parameter c, we have d = 0.109 which m,n 
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Boundar~ Location Region VEL X 10 

1 .00 9.96 
2 1 .89 2 7.36 

3 2·52 3 3.07 

4 3.56 4 3.60 

5 -0.55 
6 0.26 

7 1.67 
8 0.82 

9 -0.69 
10 -1 .29 

11 0.11 
12 -0.70 

13 1. 57 
14 -2.32 

15 0.32 
16 -0.11 

17 -0.08 

Table 5. Final design for the nonlinear controller 

of Example 1 with b unknown to + 5%. 

-
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indicates that the 'pass' and 'fail' distributions do not 

separate even at the 80% confidence level where it is 

required that d > 0.110 for separation. m,n Correlat ion 

coefficients were also calculated and found near zero 

indicating that for the given range of uncertainty the 

satisfaction of the design criteria was, indeed, 

insensitive to c. Therefore, to find a better design we 

can neglect c and focus attention on obtaining better 

information on the parameter b alone. 

In this example we assume that this has been done 

narrowing the range of uncertainty on b to 2.5%. So, now 

we have 

b = + 0.025 

where the uncertainty on c remains unchanged. 

The adaptive random search procedure was again 

implemented with the result that the 'best' design 

produced an estimate of 0.99 with 120 samples. Using the 

chart of Figure 24 this means that 

0·95 < p < 1 

with 95% confidence. The chart of Figure 25 indicates 

that now we are 99% confident that 

0.93 < p < 1 

This is a great impr ovement over the previous design. The 

cost of this improvement was the time and effort spent in 
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obtaining better information on b. If, for some reason, 

better information could not have been obtained, the 

design providing the estimate of 0.73 would have been the 

final design. As the information concerning the uncertain 

parameters 

shrinks to 

probability 

improves, 

a point 

(and 

the nonadjustable parameter space 

so that for a given design the 

estimate) of obtaining acceptable 

response will be either 0 or 1. This case was considered 

in the previous chapter where all the parameters are 

adjustable. 

The design producing the above estimate with b 

unknown to +2.5% is given (to three digits) in Table 6. 



Boundary Location Regio!! VEL X 10 

1 .00 10.00 
2 1.89 2 7.32 

3 2.51 3 3.08 

4 3.55 4 3.54 

5 -0.58 
6 0.25 

7 1.64 
8 0.82 

9 -0.64 

10 -1 .33 
1 1 0.09 

12 -0.72 

13 1. 57 
14 -2.38 

15 0.32 
16 ..:..0.13 

17 -0.09 

Table 6. Final design for the nonlinear controller 

of Example 1 with b unknown to + 2.5%. 
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CHAPTER 6 

CONCLUDING REMARKS 

A design methodology for nonlinear (more accurately, 

not necessarily linear) systems containing parameter 

uncertainty has been presented. Several fundamental 

concepts have been utilized in this methodology. 

Fundamental to the design process is the mapping from 

the parameter space to the indices of performance. It is 

assumed that for any selection of parameter values for the 

system of interest performance measures can be obtained. 

For general nonlinear systems, however, the analytical 

form of this mapping is unknown. It is usually quite 

complicated and not one-to-one. Therefore, the parameter 

space must be sampled. 

The idea of separating the parameter space into 

regions which 

which do not 

methodology. 

produce a given system behavior and those 

has also been incorporated into this 

The behavior could be the satisfaction of 

some design criteria or the occurrence of some qualitative 

system response. 

A generalized sensitivity analysis is used to 

determine to what degree the behavior (or nonbehavior) is 

sensitive to the various parameters of the system. The 
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distributions 

separate for 
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based on the degree to which the cumulative 

for the behavior and not the behavior 

each of the parameters under the behavioral 

classification. 

The nonparametric Kolmogorov-Smirnov two-sample test 

statistic is the basis for the sensitivity ranking. Since 

this statistic is a function of the number of samples 

producing behaviors and nonbehaviors only, the results are 

independent of the number of system parameters. This 

statement must be qualified, however, since as the 

dimension of the parameter space increases, in general, 

the relative 'volume' producing desirable system response 

decreases. So, to obtain a given level of statistical 

confidence the number of samples may have to be increased. 

This will depend upon the sensitivity of the behavior to 

the parameters and through experience is seen not to be a 

major effect. 

The parameter space is divided into the adjustable 

and nonadjustable parameter spaces. When the 

nonadjustable uncertain parameters are set to fixed values 

each sample of the parameter space results in a 

deterministic solution with subsequent satisfaction or 

nonsatisfaction of the design criteria. The problem in 

this case is one of locating regions in the parameter 

space producing desirable system response. Since these 

regions are usually disjoint, a random search technique is 

used. When the nonadjustable parameters are allowed to 
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vary, anyone given sample of the parameter space is 

meaningless since the satisfaction of design criteria is 

generally sensitive to these parameters. The problem 

here, then, is one of obtaining a design in the adjustable 

parameter space which maximizes the probability of 

achieving satisfactory system response given the 

uncertainty in the nonadjustable parameters. The 

confidence limits for the binomial distribution are used 

to provide a measure of confidence in the probability 

estimate. If this probability is not high enough for a 

given problem, the generalized sensitivity analysis can be 

used to indicate for which parameters better information 

should be found. The design procedure is then repeated 

with this new information to obtain a higher probability 

estimate. To minimize the number of samples taken from 

the parameter space an adaptive random search technique is 

used in this part of the method. 

The uncertainty in the nonadjustable parameters is 

suppressed during the first part of the design procedure. 

This is done to enable us to locate 'desirable' regions in 

the parameter space as quickly as possible. Each sample 

provides a measure of the relative 'goodness' of the 

resulting solution. Starting from a point in the 

adjustable parameter space satisfying the design criteria 

under perfect knowledge of the nonadjustable parameters, 

the uncertain nonadjustable parameters are then allowed to 

vary. Here, each sample of the adjustable parameter space 



requires a number of samples from 

parameter space to obtain an estimate of 

of achieving satisfactory response. 
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the nonadjustable 

the probabili ty 

Thus, during this 

second part of the design procedure the number of mappings 

which must be performed is drastically increased over 

those required for the first part. If the uncertainty in 

the nonadjustable parameters was not suppressed during the 

first part, in general the design method would not be 

pract ical to impl ement. 

As stated above, sampling of the parameter space and 

subsequent mapping to the indices of performance is vital 

to this design methodology. It is necessary, therefore, 

to perform a significant number of mappings during the 

design process. When all of the parameters are adjustable 

this number is on the order of several hundred. However, 

when nonadjustable uncertain parameters are present this 

number is on the order of several thousand. If the amount 

of time required to perform one mapping for a particular 

problem is 'large' relative to the facilities available 

and the desired amount of effort to be spent then the 

methodology described in this thesis may not be practical 

to implement. One thing to notice, however, is that the 

methodology requires no supervision from the designer. 

Once the a priori parameter distributions are set, 

algorithms can be written to carry out the rest of the 

design procedure. So, for a given problem, the designer 

must define the mapping (in many cases, by a set of 
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differential equations and associated performance 

indices), the parameter space (specified by the 

probability distributions), and the design criteria. The 

completion of the design can be automated. 

These procedures were applied to nonlinear controller 

design. Several controller strategies were presented 

while illustrating this methodology. Many problems exist 

for which a nonlinear controller would 'out perform' a 

linear one. These nonlinear controllers can be used to 

control either linear or nonlinear systems. The 

difficulty arises in being able to design the nonlinear 

controller. It was shown that nonlinear controllers could 

be designed with the same effort as linear controllers. 

In fact, whether the control algorithm is linear or 

nonlinear is irrelevant when it is implemented using a 

microprocessor. 

In the examples considered 

interpolating controllers were shown to 

in this 

perform 

thesis 

slightly 

better than noninterpolating controllers but at a cost of 

increased overhead.. An example was given for which 

inclusion of the derivative of the state in the 

integrating table resulted in better controllers than 

those which did not use this information. However, in 

another example, the inclusion of this information made no 

difference in the performance of the controller. For what 

class of problems this is expected to occur is unknown at 

this time. 
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With the advent of the microprocessor the variety and 

complexity 

limitless. 

of nonlinear controllers is virtually 

The methodology presented in this thesis 

provides a means to design such controllers. 

The problem not addressed by this thesis is the case 

where the system of interest contains uncertain functions 

of time of which band-limited white noise is an example. 

Here, even when all of the uncertain parameters are 

adjustable, the boundaries separating regions in the 

parameter space producing behaviors and nonbehaviors are 

no longer distinct. The transition from one region to 

another is now fuzzy. Thus, the binary classification 

must be replaced by a scheme which admits a region in 

which no behavior/nonbehavior classification is made. 

Once this problem has been solved, the class of problems 

for which sampling of the parameter space and statistical 

inference can be used for design purposes will be greatly 

increased. 
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