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ON THE POWER OUTPUT OF SOME IDEALIZED SOURCE CONFIGURATIONS WITH

ONE OR MORE CHARACTERISTIC DIMENSIONS
i

by

Harold Levine

§i. Introduction

Any roster of theoretical sound wave generators includes the discrete

. point source linear array, a continuous finite-size linear aggregate, the

plane circular piston or annulus and a plane rectangular piston; for the far

field directivity pattern of all these configurations, as well as their

individual power outputs (a function of the characteristic dimension(s) and

wave length, in time-periodic regimes), can be accurately determined if each

source distribution possesses a uniform strength and the pistons are flush

with a rigid baffle. The abstract nature of source descriptions which post-

ulate a uniformity of motion (e.g., a surface or volume displacement) is evident,

although attempts to impose more realistic boundary conditions (while retaining

the fiction of an ideally rigid vibrating surface) encounter considerable math-

ematical difficulties. The radiation problem becomes well nigh intractable,

moreover, for real material surfaces whose actual motions cannot be assigned

in advance. Such difficulties are left out of consideration in what follows,

where the aim is merely to extend and refine the prior analysis of some model

sources.

The calculation of power output from a (finite) linear array of equi-

distant point sources is investigated in §2, with allowance for a relative

phase shift and particular focus on the circumstances of small/large individual

source separation. A key role is played herein by the estimates found for a
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twin-parameter definite integral that involves the Fejer kernel functions,

viz.

)
O

where N denotes a (positive) integer; these results also permit a quanti-

tative accounting of energy partition between the principal and secondary

lobes of the array pattern. Succeeding sections §3, 4 are concerned with

continuously distributed sources along a finite line segment or an open-ended

circular cylindrical shell; and estimates for the relatively lower output in

the latter configuration are made explicit when the shell radius is small ._

compared to the wave length. The last section, §5, furthers a systematic

reduction of divers integrals which characterize the energy output from

specific line and strip sources.
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- §2. A Linear Array of Point Sources

Consider an ensemble of N point sources which are uniformly spaced,

at the distance d apart, along a straight line; and assume that the corre-

sponding excitation potentials referred

to coordinate origins at the individualsource locations)

. . Qo

involve a common strength QO (the maximum rate of volume displacement).

The time average radiation intensity for each isolated source is then given by

u Qo)_ I

(where p specifies the equilibrium density of the ambient medium) and the

intensity for the (non-interacting) aggregate has the representation

i N Z

= _'T h,_e ' >>N_ (1)

where the factors

At= I_ A_z=e.. , _3= e.. , ..•, g,,=e.
(2)
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incorporate a fixed phase advance_kd between neighboring and consecutive

sources. After the summation in (i) is effected, it follows that

and thus the total radiated power assumes the form

= a,X, C =
---(i+e()_ (4)

Thiessen and Embleton (1958) cite the latter measure in connection with a

proposal to simulate multiple siren noise from suction rolls at a paper mill

in terms of a phase-advancing linear source array. An approximate integration

scheme suggested by them employs a subdivision of the range and an average

• 2
value for the rapidly varying function sln Nx , n >> 1 , yielding the estimate

A

on the proviso that _ does "not deviate by more than i from theNkd

values 2m_/kd , where m is an integer." In point of fact, the numerical
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coefficient 3.07 should be replaced by z and the remaining terms of (5)

have a questionable status.

To study the above (power) integral without an initial manner of ap-

proximation, it is observed that

t

I_)N) =S ('__ ) _
o _"_ "

¢.a'L"_ )
O

through an integration by parts. On next utilizing the relation (familiar

from the convergence theory of Fourier series)

.... = I+_
s_ w__ z-w

?.. _=I

an exact result follows, namely

N

I (_; N_) s,_o,, ,.-., _ t
_=1

N

(7)



The latter permits a ready determination of I if N and the number of

terms in the sum is small; when N is large, on the other hand, the re-

arrangement

_ _ (8)

may be noted, in view of the well-known Fourier series expansion

O0

(9) .,

vt=l

whose sum is an odd (2_-periodic) function, namely

and the remainder estimate
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that involves the sine integral function

In accordance with (7) - (ii),

_4 s&o,, '
_ -'1

S&_'NQ.
=N 5_(_N_) , N>>I a<<l.

(_b ' (13)

There is a ready usage for the preceding result in connection with

the directivity gain of the considered source array, _(_) , defined as the
v

-i
ratio of the maximum far field intensity (at the angle @ = cos _ from

its reference line) to the total radiated power/4_ ; thus

and
"2



_ N_ _ (15)

for the specific phase parameter value _ = i , on the basis of (13). A

passage to the limits N . _ , d . 0 wherein Nd . £ yields the gain

function _

_%_ (16)

which, as verified in §3, befits a uniform line source distribution with a

continuous linear phase variation (kx) along its length (£) . If _ = 0

the corresponding gain function is secured through the mere replacement of k

by k/2 and its limiting version is appropriate to a continuous line of

in-phase sources with overall span % .

Analogous estimates for values of the phase parameter _ between 0

and 1 may be given in the circumstance that kd << 1 or

7_

_(I-_)= _ +--N
and

_(l._)=_M_ . _, _<<I

in particular,
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I

_i_(_- _) &-_-_(l+_)t _ _& << I (17)

where the first term predominates when the arguments of the sine integrals

are large enough to justify the estimate Si(x) _ _/2 , x >> 1 . The gain

function inferred from (14) and (17) in the continuum limit d . 0 , Nd . % ,

viz.

extends the prior result (16).
l

Since a sharp estimate is lacking for the trigonometric sum that appears

in the representation (7) of the (power) integral (6) an alternative analysis of

the latter becomes warranted. A relation from the theory of Fejer sums of

Fourier series has utility in this regard, namely
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as do the modified versions

and

for integer values of m . If, then,

the rearrangement

proves advantageous, inasmuch as the first two integrals are directly re-

ducible while the third can be suitably expanded in a straightforward manner

for large values of N ; thus

0 o 0 -
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which yields the representation

I C_,,,I)=NS_.(z_,:,.) .+m s_A_

Evidently the initial pair of terms in (_22)duplicates those which make up

the prior estimate (113),while the remaining terms are collectively small

2 i
if N >> i and a << i . Because the function csc x ---_ is analytic

x

on 0 < x < a < _ it is permissible to integrate by parts any number of

times in the last integral, thereby generating an expansion with reciprocal

powers of N , i.e.,

O_

etc.
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Suppose, next, that

then, recalling (20),

where the second term, l(b;N)_ is describable in the manner previously

detailed. Thus, given the configurational parameter

_ = _ -f 0<_<
l

an estimate

_n._s,__ __.

__ _ _) '--). (__- .0( N._N

follows; and the related gain in the limit kd >> I (n >> i) , viz.

_('1= I(_a;H)
corresponds, as it should, to independent contributions from each of the

N sources.

Once the integral (6) has been suitably determined (as a function

of the limit a) it becomes possible to specify both the whole power output

as well as the lesser amounts radiated into different angular subdomains of
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space. For instance, if there is no relative phase advance between sources

of the array (_= 0 in (4)) the output can be written as

2.

(where c = _Ik designates the speed of sound) and thus, recalling the

particular integrals (20),

P=[
----11_2 " " " (251

When

J

and use is made of (22) there obtains

_/t
N>>I

together with the total power estimate

P= 5' _'€_"' ._N-N S'_(N_)- +...
_c _- _ _(t ,

N>> I.
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Similarly, when

_ = Ct_,,)_-_,_<

it follows that

- +-.. N>>I
I_-_"
T

and

f t } "_N+N S_.N(_-_)- +...

N>>I.
With the current stipulation regarding source phases (_ = O) the

array is termed a broadside one, for (cf. (3)) its maximal power output

appears at right angles to the line of support (0 = 11"/2); and since the

null directions are specified by the relation

_ = +_ , _ = tjtj..

the angular range of the major lobe (m.l.) is confined within the sector

___ t_ <_ _ [+
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Accordingly, the energy radiated into the major lobe has the magnitude

which decreases as kd becomes larger. If kd = _ , i.e., the individual

source separation equals a half wave length, the comparative ratio

has a value slightly less than unity, inasmuch as the asymptotic development

--- +.- • z>>l
-- t _ _ t (28)
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implies that

_ I___ •

_-._S_(_)_-I _ =0_
When kd = 27 and the wave length is precisely equal to the separation

between neighboring sources of the array a reduced value for the ratio

(26), namely

makes clear the existence of significant radiation outside the major lobe.

Secondary maxima are found by means of the condition

_z.5 = +_-. , ) =0,Ij... (_o)

• .Nkd
(that corresponds with unit absolute magnitude of the factor slnk--T cos @)

in (3)), and for large N the particular determinations @ = 0,7 (p _ N)

follows. The null directions closest to the line of the array satisfy the

equation

¢.o_,_-+_I,,I-I__.i,l±(I- -_)'
which follows from (26) on choosing p = N and yields the explicit values

and 5 = _-_tlN
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respectively. Thus, the total energy radiated (equally) into the pair of

secondary lobes whose axial directions are aligned with that of the array

has the magnitude

Ps.[.= f _c o

and the ratio

implies (after recalling (29)) a like contribution to the output from the

major and secondary lobes.

An array whose radiated intensity peaks along the source line (e = O)

is termed end-on or end-fire; and, since the direction of maximum far field

amplitude is given by cos 6 = _ , it appears that the specific value _ = 1

(with relative phase advance kd between neighboring sources) characterizes

such an array• The half-angle of the major lobe can be deduced from the relation

with the result that

.9= 2. Kl 4'
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and thus the power which leaves the array in this angular range equals

% %

, (...... )
,_. "L

_>>t=[ J

A simple calculation establishes

?=;' g_c _,4
as the total output from this array, whence

2 i 1

with the particular values _ Si(2_) , _ Si(2_) , and _ Si(2_) if kd = _/2 ,

and 2_ , respectively. Evidently, the relative importance of the major

lobe radiation declines after the distance between adjacent sources exceeds

a greater wave length; by contrast, a half wave length provides the correspond-

ing reference scale for the broadside array.
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§3. A Continuous Line Source Distribution

If simple sources are continuously distributed along a finite line

segment, with uniform magnitude and a linear phase variation, according

to the density function

-_

the complex space factor qb(r) of the resultant velocity potential sat-

isfies an inhomogeneous equation

and the companion acoustic (over) pressure p(_) is given by

D(!) ---- -- !:_OD +(_). (34)

The outgoing wave solution of (33),

&J(_-_';"+(_-_,#+(_-_';"

" tlt &J_-_';'+u',e

(35)
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has an asymptotic form

J

_ < &(___ _) (36)

which underlies expressions for both the far field intensity S and the

power output P , namely _€'_ (°_° _ 1_ I !_f__..(C_.I.._..I_) t I l

(37)

and _(_- 0_)

--¢-Cl+_)
Thiessen (1955) cited the latter integral in advance of the discrete

point source study referred to earlier and, after invoking the substitution

sin x = /_x/2 Jl/2(x) along with an indefinite Bessel function integral

formula, gave an exact infinite series expansion for the output which "is

not an attractive one to use." However, as soon perceived by Burgess (1956),

there is an alternative representation
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P = "%: + ' +

(.39)

[easily found on writing dx d(- i-_ = _) and effecting a partial integration]
x

that readily lends itself to evaluation or estimation for diverse magnitudes

of the parameters k£ and _ .

A typically difficult integration over all spatial directions of the

far field intensity need not be the sole basis for calculating the radiated

power P ; another procedure (whose counterpart in antenna theory is better

known) makes use of an expression for the (local) rate of energy input at

the source itself, viz.

which has patent advantages if the domain of q(r) is compact. Thus, (32),

(35), and (40) imply that

_o_ Ix- I
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and, through the introduction of a new pair of integration variables,

_ _,_-_

there obtains _I_ _-I_I

P= _ -_I_ _(__,_) _ i_l
I

with the anticipated outcome (39) after performing the final (T) integration.

The directivity gain of a line source has previously (§2) been inferred

from that of its discrete analogue; and the given result (18) does indeed

emerge when the expression (39) is substituted into the formula

-, _ _o_,

Taking note of the property

_ (-_) --- S_(_)
and of the asymptotic estimate (28) for Si(x) , the deduction from (39),
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implies a lessened radiation with increasing values of the phase parameter e .

It needs to be observed that neither Thiessen (via display curves for P

vs. k£ at different values of _ ) nor Burgess (in analytical work) have

brought out the fact that a trigonometric function depending on ski

enters into the power estimate appropriate to a rapidly varying phase regime.

Side lobes in the directivity patterns are manifest for waves whose

length is relatively small compared to the overall scale of the continuous

line source, whereas longer waves (compared with the spacing between discrete

source elements) can be admitted when many of the latter are present.

If the phase variation along the source line has a centered quadratic

behavior, as is made explicit by the inhomogeneous term

-

for (33), the corresponding far field velocity potential
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contains an integral which can be simplified on completing the square in

the exponential function; thus _3

with the customary definitions

o
(44)

of the Fresnel integrals.

The net power output, obtained through an integral over all directions

in the far field,
IT

= _,_ a_}
_"-9 oo o

is specified by
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I

(45)

It is a simple matter, on utilizing the asymptotic estimates,

--_ QO (46)

and

CC)- '-, ' +0('-)

to deduce from (45) that

} >>1
so long as k£ does not assume very small values. The amount of radiation

is thus diminished when the magnitude of the phase parameter B increases,

and the occurrence of the first reciprocal power of 8 in the leading term

of (47) may be contrasted with the second reciprocal power of _ in the

prior case of a linear phase variation along the source line. A slightly

more intricate handling of (45) is called for in order to confirm the limiting

value of the power when B . 0 ; once again use is made of (46) and it appears

that
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.{s{T_ ) s( )

p-

q.._

in accordance with the result yielded by (39) for _ = 0

On adopting (40) as the means of power specification there obtains
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I

I

I

_ o
.,..,,:,,c:a_.,_-ta_.)'_.,-_c_)'_"/}a_;

as an alternative to (45). Estimates are readily secured from (48) when

. 0 and k% is finite, through series expansions of trigonometric func-

tions, and the consequences

. 0 , k% finite

(o

-'-, -_o__ 0

reveal a lessening of the power output associated with small phase differences

between neighboring points of the source distribution. The analogous feature

is also present in the case of linear phase variations specified by the para-

meter _ , where the deductions from (39) comprise
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'-F_ t

+ 0 , k% finite (50)

A preliminary transformation of the power formula (48) becomes

appropriate if estimates suitable to large values of 6 are sought; and

the first pertinent relation is given by the integral

I I

19
o 0

___F

%

Further, on designating

0

it follows that
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(52)

inasmuch as [ $& {l'}_'_'[ _')

=-L,_ £ . F) a_--_.

Integrations by parts, pursuant to writing

-- _ ' -G- -T a(_- ),
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permit a sequential refinement of estimates for (52) when B >> 1 ; and this

leads, via (48) and (51), to an output characterization which isolates the

asymptotically predominant term, 0cq02/88 , 8 . _ , and contains only

first powers of the Fresnel integrals [compare (45)]. The explicit construct-

ion of a development for P that involves reciprocal powers of 8k£ is,

nonetheless, a technically laborious matter.
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" § 4. A Cylindrical Shell Source

Consider a circular cylindrical shell with negligible wall thickness

and open ends, whose two characteristic dimensions are £ (the length) and

R (the radius), respectively; and suppose that its curved surface is the

site of a simple uniform source layer, specified by the density function

0<b<

in terms of cylindrical coordinates r , @ , z with origin at the geometrical

center of the shell. The velocity potential for this source aggregate

possesses an evident symmetry around the axis or center line of the shell and

leads, when combined with (53) in (40), to the power representation

{/
where

_ (55)
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A transformation of integration variables (cf. p. 22) yields

and thus

Inasmuch as

o J"¢_ i_, ,; sky-

(with the zero-order Bessel function J0 ) and
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it follows that the output of the source can be recast in the form

P; _ o a°
(58)

J
The latter expression reduces in the limit R -+ 0 , to

l

as befits a line source and, therefore, agrees with an appropriate special-

ization (e = 0) of (39).

A power estimate is readily forthcoming from (58) if

R

i.e., if the radius of the shell is small compared to the acoustic wave

length and also the length of the shell. It turns out, by straightforward

analysis, that

-- (60)%

_i_)4 • +-..
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where the first correction due to the finite radius of the shell involves

2
the product of (kR) and a function of k£ , viz.

with the (positive) limits

and

Since the derivative of F , namely

aF I s,k_

does not vanish on the interval x > 0 the correction terms in (60) for a

small but finite radius have a combined negative value (regardless of the

magnitude of k% ), and thus the shell radiates less power than a line of

the same length.

ik_z
After introducing a linear phase factor e into the source

function (53) the power formula can be expressed in the versions

_.-_9.1_ -;._.C_-_')

_)_-

o o - "--,_lz
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where the second is consequent to a reliance on the integral representation

Once the integration relative to the variables z , z' are effected and

account taken of the complementary specifications

_I_-_,_-,_',_,

" implicit in (62), it follows that

! ,
(.63)

and the occurrence of finite limits enables a straightforward reduction of

the latter formula, when the inequality kR << 1 holds, through a power series

development of the Bessel function. Thus, on employing the first two terms

of the series, i.e.,

- _(

_) I _, _<<I
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the difference between shell and linear source radiated powers, to the lowest

order in the radius of the former, is expressed by

@P -----_shell - P line

without restriction on the magnitude of k£ . Given the particular value _ = 0 ,

and, inasmuch as

W2. _ _lt

_lt ,"

0

_lt "_1_

° '_? :IJ

{ =" '-"
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it turns out that

in complete agreement with (60); thus, the shell with a uniform source density

radiates a smaller amount of energy than a line with the same density, for all

magnitudes of the ratio, length of shell/acoustic wave length.

If the phase parameter _ equals unity, then

I

where the dependence on k% is contained in a function

which relates to the cosine integral, Ci x , along with the Euler constant

y = 0.5772 ... , and has the limiting behaviors
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Since

)I (I >0 _>0a..x _ .x

the inference (_P)_=I < 0 may be drawn, and thus a diminished level of radi-

ation is linked, once again, with finite source radius. The respective pro-

portionalities of (6P)_=1 and (6P)_= 0 to log k% and k% , when k% >> 1 ,

are noteworthy as is also the comparative power ratio

For large values of _ ,

g._t o o J

and, in the limit R + 0 ,

p._._'_ _._!

as is fully consistent with (41).
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- §5. Divers Intesrals

Although the power and gain of linear and pla_r source models have

long been a subject for analysis in both the acoustical and electromagnetic

contexts, additional details and improvements on specific results are feas-

ible, as shown in the sequel. _ere is a direct acoustical counterpart of

an investigation by Cle_ow (1966) on antenna gain and supergain, for example,

wherein the resulting integrals can be displayed in a more useful manner; thus,

a two-dimensional electric field polarized in the z-direction, say, which is

generated by the unidirectional surface current density in the plane y = 0 ,

namely

where (66)

0, > L= constant

corresponds with a two-dimensional acoustic field produced by a rigid strip

radiator with the normal (y-component) velocity distribution

qJ" (,0_) "- _fO= constant (67)

O, >It

in the plane y = 0 .

If

power radiated per unit angle in direction e

" __J _--" _ total power radiated
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defines the gain for radiation into the half-space 0 < @ < _ , y > 0 ,

-_ < z < = , straightforward analysis reveals that

for either of the source distributions (66) or (67), k denoting the (.ap-

propriate) wave number. In accordance with the relation

F0_,_)= I {" _,,_
0

involving Bessel functions of zero and first orders, an expression for the

gain (which Clemmow does not state) follows (compare (16)),

_,1_
(70)

I - st
o

that readily furnishes the respective estimates

Hence, a uniform current or normally vibrating strip produces a gain in the

direction transverse to the source plane which rises in proportion to the

strip width, provided that the latter exceeds a wave length. An alternative

to large scale configurations for surpassing this 'normal' gain, GO , has

practical merit; and this contemplates variable source distributions acting on
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. small excitation areas. Consider, in a simplified though illustrative sense,

the feasibility of supergain G > GO with a non-uniform strip velocity
N

_-,_e , I_1<_-h.
_(0_) -- - (72)

o , I-_1> _.1_

in place of (67); here the v are constants and v --v The appertain-n -n n

ing velocity potential in the radiation field has a cylindrical wave form, i.e.,

e

with the angular factor

_-(o)=7 S e ,rc_)J,_
41%

g { .>"
Since

does not depend on the parameters Vl,V 2,...,v N that selection which minimizes

the total radiated power also maximizes the gain in the direction 7/2 (normal

to the strip). Clemmow :makes a choice

v, =_._o, %=,_3=...=% =_
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and observes that the corresponding gain

o _-
a

can be rendered a maximum by a suitable (real) determination of N ; and this

yields

Go
I - (73)

where GO is the normal gain (70).

Estimates for the integrals appearing in (.73)are easily secured when

k% << i and reveal that

G '--3Go, _<<I

to the lowest order of approximation. Clemmow also arrived at the complementary

result

I Go _,2_ _ (_'_-_),_9._I (_)
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. (which suggests only a small fractional increase of gain over the normal

amount) through function theoretic reasoning. It is a more exacting task to

obtain fuller details of the (asymptotic) expansions for all the integrals,

when k% >> 1 , by complex variable methods; hence, alternative representations

of the integrals, which permit the requisite expansions, may be noted here and

attention drawn to the circumstance that similar integrals are encountered in

other problems of sound radiation.

One of the three separate integrals in (73), connected with the normal

gain (68), has previously been given an alternative form, (69), which enables

systematic estimation at both small and large values of the parameter k% .

The remaining pair, say

enter jointly into the relation

%

and may be rewritten as
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| S ' _ (77)

and

I

-- ! _ _L _ a_ (78)

Define _ ,_l _ (_ __ _) }

o tsuch that

then

and so

which provides the sought-after result

-- 0 _ _o ("_ _. (79)
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Having regard, similarly, for another two-variable function

which obeys the differential equation

,'LOT"

it follows, after successive integrations consistent with the conditions

that

and

Expansions of the functions F0 , F1 , and F2 which are useful for

small values of 13 can be secured from the respective integrals (69), (79),

and (80) on substitution therein of the Bessel function power series. By

virtue of the relations

0

and oO ! O_ _ b

0
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it is expedient, for large values of 6 , to employ the representations

oo

't

- _( )J4r)ag
and

_--{ [ -i _ ' s;'¢

_-t"r-('t r-_
together with asymptotic developments of the Bessel functions, viz.

The estimates
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follow and their leading terms jointly yield another,

Go (F,(_))_ _'(_-_)
i _ Fo(_)%(_) _'_ (_/a)_

which confirms (:74).

The integrals

_/_ s__f_

_ even

and _L odd

• _l:<_ 5;,_ _
O T (82)

occur in a study (Gomperts, 1974) of sound radiation from a rectangular plate

whose vibration pattern is one-dimensional and parallel to its free edges, the

other pair being hinged; evidently

' " %c,_t)
and

while the reductions of (81), (82) for other integral values of n can be

achieved by the means employed in connection with F1 , F2 . Gomperts calls

attention to the 'critical frequency' integral
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and to an estimate

11-/2
3_'T_

whose derivation is not given; a complete evaluation of this integral com-

mences with the alternative version

c_30

and proceeds with successive integration by parts, viz.

0

_h.

= --I _ { i +l}3 ¢=1_
0
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The estimate (84) is directly inferred from the first (and predominant) term

of (85) on utilizing the Bessel function approximation

A pair of integrals relevant to the electromagnetic power output from thin

conducting wires are expressed by

0 I -- (86)

and

the first (Oppenheimer, 1970) rests on the assumption of a longitudinal current

that vanishes (only) at the ends of the wire and varies sinusoidally in between,

whereas the second (Papas, 1965) is linked with a hypothetical travelling wave

current distribution (e±k_x) along the wire. Both integrals involve a para-

meter B = k_/2 that depends on the free space wave number k and the length

of the wire. Neither of the references contains any analysis bearing on the

integrals, although their explicit evaluation is feasible.
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The substitution x = cos O converts (86) to

1 = d__ d(_l ) = d_
and, after utilizing the differentials d(-_) _2 , __ (2__)2 to

initiate an integration by parts, it is eventually found that

(88)

in terms of the sine and cosine integrals.

The change of variable previously employed for the integral (86) yields,

after its application to (87),

-I -I
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" whence

dF_I)

in accordance with the particular values F_!) (0,_) = 0 , d_ (0,_) = O ;

similarly,

and thence, after two integrations,

r
o

describesthe appropriatefunction. Combiningthe expressionsfor F_(I) and

F_2)- there obtains,finally

- I+o(
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Newman and Magnus (1959) encounter several definite integrals in their

study of maximal antenna gain, with the prototype

-_

and they offer a one-term estimate (referring to a long, though not detailed,

elementary computation)

_+_._.___ _-, V.-->oo _>o
_/_

The representation

(9o)

___ ___

may be noted and its version in the case m = n is likewise available.
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