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CALCULATION OF THE FLOW FIELD INCLUDING BOUNDARY LAYER EFFECTS
FOR SUPERSONIC MIXED-COMPRESSION INLETS AT ANGLE OF ATTACK

Joseph Vadyak and Jce D. Hoffman
School of Mechanical Engineering
! Purdue University, West Lafayette, Indiana 47907

SUMMARY

An analysis has been developed for calculating the flow field in super-
sonic mixed-compression aircraft inlets at angle of attack. A zonal modeling
technique is employed to obtain the solution which divides the flow field
into different computational regions. The computational regions consist of
a supersonic core flow, boundary layer flows adjacent to both the forebody/
centerbody and cowl contours, and flow in the shock wave-boundary layer
interaction regions. This report describes the details of the zonal modeling
analysis and presents some computational results.

The governing equations for the supersonic core flow. form a hyperbclic
system of partial differential equations. The equations for the character-
istic surfaces and the compatibility equations applicable along these surfaces
are derived. The characteristic surfaces are the stream surfaces, which are
surfaces composed of streamlines, and the wave surfaces, which are surfaces
tangent to a Mach conoid. The compatibility equations are expressed as
directional derivatives along streamlines and bicharacteristics, which are
the lines of tangency between a wave surface and a Mach conoid. The numerical
integration procedure devised by D. S. Butler was employed to develop a
numerical integration algorithm that is second-order accurate, explicit, and
does not violate the domain of dependence of the differential equations.

The bow shock wave surrounding the forebody and the internal shock wave
system inside of the inlet are determined by discrete shock wave fitting.
The continuous flow field between shock waves is determined by the method of
characteristics numerical integration procedure, and the flow properties
across the shock waves are determined by the application of the Hugoniot jump
conditions.

Characteristic unit processes were developed for interior field points,
solid boundary points, field-shock wave points, and solid boundary-shock
wave points. An inverse marching scheme is employed in which the solution is
obtained on planes perpendicular to the axis of the centerbody and the cowl.
The distance between successive solution planes is determined by the Courant-
Friedrichs-Lewy stability criterion. Although the numerical integration
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procedure developed herein is capable of analyzing three-dimensional flows
in three-dimensional geometries, oniy axisymmetric geometries at angle of
attack were considered in the present investigation.

The governing equations for the boundary Tayer flow adjacent to both the
forebody/centerbody and the cowl form a parabolic system of partial differential
equations. That system of equations is solved using a second-order implicit
finite difference scheme which can compute both positive and negative cross
flows. The finite difference algorithm is employed to compute all of the
boundary layer flow except for that in the shock wave-boundary layer interaction
regions.

The shock wave-boundary Tayer interaction region flow is characterized by
an elliptic system of partial differential equations. The flow in an interaction
region is computed using an efficient integral analysis which determines the
property profiles in the boundary layer downstream of the interaction region.
These profiles are then used as starting data for the analysis of the boundary
layer flow downstream of the interaction region.

Selected computational results are presented for both external and
internal flow cases to i#l1lustrate application of the analysis. Correlations

with experiment are also given.
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SECTION I
INTRODUCTION

1. INTRODUCTION

The purpose of this investigation was to develop a method for
calculating the flow field, including boundary layer effects, for a
supersonic mixed-compression aircraft inlet operating at angle of
attack. A typical mixed-compression inlet is illustrated in Figure 1.
Compression takes place both in the external flow about the forebody
and in the internal flow inside the annulus. Since the free-stream

velocity is supersonic, a bow shock wave is generated at the forebody

tip. An internal shock wave emanates from the cowl 1ip and makes a
number of reflections with the centerbody and cowl before terminating :
in the divergence downstream of the geometric throat of the annulus. :
The flow is subsonic downstream of that location.

A.major objective in the design of any aircraft inlet is to
achieve maximum flow compression with a minimum reduction in stagna-
tion pressure. Moreover, since an adverse pressure gradient exists,

suitable control of the boundary layer is a major design consideration.

This is especially true for an inlet such as that illustrated in
Figure 1, since a number of oblique shock wave-boundary layer inter-
actions occur. In a mixed-compression inlet, it is not unusual to
Eemove 10 percent or more of the cowl 1ip mass flow rate by boundary

layer bleed to control separation of the boundary layer.
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The inlet iTlustrated in Figure 1 is axisymmetric. At zero
incidence, the flow field is axisymmetric and can e computed using
& two-dimensional method. However, at angle of attack, cross flow
develops, and computationfof the flow field requires a three-

dimensional algorithm.

2. METHOD OF SOLUTION

A zonal modeling approach is employed in the present investiga-
tion. In this approach, the flow field is divided into different
computational regimes, as illustrated in Figure 1. These regimes
consist of the supersonic core flow, the centerbody and cowl boundary
layers, and the shock wave-boyndany layer interaction regions on both
the centerbody and the ccwf. /An appropriate analysis is used for each
of the different regimes.

The supersonic core flow is characterized by a hyperbolic system
of governing partial differential equations. That system of equations
is solved using a second-order pentahedral bicharacteristic scheme.
The bow shock wave and the reflected internal shock wave system are
computed using a discrete shock wave fitting procedure. The influence
of viscous and thermal diffusion may be included in the supersonic
core flow solution by treating the molecular transport terms as
forcing functions in the bicharacteristic analysis.

The boundary layer flow is characterized by a parabolic system
of governing partial differential equations. That system of equations
is solved using a second-order implicit finite difference scheme which

can compute both positive and negative cross flows. The finite




difference algorithm is used to compute all of the boundary flow except
for the shock wavé4boundary layer interaction regions.

The shock wave-boundary layer interaction region is characterized
by an elliptic system of governing partial differential equations.
The flow for this region is computed using an integral analysis which
yields the property profiles in the boundary layer downstream of the
interaction region. These profiles are then used as starting data
for the analysis of the boundary layer flow downstream of the inter-
action region.

The present investigation is an extension of the study reported
in References (1) and (2), which dealt with the development of the
numerical algorithm used for the computation of the supersonic core
flow. The present analysis deals with the development of the boundary
layer and shock wave-boundary layer interaction computational pro-
cedures. A detailed description of the computer program developed
to compute the entire flow field is given in NASA TM- » "A Computer
Program for the Calculation of the Flow Field Including Boundary Layer
Effects for Supersonic Mixed-Compression Iﬁ]ets at Angle of Attack,"

by Joseph Vadyak, Joe D. Hoffman, and Allan R. Bishop.

e

ey




e T

e i ALY A T e e Ly S i

B S e

f o e e vl R mTam e ag TAesTodeoteews e I cmet A PERLL o e it T PO b s ARSI T ISR U e s o oy e SRR L

SECTION II
GOVERNING EQUATIONS FOR THE SUPERSONIC CORE FLOW

1. INTRODUCTION

The fluid dynamic model for the supersonic core flow is based on
the following major assumptions:

1. steady flow,

2. negligible body forces,

3. the working gas can be represented as a simple system in

thermodynamic equilibrium,

4. no internal heat generation other than viscous dissipation, and

5. viscous and thermal diffusion effects of secondary importance.
The governing equations for the assumed flow model are written in the
Cartesian coordinate system of Figure 1, and consist of the continuity
equation, the component momentum equations, the energy equation, the
thermal and caloric equations of state, and appropriate representations
for the mo]ecﬁ]ar transport properties. These equations are briefly
presented in this section. A detailed development of these equations

is given in Appendix A.

2. GOVERNING DIFFERENTIAL EQUATIONS
The continuity equation* [see Reference (3)] is given by
au .

Dp i ' ‘
ot * P 3x, 0 (1)

*Repeated indices imply summation over the range of 1 to 3 unless
otherwise noted.



where X, (i =1, 2, 3) denotes the three réctangu1ar Cartesian
coordinates %, y, and z, respectively, Uy denotes the corresponding
velocity components u, v, and w, respectively, p denotes the density,
and t denotes the time. The operator D( )/Dt in equation (1) is the

material derivative given by

D) .3, 200 (2)
Dt ot J axj

For steady three-dimensional flow, equation (1) may be written in

expanded form as

+ oy + ow + + + Wp_ =
pU, pvy pw, + up, + vp wp, 0 (3)

y
where the subscripts x, y, and z denot¢ partial differentt .ion with
respect to the corresponding direction.

The momentum equation is giver by the Navier-Stokes equation

(Ref. 3), which, in component form, is given by

i U i
du.) du
-_2..__8__ b _a_.. ._J. i o=
2 SXi{u aij ¥ 3X; [n ij) (i=1,2,3) , (4)

where Bi (i =1, 2, 3) denotes the x, y, and z components of the body
force, respectively, P denofes the pressure, u denotes the dynamic

viscosity, and n denotes the second coefficient of viscosity.

we
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One of the assumptions of the present study is that thé)influence
of molecular transport is considered to be of secondary importance as
compared to the inertial effects in determining the superscnic core
“low solution. As a consequence, the viscous and thermal diffusion
terms appearing in the governing partial differentfa] equations are
treated as forcing functions or source terms in the method of charac-
teristics scheme to be presented. In what follows, the molecular
transport terms are placed on the right-hand sides of the respective
governing equations, and the convective terms are placed on the left-
hand sides of those equations. The convective terms then are considered
as constituting the principal parts of these equations. Hence, by
assuming steady flow, negligible body forces, n = 0 [Stokes's hypothesis
(4)1, inertial dominance, and variable transport properties, equation
(4) may be written in expanded torm for each of the three coordinate

directions as

puu, + pvu, + pwu, + P = F (5)
puv, * pwvy *+ pwv, + P = F (6)
puw, * pvw + pwn, + P, = F, (7)
where
=, 1A, -2 |
Fy Hx[3 Ux 3(Vy4'wz) * “y(“yq'vx) *uyu +w)
+ iu-‘+u ru_ + i, +w) (8)
I3 % 7 tyy T Y2z T 3 iy T ke

we



ORIGINAL BT IS
OF POCR QUALITY

4 1
+ u[; vyy + Ve + V., t 3(“yx + wyz:} (9)q

- 4 _2 )
Fz - “z[; v, 3(ux + Yyi] * ux(wx * "z) + “y(wy * Vz)

4 1
*'u[; Woz ¥ ¥Wyx ¥ Wy * §(uzx * szi] (10)
The appropriate form of the energy equation is now derived. In
following, the pressure P and density p are considered as being the
primary thermodynamic variables. A1l secondary thermodynamic vari-

ables are then expressed in terms of the pressure and density.

It is assumed in the present investigation that the working gas

the

may be represented as a simple system in thermodynamic equilibrium. For
a simple system, specification of any two independent thermodynamic
properties defines the thermodynamic state of the system (5 ). Hence,
the following functional relationship may be written

P = P(p,s) (11)
where s is the entropy per unit mass. Employing the concept of the
total derivative, and introducing the material derivative operator
given by equation (2), the following equation is obtained.

DP _ (aP) Do, [2P) Ds

Dt {apJ bt * [as) Dt (12)

. 3 p
The sonic speed a is defined by

2 _ (oF | |

a~ = [ap)s (13)

10
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Introducing equation (13) into equation (12) yields

DP _ _2Dp _ (3P) Ds
% B =

The material derivative of entropy appearing in equation (14) may
be expressed in terms of a thermal conduction function and a viscous .
dissipation function. The entropy may be expressed in terms of the

internal energy by use of the thermodynamic relation (Ref. 5)
T ds = de + P d(1/p) (15)

where T is the temperature, and e is the internal energy per unit mass.
The internal energy may be expressed in terms of a thermal conduction
function and a viscous dissipation function by use of the energy

equation (Ref. 3)

De _ o (. 3T),PDp
P Bt axi['( ]+p +e (16)

where ¢ is the thermal conductivity, and ¢ is the viscous dissipation

function, which for n = 0 is given by

ou. ou. au
SV |y 2k
¢=gH [ij * axi} 3 3%, 843 (17)

where 51j js the Kronecker delta. Combining equations {14) to (17) and
writing the resulting expression in expanded form for steady three-

dimensional flow with variable transport properties yields

(18)

2 , _
uPX + va + wPZ - a (upx + pr + sz) = Fe

where

11
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* Tzz) * Kx_Tx * KyTy * K‘sz

F, = g{ Ty * Tyy

2 2 2 2
+ p[Z(ux + vy tw, + uyvx tuw 4 vzwy) vy
2 2,2 2 2 2 2
+wx+uy+wy+uz+vz-§(ux+vy+wz)]} (19)
and
_1[oP
&= oT [as]p (20)

3. THERMODYNAMIC MODEL
Before a solution to the system of governing partial differential
equations may be obtained, the temperature T, the sonic speed a, and

the parameter £ defined by equation (20) must be expressed in terms

of the primary thermodynamic variables P and p. The general functional

forms of the relations for T, a, and £ are given by

T =T(P,p) - ()
a = a(P,p) - (22)
£ = &(P,p) (23)

The derivatives of the temperature appearing in equation (19) are ex-
pressed in terms of the derivatives of the pressure and the density
by analytically differehtiating equation (21).

For the special case of a thermally and calorically perfect gas,

equations (21) to (23) take the following simple forms

T

P/pR ' : (24)

- ()2 (25)

a
|
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E=y-1 ‘ (26)
where R is the gas constant, and y is the specific heat ratio.

4. MOLECULAR TRANSPORT PROPERTIES

The dynamic viscosity u and the thermal conductivity x must be
expressed in terms of the primary thermodynamic variables P and p.
In general, both the vﬁScosity and the thermal conductivity are assumed

to be functions of temperature only. Hence,
u = u(T) (27)
k = k(T) (28)

The derivatives of the transport properties appearing in equations (8),
(9), (10), and (19) are obtained in terms of the derivatives of the

pressure and the density by analytically differentiating equations (27)

and (28) with respect to the temperature, with the resulting tempera-

ture derivatives being obtained by analytically differentiating

equation (21).

A widely accepted representation for equation (27) is the

Sutherland formula (Ref. 4)

i =g, [;_]1.5 [TTO_: ssJ (29)

where Ho is the viscosity at the reference temperature T,, and S is a

constant. The thermal conductivity may be represented as

uc . : .
K = ——rP- (30)

13
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where cp is the constant pressure specific heat, and Pr is the laminar
Prandt1 number which is assumed constant in the analysis.

The contribution of turbulent transport may be considered in the
computation by adding the appropriate eddy viscosity and eddy thermal
conductivity functions to the molecular transport properties given by

equations (27) and (28), respectively.

5. SUMMARY

In summary, the differential equations of motion for steady
supersonic three-dimensional flow are given by equations (3), (5),
(6), (7), and (18). For a thermally and calorically perfect gas,
the thermodynamic model is represented by equations (24) to (26).
The molecular transport properties are represented by equations (29)

and (30).

14
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SECTION III :
SUPERSONIC CURE FLOW CHARACTERISTIC EQUATIONS

1. INTRODUCTION

Written in the form shown, with the left-hand sides constituting
the principal parts, equations (3), (5), (6), (7), and (18) may be
classified as a system of quasi-linear nonhomogenous partial differ-

ential equations of first order. The system is hyperbolic if the

flow is supersonic. Systems of hyperbolic partial differential equa- ;
tions in three independent variables have the property that there

exist surfaces in three-dimensional space on which linear combinations
of the original partial differential equations can be formed that con-

tain derivatives only in the surfaces themselves. These special sur-

T e e

faces are known as characteristic surfaces, and the linear combinations v
of the original partial differential equations are interior differen-
tial operators known as compatibility relations. In this section, the
equations for the characteristic surfaces and the compatibility rela-

tions valid along these surfaces are listed and briefly discussed. A

v e b i bt ey

detailed development of these equations is given in Appendix B.

2. CHARACTERISTIC SURFACES
For steady three-dimensional supersonic flow, two families of
characteristic surfaces exist, as illustrated in Figure 2. One family

of characteristic surfaces consists of the stream surfaces given by

15
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uN, + vNy + wNz =0 (31)

where N = (Nx’Ny’Nz) denotes the normal to a stream surface. The
envelope of all stream surfaces at a point forms a single pencil of

planes whose axis is a streamline. A streamline may be represented by
dx/dt = u dy/dt = v dz/dt = w (32)

where t is the time of travel of a fluid particle along the streamline.
The second family of characteristic surfaces consists ¢f the wave

surfaces given by
unN, + vNy +uN, = a|N| (33)

where N = (Nx’Ny’Nz) denotes the normal to a wave surface. The envelope
of all wave surfaces at a point forms a conoid known as the Maqh conoid.
The Mach conoid may be represented locally by a right circular cone
known as the Mach cone. In differential form, the quadric surface of

the Mach conoid is given by -

[ - (g - ad)1(d0)? + V2 - (a2 - a2)1(dy)?

2

+ W - (g% - a®)1(dz)? + 2uv(dx)(dy)

+ 2uw(dx)(dz) + 2vw(dy)(dz) = 0 | (34)

where g is the velocity magnitude (q2 = u2 + v2 + wz). The Tine of

contact between a particular wave surface and the Mach conoid is known
as a bicharacteristic. A bicharacteristic is a generator of the Mach

conoid.

17
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3. COMPATIBILITY RELATIONS
The cc _atibility relations which are applicable on the stream

surfaces are given by

2

+ - =
qu va + wPZ a (upx + ve, + sz) Fo (35)
pu(uux + vu, + wuz) + pv(uvX + vv.y + wvz)

+ pw(uwx + v f wwz) + qu + va + wPZ

= UF, + VF+WF, (36)
pr(uux + vu, + wuz) + psy(uvx + wy + va)

+ pSz(uwx + v, + wwz) + 5P, +‘ syPy +S.P,

= SF + SyFy +SF, (37)

In equation (37), S = (SX,Sy,Sz) denotes a vector which Ties in the
stream surface and that is independent of the veiocity vector. Equa-
tions (35) and (36) may be written in a form which contains differen-

tiation in the streamline direction as follows.

2d
L (38)
du, dv, o odw, dP_ |
puget oVt oW gt t ot qu + va + sz (39)

In equations (38) and (39), the operator d{ )/dt represents the direc-

tional derivative along a streamline.

18
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The compatibility relation which is applicable on the wave sur-

faces is given by

+ + + + + L
panx(uux vu wuz) pany(uvx Wy wvz)

y

+panz(uwx + vy + wwz) + (anx - ujp, + (an-y - v)Py

2 _ =
+ (an, w)PZ - pa (uX + vy + wz) = A (40)
where ) .
A= a(nXFx + n.yF.y + nZFZ) - Fy P (41)

In equations (40) and (41), n = ("x’ny’nz

vector to the wave surface. Equation (40) may be written in a form

) denotes the unit normal

which contains differentiation in the bicharacteristic direction as

follows.

[=%

dw dP _

du . 2r, 2
v an, gf - dT - A - pa [(nx - 1)ux

panx dt + pany at +

ke

2 2
+ (ny - 1)vy + (nz - l)wz + nxny(u + vx)

+ “x"z(“z W) + nynz(vZ + wy)] (42)

In equation (42), the operator d{ )/dt denotes the directional derivative
along a bicharacteristic. The terms in brackets in equation (42) repre-
sent differentiation in the wave surface but in a direction normal to
the bicharacteristic direction. Hereafter, these ferms will be refer-
red to aS the cross derivatives. :

At any point in the flow field there‘exists an infinite number of

stream surfaces and wave surfaces. The number of independent

19

ey

BB IR EE R SE EA T ATTIER

we



compatibility relations cannot exceed the number of independent equa-
tions of motion. As & consequence, it is necessary to determine which
of the possible combinations of the compatibility relations form an
independent set. Rusanov (6), using a proof in the space of char-
acteristic normals, has shown for steady three-dimensional isentropic
flow that two of the stream surface compability relations applied N
along a stream surface and the single wave surface compatibility
relation applied along three different wave surfaces form an indepen-
dent set of five characteristic relations. Rusanov's results may be
extended to the present case since the principal parts of equations
(3), (5), (6), (7), and (18) are the same as those for isentropic
flow. Hence, the set of compatibility relations used in the present
investigation consists of equéﬁimns (38) and (39) applied along a

streamline and equation (42) applied along three different bicharacter-

istics.

4. BUTLER'S PARAMETERIZATION OF THE CHARACTERISTIC EQUATIONS

D. S. Butler (7) developed a parameteric form for representing
a bicharacteristic and the wave surface compatibility relation
applicable along it. A detailed development of Butler's method is
presented in Appendix B. A brief summary is given here.

Butler introduced the following parameteric form to represent a

bicharacteristic.
dx; = (ui + ca.cosb + cBisine)dt (i=1,2,3) (43)

In equation (43), t is the time of travel of a fluid particle along

the streamline that is the axis of the Mach cone, 6 is a parametric

20
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angle denoting a particular element of the Mach cone and has the range

0 <8< 2m, and ¢ is given by

Cz—-

= q2a2/(q2 - az)

(44)
where q is the velocity magnitude, and a is the sonic speed. The
vectors o, and B; 1n equation (43) are parametric unit vectors with
s Bis and ui/q (i=1,2,3) forming an orthonormal set.

The corresponding parametric form of the wave surface compatibility

relation, equation (40), is given by

dp du.
P pc(¢ cosé + B, sind) —— dt =9

ou.
2 . . i
- pc (aiSIHB - Bicose)(ajs1ne - Bjcose) ij (45)
In equation (45), the operator d( )/dt represents differentiation in
the bicharacteristic direction, and ® is given by

= (cz/az)[Fe - a(anx nyFy + nZFZ)] (46)

where n = (nx,ny,n ) denotes the unit normal to the wave surface,

which may be written in parametric form as
= (a/c)(cu, /q - o cosh - B sing) (i=1,2,3) (47)

In addition to the above relations, Butler also developed a non-
characteristic relation which is applied along & streamline. This

noncharacteristic relation is given by

21
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dP Bu.

—E'= - pc (a o 6183 Bx (48)
J

where the operator d{ )/dt denotes differentiation along a streamline,

and ¢ is given by

o= (c2/a2)Fe - (cz/qz)(uFx + va + wFZ) (49)
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SECTION 1V

NUMERICAL SOLUTION OF THE SUPERSONIC CORE FLOW EQUATIONS

1. INTRODUCTION

A variety of unit processes are employed in the computation of
the supersonic core flow field. The unit processes may e classified
into four major types: interior point, solid boundary point, field-
shock wave point, and solid body-shock wave point. The basic unit
processes are briefly discussed in this section. A detailed presenta-
tion of each unit process is given in Appendix E.

In the overall numerical algorithm, an 1nve?se marching scheme

is employed. The supersonic core flow solution is obtained on space-

- e

1ike planes of constant x, where the x-axis is the longitudinal axis
of the centerbody and the cowl. For the internal flow, the solution
is aiso obtaihéd on the space curves which are defined by the inter-
sections of the internal shock wave with the solid boundaries.
Except in the vicinity of a shock wave-solid boundary intersection,
the distance Ax between successive solution planes is determined by
the application of the Courant-Friedrichs-Lewy (CFL) stability

criterion (8). In the vicinity of a shock wave-solid boundary inter-

section, the axial step is controlled by special constraints, which
are discussed Tater. The distance Ax is determined prior to the appli-

cation of the unit processes.

23



2. INTERIOR POINT UNIT PROCESS

The computational network used in determining the solution for a
typical interior point is illustrated in Figure 3. Points (1) to (4)
represent the intersection points of four rearward-running bicharacter-
istics with the initial-value plane, point (5) is the streamline
intersection point with the initial-value plzne, and point (6) is the
solution point on the solution plane. The axial (x) distance between
the initial-value plane and the solution plane is determined prior to
the application of the unit process by applying the CFL stab®lity
criterion. As in all the unit processes, the interior point unit pro-
cess is divided into a predictor step and a corrector step. The cor-
rector may be iterated to convergence if desired.

The interior point unit process is initiated by determining the
location of the solution point, point (6). The coordinates of point
(6) are determined by extending the streamline from point (5) to the

solution plane using the following finite difference form of equation

(32).

24

x;(6) - x;(5) = % [u.(5) + u, (6)I[t(6) - £(5)] (i=1,2,3)  (50)

For the predictor, u1(6) is equated to ui(5). For the corrector,

the previously determined value of ui(G) is employed. The axial step
[x(6) - x(5)] is computed before the unit process is applied. Hence,
the time parameter [t(6) - t(5)] may be obtained, after which the
coordinates y(6) and z(6) are computed. Interpolated flow property
values at point (5) are used in the integration, even thqugh point (5}

js a known field point. As shown by Ransom, Hoffman, and Thompson (9),
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this interpolation is required to produce a stable numerical scheme.
The interpolated flow property values are obtained from the following

quadratic bivariate interpolation polynomial

2

2
fly,z) = a; tay tagztayztagy +agz (51)

where f(y,z) dengtes a general function of the coordinates y and z, and
the coefficients a; (i=1 to 6) are obtained from a least squares fit

of nine data points in the initial-value plane [point (5) and its

eight immediate neighbors] as described in Appendix C.

With the location of the solution point determined, four bichar-
acteristics are extended from the solution point back to the initial-
value plane to intersect this plane at points {1) to (4), as iTlustrated
in Figure 3. The coordinates of each of these intersection points are

determined using the following finite difference form of equation (43).
x;(6) = x;(K) = 5 {u; (k) + u;(6) + [e(k) + c(6)1[a;cos0(k)
+ B;sine(k)1Ht(6) - t(k)] (i=1,2,3) (52)

The index k in equation (52) denotes the bicharacteristic-initial-
value plane intersection points illustrated in Figure 3, and has a
range of 1 to 4, corresponding to the 8(k) values of 0, 7/2, m, and
3n/2, respectively. Since the axial step [x(6) - x(k)] is known,

© equation (52) is used to calculate [t(6) - t(k)], y(k), and z(k). The
Flow property values at points (1) to (4) are obtained by interpolation
using equation (51). On the initial applicationiof equation (52), the

flow property values at point (k) are equated to those at point (5).
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Fdr the external flow field integration, the parametric unit vectors
o and Bi appearing in equation (52) are selected to straddle the pro-
jection of the pressure gradient on the initial-value plane. For the
internal flow field integration, these vectors are selected to straddle
the meridional plane through point (6).

Once the positions of and the flow properties at points (1) to
(5) have bein determined, the system of nonlinear compatibility equa-
tions, written in finite difference form, is solved to obtain the five
dependent flow properties u(6), v(6), w(6), P(6) and p{G). Two of the
five required compatibility equations are given by equations (38) and
(39). These equations are written in finite difference form by re-
placing the derivatives with simple differences, and by replacing the
coefficients of the derivatives with the arithmetic average of the
coefficients at the solution point and at the appropriate point in the
initial-value plane. To obtain the remaining three required compati-
bility equations, appropriate linear combinations of the wave surface
combatibi]ity relation, equation (45), applied along each of the four
bicharacteristics, and the noncharacteristic relation, equation (48),
applied along the streamline are formed. Writing equation (45) for ©

values of 0, /2, m, and 3n/2 yields

du , ou.
dp _2q i ,
oot P g = 8 - eCTBiBs 5y (53)
1 1 | j
du. u.
dP 2 i '
dt, + peBy dt2 = &) - pc o0y X (54)
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dp du. ou,

av . R I i ;
dt; P gr, T P37 Pe Bify 3 (55)
du, ou.
gr . B —1 " o
£, ~ PP aE, T %4 7 POy 5%, (56)

In equations (53) to (56), the operator d( )/dtk denotes differentiation
along the kth bicharacteristic, and @k denotes equation (46) evaluated
for the specified value of 6(k). One independent Tinear combination

of the compatibility equations is obtained by subtracting the finite
difference form of equation (55) from the finite difference form of
equation (53). Another independent linear combination is obtained by
subtracting the finite difference form of equation (56) from the finite
form of equation (54). The final independent linear combination is
obtained by subtracting the finite difference form of the nonchar-
acteristic relation, equation (48), from the sum of the finite differ-
ence forms of equations (53) and (54). The resulting compatibility
equations do not contain cross derivatives at the solution point [i.e.,
aTE_Jerms containing Bui/axj(6) are eliminated]. These five finite
difference equations are solved using Gaussian elimination. For the
predictor, the flow property values at the solution point appearing

in the coefficients of the derivatives in the set of difference equa-
tions are equated to those at point (5). For the corrector, the flow
property values at point (6) obtained on the previous iteration are

used. The resulting scheme has second-order accuracy (9).
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3. SOLID BOUNDARY POINT UNIT PROCESS

The computational network used for determining the solution at a
typical point on a solid boundary is shown in Figure 4. The point
notation used in this figure is identical to that employed in Figure 3.
Here, however, both points (5) and (6) 1ie on the solid boundary, and
point (4) is not used since it lies outside of the fiow regime.

The unit process used to obtain the solution at a solid boundary
point is almost identical to the interior point unit process. Here,
however, point (4) corresponding to the bicharacteristic with 8 = 3n/2
is not located, and the corresponding compatibility relation valid
along this bicharacteristic is not employed. That equation is replaced
by the boundary condition

us (6)"bi(6) =c | (57)
where "bi(G) (i=1.2,3) is the unit normal to the solid boundary at point
(6), and c is a specified constant which is identically zero for imper-

meable walls.

4. BOW SHOCK WAVE POINT UNIT PROCESS

The computational network used in determining the solution for
a typical bow shock wave point is illustrated in Figure 5. A segment
of the shock wave surface extending from the initial-value plane to
the solution plane is shown in this figure. The intersection of the
shock wave with the initial-value plane defines space curve (A), and
the intersection of the shock wave with the solution plane def'nes
space curve (B). The axial distance between the initial-value plane
and the solution plane has been previously determinéd by the apb]ica-

tion of the CFL stability criterion. The bow shock wave solution point

29
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is denoted by point (2). The flow properties at point (2) on the up-
stream side of the shock wave are known from the free-stream condi-
tions. Hence, in the following discussion, the flow properties u(2),
v(2), w(2), P(2), and p(2) refer to the flow properties at point (2)
on the downstream side of the shock wave. Point (1) is the intersec-
tion point of a rearward-running bicharacteristic with the initial-
value plane. This bicharacteristic is extended backward from the
solution point, point (2). Point (3) is a predetermined interior solu-
tion point which is adjacent to the shock wave and is used to define
the meridional plane in which the bow shock wave solution point lies.
Point (4) is the intersection point of space curve (A) with the
meridional plane which passes through points (2) and (3).

In this unit process, a local cartesian coordinate system is
employed for the description of the local shock wave surface. ‘fhis

local coordinate system has coordinates x', y', and z', where x' is

coincident with the x-axis, y' is the radial direction in the meridional

plane containing points {2) and (3), and z' is normal to the (x',y')-
plane. The unit vectors in the x', y', and z' directions are denoted
by ;', 5', and E', respectively. The orientation of the local shock
wave surface at a point (P) is specified by a set of three unit vec-
tors referenced to the (x',y',z')-coordinate system, as illustrated
in Figure 6. This set of unit vectors consists of the unit vector ;s
which is normal to the shock wave surface at point (P), and two unit
vectors ) and € which are tangent to this surface at point (P). The

tangential unit vector t lies in the meridional plane [(x',y')-plane],

subtends an angle ¢ with the x'-axis, and is defined by the intersection
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of the shock wave with the meridional plane at point (P). The tan-
gential unit vector E lies in the transverse plane [(y',z')-plane],
subtends an angle o with the z'-axis, and is defined by the intersec-
tion of the shock wave with the transverse plane at point (P). The

tangential unit vectors t and £ are given by

t = cos ¢ i + sin ¢ J' (58)

1]

2 =sina j' + cos a k' (59)

The shock wave normal unit vector ng is given by

=L %t/ xt (60)

To achieve second-order accuracy in the shock wave point unit
process, global iteration must be performed. In global iteration,
the corrector employs flow properties not only at the solution point
jtself, but also at neighboring points in the solution plane. As a
consequence, before the corrector can be applied in global iteration,
the entire solution plane (or at least an appropriate section of it)
must be determined by a prior calculation. The interior point and
solid boundary point unit processes do not require global iteration
to achieve second-order accuracy. Consequently, those solution points
are determined first. Then, the predictor is applied for each shock
wave solution point, thereby giving a tentative solution for all of
the shock wave poivits. At this stage, global correction is performed
for the shock wave solution points using the previously determined
field points in the solution plane. In the following discussion, the

term "predictor" refers to the first application of the shock wave
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point unit process used to obtain an {witial estimate of the solution
without using field point data in the splution plane. The term "global
corrector” refers to the appTication of the shock wave point unit
process which uses field point data in the solution plane. The shock
wave point unit process is now outlined.

The shock wave point unit process is initiated by Tocating the
solution point, point (2) in Figure 5. Denote the angle subtended by
a meridional plane and the (x,y)-plane by 6. The solution point
meridional plane is arbitrarily selected to contain the interior solu-
tion point, point (3), whose location is determined prior to the
application of the <hock wave point unit process. Hence, 6(2) = 6(3).
Denote the radial position of a point by r. Then the radial position

of point (2) is obtained from
r(2) = rid) +Ix(2) - x(0)] tan {3 [o(2) + 0(8)]}  (61)

where [x(2) - x(4)] is the axial distance between the initial-value
plane and the solution plane. On the initial application of equation
(61), the shock wave angle ¢(2) is equated to ¢(4), whereas, on ensuing
applications, the value of ¢(2) obtained on the previous iteration is
used. At point {4}, the radial position r(4) and the shock wave angle
$(4) are determined by interpolation using the quadratic univariate

formulae

_ 2
r(e) = a; a0+ a50 | (62)

$(8) = b] + by0 + b362 / , '(63)
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where the coefficients a; and bi (i=1,2,3) are determined Ly fitting
these expressions to three Tocal shock wave solution points on space
curve (A).

After the solution point has been located, the shock wave normal
unit vector ;s at the solution point is found by forming the normal-
ized cross product of the tangential unit vectors g and % [see equation
(60)]. The tangential unit vectors % and E are obtained by use of
the current values of ¢(2) and a(2) in equations (58) and (59),
respectiveiy. For a predictor application, a(2) is approximated by
equating it to the o value at point (4). For a global corrector
application, the value of a(2) that is employed is that evaluated at

point (2). In either case, the value of a(2) may be determined by

1 dr

Fd—e”e(z) (64)

a(2) = tan'1[

where, for the predictor, the analytical form of r(6) used in equation
(64) is given by equation (62) applied along space curve (A), and for
the global corrector, r(8) is obtained by applying equation (62) along
space curve (B).

At this stage, the local Hugoniot relations are applied at point
(2) to obtain the downstream flow properties u(2), v(2), w(2), P(2),
and p(2). Next, a rearward-running bicharacteristic is extended from
the solution point, point (2),‘back to the initial-value plane, inter-
secting this plane at point (1), as illustrated in Figure 5. The
coordinates of point (1) are obtained using the following finite
difference form of equation (43) evaluated for the parametric angle of

o = m/2.
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%:(2) - x,(1) = 3 {u. (1) + u, (2)
+ Le(1) + c(2)I8,} [t(2) - (1)1 (i=1,2,3) (65)

For the first application of equation (65), the flow properties at
point (1) are equated to those at point (2), whereas, for ensuing
applications, the flow properties previously obtained at point (1) are
employed. The flow properties at point (1) are obtained by interpola-
tion using the quadratic bivariate polynomial given by equation (51).
Since the a#ia1 step [x(2) - x(1)] is determined by the CFL stability
criterion, equation (65) is used to compute [t(2) - t(1)], y(1), and
z(1). The orientation of the parametric vector B; in equation (65) is
selected so that this vector lies in the meridional plane that con-
tains the solution point. The unit vector o, is obtained using the
orthonormal relationship between @es Bis and ui/q (i=1,2,3).

At this stage, the wave surface compatibility equation correspond-
ing to the parametric angle 6 = m/2 is applied between points (1) and
(2). The appropriate equation is obtained by writing equation (54) in
finite difference form and solving for the pressure at point (2). De-
note this pressure by P*(Z). The resulting equation contains cross
derivatives (terms containing aui/axj) at both points (1) and (2).

For the predictor, the cross derivatives at point (2) are equated to
those at point (1), whereas, for the global corrector, the cross
derivatives at point (2) are evaluated at that point by fitting inter-
polation polynomials ia the solution plane.

The pressure P(2) is calculated from the Tocal Hugoniot equations.

* .
The pressure P (2) is calculated from the wave surface compatibiiity
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relation. The difference between P(2) and P*(Z) is driven to within
a specififed tolerance of zero using the secant method with iteration
being performed on the shock wave angle ¢(2). Two initial estimates
of $(2) are required to start the iterative process.

The shock wave point unit process is first applied as a predictor
for each shock wave solution point. In this application, the value of
o used in equation (59) is obtained by curve fitting points along space
curve (A), and the cross derivatives at the solution point are’equated
to those at the bicharacteristic base point in the initial-value plane.
After a tentative solution has been obtained at each shock wave point,

* a number of ensuing global corrections are performed. Here, the value
of a used in equation (59) is based on data along space curve (B), and
the cross derivative terms at the solution point are evaluated at that
point. The resulting overall algorithm has second-order accuracy when
the global correction is performed. The global iteration is terminated
when successive values of a have converged at each of the shock wave

solution points.

5. SOLID BODY-SHOCK WAVE POINT UNIT PROCESS

The solid body-shock wave point unit process is used to determine
the flow properties downstream of the shock wave at a point where the
shock wave intersects a solid boundary. This unit'process is used to
determine the solution for the points on the cowl on the downstream
side of the cowl lip shock wave, and for the points on the centerbody
or cowl on the downstream side of an internal reflected shock wave.
The method of computation is essentially the same for either applica-

tion. For the internal shock wave reflection, the flow properties
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downstream of the incident shock wave, which constitute the upstreéﬁ ;
flow properties for the reflected shock wave, are computed by the
modifjed field-shock wave point unit process discussed in Appendix E.
A depiction of the computational network used in the solid body-
shock wave point unit process is presented in Figure 7. A typical
solid body-shock wave solution point is denoted by point (P), with the
outward unit normal vector to the solid boundary at this point denoted
by Bb. The locus o% solid body-shock wave solution points represents
the intersection of the shock wave with the solid boundary and defines

space curve (A) in Figure 7. The intersection of the shock wave with

the meridional plane passing through point (P) defines space curve (B).

The unit vectors tangent to space curves (A) and (B) at point (P) are
denoted by E and %, respectively. The unit vector normal to the shock
wave at point (P) is denoted by ;s'

As for the bow shock wave point unit process, the unit vectors E,
E, and gs are referenced to the local coordinate system (x'.y',z'),

where x', y', and z' have the same definitions as noted before. More-

over, the tangential unit vector t again lies in the meridional plane :and

is defined by equation (58). In this scheme, however, the tangential
unit vector & does not 1ie in the (y',z')-plane in most cases, but
rather can have a nonzerc x'-component. This tangential unit vector

along space curve (A) may be represented by
SRR A Tt (66)

where ds is the differential arc length given by

s)? = (dx")? + (dy")? + (dz')? | | (67)
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J .
The derivatives in equation (66) are ob&ained by analytically differ-

entiating the expressions

) - 2
'xx(e) =a; t+ a0 +as (68)
y'(8) = b + b8 + b’ (69)
] 2 3
2'{6) =c, +ch +c 62 (70)
1 2 3

where coefficients ass bi’ and ¢ (i=1,2,3) are obtained by curve
fitting the respective expressions to three points on space curve (A).
For the cowl 1ip shock wave points, space curve (A) is defined by the
cowl 1ip itself, since the shock wave is assumed to be attached to the
cowl 1ip. Alternatively, for computing the downstream flow properties
at a reflected internal shock wave, space curve (A) is defined by

the intersection of the incident shock wave with the solid boundary.
The shock wave normal unit vector is found from equation (60).

The solid body-shock wave point unit process is initiated by
determining the body normal unit vector gb and the tangential unit
vector E. An assumption is then made for the shock wave angle ¢ in
equation (58), and, by use of equation (60), the shock wave normal unit
vector is determined. The local Hugoniot equations are then applied to
obtain the downstream flow properties at point (P). The velocity

normal to the wall is then obtained by forming the dot product of the

body normal vector and the downstream velocity vector. The normal

velocity is reduced to within a tolerance of a specified constant ¢ by
varying the shock angle ¢ using the secant iteration method. For

impermeable walls, the constant c is identically zero.
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6. INTERNAL FLOW SHOCK WAVE POINT UNIT PROCESSES

The unit process employed to compute the solution at a shock wave
point in the internal flowﬁfieiﬂ is similar to the bow shock wave point
unit process.;‘ln the inté}nal flow shock wave point unit process,
however, the f]ow properties upstream of the shock wave at the solution
point must be determined by the application of a modified interior
point unit process. Moreover, modifications to the internal flow
shock wave point unit process must be made when an internal flow shock
wave solution point 1ies on or close to a solid boundary. The various
versions of the internal flow'shock wave point unit process are pre-

sented in Appendix E.

7. INTERNAL SHOCK MODIFIED-INTERIOR POINT AND =SOLID BODY POINT UNIT
PROCESSES

In some situations during the computation of the internal flow
field, the interior point and solid boundary point unit processes
must be applied in a modified form. OCne such fnstance in‘which
a modified form of the interior point unit process must be applied is
shown in Figure 8. Here, the Mach cone, with apex at the interior
solution point,.intersécts not only the initial-value plane but also
the internal shock wave and a solid boundary. The unit process used in
this case requires determining the bicharacteristic intersection points
with the shock wave and the solid boundary in addition to the inter-
section points with the initial-value plane. Moreover, flow property
values must be determined at all of these points. The bitharacteristic-
shock wave and bicharacteristic-body intersection coordinates are cé]- '

culated using the procedures discussed in Appendix D, The flow
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property values at these points are obtained by interpolation, either
using a quadratic bivariate polynomial [equation (51)] for points on
the initial-value plane, or using a quadratic trivariate polynomial
for points on the shock wave surface or solid boundary surface. The
various interpolation schemes are discussed in Appendix C. A1l of the
unit processes, including the schemes incorporating the necessary
modifications to handle the internal shock wave, are presented in

Appendix E.
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SECTION V
GOVERNING EQUATIONS FOR THE BOUNDARY LAYER FLOW

1. INTRODUCTION

The fluid dynamic model for the boundary layer flow is based on

the following major assumptions:

1.
2.
3.

steady flow,
negligible body forces,

the working gas can be represented as a simple system in

‘thermodynamic equilibrium,

no internal heat generation other than viscous dissipation,
and
negligible pressure variation in the boundary layer normal

direction.

The governing equations for the assumed flow model are written in the

orthogonal curvilinear coordinate system of Figure 9, and consist of

the continuity equation, the component momentum equations, the energy

- equation, the thermal and caloric equations of state, and representa-

tions for the molecular transport properties and the turbulent eddy

diffusities. These equations are briefly presented in this section.

A detailed development of these equations is given in Appendix G.
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VY MERIDIONAL
PLANE

~BODY SURFACE

(X AND Z COINCIDENT WITH BODY SURFACE)

FIGURE 9. ORTHOGONAL CURVILINEAR COORDI-
NATE SYSTEM FOR BOUNDARY
LAYER COMPUTATION.
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2. GOVERNING DIFFERENTIAL EQUATIONS

The equations of motion for the boundary layer flow have been
derived in orthogonal curvilinear coordinates by Vaglio-Laurin (10).
The coordinate system selected for the present application is the
orthogonal curvilinear body-fitted coordinate system illustrated in
Figure 9. The curvilinear coordinate x is coincident with the body
surface and lies in a given meridional plane, the coordinate } is
orthogonal to the body surface, and the curvilinear coordinate z
is orthogonal to both x and y.

The continuity equation, when written in the (X, y, z)-coordinate

system, takes the form

—

~ 3 ~ ~
&= (phyli) + 2= (phy) + 2= (hih,e¥) = 0 (71)

9x 9z oy
vwhere u, v, and w denote the mean velocity components in the ;-,;-,and
§~directions, respectively, and p denotes the mean density. The

overbar (*) denotes a time averaged product with

~

oV = pv + p'y! (72)
where the primed quantities denote the respective time fluctuation
components. The parameters h1 and h2 are metric coefficients which
are functions of X and z only. For axisymmetric geometries, the metric
coefficients h1 and h2 can be represented by simple algebraic expres-
sions.

The component momentum equations in the x-and zdirections are
termed the streamwise and croSs flow mbmentum equations, respectively.
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The % and 2z momentum equations, respectively, are given by

~

-~ -~ -~ ~ —-—:?;u'- laded “'2
p il By W2, oy Py T awy
1 9x 2 3z y
TR o
13x 9y U ay
p %—-§¥-+ P %—'§¥'+ oV <L - pliWK, + plK,
T ox 2 o2 oy
e (74)
2 3z 3y 3y

In equations (73) and (74), P denotes the pressure, u denotes the

molecular viscosity, and Kl and K2 denote the geodesic curvatures of

the curves X = constant and z = constant, respectively, and are

defined by
_ 2h
- e 2 79
12 ax
ah
KZ =-hL—“1'_ (76)
12 9oz

The third component momentum equation, the normal (i.e., y) momentum

equation, is given by
¥ -0 (77)
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The energy equation is givei by

u_ OH w_oH , = oH
P = tepm =ty T
ax 3z ay

FEEL-AEET -] o
oy

where H denotes the mean total enthalpy per unit mass, H' denotes the
corresponding time fluctuation component, and Pr denotes the laminar
Prandt] number. It is assumed that the y-component of velocity is
small compared to the X- and Z-components, so that the mean total

enthalpy can be expressed as

~2  ~2
H=h+ 4 T W ;w (79)
where h is the mean static enthalpy per unit mass.
Boundary conditions for the above equations of motion may be
written as
y=0: u=0,w=0,v=v/(X, 2)
(80)
- s 5 BH_ Y Ao
H = Hw(x, z), or || =H w(x, z)
ay
y=8 u-= ue(x, Z), W= we(x, z)
(81)
H= He(x, z)
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where & denotes the boundary layer thickness, the subscript w denotes
wall conditions, and the subscript e denotes boundary layer edge
conditions.

The X- and E-compoﬂent momeﬁtum equatibﬁs reduce to the following

expressions at the boundary layer edge:

u_ au w_ ou
e e e @ ~ o~ ~ 2 1 oP
p, i ——=+p s—=——=-pUWK +pWwW K =-—-— (82)
e h1 % e h2 33 eee? ee 1 hl ™
U ow W oW :
e e e e o ~2 1 9P
p, ———+p T———==-pUWK +pu- K, =-7=-"— (83)
e h1 5% e h2 a3 eeel ee 2 h2 53

3. BOUNDARY LAYER ATTACHMENT LINE EQUATIONS

The cross flow velocity component (i.e., w) is identically zero
on a plane of flow symmetry. The flow on such a plane is usually -
referred to as attachment Tine flow. The attachment Tine is a stream-
line on the body on which both thevcross flow velocity component and
the cross flow pressure gradient are identically zero. The cross flow
momentum equation wi11’be singular on a flow symmetry plane since both
w and K, vanish there. %he singularity may be removed by first dif-
ferentiating the cross flow momentum equation with respect to z and
then employing that result in the analysis.

Performing the required differentiation and noting the appropriate
symmetry conditions yields the following system of equations for the

“attachment-line flow:
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= (ph,) + phyw, + 2= (h thv) =0 (84)
ax Ay
pidy gy, L2F, 'at[ulf--p(ﬂ";')] (85)
1 3x oy 1 3x y oy ‘ ,
~ W ":'3\7\; - — - oK
p%——§-+ pv——}+-'%w22‘,\-pusz1+pu2 2
1 ox 3y 2 9z
1 32 9 I : '
- teo u'—“- - p(w v ):] | (86)
2 3z ?y

- ~2
p UMy G 3 T, ey & (B il (a7
h Pra y 2

ow/3z. Equations (84) to (87) represent the continuity,

streamwise momentum, cross flow momentum, and energy equations,

respectively.

Equations (84) to (87) ars subject to the following boundary

conditions:

<
]
o
2
i}
o
-
NZ
[}
o
-
<?
L}
<
—
x
L
~
2
v———-)

(88)
H = Hw(x, z), or [:—;—] = H (X, z)
Z
y=6: 0=u/(X,2z), w, =w_ (X, 2)
(89)
H = Hy(X, z)
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The edge condition equation for the attachment line flow is given

by

~ p
Pelle _9_ = -2 (90)

4. THERMODYNAMIC MODEL AND MOLECULAR TRANSPORT PROPERTIES

The thermodynamic model and molecular transport property repre-
sentations for the boundary layer flow analysis are identical to those
used for the supersonic core flow analysis. Consequently, equations
(24), (25), (29), and (30) are employed in the boundary layer compu-

tation.

5. THREE-DIMENSIONAL TURBULENCE MODEL
Assumptions must be made for the Reynolds stress terms in the

boundary layer governing equations in order to compute turbulent flows.

In the present investigation, turbulent closure is achieved by employing

eddy viscosity and mixing length formulations. It should be noted that
the associated computer program is written in a modular form which
allows for the rapid substitution of alternate turbulence models
whether they be a]gebraié or higher-order transport equation models.
The present model is based on the Boussinesq eddy viscosity
concept. With this assumption, the Reynolds stress terms in equations

(73), (74), and (78) are represented by
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(91)

P
v o
‘<el:z

-oW'V = pe, (92)

&2

-pH'v* = PE, (93)

<, |2

In equations (91) to (93), €, and e, represent the turbulent eddy

X
viscosities for the streamwise and cross flow directions, respectively,

and € represents the turbulent eddy thermal conductivity. For the

present study, isotropic turbulence has been assumed, thus
€. = €. (94)

A two-layer turbulence model (20) is employed in the present study

where
€. = €. = €. (0<y S‘;T) (95)

-~
1)

€. T E. =€ (7 <y <) (96)

where €; and g, are the inner and outer region eddy viscosities,

1}

respectively, and ;T'is the value of the ;-coordinate where €; = &,

For the inner layer, the following mixing length expression is used
1 ~ '
‘ ~ 2 ~ 2172
e = o U7 (2 + [ (97)
Yy oy C
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where L is the mixing length, and STR is a parameter accounting for
the transition from laminar to turbulent flow. The mixing length is

given by

L= ky[l - exp(-y/A)] (98)

where k is the von Karman parameter, which is taken to be a constant

at the value
k = 0.40 (99)

and A is defined by
=pt Y /R /g
A=A N pW/uT (100)

In equation (100), v derotes the kinematic viscosity, the w subscript

denotes wall conditions, A+ is the van Driest damping factor given by

AT = 26.0 (101)

and GT is given by

1
3

u_= %5—] (102)

where Tws is the shear stress at the wall. The parameter N in equation
(100) takes different forms depending on whether or not there is mass

transfer at the wall. For impermeable walls, N is expressed as
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Gﬁi&:g" "g,ii. Qli“n'v rey

&LITy
u. py2 3
|\‘=[1- 11.8—-"1[—‘*] P*j , (103)
He Py
where
v du
ptu-E3 5 (104)
i 95 '
T

where ug is the velocity in the external streamline direction s. If

wall mass transfer exists, then N is given by

u P12 p+ H, ~
e Py v,, L

W, ~p 1%
W+
+ exp[11.8 . VWD (105)
where
‘\‘,‘ .
~+ _ W \
Vi —————GT (106)

For the outer region, the eddy viscosity is given by the velocity

defect relation

2y _ (32442 5] o~
u 24 w - (U +w")%dy (107)
where a is taken to be constant at the value
= 0.0168 e | (108)
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The expression for the turbulent thermal conductivity € involves

the turbulent Prandtl number Pr-t and is given by

€g = P—ﬁ— s (109)
t
where
g = ]:ef ¥ 522] (110)

The parameter 6TR incorporated into equations (97) and (107) is
an intermittency factor accounting for the transiticn from laminar to
turbulent flow. The assumed representations for GTR are presented in

Appendix G.

56

e




R T R R B e n 4 e e S R R RTINS TR R I s N RS S S B s SR T S

SECTION VI
TRANSFORMATION OF THE BOUNDARY LAYER EQUATIONS

1. INTRODUCTION

The boundary layer equations may be solved in either physical
variables or transformed variables. Solving the equations when they
have been expressed in transformed variables has a distinct computa-
tional advantage in that larger steps can be taken in the x-and z-
directions. This is because the solution profiles do not vary as
much when using transformed variables as they do when using physical
variables. The transformation used in the present study also stretches
the body normal coordinate and removes a large portion of the boundary
layer thickness variation for laminar flows. It also has the same
advantages for turbulent flows, although there is a greater variation

in boundary layer thickness for turbulent cases.

2. TRANSFORMED BOUNDARY LAYER EQUATIONS
The transformation used in the'present investigation was proposed

by Moore (11). A two-component vector potential is defined such that

phyii = 2% (111)
8y

phyw = i;% | | _ (112)
y | | &
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hyhyov = <[22+ 28 4 h (V) (113)
X 9z

The last term in equation (113) accounts for mass transfer at the wall
and is identically zero for impermeable walls. The governing equations

are now transformed according to the formal transformation

(Xs ¥s 2) + (X5 0» Z) (114)
where
%= (115)
z=12 (116)
T |
dn = [ N} 0 dy (117)
PekeX

where n is the stretched normal coordinate. The functions ¢ arnd ¢

take the forms

~ ~ L -~ ‘ -~
= 2
(peueueX) h, f(x, n, z) (118)

. w
¢ = (pghou X) hy [ ] 9%, m, 7) o (119)

e

where f and g are to be determined-by the analysis.

Equation (71) s satisfied identically when equations (111) to
(113) are substituted into it. Substituting equations (111) to (113)
into equations (73), (74), and (78) results in the following system of

equations:
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+ ! 1 " i f)ﬂ 1‘2-l
E:u te M| 4P FEN 4 Pagft + hy [p - (F)7]

o ol e A R PO S (120)
3z

' P
e )g] v rgfe +pygen + PsE? - (#9?

~

+:97,P“[ -(g)]w[f'-—]-'g"
U

=F"—[f'§§i- g" -aé] +r‘?-h—x—[g‘ 8 g —5}] (121)
1 ax 9X ug 2 % 8z 0z :
~2 “'2 1 r
+Pr Yo' |, Ye [ 1” e 3
c[1+ “’")‘*“ ! fie + 5 g'g" s
{ ( PrPr o P u2
e
[} ] [}
+ sze + P3g8' - Te
ol LU I P A (122)
1 X ax u. 2 0z 9z

where the primes denote differentiation with respect to n.

Equations (120) to (122) represent the streamwise momentum, cross flow

momentum, and energy equations, respectively. The following parameter

definitions are used for equations (120) to (122):
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(123)

(124)

" (125)

(126)

(127)

(128)

(129)

(130)

(131)

(132)
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(1+M+S - 2Khx)/2h

2h2

2+ e

€ /e6

e 1 - - X
(2P - N+R 2K2h2x)

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)

(142)

(143)
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c =Bl (144)
« peue
(pv)
- x% (145)
e'e
The appropriate boundary conditions are given by
n=0: f=0, g=0, f'=0, g'=0
6 =90 or 6' =g (146)
W W
n=n.: f'=1, g'=1, 8 =1 (147)

3. TRANSFORMED ATTACHMENT LINE EQUATIONS
The attachment line equations can be transformed in a similar

manner to that just outlined. Again, define a two-component vector

potential
ph,ii = ¥ | (148)
oy
ohyW, = %% (149)
hlthv = -[—2% + ¢] + hlhz(pV)w | (150)
X

Equations (114) to (i18) are again used, however ¢ is now definedwas

R P
¢ = (pghalX) ™ hy == g(x, n, z) (151)
u
e
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Substituting the above relationships into equations (85), (86),
and (87) yields

P
EJ(1+5: )f’] +Pfft 4 bgp 4 L 1E (g ):l T f
2
= ﬁﬁ.[f' le.- £ §;3 (152)
1 X ax
P

C(1+ ll'+Pfli+_l li+P fll__pj_
EZ ot g hgg g|m 8 0

= FX_ {fl Qg_'__ gu AEJ (153) |

1 X ax

P 62 | '
+_Y‘__ g'_ e _ _L_ u |
{C[[l te P"t] —+ o [1 Pr}ff } + P,fo
e

P ~

AR OF (150
2 1 9X X

Equations (152) to (154) represent the streamwise momentum, cross
flow momentum, and energy equations, respectively. The following new

parameter definiticns are employed:

(155)

]
=}
~
=

fl

g' = w,/w (156)
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SECTION VII
NUMERICAL SOLUTION OF THE BOUNDARY LAYER EQUATIONS

1. INTRCDUCTION

The transformed parabolic boundary layer equations presented in
Section VI are solved numerically using a second-order implicit finite
difference algorithm in which marching is performed in the x-direction.
The numerical aigorithm that is employed in the present investigation
is based on the Keller box scheme (12) originally used by Cebeci and
Keller for the computation of two-dimensional boundary layer flows (13).
An extension of that scheme to three-dimensionz1 flows has been
reported by Cebeci, Khattab, and Stewartsorn (14). The finite differ-
ence procedure given in Reference (14) is capable of computing both
positive and negative cross flows.

The finite difference algorithm used for the boundary layer
computation is briefly outlined 1ﬁ the present section. In order to
compute this flow, three different types of differencing schemes are
employed. The choice of which scheme to use depends upon whether the
cross flow velocity is positive, negative, or identica]Iy zero (plane
of symmetry flow). Since the respective difference equations are
quite lengthy, only a summary of the most pertinent equations is
presented in this section. A detailed development of those equations

is given in Appendix I.
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2. ATTACHMENT LINE FLOW

The numerical algorithm employed in the bou%ﬁafy»1ayer computation
is based on solving a system of first-order partialﬂdffferential equa-
tions. The transformed streamwise momentum, cross flow momentum, and
energy equations for the attachment line flow, given by equations
(152) to (154), respectively, can be written as a first-order system

by defining the following variables:

f' =y (163)
ut =y = f" (164)
g' - W (165)
w' =t=g" , (166) .
8' = A (167)

where the primes denote differentiation with respeét to n. Introducing
equations (163) to (167) intc equations (152) to (154) yields the

following system of first-order equations:

bv' + (b' + P2f + Plg/h2 - T)v

+ ll-(x -u

2 =_z. iu__ B_f. ’
By ) =3 [u Uy ) (168)

1 X X

, | p
ct' + (¢' + P,f + Plg/hiT)t+P8(uw -A) + Ei»(l - w2)

X [, ow af ~
+ (x - uf) T hs b2 e 2 (169)
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da' + (d' + P,f + Pig/h, - T)A + e'fv

+ e(f'v + fv') = -ﬁ% [u %E— - A %,t] (170)
X X

In equations (168) to (170), the focllowing parameter definitions are

employed:
b=C(1+ e:) | (171)
"c=C(1+ e;) (172)
-cli+ & Pr /
d cl ) Pr (173)
~2
e=Cp—(1-1/Pr) (174)
A= pe/p (175)

Equations (163) to (170) are solved using the computational
network illustrated in Figure 10. 1In Figure 10, the computational

cell step sizes are given by
n. =0, . + h, 7
Ny =Ny h‘]_1 (17e)

X =% (tko g (177)

where h; ; and k,_, are the mesh lengths in the n- and x-coordinate

directions, fespecti‘ve]y. Both hj and kn may be varied in the

calculation as deemed suitable. A variable n step size capability
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INITIAL-VALUE

(IS j<N)
(1€n<L)

o\ NORMAL SOLUTION NORMAL
y 1 ()
-'—kn"l ;' =O
j : i
8 |9 h_ | .
‘77 =
i + 1 ' N’ BoUNDARY
LAYER
l * X (n)

~ /L
(x|’77|)7 Ny

FIGURE 10. ATTACHMENT LINE FLOW COMPUTATIONAL

NETWORK..
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has been incorporated into the computer program by~u$ing the following

relations:

¥
n

K h,

;= Khy (178)

3
"

31 il i
= Loms LKy (179)

The computational grid point distribution for the n-coordinate is
then determined by specifying the constant step size ratio factor K
and the initial step size hl'

The finite difference expre..iops used to approximate equations
(163) to (170) are now presented in terms of the computational point

network presented in Figure 10. The five parameter definition equa-

tions, equations (163) to (167), are approximated by using centered

difference and averaging expressions taken about point (1) in
Figure 10, which is Tocated midway between the points (Rn, nj) and

(X,» n;_1). Performing the differencing yields:

J

enoen Mmooy (180)
J J-1 2 J i-1 ,

ul oyl -Ei‘—l(v"+v" ) =0 (181)
i "Y1z Yy T V54
n _ gn - h,.[-l (wn + wn-l ) =0 (182)

95 -1 z Y J

wh oyl -Ej—'—l—(t" sty - (183)
i "Y1tz YT
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j h.
n o_ g _J=1 0, =
85 - 851 5 (Aj Aj_l) 0 (184)
The finite difference approximations to equations [168) to (170) are
obtained by using centered difference and averaging expressions taken
about point (2) in Figure 10, which is the midpoint of the computa-

tional cell. This procedure yields the following equations:

V. - V., b. - b. P
T J Aj-l] i I 3 i miy
bj* (h J + l: - + (Pz)fj* + By 95x (T):lvj*

J-1 J-1

s uo-u ) f -F
= |2 g n n-1t = n n-1
[hl] Ej* ( Kn-1 ) vj* [- Kn-1 }] (18]

-~ r_' - W 3 - F
= [).‘.] m "n 7 ¥n-1 -1 T -1 (186)
| h1 N LS * [ Kn-1
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~ = i
A, -4, ] d. -d. P
@, e L F, + |G, - B,
‘J*l hi1 J P51 B LPY At K
e -e ) . _ _'F.-?._, I (A
+ _JF‘__J_fJ*V_*‘}- » j*_JT.J_ +fj*_J_h._J_
J-1 { 31 J-1
x)l= o -7 f -7
[E—] Uss N n-1} _x |0 n-1 (187)
1 kn-’1 J* kn-l

In equations (185) to (187), the following averaging notations are

used:

E SN 1 & —1 O
(@) = 5{a" +a"™) (188)
—~ _1,.n, nl
< .= B ¥ K
: aJ 7(0;] "'3 ) (189)
% — 1, n n
; @ = f(aj + aj-l) (190)
— _1,.n n n-1 n-1
Cyu = Tl(aj + o5 + o + a'j-l) (191)

" where o denotes a general function. Equation (188) is used solely
for variables which are functions of x and z only.
Equations {180) to {187) form a system of 8(N - 1) equations
when written for N points” along the solution normal. An additional
eight expressions can be obtained from the boundary condiitibns given

below.
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(192)

n= nN: u=1, w=1, 8 =1 } (193)

This then yields a total of 8N expressions for the 8N unknowns along
the attachment line solution normal provided that the flow properties
at station x__; are known.

The system of difference equations is solved using Newton's
method. In this method, the solution for any variable f at iteration
(k + 1) is found from the soiution at iteration (k) plus a perturba-

tion. Thus,

[f;i](k+1) ) [E;i}(k) . [%f;i](k) (194)

n
J
tien. The difference equations are obtained by substituting expressions

where f;' denotes any dependent variable and &f,; denotes its perturba-
like equation (194) into equations (180) to (187) and then neglecting
quadratic and higher-order terms in the perturbation quantities. This
produces a system of linear simultaneous equations for the perturbation
quantities which is block tridiagonal in form and which is solved using
an efficient direct matrix-factorization algorithm. The details of

the solution procedure are presented in Appendix I.

3. POSITIVE CROSS FLOW

The transformed streamwise momentum, cross flow momentum, and

energy equations for three-dimensional flow, given by equations (120),
72
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(121), and (122), respectively, can be written as a system of first-
order equations by again using equations (163) to (167). Introducing

those parameter definitions yields the following first-order system

for equations (120) to (122):

bv' + (b + Pof + Pog = TIV + 1+ (4 - u®) + P4 (a - W)
1

- X
+ P5(uw -A) = hl [u

QR
2|2

W X
-vi§+—e—w———-v—9- (195)
X h2 9z az

[ S
B

g ct' + (¢’ + P,f + Pyg - T)t + P( - u?) + -Sili}(x - W)

-

~ i .
+Po(uw - 2) = Xy My A, _;_,,,a_w_tgg] (196)
1 ax 9x 2

~

2
W
da' + (d' + P,f + Pog - T)A + e'[w +|-£ ;ﬂ

! e

?;

% ~ 12

. + e(uv' +u'v) + e :—e- (wt' + w't)

i u ‘

! e

~ WX

=Xy 30, 1€ |20 42 (197)
i 1 9 '} 4 ueh2 9z Y4

b
L
=

:
i
i

In equations (195), (196), and (197), the parameters b, ¢, d, e, and
A are again given by equations (171) to (175).
Equations (163) to (167) and equations (195) to (197) are solved

for positive cross-flow velocities (w > 0) using the computational
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network illustrated in Figure 11. The computational cell step sizes

are again given by equations (176) and (177), and by
z; =z, 1+ iy (198)

where r. . is the cell mesh Tength in the z-coordinate direction.

The finite difference equations used to approximate equations
(163) to (167) are obtained by using centered difference and averaging
expressions taken about point (1) in Figure 11, which is located midway
between the points (X_, n., 21) and (in, ns_ps Zi)' This procedure

n" J
yields the following equations:

n,i n,i _ __j_-_];' n,i n,i -
f7 -0 2 S B R 0 (199)
. . h. ( . )
n,i _  Mi _ T§-1f n,i n,1 | _ ‘
Y3 Yj-1 z Vi TV ) 0 (200)
. : h. ( . * )
n,1 n,1 - J'l Ny n,1 =
9 " 9541 z (" "M 70 (0]
wn,i - wnsi _ hi'l ftns.i + tn’i \ =0 (202)
3 j-1 2 |7 -1} 7
en,-i 0l'l,'i i E‘_J':lfAn,i + An,i ) =0 (203)
i " %1 2 (% 3-1)

The finite difference approximations to equations (120), (121), and
(122) are obtained by using centered difference and averaging expres-
sions taken about point (2) in Figure 11, which is the midpoint of the

computational cell. This procedure yields the following equations:
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-1, 5 \F _ e
L+ (P))F e + (P35 - (T |E

|
]
K, !
]
>
[}
-
M
+
L~
]
|

WX (6. -8 _ (9 -5 )
+ ~e } wj*[k.' . ]-1} - Aj* —J—r‘—,_,L-l- ) (206)
Uehz i-1 j-1

In equations (204), (205), and (206), the following averaging notations

are used:

_ ¢ . : - . RIEH
(3) = %_an,1+an,1 1, o i, " 1,i 1] (207)
— 1 i n,i-1 n-1,1 n-1,i-1
X + + +

a; =7 \aJ or.j ay o ] (208)
o M nyi-1 n,i n,i-1

— 1 Mi n-1,i n,i n-1,i

a; = E\a‘] + o o 1 + :qj-l ] (210)
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— 1 n,‘i n’i n-lgi n"‘l,‘i n,i"l
= Fla,  to:a +a. + o, + o,
%5k = FlO; a5 * 0y % g o5
n,i‘l n"l,‘i"l n_].,.i-l
+ o, + o + Q.
o5 1 o o5 1 (211)

where o denotes a general function. Equation (207) is used solely for
variables which are functions of X and z only.

Boundary conditions for equations (199) to (206) are given by
equations (192) and (193). Taken with the boundary conditions,
equations (199) to (206) form a system of 8N equations for 8N
unknowns along the boundary layer normal located at X = En and z =‘Ei,
provided that the properties at stations (X , z; ;) (X, _;»Z;), and
(in-l’ 51-1) are known. The system of difference equations is again
solved using Newton's method with a direct matrix solution procedure.

The details of the solution procedure are given in Appendix I.

4. NEGATIVE CROSS FLOW
The previcus section presented the finite difference algorithm

used for the computation of‘three-dimensiona1 boundary layer flow
when the cross flow velocity component is positive. Due to numerical
stability considerations, more fully explained in Appendix I, altera-
tions to the above scheme must be made when attempting to compute
boundary}]ayer flows with a negative cross flow velocity component.
These modifications are briefly discussed in this section.

The pertinent governing equations for reversed cross flow cases
are again given by equations (163) to (167) and equations (195) to
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(197). These equations are solved for negative cross flow cases
using the computational network illustrated in Figure 12. The compu-
tational cell step sizes in the n- and x-coordinate directions are
again given by equations (176) and (177), respectively. The computa-
tional cell is, however, now staggered in the z-coordinate direction

with the respective step sizes being given by

Z; =250t i . (212)
Z.., =27, %r, (213)

The finite difference equations used to approximate equations
(163) to {167) are obtained by using centered difference and averaging
expressions taken abcut point (1) in Figure 12, which is located midway
‘between the points (;n’ nss Ei) and (in, nyqs Ei)' This procedure
again yields equations (199) to (203). The finite difference approxi-
mations to equations (195) to (197} are obtained by using centered
difference and averaging expressions taken about points (2), (3), and
(4) in Figure 12, which are the midpoints of the three faées of the
computational cell. This procedure yie]dﬁ the following system of

equations:
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V. - V. b. - b.
e | J-1] _J J-1 T\F v
bJ*( h}- J + l: h + (Pz)fj* + (P3)‘QJ-

Jj-1

= -u F _F

= F_X‘: ‘(‘-.* “n " UYnoy -V, fn fn-lv
khlJ J kn-l - { kn-1
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ueh2 9z oz

I
——
,_F"|><e|
| S
e
i,
*
=)
=
oyl
= 1
b EI
3
-
| S Sy 4
)
Rl
Py
T
1
=
==
~al
1
= ]
3
=

(MY~ — — = —_ —_ o [— — —_
+ hi EJ* - (UJ*)Z] + (P4)3'* - (W‘*72 + ‘(Ps)[uj*wj*-kj*]

81




ORIGINAL PAGE IS
OF POOR QUALITY

(216)

+ (1 - g),w g%'r A E%
3z 9z

4

In equations (214), (215), and (216), the following averaging notations

are used:
— (
Aa) = %—an’1
—qf n.i
% T 2%
_ 1' n,i
(ln - ?kaj
- 1r n,1
ij* = ‘a‘_‘\dj
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+ q. (218)
J
n,i

+ aj'l
n,1 n-1,i n-1,i

+ a. + a. + 53 (220)
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where o denotes a general function. Equation (217) 1is used solely for
variables which are functions of x and z only. The final terms in
equations (214), (215), and (216) are centered at points (2) and (4),

and & is given by

g=tl 1 o (221)

Equations (214) to (216) are substituted for equations (204) to

(206) whenever the local cross-flow velocity component becomes negative.
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SECTION VIII
SHOCK WAVE-BOUNDARY LAYER INTERACTION ANALYSIS

1. INTRODUCTION

The boundary layer finite difference algorithm, presented in Section
VII, is employed to compute all of the forebody/centerbody and cowl bound-
ary layer flow except for that in the immediate vicinity of the shock
wave-boundary layer interaction regions. The flow in an interaction re-
gion exhibits an elliptical character in that downstream disturbances
may propagate upstream through the subsonic portion of the boundary layer.
Because of this phenomenon, it is not possible to adequately model the
flow in an interaction region using a parabolic system of governing dif-

ferential equations which cannot account for upstream influence. An

accurate numerical simulation of the interaction flow necessitates using

a three-dimensional compressible Navier-Stokes analysis which incorporates

the appropriate outflow boundary conditions. Although such an analysis
is possible, the attendant increase in computer execution time would be
prohibitive. Recognizing thiss a three-dimensional integral analysis was
selected for determining the interaction region flow in the present in-
vestigation. The analysis presented herein solves integral forms of the
continuity, streamwise momentum, and cross-flow momentum equations while
assuming that the boundary layer flow is isoenergetic immediately down-
stream of the shock wave reflection. The analysis used in the present
study represents an extension of the methods given in References (23),
(24), and (25). |

The shock wave-boundary layer integral ana]ysi§ is briefly discussed
in this section. It is presented in greater detail in Appendix J.

84

s

S RS T




e e e T S T e KIS A . ST TR TR R R T IS R

2. INTEGRAL ANALYSIS

The three-dimensional integral conservation equations are applied to
a series of control volumes where each control volume comprises a circum-
ferential segment of the three-dimensional shock wave=boundary layer inter-
action region, as illustrated in Figure 13. A given control volume is
bounded by the current boundary layer initial-value and solution surfaces
in the streamwise (x) direction, and by the wall and the boundary layer
edge surfaces in the normal (y) direction.

Following the suggestion of Paynter (25), the conservation equations
are applied in a plane which is orthogonal to both the wall and to the
space curve defined by the intersection of the shock wave with the wall.
This plane is shown in Figure 14 passing through the point (P), and can
be defined by the orthonormal triad of vectors £, ﬁb, and ¢. The unit
vector £ is tangent to the space curve at point (P), the unit vector ﬁb
is orthogonal to the solid boundary at point (P), and the unit vector &

is orthogonal to both t and ﬁb at point (P) and is given by

~

ny t (222)

~
g =

x

The tangential unit vector t can be determined from

t= @1+ 0+ (R (223)

where ds is the differential arclength along the space curve and can be

expressed as

(ds)? = (dx)2 + (dy)? + (dz)? | (224)
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After the unit vector ¢ has been determined, the angle o subtended
by o and A may be obtained, where X is a unit vector tangent to the body
and which 1ies in the meridional plane of point (P). A coordinate rota-
tion may then be employed to obtain the upstream boundary iayer velocity
components in the plane containing ﬁb and ¢. The body tangent curvi-

linear coordinates contained in and orthogonal to the plane of Hb and 3

_ are denoted by X* and Z*, respectively (see Figure 14). The boundary

layer velocity components in the x*- and z*-coordinate directions are
denoted by u* and w*, respectively, with G; and ﬁ; being the respective
boundary layer edge velocity components.

After the velocity components at the initial-value surface have been
transformed into the (x*, y, z*)-coordinate system, the integral conserva-
tion equations are applied to determine the boundary layer property pro-
files on the downstream side of the interaction region. A cross-section
of the control surface used in the integral analysis is depicted in
Figure 15, where the ihitia]-va1ue surface corresponds to station 1
and the solution surface corresponds to station 2. The respective
boundary Tayer thicknesses are denoted by §; and §,.

The ‘conservation equations consist of integral forms of the continu-
ity equation, the streamwise (i*) momentum equation, and the cross-f]ow
(z*) momentum equation. The energy equation is approximated by the assump-
tion that the toté] enthalpy at station 2 is constant in the y-direction,
and is equa] to the average total enthalpy at station 1. The integral
conservation equations take the form

61 02
J pu*dy = J pU*dY + Mg oo (225)
e} 0
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— (62 2 o 61 .2 -
P16y - Posy + P(8, - 6,) = J o(i*)%dy - J o(i*f &y (226)
[o] o]
61 tpne 82 ey
J ol W dy = J pu*w*dy (227)
[s] 0
Hy = H (228) -

where equations (225) to (228) represent the continuity, streamwise momen-
tum, cross-flow momentum, and energy equations, respectively. In the above
equations, P] and P2 represent the static pressure at stations 1 and 2,
respectively, and are assumed to be constant in the y-direction, and 7

is an appropriately weighted average pressure acting on the upper surface
of the control volume. The mean density and total enthalpy are again de-
noted by p and H, respectively, and mbleed is the bleed mass flow rate.
It was assumed in writing the above expressions, that negligible mass is
entrained into the boundary layer between stations 1 and 2, that viscous
shear stress effects may be neglected, and that mass bleed occurs normal
to the wall.

Since the upstream flow properties have been determined by application
of the finite difference algorithm, the integrals appearing in equations
(225) to (228) that are evaluated at station 1 may be determined directly by
numerical quadrature. To evaluate the integrals at station 2 requires that
representations for the downstream velocity profiles be chosen. In the
present investigation, the following turbulent power law profiles have been

selected

u =1 nf1 , (229)
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kL
W = w:nsz (230)
where
= y/é (231)

and the exponents g8; and g, are in the range

0 <y <1 (232)

0 <8y <1 (233)
The mean total enthalpy H may be expressed in terms of the mean static

enthalpy h as
2 25 z 2B
Ho=h+ ‘[u*) a2+ (i)’ Z] (234)

Since both B, and B, are bounded and (G:)z < << (ﬁ:)z, equation (234) may
be approximated as
n . (235)
For a simple system in thermodynamic equilibrium, the following expression
can be written

= p(h,P) (236)

where for a thermally and calorically perfect gas

with
= X
K= P (238)

Using the above relations allows the downstream integrals in equations
(225), (226), and (227) to be written for a thermally and calorically per-

fect gas as
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1
7, nl dn
pu dy = 262ue2 — | (239)
° IR I
28
f (%545 = Ka8y(ing)” 1 - 2 2B (240)
pPLU Jay = R20a(u_2 -
o Jo Ez 2( ) n ]
82 .. 1 oB1B24,
oUW dy = K262u W I E‘Z ~ % 2 25—] (241)
(o]

To obtain the downstream property profiles, initial estimates are made
for the exponents g; and B,. Then equations (225), (226), and (228) are
solved simultaneously while incorporating equations (239) and (240) for
the downstream integrals. This produces a system of two equations for the
downstream unknown quantities 6, and B;. These equations are solved using
a Newton-Raphson iteration scheme with g; serving as the perturbation quan-
tity. After convergence has been obtained for &, and By, equation (241)
is incorporated into equation (227), with the resulting expression being
solved using a Newton-Raphson iteration scheme employing B, as the pertur-
bation quantity. |

Determining the downstream boundary layer thickness &, and the
power law exponents 8; and B, completely defines the downstream property

field since H, was determined from equation (228). After the downstream

~% ~%
velocity components u, and w; have been calculated, the velocity components:

U, and wp can be determined by a coordinate rotation.
By applying the above analysis to a series of control volumes, the
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flow properties downstream of the shock wave-boundary layer interaction
region may be determined for the entire computed sector. This solution

is then used as initial data for restarting the finite difference bound-

ary layer computation.’

93

promven i f s -geemarar e




SECTION IX
OVERALL NUMERICAL ALGORITHM

1. INTRODUCTION

In this section, brief discussions are presented on the overall al-

gorithm control logic, generation of the initial data,,ﬁbUndary conditions,

shansport forcing

regulation of the marching step size, computation of t{
functions, and numerical stability. A detailed discussion of the overall

numerical algorithm is presented in Appendix K.

2. COMPUTATION OF THE SUPERSONIC CCRE FLOQMW

The overall numerical algorithm for the supersonic core flow com-
putation consists of the repetitive application of the various character-
istic unitlprocesses to generate the global solution for giveg boundary
conditions and a specified set of initial data. :

The contours of the forebody/centerbody and the cowl, in addition
to any planes of flow symmetry, constitute the boundaries of the computa-
tional flow regime. For the external flow field integration, the bow
shock wave also represents a computational boundary.

The supersonic flow initial data are specified on a plane of constant
X. The x-coordinéte axis is the 1ongitudina1 axis of the cenferbody and
the cowl (see Figure 1). Moreover, the mean flow direction is assumed
to be in the x-coordinate direction. ‘

An inverse marching scheme is employed in the supersonic flow numer-

ical algorithm. The solution is obtained on a family of space-1ike

planes of constant x. The solution points on each plane represent the
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intersection points of continuous streamlines which are propagated from

 the data points specified on the initial-value plane. Ihﬂaddition to the

streamline solution points, solution points are also obtained at the inter-

¥ section of the external and internal shock wn/;s with the solution plane,
t and for the internal flow field, on the space curves where the internal

} shptk wave intersects the solid boundaries. Thes2 space curves are de-

i

fined by the locus of shock wave solution points.

Except in the vicinity of a shock wave reflection with a so]id
boundary, the axial (x) distance between the current initia]-va]ﬂe plane
and the current solution plane is determined by the application of the
o Courant-Friedrichs-Lewy (CFL) stability criterion (8). In the vicinity

of a shock wave reflection with a solid boundary, the axial distance be-

! : tween successive solution planes is chosen so that the entire shock wave-
| solid boundary intersection falls between two adjacent solution planes.

The external supersonic flow about the forebody is ccmputed first.

e T e

The external flow field integration requires the'periodig addition of

streamlines in order to retain a well dispersed computaticnal mesh. Fur-

R

; thermore, periodic deletion of selected streamlines is also required so

that the number of computational points lies within bounds.

The internal supersonic flow field can be computed with or without
the discrete fitting of the internal shock wave system. The option in

which shock waves are not discretely fitted may be used in cases in which

IR - T R

the internal shock waves are quite weak in strength, and thereby an ac-

ceptable solution can be obtained by smearing the internal discontinuities.

3. COMPUTATION OF THE BOUNDARY LAYER FLOW |
Thé overall numerical algorithm for the boundary layer flow computa-
tion consists of the repetitive application of the attachment 1ine flow,
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three-dimensional flow, and shock wave-boundary layer interaction region
flow subalgorithms to generate the global solution for given boundary
conditions and a specified set of initial data.

The contours of the forebody/centerbody and the cowl, in addition
to the planes of flow symmetry, constitute the boundaries of the compu-
tational flow regime.

The boundary layer flow initial data are specified on body normal
rays of constant x. The x-coordinate axis ié the streamwise curvilinear
coordinate coincident with the body and contained in a given meridional
plane (see Figure 9). The mean boundary flow direction is assumed to be
in the X-coordinate direction. Separate sets of initial data are re-
quired to initiate the fbrebody/cehterbody and cowl boundary layer coim-
putations.-

The implicit finite difference algorithm is applied to compute all
of the boundary layer flow except for that in the shock wave-boundary
layer 1n£eraction regions where the integrai analysis is employed. The

finite difference algorithm first applies the attachment Tine flow sub-

~algorithm to calculate the boundary Tayer flow on the windward and lee-

ward planes of symmetry. The three-dimensional flow subalgorithm is
then applied to compute the boundary layer flow between the planes of
flow symmetry starting at the windward meridian and marching to the lee-
ward meridian for a given solution surface. The boundary layer solution
is obtained on an orthogonal curvilinear ‘mesh conforming to the local
surface curvature. As opposed to the bicharacteristic supersonic f]oﬁ
solution, individual streamlines are not followed in the boundary layer
computation. The boundary layer external flow properties are determined
by interpolation of the supersonic flow solution.
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When a shock wave-boundary layer interaction region has been en-
countered, the three-dimensional integral analysis is applied to compute
the property profiles on the downstream side of the interaction region.
The boundary layer properties on the upstream side of the interaction re-
gion are supplied by application of the implicit finite difference algo-
rithm. The external flow properties are obtained from the supersonic
core flow solution.

The streamwise step size used in the boundary layer computation is
selected to correspond to the axial marching step determined from the
Courant-Friedrichs-Lewy stability criterion used in the supersonic flow
computation. As a consequence, the supersonic flow and boundary layer

flow solutions are determined at the same axial stations.

4. SUPERSONIC FLOW INITIAL DATA

The supersonic flow initial data are specified on a plane of constant
X (see Figure 1). The flow must be supersonic at every pgint on this
plane. For uniqueness and existence of & geénuine solution, the values
of the dependent variables prescribed on this‘§UF£ace must have at least
continuous first partial derivatives.

If the forebody flow field is to be computed, the superSonic flow
initial-value plane must be specified at an axial (x) station that is
upstream of the forebody flow computational regime (see Figure 1). The
last solution plane of the forebody flow field computation is adjusted
to lie at the axial station of the cowl 1ip, and constitutes the initial-

value plane for the internal flow field computation. The cowl 1ip is

.assumed to be contained in a plane of constant x. Fdrthermore, the bow

shock wave must fall outside of the cowl 1ip, or, in the limit, intersect

the cowl 1ip exactly. The internal {low cannot be calculated if the bow
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shock wave is ingested into the annulus. The points on the solution plane
at the cowl lip axial station are redistributed to obtain a ring of solu-
tion points coincident with the cowl 1ip. ‘

1f the forebody is conical ahead of the axial station where the
supersonic flow initial-value plane is specified, an approximate flow
property field on this plane may be internally generated in the computer
program. The internally generated initial data are obtained by an approx-
imate technique which employs the Taylor-Maccoll solution for the flow
about a circular cone at zero incidence. A superposition method is then
used to obtain an approximation for the flow about a circular cone at
nonzero angle of attack by neglecting the cross flow effects. Aiterna-
tively, a more exact solution for the initial data for flow about a cir-
cular cone at incidence may be obtained by employing the results of Jones
(28). The Jones algorithm has been incorporated into the computer program

developed in the present study.

If the forebody is not conical ahead of the axial station of the

jnitial-value plane, then the initial data must be specified by the user.

If available, experimental data may be employed.

5. - BOUNDARY LAYER FLOW INITIAL DATA
: The boundary layer flow initial datg are specified at stations of

constant X (see Figure 9). Separate sets of initial data must be speci-
fied to initiate the forebody/centerbody and cowl boundary layer computa-
tions. For uniqueness and existence of a genuine solution, the prescribed
initia] data must have at least continuous first partial derivatives.

The forebody/centerbody boundary layer flow initial data must be speci-
fied at the same axial station at which the supersonic flow initial data
are specified. If the forebody is conical ahead of the axial station where
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the computation is to be started, then the initial data may be generated
using the implicit finite difference algorithm developed by Adams (29),
which is applicable to determining the boundary layer flow for a circular
cone at incidence. The Adams algorithm has been iricorporated into the
computer program developed in tﬁe present investigation. Use of the
Adams algorithm requires specification of the wall temperature.

If the forebody is not conical ahead of the axial station where the
computation is to begin, then the initial data must Se specified by the
user. Experimental data may be employed, if available.

The cowl boundary Tayer initial data must be specified at the axial
location of the first supersonic flow solution plane inside the annulus
(the boundary layer thickness at the cowl 1ip is identically zero). The
cowl boundary layer initial data may be internally generated in the com-
puter program using an approximate technique described in Appendix K.

Alternatively, arbitrary initial data may be specified by the user.

6. FLOW SYMMETRY

Four flow symmetry options have been incorporated into the supersonic
flow algorithm. The most general case is when no planes of symmetry exist.
This option is used to compute the flow field for fully three-dimensional
inlets at incidence. The second case is when one plane of flow symmefny
exists. This option is used for computing the flow field for axisymmetric
inlets at angles of attack. This second case of flow symmetry is the bne
most likely to arise in the class of problems being considered in the
present investigation. The third case is when two planes of flow symmetry
exist. This option is used to compute the flow field for three-dimensional
in1ets.with two pianes of geometric symmetry at zero angle of attack. The
final optioh is when the flow is axisymmetric. This option is used to
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compute the flow field in axisymmetric inlets at zero incidence.
One flow symmetry option has been incorporated into the boundary

layer flow algorithm. This is for the case of one plane of flow symmetry.

7. SOLID BOUNDARY SURFACES
The computer program developed in the present investigation assumes
that both the forebody/centerbody and the cowl are axisymmetric. For the
purposes of geometry description, the axial (x) domain is divided into a .
number of intervals. In any interval, the body radius r may be specifiﬁéf
by either tabular input, or by supplying the coefficients in the cubic /

polynomial

r(x) = a; + by{x - x3) + c5(x - x3)
where the subscript i denotes the ith interval, r(x) is the body radius

at axial position x (Xi <Xx < Xi+1)’ and the coefficients a5, bi’ Cis and
di are obtained by curve fitting the body contour. Since equation (242)

is a cubic, slope and curvature can be matched at the junction point be-

tween two adjacent intervals (i.e., spline fits can be employed).

More arbitrary geometries may be readily incorporated into the analysis

by replacement of the existing geometry mocule.

8. TEMPERATURE AND MASS TRANSFER BOUNDARY CONDITIONS

The boundary layer computation requires specification of the tempera-
ture or the normal temperature derivative at the wall. Constant tempera-
ture or temperature derivative boundary conditions may be specified. Al-

ternatively, an arbitrary wall temperature or temperature derivative
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distribution may be specified by tabular input. Quadratic interpolatfon
is employed to obtain the temperature boundary condition at the required
axial stations when the tabular input option is employed.

Mass transfer boundary conditions are specified by entering the axial;
locations of the boundary layer bleed zones and the mass flux within each

Zone.

§. INTEGRATION STEP SIZE REGULATION

Except in the vicinity of a reflection of the internal shock wave
with a solid boundary,'the axial marching step between successive super-
sonic flow solution planes is determined by the application of the Courant-
Friedrichs-Lewy (CFL) stability criterion (8). The CFL stability criterion
mandates that the domain of dependence of the differential equations be
contained within the convex hull of the finite d{fference network. That
is, the Mach cone must be inside the outer periphery of the nine initial-
value plane field points used in formulating the bivariate interpolation
polynomial, equation (51). The allowable axial step is given by

ax = [u?/(cq)1[1 - (c/q)(qzlu2

1/2
- 1) Ry (243)
where Ax is the marching step, and Rmin is the distance between the stream- -
line intersection point with the initial-value plane and the nearest point
on the convex hull of the finite difference network. Equation (243) is
applied at every streamline point on'thg initial-value plane, with the

actual integration step being chosen as the Ax value at the most restric-

~tive point. Equation (243) is applied only to streamline points. The

shock wave points are excluded. Moreover, in the internal flow field
101




integration, the shock wave points are ignored in defining the convex hull
of the finite difference network when applying the stability criterion to
a2 streamline point.

In the vicinity of a reflection of the internal shock wave with a
solid boundary, the axial step is controlled by the constraint that the
shock wave-solid body intersection is contained entirely between two ad-
jacent solution planes. The fit point stencéls used in formulating the
various interpolation polynomials are appropriately expanded, in this
case, so that the CFL stability criterion is satisfied.

As noted previously, the marching step used in the boundary layer
computation {AX) corresponds to the axial step determined by the CFL
stability criterion {ix). Although there also exists a marching step
stability limitation in the boundary layer computation, discussed in
Appendix I, the CFL stability criterion is usually the more restrictive

of the two.

10. CALCULATION OF THE TRANSPORT FORCING FUNCTIONS

The numerical procedure developed in the present investigation has
the capability to include the influence of molecular transport in the
supersonic flow solution by treating the viscous and thermal diffusion
terms in the governing partial differential equations as forcing functions,
or correction terms, in the method of characteristics scheme.— The compu-
ter program has the capability to include the influence of viscous ana
thermal diffusion in the computation of the supersonic external flow about
the forebody, and in the computation of the supersonic internal flow field
in which shock waves are not disérete]y fitfed. The program option in
which shock wavés are discretely fitted in the supersonic internal f]ow

field does not have the capability to include the influence of molecular
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transport in the computation, but rather assumes the supersonic flow to
be inviscid and adiabatic. The detailed calculation procedures used for

obtaining the transport forcing terms are presented in Appendix F.

11. NUMERICAL STABILITY

A stability analysis of the nonlinear supersonic flow finite dfffer-
ence algorithm including molecular transport was not attempted. Instead,
a stability analysis for isentropic flow was conducted. Stability of the
generalized analysis was then verified by actual numerical calculations.

Ransom, Hoffman, and Thompson (9) conducted a von Neumann linear
stability analysis of the basic interior point scheme which indicated
that interpolated flow properties, instead of the actual known values,
 shouId be used at the streamline-initial-value plane intersection point
[point (5) in Figure 3]. The present supersonic flow analysis uses inter-
polated flow properties at all points in the initial-value plane.

Stability of the boundary layer flow algorithm was verified by actual

nuiserical calculations.
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SECTION X
COMPUTATIONAL RESULTS

1. INTRODUCTION
Selected computational results are presented in this section to illustrate
application of the analysis. The results presented are divided into two major

categories: external flow about the forebody, and internal flow in which the

internal shock wave system has been computed. Both axisymmetric flow and three-

dimensional flow results are shown. For the internal flow Field in which shock
waves have been fitted, scme comparisons with experimental data and existing
computationatl methods are made. Additional supersonic flow results may be

found in Reference (1).

2. EXTERNAL FLOW RESULTS

For the purpose of testfng the external flow integration procedure, the
flow field about a right circular cone at incidence was computed. The super-
sonic flow for this case is a conical flow in that the solution is constant

along rays emanating from the vertex of the cone (i.e., there is no character-

istic length, so the solution has no depandency on x). At zero angle of attack,

the solution depends oniy on the angle subtended by a given ray and the x-axis.
At nonzero incidence, an azimuthal variation also exists. Tp obtain the re-
quired 1ni§1a] data, the results of Jones (28) were employed. The computed

results should maintain the conical nature of fhe flow field.
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Figure 16 presents numerical results obtained for a 10.0° half-angle
cone at 2.5° angle of attack a with a free-stream Mach number M_ of 3.0. The
computation‘employed 21 circumferential stations in the computed sector (half-
plane), and the number of radial stations on the initial-value plane was 11.
The computed static pressure P normalized by the free-stream static pbessure P,
is plotted versus the axial position x normalized by the cowl 1ip radius Rc.
The pressure distributions on the rays formed by the forebody and the bow shock
wave on both the leeward and windward planes of symmetry are shown. Since the
flow is conical, the solution should remain constant along eaqh of these'four
rays at the respective pressuke values at the appropriate points on the initial- 7
value plane. The initial-value plane pressures are denoted by the straight line |
segments. The method of characteristics solution is shown at a discrete number
of axial stations, each Station corresponding to the axial location of a given
solution plane. The bicharacteristic solution maintainsrfdéiﬁonical nature of
the flow field. |
p It should be noted that the increase in pressure across the leeward side
of the bow shock wave is minimal. As the angle of incidence is further increased,
the strength of the bow shock wave on the leeward side is reduced until the point

is reached whare the angle Qf attack is equal to the cone half-angle. At this

‘point, no shock wave exists on the leeward meridional plane. Further increase

in the angle of incidence causes a flow expansion to occur on the leeward side.
Since the present analysis assumes that a shock wave exists about the entire
forebody, the case where a fiow expansion occurs on the leeward side cannot be
computed.

Boundary layer computations where performed for a 10.0° half-angle cone

at 1.0° angle df attack o with a free-strean Mach number M, of 2.5. This
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computation employed 15 circumferential stations for boch the supersonic external
flow and the boundary layer flow. Twenty radial stations were employed in the
boundary layer computation. Figure 17 presents the computed boundary layer
velocity profiles at a station where x/Rc=2.0, and where the polar angle ¢
measured from the windward meridian is 90.0°. The normalized streamwise and
cross flow velocity components, denoted by (ﬁ/ﬁe) and (W/We), respectively, are
plotted versus the distance y measured normal to the wall. Figure 18 presents
the normalized static temperature (T/Te) profile for the same boundary layer
station. The boundary Tayer initial data were obtained using the Adams algo-
rithm (29). A constant wall temperature boundary condition was employed in

the computation. The wall temperature was zelected to equal the free-stream

stagnation temperature. Moreover, laminar flow was assumed.

3.‘ INTERNAL FLOW RESULTS

Internal flow calculations were performed for the Boeing Mach 3.5 super-
sonic mixed-compression inlet documented in Reference (30). The centerbody and
cowl coordinates of this inlet are listed in Table 1. The boundary contours
are illustrated in Figure 19 for the design case of zero centerbody translation.
This inlet has a forebody which is conical (the forebody is not shown in Figure
19). Consequently, all of the numerical solutions were started at the cowl Tip
axial station. The supersonic flow initial data were obtained by employing the
results of Jones (28). The forebody/centerbody boundary layer initial data were
obtained using the Adams algorithm (29). The cowl boundary layer initial data

were obtained using the approximate analysis described in Appendix K.
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TABLE 1
MACH 3.5 INLET COORDINATES

CENTERBODY COWL
r‘/Rc x/Rc r/RC
0.0 2.86 1.0
0.70532 3.1 1.004188
0.7228 3.2 1.0054
0.7387 3.4 1.0051
0.7512 3.6 0.99996
0.759 3.8 0.9882
0.7625 4.0 0.9681
0.763 4.1 0.954
0.7625 4.2 0.9364
0.7611 4.25 0.9261
0.7585 4.3 0.9154
0.7504 4.4 0.8949
0.7391 4.5 0.8768
0.7120 4.55 0.8695
0.6829 4.6 0.864
0.6525 4.65 0.86
0.6362 4.7 0.8572
0.618 4.8 0.8533
0.5973 4.9 - 0.8511
0.5744 5.0 0.8502
0.5467 5.1 0.85
5.6 0.85
5.8 0.8574
5.9 0.8646
6.0 0.8735

X ¢ Axial Position
r : Radial Position

Re: Radius of Cowl Lip
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The first supersonic core flow results employing the internal flow computa-
tional algorithm in which shock waves are discretely fitted are for the.design
conditions of M_ = 3.5, zero centerbbdy translation, and zero incidence (a=0°).
At the design point, the bow shock wave intersects the cowl lip exactly at zero
incidence. Since the flow field\is axisymmetric at zero incidence, it can be
computed using a two-dimensiona]rmethod. Comparisons of the supersonic core
flow results'obtained from the present analysis with those obtained from a two-
dimensional method of characteristics scheme (31) for the zero incidence design
point conditions are shown in Figures 20 and 21. 1In these figures, the static
pressure P normalized by the free-stream stagnation prescure PT is plotted
versus the axial position x normalized by the cowl 1ip radius R:. Pressure
distributions are shown fsﬁ both the centerbody and the cowl. The results ob-
tained by the two-dimensional method of characteristics algorithm are indicated
by solid lines, and the results obtained by the present analysis are indicated
by the dashed lines. Fifty radial stations were used in the two-dimensional
method of characteristics solution. Figure 20 illustrates the case where a
total of 11 radial stations (9 streamline points and an upstream and downstream
shock wave point) were employed in the three-dimensional method of characteris-
tics solution. Good overall agreement is observed. A slight smearing of the
pressure distribution downstream of the second intersection of the shock wave
with the centerbody and a slight shifting of the shock wave=solid body inter-
sections are present in the three-dimensional algorithm's results. The‘smearing
of the pressure distribution is primarily a consequence of the coarse mesh size
used in the three-dimensional scheme's solution. Figure 21 illustrates the so-
Tution obtained by the three-dimensional analysis wheq a total of 21 radial

stations were used in the computation. In this case, the agreement between
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the three-dimensional analysis and the two-dimensional analysis is excellent.
The pressure distribution behind the second shock wave-centerbody intersection

is predicted very well. The axial locations of the shock wave-solid boundary

intersections also agree very well. For this computation, the maximum devia-
tion in the computed mass f}dw rate at any sclution plane from that at the cowl
1ip solution plane was aapréximate1y 0.77 percent.

Comparisons of the results of the present analysis with experimental data
(32) for the Boeing Mach 3.5 inlet for «=0° are shown in Figure 22. Generally
speaking, good agreement is observed. Mass bleed effects were not accounted for
in this particular computation, rather an impermeable wall was assumed.

At a given free-stream Mach number, the centérbody assembTy must be trans-
lated forward of its design pcint position as the angle of incidence is increased

to maintain supersonic flow through the geometric throét of the annulus. The

forward translation of the centerbody causes the cross-sectional area of the

bl

geometric throat to increase. Moreover, as the free-stream Mach number is
reduced from the design point value, even further forward translation of the
centerbody is required. The prescribed nondimensional centerbody translation
will be denoted by Ax/Rc in the following discussion.

Results are presented below for the off-design condition of M_=2.5 with a

centerbody translation of Ax/Rc=0.855. Supersonic core flow results for this

T L

case are presented in Figures 23 to 26. Figure 23 illustrates the computed g
centekbody'and cowl pressure distributions for an incidence angle of o=0°.

Although the centerbody has been translated forward, the coordinate system -

origin is maintained at the forebody tip. Consequently, the internal flow

computational regime begins at x/RC=3.715. Generally speaking, the strength

of the internal shock wave system for this case is somewhat reduced as compared
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to the design point case. Figure 24 illustrates the computed pressure distri-
butions and some experimental data for an incidence angle of «=3.0°. Pressure
distributions for the centerbody and the cowl on both the leeward and the wind-
ward meridians are shown. Compared to the o=0° case, the strgngth;of the inter-
nal shock wave system is increased on the leeward side but reduced on the wind-
ward side. Experimental data are presented for the centerbody pressure on
the leeward meridian and for the cowl pressure on both the leeward and windward
meridians. Generally speaking; good overall agreement between theory and ex-
periment is obtained. For these three-dimensional computations, 21 circumferen-
tial stations and 11 radial stations (9 streamline points and an upstream and
downstream shock wave point) were employed in the computed sector (half-plane).
The maximum deviation of the mass flow rate at any solution plane from the mass
flow rate at the cowl 1ip solution plane for the o=3.0° case was 0.44 percent.
The computed pressure distributions on the centerbody and the cowl for both
the leeward and windward meridians for the incidence angle of a=5.0° are shown
in Figure 25. The leeward meridian shock wave strength has been increased
over the «=3.0° case, whereas the shock wave strength on the windward meridian
has been reduced. The maximum deviation in mass flow rate for the »=5.0° case
was 0.89 percent. Finally, to illustrate the effect of increasing angle of
attack on the centerbody pressure distribution, the centerbody results of
Figures 23, 24, and 25 are superimposed in Figure 26. The results presented
in Figures 23 to 25 are for impermeadble wall boundary conditions.

Additional supersonic internal flow results for the Mach 3.5 inlet at other

off-design conditions may be found in Reference 1. Comparisons of the present

i

algorithm with the results of the shock-capturing algorithm developed by Presley (33)

also may be found in Reference 1. The analysis presented in Reference 33 is based

on the use of the explicit MacCormack finite difference operator (34).
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Internal flow boundary layer calculations were performed for the Mach 3.5
inlet again for the case of an off-design centerbody translation of Ax/R.=0.855.

A11 boundary layer computations were performed for an incidence angle «=1.0°,

and each computation employed 15 circumferential stations and 20 radial stations

in the boundary layer computed sector. Both the forebody/centerbody and cowl
boundary layers were determined using impermeable wall boundary conditions. A
constant wall temperature boundary condition was employed with the specified
wall temperature being equal to the free-stream stagnation temperature. Initial
data for the forebody/centerbody boundary layer computation were obtained by
application of the Adams algorithm (29). Initial data for the cowl boundary
layer compuation were obtained using the approximate technique described in
Appendix K.

Initial attempts at computing the internal boundary layers were made assuming
entirely laminar flow. The numerical integration algorithm, however, indicated
cowl boundary layer separation at an axial distance that was approximately mid-
way between the cowl lip and annulus throat when a purely laminar flow was
specified. An ensuing computation was performed specifying transitional flow
onset locations slightly downstream of the entrance to the annulus. For the
forebody/centerbody boundary layer, the transitional flow onset location was -
specified at X/Rc=4.0. For the cowl boundary layer, the transitional flow onset
location was specified at X/Rc=0.3. Here, x is the streamwise curvilinear coor-
dinate measured from the forebody tip for the forebody/centerbody boundary layer
calcualtion, and measured from the cowl 1ip for the cowl boundary layer compu-
tation.

Computed velocity profiles for the internal flow forebody/centerbody bound-

ary layer calculation are presented in Figure 27. In Figure 27, the streamwise
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(ﬁ/ﬁe) and cross-flow (ﬁ/ﬁe) velocity profiles are plotted against the distance
y measured normal to the wall. These results are for a boundary layer station
that is at the axial location 'x/Rc'—-4.505 and at the polar angle ¢=90° where
the angle ¢ is measured from the windward meridian. The corresponding static
temperature profile at this location is illustrated in Figure 28.

Computed velocity profiles for the cowl boundary layer calculation are pre-
sented in Figure 29 for a station located at x/.R.C=4.505 and ¢=90°. Again,
the streamwise and cross-flow velocity profiles are plotted against the normal
distance y. The.corresponding static temperature profile is presented in

Figure 30.
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SECTION XI
CONCLUSIONS AND RECOMMENDATIONS

The flow field in a supersonic mixed-compression aircraft inlet at non-

zero angle of attack has been computed using a zonal solution algorithm which

divides the flow field into different computational regimes. The computational

regimes consist of a supersonic core flow, boundary layer flows adjacent to
both the forebody/centerbody and cowl contours, and flow in the shock wave-
boundary layer interaction regions. Separate analyses are used for each of
the different computational regions.

The culmination of the present research effort is a production type com-
puter program which has the capability to predict the flow field in a variety
of axisymmetric mixed-compression aircraft inlets. A number of conclusions
concerning the present analysis can be made:

1. The external flow field about the forebody can be accurately

calculated if a bow shock wave of reasonably strong strength
- exists.

2. For axisymmetric flows, the solution obtained py the present
analysis agrees well with the solution obtained by the two-
dimensional method of characteristics.

3. Except in the regions of strong viscous interaction, the results
of the present analysis agree well with experimental data.

Although the inlets analyzed were axisymmetric inlets, the computer pro-

gram can be readily modified to analyze geometries which have noncircular

cross-sections. Moreover, the inclusion of finite rate chemical reactions

135

et vz Y

¥ e S s 3 00 e O A <Y i, B g AL L 405



PO e e L

'.;:-:\ \

in the tharmodynamic model is reasonably straightforward. The analysis can be

modified to compute the external flow about a stepped cone and to compute

the internal flow when the bow shock wave has been ingested into the annulus.
Recommendations for enhancing the accuracy of the present analysis in-

clude improvement of the cowl boundary layer initial-data generation algorithm,

refinement nf the shock wave-boundary layer interaction region analysis, and

incorporation of displacement thickness effects into the supersonic core flow

solution.
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FPPENDIX A
GOVERNING EQUATIONS FOR THE SUPERSONIC CORE FLOW

1. INTRODUCTION

The major assumptions constituting the gas dynamic model for the super-

sonic core flow are:

1.
2.
3.

steady flow

negligible body forces

thermodynamic equilibrium (i.e., mechanical, thermal, and
chemical equilibrium)

no mass diffusion

negligible radiative heat transfer and no internal heat
generation other than viscous dissipation

viscous and thermal diffusion effects of secondary {importance

in determining the solution

The governing equations for the assumed flow model are written in Cartesian

coordinates and consist of the continuity equation, the component momentum

equations, the energy equation, the thermal and caloric equations of state,

and the appropriate representations for the molecular transport properties.

These relations are presented in this appendix.

2. DIFFERENTIAL EQUATIbNS OF MOTION

The general continuity equation* (3) is

Repeated indices imply summation over the range of 1 to 3 unless other-
wise noted.
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ptfPax, =0 (A.1)

where t denotes time, p is the density, Xs (i=1,2,3) denotes the three
rectangular coordinates x, y, ;nd z, respectively, and u, (i=1,2,3)
denotes the corresponding velocity components u, v, and w, respectively.
The operator D( )/Dt in equation (A.1) is the material derivative

given by

Dét) - agt) + U, gij) (A.2)

For steady three-dimensional flow, equation (A.1) may be written in

expanded form as

+ + + + + =
pu, *+ pv, * oW, + up, Vo, * Wp, 0 (A.3)

where the subscripts x, y, and z denote partial differention with re-
spect to the corresponding direction.
The appropriate momentum equation is the Navier-Stokes equation

( 3), which written in component form is

IS I THR T i T 3o |V o,

J J
O ]
+ 5;;- n ij (i=1,2,3) (A.4)

where Bi denotes the ith éomponent of the body force, P is the pressure,
u denotes the dynamic viscosity, and n is the second coefficient of

viscosity.
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A major assumption of the present analysis is that the effects
of viscous and thermal diffusion are of secondary importance in de-
termining the solution as compared to the inertial effects. Consistent
with this assumption ¢f inertial dominance, the viscous and thermal
diffusion terms in the governing differential equations will be treated
as forcing ot~ correction terms in the method of characteristic scheme
to be presented. In the following, the viscous and thermal transport
terms will be placed on the right-hand sides of the respective govern-
ing equations. The convective terms will be placed on the left-hand
sides, and will be considered as constituting the principal parts of
these equations. Thus, writing equation (A.4) with the assumptions of
steady flow, negligible body forces, n = 0 [Stokes's hypothesis'(4)];
and inertial dominance gives

e I IS (i=1,2,3) | (A.5)

J axj axi i

pu

where
| du,  du, au,
=9 |, |—1 il | _2_3 i .
F'i ij [IJ [ij + axiJ} 3 axi [uaxj} (1 ]’2’3) (A.6)

Treating the viscosity as a variable, equations (A.5) and (A.6)
can be written in expanded form for each of the three coordinate

directions as

puu, + pvu, +pwu, +P =F (A.7)

+ + +P =F A.8
puv, pvvy pwv, + P = F, ( )
puw, + pva + pwwzi+ Pz = Fz (R.9)

.139

o et s AR i A T

e b e

P



140

. A
RIGINAL PAGE &

where
= i - 2
Fy = “x5§ Uy 3(Yy + wzi] * Hy(uy + vx) + uz(uz * wx)
3 . T
+ ylx : : -
u[? Uy, * uyy tu, + 3(vxy + wxzi] (A.10)

- — _g
Fy B “yl3 vy 3(ux + wz)l * “x(vx + uy) + uz(vz N Vy)
s 1 ‘
+ p[; vyy + x + v, + 3(uyx + wyZ)l (A.11)

T
I

2
z “z[—% Wy - 3luyg vyﬂ gy up) +uy (i +vy)
1
u|3 oz ¥ Wxx T Wy T Flugy * vzyz] (.12)

Finally, it remains to obtain an appropriate form of the energy

+

equation. It is assumed in the present analysis that the working gas
can be represented as a simple system in thermodynamic equilibrium.

Under this assumption the thermodynamic relation (5)
Tds = dn - S (A.13)

is valid, where T denotes the absolute temperature, s is the entropy
per unit mass, and h is the enthalpy per unit mass. For a simple
system, specification of any two independent thermodynamic properties

defines the thermodynamic state of the system (5). Thus,
P = P(p,s) (A.14)

Employing the concept of the total derivative, and introducing the ma-
terial derivative operator given by equation (A.2), the following

relation may be obtained from equation (A.14).

L = W e e SRS
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.D_P_=-B_P.Dp+a_p.D_s
Dt Dt Bs Dt

The sonic speed a is defined by

*
3ap s
Thus, equation (A.15) may be written as

DP_ 200 _ ¢
Dt Dt e

where

Fo=[28) Ds
e 9s 9 Dt

(A.15)

(A.16)

(A.17)

(A.18)

The material derivative of entropy‘in equation (A.18) may be

expressed in terms of a thermal conduction function and a viscous dissi-

pation function. Consider the energy eguation in the following form

(3).

(e

e

De aTl 4 PDo
[K axi] + o Dt te

(A.19)

In equation (A.19), e denotes the internal energy per unit mass, k is

the thermal conductivity, and ® represents the viscous dissipation func-

tion which for n = 0 is given by

p
=_]__ au'i +ilii ..2_ k 3.
2 U ij axi 39 k ij!

(A.20)

where §.. is the Kronecker delta. Using the definition of enthalpy

1J
(h = e + P/p) in equation (A.13) yields
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Tds = de - 32— do (A.21)

From equation (A.21) the material derivative of internal energy may be

written as
De _ +Ds , P Do
Dt = T : + > Dt (A.22)
p
Introducing equation (A.22) into equation (A.19) yields
Ds _ 3 | _aT_
eT 3% 3% [KBXJ + 0 (A.23)

Substituting equation (A.23) into equation (A.18) gives
= gl0 | 2T
F = gExi {Kaxi] + @} | (A.24)

-1 (3P
&= oT [as}p (A.25)

where

By treating the thermal conductivity as a variable, and assuming

steady three-dimensional flow, equations (A.17) and (A.24) may be

written as
UP, VP + WP, - a’(up, ¥ Vo +wp)) = Fy (A.26)
where
F = E{K(Txx 4 Tyy +T,) KT+ KyTy +T,
+ u[?{ui + v§ + wi + uyVX + u_Wy + Vzwa + vi + wi
+ u§ + ws + ug + vg - %{ux + vy f wz)?}} (A.27)
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As in the component momentum equations, the viscous and thermal
diffusion terms in ﬁﬁé.energy equation have been placed on the right-
hand side and will be treated as forcing functions in the method of
characteristics scheme to be presented. The left-hand side is composed
of the convective terms which are considered to constitute the princi-

pal part of this equation.

3. THERMODYNAMIC MODEL

Before a solution to the system of governing partial differential
equations can be obtained, the temperature T, sonic speed a, thermo-
dynamic parameter £, viscosity u, and thermal conductivity x must be
expressed in terms of the dependent variables P and p. The representa-
tions for T, a, and £ are discussed in this section. The relations
for 1 and « are presented in the next section.

The general functional forms of the temperature T, sonic speed a,

and thermodynamic parameter £ may be expressed as

T = T(P,p) (A.28)
a = a(P,p) (A.29)
E:

£(P,p) (A.30)

For multicomponent systems, with either frozen or equilibrium chemical
composition, the functional relationships for T, a, and & are obtained
from thermochemical calculations. In the case of a thermally and

calorically perfect gas, the functional reiationships for T, a, and &

-

are simple analytical expressions given by
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T = P/R (A.31)
a = (yp/p)'/2 (A.32)
E=v-1 (A.33)

where v is the specific heat ratio, and R is the gas constant.

In the computer program developed in the present investigation,
the temperature, sonic speed, and thermodynamic parameter £ are calcu-
lated in a separate subroutine. The assumed thermodynamic model is
that of a thermally and calorically perfect gas, thus, equations (A.31)
to (A.33) are employed. Substitution of a replacement subroutine for

the existing one allows other thermodynamic models to be specified.

4. TRANSPORT PROPERTIES
Representations are required for the viscosity, the thermal
conductivity, and their spatial gradients. Both viscosity and thermal

conductivity are functions of temperature and pressure. Hence,

u(T,P) (A.34)

=
[}

k = k(T,P) (A.35)

Using equations (A.34) and (A.35), the spatial derivatives of viscosity

and thermal conductivity may be written as

B () o, (m) s (A.36)
axi aT p Bxi oP T axi

8 . [ek) oT . f[ek) 8P
Xs [aT]P 39X, * [3PJT X, (A.37)
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Hence, spatial derivatives of pressure and temperature are also
required. Spatial derivatives of pressure and density are employed
in the basic integration scheme (even for the inviscid flow case).
Thus, those derivatives are already available. Spatial derivatives
of temperature can be expressed in terms of spatial derivatives of
pressure and density by differentiating the thermal equation of state,
equation (A.28).

The pressure dependency indicated in equations (A.34) and (A.35)
is usually quite weak, and often both the viscosity and the thermal

conductivity are assumed to be functions of temperature oniy. Thus,

u(T) |  (A38)

=
n

A
1}

k(T) ’ (A.39)

The Sutherland formula (4) is a good representation for equation

(A.38).

1115 To+ S
W e [T;] £  (A.40)

In eguation (A.40), Mo is the viscosity at the reference temperature

To’ and S is a constant. Equation (A.39) can be represented by

(o
= P
K Pr (A.41)

where cp is the constant pressure specific heat, and Pr is the laminar

Prandtl number which is assumed to be constant in the analysis.
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In the computer program, the viscosity, the thermal conductivity,
and their spatial derivatives are computed in a separate subroutine.
The assumed functional forms of viscosity and thermal conductivity are
given by equations (A.40) and (A.41), respectively. Different formula-
tiens for the transport properties can be implemented into the computer

program by supplying an appropriate replacement subroutine.

LA R

Wy

st HAR

ek SBEER

AN R g S



;
3
L3

BT T A RSO LR

exensr s o pereyige O

APPENDIX B
DERIVATION OF THE EQUATIONS FOR THE CHARACTERISTIC
SURFACES AND THE COMPATIBILITY RELATIONS

1. INTRODUCTION

Systems of hyperbolic partial differential equations in n inde-
pendent variables have the property that there exist surfaces in
n-space on which linear combinations of the original differential
equations can be formed that contain derivatives only in the surfaces
themselves. Differentiation in these surfaces is performed in (n-1)-
space. The resulting differential operatcrs are interior operators
which are known as compatibility reilations. The surfaces are called
characteristic surfaces. A compatibility relation is valid only when’
it is applied on its corresponding characteristic surface. Furthermore,
data cannot be arbitrarily specified on a characteristic surface, but
instead must satisfy the compatibility relation.

The method of characteristics is based on replacing the original
syétem_of paétia] differential equations with an equivalent number of
compatibility relations applied on the appropriate characteristic sur=
faces. In flows with two independent variables, the method of char-
acteristics has the advantage of reducing the solution of a system of
partial differentia] equations to the solution of a system of ordinary
differential equations. In three-dimensional flow, however, the
resulting compatibility relations are still partial differential equa-

tions in two independent directions.
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In this appendix, the equations for the chavacteristic surfaces
and the corresponding compatibility relations are derived for steady
three-dimensional flow. For a complete discussion of hyperbolic partial
differential equations in three independent variables, referJto Courant
and Hilbert (15). An excellent presentation of the method of character-

istics for three-dimensional flow is given in Zucrow and Hoffman {16).

2. EQUATIONS OF MOTION

The partial differential equations of motion for steady three-
dimensional flow consist of the three component momentum equations,
the continuity equation, and the energy equation. Those equations are

developed in Appendix A, and are repeated below for reference.

puu, * pVuy + pwu, + Px = F, (B.1)
puv, + PV, oWy, + Py = Fy (B.2)
puw, * pva +opww, tP=F, (B.3)
pu, + pY,, * oW, +up + Vo, twp, = 0 (B.4)
uP, + vﬁy + WP - az(pr + pr‘+ sz) = Fq (B.5)

In equations (B.1) to (B.5), u, v, and w denote the x, y, and z compon-
ents of velocity, respectively, p is the density, P is the pressure,

a is the sonic speed, and the subscripts x, y, and z denote partial
differentiation in the corresponding direction. The nonhomogeneous

terms Fx’ Fy, F_, and Fe are the fofcing terms in the x, y, and z com-

z
ponent momentum equations and the energy equation, fespective1y. Writ-

ten in this form, with the left-hand sides constituting the prinicpal
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parts, equations (B.1) to (B.5) may be classified as a system of quasi-
linear nonhomogeneous partial differential equations of first order.
The system is hyperbolic (i.e., has real characteristic sfirfaces) if the

flow is supersonic.

3. CHARACTERISTIC SURFACES'®

The general compatibility relation, which is a Tinear combination
of the governing partial differential equations, is formed by multiply-
ing equations (B.1) to (B.5) by the arbitrary variables w; (i=1 to 5),

respectively, and summing. This yields
w](puux + pvu, + pwu + Px) + wz(puvX + PV, + pwy, + Py)
+ + +
+ ws(puw, + VW, + pwW, P,) + uwylpu, oV, + W,

+ up, + pr + sz) + ms[qu + va + wPZ

- az(upx +vo, +wp, )] = Wiy 0 g, ugF,  (8.6)

Equation (B.6) may be written as
p(uw] + w4)uX + me]uy opwwqU, + puw,v, + p(vw2 + w4)Yy

+ phwoY o + pUwaW me3yy +vp(ww‘3 + w4)wi

+ (w] + Uws)Px + (w2 + sz)Py +.(w3‘+ wws)PZ

+

2 2
u(w4 - azws)px + v(w4 -a ms)py +'w(w4 -a ws)pZ

(8.7)

wiFy *wgfy +ugfy + wgfy
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By noting the coefficients of the partial derivatives in equation

(B.7), the following vectors may be defined.

W, = [o(uwy +w,), pr]-, pwwy ] (B.8)
W, = [ouwys p(vw, + wy), pw,] (B.9)
Wy = [puwgs pviogs plWeg + w,)] (B.10)
W, = [lwg + uog)s (wy + vug)s (wg + wag)] (B.11)
W = [uluy - a%g), viwy - a%ug), wlw, - alug)] (8.12)

The directional derivative of a function f in some direction

2= (2x,2 ,22) is given by

y
daf L, af ,, of, . of
" Pxoax Fhyoy T A5z (B.13)

By considering equations (B.8) to (B.13), equation (B.7) may be written

as

du dv dw dP do .
<+ + o+ + = u.F + wF
-dlal.l sz dw3 dw4 dw5 T X 2'y

. wSFe (B.14)

+ m3F

where du/dw] is the directional derivative of u in the w1 direction,

etc.

On a characteristic surface, equation (B.14) reduces to an interior

operator, that is, differentiation takes place in the surface itself.
For this to occur, the vectors W} (i=1 to 5) must all lie in the
elemental plane which is tangent to the characteristic surface at the

point in consideration. This means that the vectors W} (i=]‘to 5) are
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linearly dependent. Let the normal to the characteristic surface be

denoted by N = (Nx’Ny’Nz)‘ Hence, on the chgracteristic surface

W =0 (i=1 to 5) (B.15)

=|

Equation (B.15) yields five linear homogeneous equations which may be

written in matrix form as follows

pU 0 0 pNx 0 Wy
0 pU 0 pNy 0 W,
0 0 pU pNz 0 wa =0 (B.16)
Nx Ny Nz 0 U w4
o 0o 0 U -l |y
where
U= uNX + vNy + wNz (B.17)

Since the system given by equation (B.16) is homogeneous, a nontrivial
solution exits only if the coefficient matrix is singular, which means
jts determinant must be zero. Evaluating the determinant and equating

it to zero yields

2

S 02 | 22
(pU)” [U% - a“(N + NU

+ )1 =0 (8.18)

Equation (B.18) is the characteristic equation for the original system
of equations, equations (B.1) to (B.5). The form of equation (B.18)

is that of a repeated Tlinear factor and a quadratic factor.
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Equating the two factors in equation (B.18) to zero yields the
equations of two real nonintersecting cones formed by the envelope of the
charactgfﬁstic normals at a point. Setting the linear factor in équatiOn

(B.18) ‘to zero gives (the case of p = 0 is immediately dismissed)
uNx + vNy + wNZ = q ﬂB.]Q)

Equation (B.19) represents a degenerate cone formed by the envelope of
characteristic normals at a point, each normal being orthogonal to the
local velocity vector. Hence, equation (B.19) represents a plane

normal to a streamline. The characteristic surface is the reciprocal
cone to this degenerate cone of normals, and, hence, is also degenerate,
consisting of line segments tangent to the streamlines. Characteristic
surfaces with normal components satisfying equation (B.19) are called
stream surfaces. The envelope of all stream surfaces at a point is a -
single pencil of planes whose axis is a streamline. A streamline may

be represented by the following equations
dx/dt = u dy/dt = v dz/dt = w (B.20)

where t is the time of travel of a fluid particle along the streamline.

Equating the quadratic factor in equation (B.18) to zero gives

2 2,02 2 2y _
(uNx + vN‘y + wNz) - a (NX + Ny + Nz) =0 (B.21)

Equation (B:21) represents the quadric surface of a right circular cone
formed by the envelope of characteristic normals at a poirnt. In gas
dynamics this cone is usually referred to as the cone of normals, and
is a real cone if q > @, where q is the velocity magnitude. EQuation

(B.21) may be written as

ZE T
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un, + vny + W, = a (B.22)

where n = (nx,ny,nz) js the unit normal to the characteristic surface.
Equation (B.22) was obtained by arbitrarily selecting the positive root,
and the results which follow are consistent with that selection. Char-
acteristic surfaces whose normal components satisfy equation (B.21),
or equation (B.22), are called wave surfaces.

Equation (B.21) is the equation for the cone of normals, which is

*
a quadric surface. In general, a quadric surface may be expressed as
Aijdxidxj =0 (B.23)

where x, (1=1.,2,3) denotes the three cartesian coordinates x, y, and
z, respectively, and A is a nine element coefficient matrix of order

two. A normal vector is a directed Tine segment, so
Ni =0 dxi (i=1,2,3) (B.24)

where N, is the ith component of the normal vector, and o is a constant
proportional to the length of the normal. By considering equations

(B.23) and (B.24), equation (B.21) may be written as
2 -
(ugus - a6, 5)dx;dx, = 0 (B.25)

where us (i=1,2,3) denotes the three velocity components u, v, and w,

respectively, and 61j is the Kronecker delta.

*Repeated indices imply summation over the range of 1 to 3 unless other-
wise noted.
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The characteristic cone, which is the envelope of all wave
surfaces at a point, is the reciprocal cone to the cone of normals
given by equation (B.21), or equation (B.25). The geometrical rela-
tionship between these surfaces is shown in Figure B.1. If the general
form of the equation of the cone of normals is given by equation

(B.23), then the reciprocal cone is given by ( 9)

-1 -
Aijdxidxj 0 (B.26)

where A’] is the inverse of the nine element symmetric matrix A in
equation (B.23). Using equation (B.25) to determine A from which A']
may be determined, eguation (B.26) for the characteristic cone may be

Equation (B.27) represents a real cone if q > a. Writing equation

(B.27) in expanded form yields
[u? - (q% - a2)1dx? + [v@ - (q2 - a%)1dy? + [W? - (4% - a%)1dz°
+ 2uv(dx)(dy) + 2uw(dx){dz) + 2ww(dy)(dz) = 0O (B.28)

The characteristic cone given by equation (B.28) is known as the Mach
cone and represents the envelope of‘a]1 wave surfaces at a point. The
Tine of tangency between a partricular wave surface and the Mach cone
is known as a bicharacteristic. Integration of equation (B.28) gives
the curved cone known as the Mach conoid.

in summary, for steady three-dimensional flow there are two

families of characteristic surfaces: stream surfaces and wave surfaces
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(see Figure B.2). The normal to a stream surface m&st satisfy equation
(B.19), and, hence, the stream surface contains the local velocity
vector. The envelope of all stream surfaces at a point is the streamline
through the point. The normal to a wave surface must satisfy equation
(B.21). The envelope of all wave surfaces at a point is the Mach cone.
The line of contact between a particular wave surface and the Mach cone
is called a bicharacteristic. At any point there are an infinite

number of stream surfaces and wave surfaces,

4. SOLUTION FOR THE w;

On a characteristic surface, equation (B.14) reduces to an interior
operator, that is, it becomes a compatibility relation. To obtain the
exact form of the compatibility relation, the w; (i=1 to 5) must be
determined.

For a stream surface, equation (B.19), repeated below, is valid.
= U =
uNX + vNy + wNz U=0 (B.19)

Substitution of equation (B.19) into the homogeneous system given by

equation (B.16) yields

o,

0 0 0 pNx 6‘ Wy
0 0 0 o, o fu, |
0 0 0 N, 0] ful =0 (B.29)
Ne o NN 0 o |u,
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The coefficient matrix in equation (B.29) is rank two (rank is the
number of nonzero rows in the row echelen form of a matrix). The
number of independent nontrivial solutions for the w; is equal to the
order of the coefficient matrix minus its rank, and hence, in this
case, is three. From equation (B.29), wg = 0 for all solutions, wg

is -arbitrary, while Wys Wys Wy satisfy the following equation.
w]Nx + mzNy + w3Nz =0 (B.30)

A set of three possible solutions is

Wy = Wy = wg T w, = 0, wg = 1 (B.31)
Wy = Uy Wy TV, Wy =W, Wy = wg = 0 (B.32)
wy = Sx’ wy = Sy’ wg = Sz, wg = wg = 0 (B.33)

The vector S = (Sx,Sy,Sz) in equation (B.33) lies in the stream surface
and is independent of the velocity vector.
On a wave surface, equation (B.21) is valid. That equation may be

written as
U= alﬁ1 (B.34)

where |N| is the magnitude of the normal to the wave surface. Substi-

tuting equation (B.34) into equation (B.16) yields

-
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pa|N| © 0 pNx 0 Wy
-0 pa|N] O pNy 0 w,y
0 0 palN| oN, 0 wyl = 0 (B.35)
NTONN N
" y ; 0 a|N| Wy
o o o0 af¥ -a°F| le
n )

The coefficient matrix in equation (B.35) is rank four, and, hence, one
independent nontrivial solution exists for the ws - The solutions for

Wys Wos Wgs and wg may be expressed in terms of Wy - Arbitrarily

selecting wp -1 yields

W, nX/a, w, = ny/a, we = nZ/a, wy = -1,

wg = -1/a% (B.36)
where n = (nx,ny,nz) is the unit normal to the wave surface.

5. COMPATIBILITY RELATIONS

The compatibility relations are obtained by substituting the
solutions for the w; into equation (B.6). The compatibility relations
valid along the stream surfaces are obtained by substituting equations
(B.31) to (B.33) into equation (B.6). The results are

2
qux +’ va + wPZ - a (upx + vp

y ¥ Wpy) = F

o {B.37)
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u(uu, + vu_ + wu_) + + v+ + W+
pu( « A z) pv(uvx wy wvz) pw(uwx v,

+ wwz) + Pt va *wp, = uFX + va + wF, (B.38)

pr(uux vy 4 wuz) + pSy(uvx + vvy+ wvz) + pSZ(uwx oy

+ wwz) + SXPx + Sypy + SZPZ = Sxe + SyFy + SZFZ (B.39)

Note that equation (B.37) is the same as equation (B.5), which shows
that the energy equation is characteristic to begin with.

Equations (B.37) and (B.38) may be written in a form that repre-
sents differentiation in the streamline direction only. From equation

(B.13), noting that for a streamline L= Us &7V, and Ly =W,

v
the directional derivative along a streamline is given by

R s 3 =

where t is the time of travel of a fluid particle along the streamline.

Using equation (B.40), equations (B.37) and (B.38) may be rewritten as

dpP _.2

dP _.2dp .
dt a dt Fe (B.41)
du dv dw , dP _ . ,

The compatibility equation that is valid along wave surfaces is
obtained by substituting equation (B.36) into equation (B.6). The

result is
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an_(uu_+ vu + + + +
p x( y Y qu) pany(uvx v, wvz)

+ panz(uwx + va - wwz) + (an; - u)Px + (any - V)By

. 2 ‘ _
+ (anZ - w)PZ - pa (ux + vy + wz) = A (B.43)
where
A= a(n‘x‘Fx + nyFy + nZFZ) - Fe (B.44).

Equation (B.43) may be writter in a form that contains differen-
tiation in the bicharacteristic direction. A bicharacteristic is a
ray or generator of the Mach cone. The Mach cone is the reciprocal cone
to the cone of normals (see Figure B.1). As a consequence, a bichar-
acteristic is orthogonal to the surface of the cone of normals. The
equation for the cone of normals is given by equation (B.21). Substi-

tution of equation (B.24) into equation (B.21) yields the equation for

the surface of the cone of normals in standard form [f(x,y,z) = constant].

Differentiation of this expression to obtain the gradient yields the
direction of the bicharacteristic. This gives L, = (u - anx),

zy = (v - any), and L, = (w - anz) in equation (B.13), so that differ-
entiation in the bicharacteristic direction is given by

d() . (u - anx) %é*l-+ (v - any) %é—l + (w - anz) %é,). (B.45)

dt

In equation (B.45), t is the time of travel of a fluid particle along
the streamline that is the axis of the Mach cone. fhe relationship be-

s

tween the vectors 2, V, and n is shown in Figure B.3.
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2r 2 2 2 »
* +
{pa [nxux nyvy + nzwZ + (uy + yﬁ)pxny + (uZ + wx)nxnz

L

(v, + wy,)nynz]}
may be added to and subtracted from equation (B.43), and then by employ-

ing equation (B.45) the following form of the wave surface compati-

bility relation may be obtained.

du, by, w2002
pan, g¢ ¥ ean gr + pan, g - gp = A - eaLlng - Nuy

2 2
+ (ny - I)Vy + (nz - 1)wZ + nxny(uy + Vx) + nxnz(uz +‘wx)

+ nynz(vZ + wy)] (B.46)

The terms in brackets in equation (B.46) are known as cross derivatives
and represent differentiation in the wave surface in a direction normal
to the bicharacteristic direction.

Equations (B.29) and (B.35) determine the number of independent
differential compatibility relations valid along a particular stream
surface and a particﬁlar wave surface, respectively. At any point
there exist an infinite number of stream surfaces and wave surfaces.
‘However, the number of independent compatibility relations cannot exceed
the number of independent equations of motion. Hence, it is necessary
to determine which of the possible combinations of compatibility rela-
tions are independent. Rusanov (§ ), using a proof ip the space of
characteristic normals, has shown’that for steady three-dimensional

isentropic flow two of the stream surface compatibility relations and
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the single wave surfaée compatibility relation applied along three
different wave surfaces form an independent set of characteristic
equations. Rusanov's results may be extended to the present prob]ém
since the principal parts of equations (B.1) to (B.5) are the same as
those for isentropic flow. Thus, for the present problem, an inde-
pendent set of compatibility equations Consists of equations (B.41)
and (B.42) applied along a streamline, and equation (B.43) [or equa-

tion (B.46)] applied along three different wave surfaces.

6. BUTLER'S PARAMETERIZATION OF THE CHARACTERISTIC EQUATIONS

The numerical algorithm that is employed in the present investiga-
tion is based on a second-order scheme devised by D.S. Butler (7),

This scheme has been used by Ransom, Hoffman, and Thompson ( 9) fo
compute isentropic steady three-dimensional nozzle flows, and by Cline
and Hoffman (17) to compute chemically-reacting steady three-dimensional
nozzle flows.

In this section, Butler's parameterization of the characteristic
equations is presented. The discussion below is Timited to the partic-
ular application of Butler's method to the present problem. An excel-
lent review of Butler's general method is given in Ransom, Hoffman, and
Thompson ( 9). |

For Butler's scheme to be applicable, the characteristic determin-

ant must be composed of a quadratic factor and a repeated linear factor.

The determinant of the coefficient matrix in equation (B.16) is the
characteristic determinant for the present problem, and hy examination
of equation (B.18) it is seen that it is composed of the required'

factors. The quadratic factor corresponds to the wave surfaces. The




envelope of all wave surfaces at a point is the Mach cone. The line of
tangency between a particular wave surface and the Mach cone is a bi-
characteristic. The linear factor corresponds to the stream surfaces.
The axis of the envelope of all stream surfaces at a point is a
streamline. Butler's method assumes that for the linear factor,
differentiation can be expressed soley along the axis of the envelope
of the corresponding characteristic surfaces. Examination of equations
(B.41) and (B.42) demonstrates that this condition is applicable.

As discussed in the first section of this appendix, if the system
of governing partial differential equations has differentiation oc-
curring in n-space, then differentiation in the characteristic surfaces
occurs in (n-1)-space (i.e., differentiation is performed in a mani-
foid of one lower dimension). As a result, for three-dimensional flow
(n=3), the general form of a compatibility relation valid along a

characteristic surface may be written as
= ] -
E\)(auvlax]‘) + rv(au\)/axz) =D (B.47)

where the repeated index v implies summation over the range of 1 to 5,
x% (i=1,2) denotes two independent directions in the characteristic
surface, u, (v=1 to 5) denotes the dependent variables, and Ev’

F, (v=1 to 5), and D are general functions of x% and u- For stream
surfaces, differentiation may be expressed solely in the streamline

direction [see equations iB.41) and (B.42)]. Consequently, in the

 following, the discussion will be limited to the wave surfaces.

For steady three-dimensional flow, Butler introduced the following

parametric representation for a bicharacteristic.
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dxi = (ui + caicose + cBisine)dt (i=1,2,3) (B.48)

In equation (B.48), Xs (i=1,2,3) denotes the three cartesian coordinates
X, ¥, and z, respectively, u, (i=1,2,3) denotes the corresponding
velocity components u, v, and w, respectively, 6 is a parametric angle
denoting a particular element of the Mach cone and has the range
0<6<2m tis the time of travel of a fluid particle along the

streamline that is the axis of the Mach cone, and ¢ is defined by

2

¢ = a%?/(q® - a%)

(B.49)
shere q is the velocity magnitude and a is the sonic speed. The vec-
tors o, and Bi are parametric unit vectors with oy Bi’ and
ui/q (i=1,2,3) forming an orthonormal set. A geometrical representation
of this parameterization is given in Figure B.4.

The direction specified by equation (B.48) lies in the wave surface
and s in the bicharacteristic direction. A direction in the wave
surface and orthogonal to the bicharacteristic direction may be written

in parametric form as
m, = csicose - caisine (i=1,2,3) (B.50)

Verification of thekorthogona]ity of the directions given by equations
(B.48) and (B.50) may be accomplished by forming the dot product

(midxi) and using the orthonormality relations
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FIGURE B.4. BICHARACTERISTIC PARAMETERIZATION
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(B.51)

a0 = ByBy

2 _
uiui/q

By considering equation (B.47) and selecting xi and xé as the
directions given by equations (B.48) and (B.50), -respectively, the

following form of the wave surface compatibility reﬁation is obtained.

) Suv
Av(ui + co.cos0 + cBis1ne) 5;; =
Bu
B + C (cB cos® - co. 51ne) ax (B.52)

In equation (B.52), Av, B, and C are functions of o, ugs and Xs -
Employing equation (B.13), and noting from equation (B.48) that along a

bicharacteristic

%; = u; + co.cCosd + csisine (i=1,2,3) (B.53)

equation (B.52) may be written as

du i 3Uv
Av @y =B+C (cs cosh - ca1s1ne) Bx (B.54)

where the operator d( )/dlprepresents the directional derivative along
the bicharacteristic. The general forms of the coefficients Av’ B

and CV are given by Butler as

Av = A]v + AZvCOSB + A3vsin6 : - (B.55)

B =B+ Bzcose + B3sin6 | (B.SG{

3
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Cv = C]v + C2vcose + C3vsine (B.57)

where the Akv’ Bk’ and ckv (k=1,2,3 and v=1 to 5) are independent of 0.
In addition tq the parametric wave surface compatibility relation,
given by equation (B.54), Butler also developed a noncharacteristic
relation which is’épplied along a streamline. This noncharacteristic
relation is used in the numerical scheme in conjunction with the wave
surface compatibility relation applied along four different bichar-
acteristics, and permits the formulation of three independent linear
combinations of these five equations which do not contain cross deriva-
tives at the solution point. The cross derivative terms [see equation
(B.46)] represent differentiation in the wave surface but in a direc-
tion orthogonal to the bicharacteristic direction [i.e., differentia-
tion in the direction given by equaticn (B.50)]. Butler presents the

noncharacteristic relation in the form

du u

b ) ot
Avar = By * (Cp,08; - Cg 00y % (B.58)

where the operator d{( )/d\ represents the directional derivative along
the streamline. The coefficients A]v’ B], CZv’ and Cay (v=1 to 5) in
equation (B.58) are obtained by inspecting the form of equation (B.54)
and then using equations (B.55), (B.56), and (B.57).

 For the present problem, the actual form of the parametric wave -
surface compatibility relation, equation {B.54), may be obtained by
substituting the appropriate parametric form of the wave surface unit
normal into the compatibility relation, equation (B.43). The normal
‘to the wave surface is also the normal to the Mach cone at a point

common to both surfaces. The quadric surface of the Mach cone is
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represented by equation (B.27), repeated below.

[u us - (q - az)Sij]dxidxj =0 . (B.27)

Substituting the parametric form for dxj, given by equation (B.48),

into equation (B.27) yields
[u.u. - (q2 - a2)6..](u. + ca.cos6 + cB.sinf)dx. = 0 (B.59)
1] 137 J J J 1 T
The ith component of the normal Ni to this surface is

2 ;
[u ug - (q -a )Gij](uj + C0.,C0SH

1 J

+ cB;sing) (i=1,2,3) (B.60)

2
L3

Employing the orthonormality conditions given by equation (B.51), equa-

tion (B.60) may be written as

N = a’[u; - (a%/c)(a;cos0 + B,5in8)] (i=1,2,3)  (B.61)

Dividing equation (B.61) by the magnitude of the normal |[N| =
(N N. )1/?1 and using equation (B.51), the parametric form of the wave

surface unit normal is obtained.

n; = (a/c)(cu /q - a;cos6 - B, sing) (i=1,2,3) (B.62)

Substituting equation (B.62) and the orthonormality relation

| L2 |
o0y + BiBj + ”iuj/q = Gij (B.63)

into the wave surface compatibility relation, equation (B.43), gives

the following parametric form of that equation
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dp c(a.cos6 + B.si e)ggi;= ¢ - cz( i
at ¥ Peloy S1n°gg pC laysing
. Bu;
- Bicose)(ajs1ne - Bjcose)S;g (B.64)
where
8 = - (c2/a®) | (B.65)

The operator d( )/dt in equation (B.64) denotes differentiation in the
bicharacteristic direction. -
It should be noted that the directional derivatives in equations
(B.46) and (B.64) are not identical. The directional derivative in
equation (B.46) is based on equation (B.45). Substitution of the
parametric unit normal, given by equation (B.62), into equation (B.45)

yields

d( ) . (2,2 . va( )
It (a"/c )(ui * ca,cos6 + cBis1n8)8xi (B.66)

The directional derivative in equation (B.64) is given by

i (ui + caicose + cBisine)%ﬁjl (B.67)
; ,

Hence, the two expressions differ by the factor (a2/c2).
Finally, it remains to determine the actual form of the nonchar-
acteristic relation, equation (B.58). Denote u, (v=1 to 5) and

Xs (i=1,2,3) in equations (B.54) and (B.58) by

uy = u, U = v, U = W, Uy = P, Ug = pv
Xp = X Xo = Y5 X3 =2 | , (B.68)
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By inspection of equation (B.64), and use ofigquétions (B.68), (B.55),

(B.56), and (B.57), the noncharacteristic relation is seen to be

ou.,
[+ P i
9F 9 - pC (aiaj‘l-B.iBj)axj (B.69)
where
_ 2,2 2,2 ,
o= (c/a )Fe (c/q )(uFX + vEy + sz) (B.70)

The operator d( )/dt in equation (B.69) denotes the directional deriva-
tive along a streamline.

In summary, Butler has developed a bicharacteristic parameteriza-
tion given by equation (B.48). The corresponding parametric form of
the wave surface compatibility relation is given by equation (B.64).
Butler also developed a noncharacteristic relation, given by equation
(B.69), which is applied along a streamiine. These relations, along
with the stream surface compatibility relations, equations (B.41)
and (B.42), constitute the system of compatibility relations. The use
of this system of equations in the various unit processes is presented

in Appendix E.
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APPENDIX C
INTERPOLATION

1. INTRODUCTION

In the course of computing'the flow field, a number of situations .

arise which require interpolation. To this end, univariate, bivariate,
and trivariate interpolation polynomials are employed in the numerical

algorithm. These interpolation schemes are presented in this appendix.

2. UNIVARIATE INTERPOLATION

Univariate interpolation i3 required in geometry description,
calculation of the transport forcing terms, and in determination of the
properties along a space curve formed by the locus of shock wave solu-
tion points. Applications to geometry description and transport term
computation are discussed in Appendices D and F, respectively. The
application to the determination of properties along a shock wave is
discussed here. .

When a shock wave intersects either a solid boundary or a solution
plane (a plane of constant x), a space curve is defined as illustrated
in Figure C.1. Interpolated values of position, shock wave angle, and
flow properties are reguired along this curve. For this purpose, the

quadratic polynomial

- + a.62
£(8) = a) + a0 +aP (C.7)
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is emplioyed, where f(6) denotes a general function expressed in terms

of the polar angle © given by
6 = tan”| (z/y) (C.2)

where y and z are the coordinates of a point on the space curve. The
coefficients a; (i=1,2,3) in equation (C.1) are determined by fitting
this expression to three data points on the space curve, and, as a
consequence, a system of three simultaneous linear equations must be
solved for the coefficients a, of each function representation. The
solution to this system of equations is obtained using a Gaussian

elimination method with complete pivoting (18).

Figure C.1 illustrates typical data point stencils used for de-
termining coefficients in equation (C.1). The fit point array con-
- sists of a base point, which is the roint closest to the position of

the interpolated point, and the immediate neighbors of the base point.

- e

3. BIVARIATE INTERPOLATION

Bivariate interpolation is required for property determinaticn in
a given solution plane (a plane of constant x). Two types of bivariate
interpolation polynomials are employed in the numerical algorithm.
They are a linear bivariate polynomial whose three coefficients are f:
determined by fitting this expression to three data points, and a
quadratic bivariate polynomial whose six coefficients are determined
by a least squares fitting of nine data points.

The linear bivariate polynomial is used in the single appli-

cation when a streamline-shock wave intersection point is sufficiently

close to the current solution piane so that an interior point unit
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process on the downstream side of the shock wave is not performed.
In that case the prejection of the streamline onto the solution plane
and subsequent property interpolation in this plane is performed. The

bivariate interpolation polynomial used in this case is
fly,z) = a; +ay +ayz (C.3)

where f(y,z) denotes a general functior of the coordinates y and z.
The coeffficients a, (i=1,2,3) in equation {C.3) are determined by
fitting this expression to three data points. This yields a system
of three simultaneous linear equations for the coefficients a; of each
function representation. This system of equations is solved using a
Gaussian elimination method with complete pivoting [as was done for
equation (C.1)].

A typical data point stencil used for determining the coefficients
in equation {C.3) is illustrated in Figure C.Z. Two shock wave solu-
tion points and a field point constitute the fit point array.

In all other situations Which require bivariate interpolation, the

quadratic polynomial

2

- 2 ,
fly,z) = a; + azy_+ a;2 + ayz +agy” + agz (C.4)

js employed, where f(y,z) is a general function of the coordinates y
and z. The coefficients a; (i=1 to 6) in equation (C.4) are determined
by a least squares fit of nine points. Using the standard theory of
least squares (18), the system of normal equations which determines

the coefficients in equation (C.4) is
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2 2
9a; + ] ¥;3, * ] z;ag + ] yzia, + ] yiag + § ziag =) f, (C.5)

3
z y ¥ z y a * z y1 i 3 * Z y1 i 4 X yiaS

+ 7 Y5 22 i =) y (C.G)
I 2,3y + ] yszaa, + ]z a 1y 22a +5 y1 i35
3
*] 258 = )) z.f. , (C.7)
2 2 2 2
L vizay + 1 ¥izay + 1 yszbag + T yiday + ] vz
t] y1 =) y;zf, (c.8)

2 3 2 3 4
DRZL TR L I NPT PRI PL AL IR AL

+] y =7 y (C.9)
2 2 3 2,2,

Y z;a, + ) ¥iZ5a, + ) z; a + 7 yiZ3a, + ) ¥iZ335
+] 2a = ] 2°F, (c.10)

In equations (C.5) to (C.10), the ) sign implies summation over the
range of 1 to 9, while the subscript i denotes the ith data poiht'
(i=1 to 9). This system of simultaneous Tinear equations has a sym-
metric coefficient matrix and is solved using a Gaussian elimination
method with pivoting in the main diagonal.

Figure C.3 illustrates typical data point stencils used in de-

termining the coefficients in equation (C.4). Basically, there are two
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types of stencils: interior point and bouﬁdary point. Since the
shock wave mathematically represents a discontinuity, the boundary
point stencil must be employed when the interpolation base point (the
data point closest to the interpolated point) is on the shock waQe.
The fit point array consists bf the base point and its eight immediate
neighbors. Special logic in the computer program is used to insure

that no stencil bridges the shock wave.

4. TRIVARIATE INTERPOLATION
Trivariate interpolation is required for property determination

on the surface of a solid boundary (a stream surface) and for property
determination on the upstream and dbownstream sides of the shock wave.
Two types of trivariate interpolation polynomials are employed in the
numerical algorithm. They are a linear trivariate polynomial whose
four coefficients are determined by fitting this expression to four
data points, and a quadratic trivariate polynomial whose eight coef-
ficients are determined by a 1east}squares fitting of fourteen data
points.

- The linear trivariate polynomial is used in the single applica-
tion for property determination on the upstream side of the shock wave

surface. This polynomial has the form
f(X,y,z) = ap + ax tagy + 3,2 (€.11)

where f(x,y,z) is a general function of the coordinates x, y, and z.
The coefficients a, (i=1,2,3,4) in equation (C.11) are determined by
fitting this expression to four data points. Hence, a system of four

simultaneous linear equations must be solved for the coefficient a;
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of each function representation. This system of equations is solved
using a Gaussian elimination method with complete pivoting [as was
done for equations (C.1) and (C.3)].

A typical data point stencil used for determining the coefficients
in equation (C.11) is illustrated in Figure C.4. Three data‘ppints
are located on one space curve and one data point is Tocated og‘the
other space curve.

In all other situations which require trivariate interpolation,

the quadratic polynomial

- 2 2
f(X,y,z) = a; v ay tazztayztagy +agz

+ a Xy + a Xz - (c.12)

7 8

is employed, where f(x,y,z) is a general fusction dependent on the
coordinates x, y, and z. The coefficients a; (i=1 to 8) in equation
(C.12) are determined by a least squares fit of fourteen data points.
From the theory of least squares, the system of normal equations

which determines the coefficients in equation {C.12) is
14a, + ) y.a, + ) z.a, + ) y.z.a, +) yza + 3 2%a
1 192 93 T L Y559 i%5 i%
+ ] xy5a, 4 ] x.z.a0 = ] (C.13)

2 2 3 2
Lysag + Dyjap + 0 v52;83 + 1 ¥i239 + 1 ¥ias * 1 93733

) ] .
+Ioxgyiay * Ioxgyzieg = Lyt (C.14)
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2 2 2 3
2oy +1y23 + 1 2ag * ] ¥23 *+ ] Y2335 + ) 23

| 2.
+ ) X;¥:z:a, + ) XjZjag = AP (c.15)
2 ‘ 2 2.2
Lyszgay + Lz, + 1 yZeg + 1 iz + ] vizga;
+) y.z + ¥ x, y2 + 7 XY 2 =Y} y.zf (C.16)
i i%i%7 Yi%i% i )
2 3 2 2.2
I vfay + D ey + Dofziag + T vjzgay + D yjeg + 1 vidiag
3 2
+ ) X Yiag t L x:¥; z,ag D) ylf1 (.17}

) z a, + ] ¥.2 a2 + 1z a + 1y z3a 1 y; 22

i a * 2 21 6

+ 1 XY, zza +) x1z? ag =} z?fi ’ (C.18)

2 2 3,
I xgyia ¥ 1 xg¥qap ¥ 1 xgy2ia5 + 1 xay5258, + ) x5¥5g

+ ) X iY; 22a + ) X y a, + ) X5 y z,ag = ) xiyifi (C.19)

2 2 2
Dxgziay ¥ ] xy.zea, +f oxiziag L Xy5258, + ] X.¥57.35

. 3
+ ) X525

a

2,2 _
gt L x y z.a, + L X5z5ag = Y x;2.f, (C.20)

In equations (C.13) to (C.20), the ] sign implies summation over the

% range of 1 to 14, while the subscript i denotes the ith data point

(i=1 to 14). This system of simultaneous linear equations has a sym-
metric coefficient matrix and is solved using a Gaussian elimination

method with pivoting in the main diagonal [as was done for equat1on

(c.4)].
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Figure C.5 illustrates typical data point stencils used in deter-
mining the coefficients in equation (C.12). The fit point array
consists of seven data points along each of the appropriate space

curves on either the shock wave or the solid boundary.
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APPENDIX D
SURFACE REPRESENTATIONS, AND STREAMLINE- AND
BICHARACTERISTIC-SURFACE INTERSECTIONS

1. INTRODUCTION

The procedures employed for representing the solid boundary and
shock wave surfaces are presented in this appendix. The technique used
for determining the intersection point of either a streamline with the
shock wave, or a bicharacteristic with either the shock wave or the

solid boundary, is also discussed.

2. SOLID BOUNDARY SURFACES

The centerbody and cowl surfaces are specified in the computer
program by a separate geometry module that has the capability +o de-
scribe a variety of axisymmetric contours. HMore arbitrary geometries,
such as those having elliptical or superelliptical cross sections, may
be considered by supplying an appropriate replacement module. In
general, to specify a surface completely, its functional form
[f(x,y,z) = constant] and its gradient at any point [Vf(xgi,z)] must
be available. |

The existing geometry module, which describes axisymmetric con-

tours, divides the axial (x) domain into a number of intervals. In any

interval, the body radius may be specified by either tabular input,

or by supplying the coefficients in a cubic polynomial written as a

SR T S e e g
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function of x. For the tabular input case, Tlinear interpolaticn is
performed to obtain the radius r(x) between the points’(xi,ri) and
(xi+],ri+1) where (xiigix < xi+1). Alternatively, employing the

cubic polynomial
r(x) =a, + b,(x - x.) +c.(x - x.)2K+ d.(x - x.)3
i i i i i i i
(x; < X< %:49) (D.1)

requires that the coefficients a5 bi’ c., and di be supplied for the

3
ith interval (these coefficients must be externally generated). Since
equation (D.1) is a cubic, slope and curvature can be matched at the
junction point between two adjacent intervals (i.e., spline fits can

be employed).

3. SHOGCK WAVE SURFACE

Some of the unit processes, which are describsd in Appendix E,
require an analytical representation for the shock wave surface.
During the course of the program development, a number of different
representations were devised, including the fitting of both planar
surfaces and quadric surfaces to locally approximate the shock wave
surface. The quadric surface formulation displayed a tendency to

produce a (local) surface with undulations. The planar surface

representation did not exhibit this effect, and, for fine mesh spacings,

produced results essentially the same as the representation that was
ultimately selected for use in the numerical algorithm. However,

the accuracy of the planar surface representation suffered at coarse
mesh spacings. The shock wave surface formulation that was selected

for use in the algorithm is presented below.
187
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The shock wave surface is represented as a family of straight
lines between twc space curves, as illustrated in Figure D.1. The
space curves represent either the intersection of the shock wave with
a solution plane (which is a plane of constant x), or the intersec-
tion of the shock wave with a solid boundary (i.e., an interplanar
ring of shock wave solution points). Each space curve is represented

by the two quadratic expressions

2 (i=1,2) (D.2)

n

ri(e) a; + bie + .0

2

1]

xi(e) d; + ;6 + .0 (i=1,2) (b.3)

where s is the radius of a point on space curve i (i=1,2), Xs is the
corresponding axial position of a point on space curve i, and 6 is the

polar angle given by

9 = tan'](z[y) | (D.4)

where y and z are the coordinates of a point on the space curve. In equa-

tions (D.2) and (D.3), the coefficients a; to fi (i=1,2) are determined
by fitting these expressions to three known points on each space

curve as described in Appendix C. When the space curve lies in a
solution plane, x of course has no 6 dependency.

Once equations (D.2) and (D.3) are determined for the two space
curves, the shock wave surface is represented as an infinite famiiy of
straight lines between the two space curves, where each straight line
falls in a meridional plane (i.e., a plane of constant 6). Conse-

quently, for a given value of © and x, the shock wave surface is

represented by the Tinear interpolation formula
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(x - x,(0)) (x - x,(0))

"8) = T w1 sy ) ©:8)

In equation (D.5), r(x,6) is the shock wave radius at axial position x
and polar angle 9, r](e) and x](e) are given by equations (D.2) and
(D.3), respectively, for one of the space curves, and rz(e) and x2(6)
are given by equations (D.2) and (D.3), respectively, for the other
space curve (see Figure D.1). A strong point of this representation
is that a smooth (local) surface is produced because linear interpola-
tion is performed for the shock wave radius in a meridional plane,
while transverse curvature information is introduced through equations

(D.2) and (D.3).

4, STREAMLINE- AND BICHARACTERISTIC-SURFACE INTERSECTIONS

A number of unit processes require determining the intersection
point of either a streamline with the shock wave, or a bicharacteristic
with either the shock wave or a solid boundary. The technique used
is the same for all cases and is presented below.

A streamline or bicharacteristic may be represented by the equa-

tion

i

where xi (i=1,2,3) denotes the three cartesian coordinates x, y, and z,

respectively, and t is a parameter proportional to the length of the
streamline or bicharacteristic. For a streamline, the parameter I‘i in

equation (D.6) is given by

dx; = Tydt  (i=1,2,3) | - (D.6) |

o
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T, = u, (i=1,2,3) (D.7)

where uy (i=1,2,3) denotes the velocity components u, v, and w,

respectively. For a bicharacteristic, Pi is given by

T.
1

u; + ca.cosp + cBisin¢ (i=1,2,3) (D.8)

where Gy Bi’ ¢, and c are the parameters employed in Butler's

parameterization of the Mach tone (24), which is discussed in Appendix B.

Using equation (D.6), the following equation may be written.
= = y
dx/I’1 d_y/I'2 dz/I‘3 (D.9)

Solving equation (D.9) simultaneously, the linear expressions

<
1]

[yg = (Tp/Tdx 1+ (Ty/T4)x (D.10)

N
f

= [zk - (P3/F])xk] + (FB/P])x (D.11)

may be obtained, where s Yo and z, are the coordinates of a known
point on the streamline or bicharacteristic, while x, y, and z repre-
sent the coordinates of the point of intersection of the streamline
or bicharacteristic with a surface (see Figure D.2).

An iterative procedure is employed to determine the coordinates
Xs ¥, and z. First, the vailues of Pi (i=1,2,3) are evaluated at the
known point. Then, a trial value is assumed for the axial coordinate
x. From equations (D.10) and (D.11), the corresponding coordinates y

2)1/2

*
and z may be obtained. Then, the radius r = (y2 +z and the

polar angle 6 = tan'](z/y) of the assumed intersection point may be

computed. From the assumed value for x and the calculated value for 6,
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the body radius r** [determined from the tabular wall data or equation
(D.1)] or the shock wave radius r** [given by equation (D.5)] may be
obtained. The difference between r* and r** is reduced to within a
specified tolerance by employing a numerical relaxation technique
(secant method) which iterates on x. Once convergence has been ob-
tained, the values of I, at the intersection point are computed using
the trivariate interpolation method discussed in Appendix C. Appropri-
ate averages of the values of ri at the known point and the intersec-
tion point are then formed, and the entire process is repeated until
overall convergence is obtained.

It should be noted that it is possible to use 8, instead of x,
as the variable upon which the iterative scheme is based. The resulting
formulation, however, is singular when the streamline or bicharacter-

istic 1ies in a meridional plane.
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APPENDIX E
SUPERSONIC CORE FLOW UNIT PROCESSES

1. INTRODUCTION

Computation of the flow field requires that a variety of unit
processes be employed. These subalgorithms may be classified into four
major types: imterior point, solid boundary point, field-shock wave
point, and body-shock wave point. Computation of the external flow
field about the forebody portion of the centerbody requires using the
basic versions of the first three aforementioned algorithms. Computa-
tion of the internal flow field, with its attendant reflected shock
wave system, requires using the basic interior point and solid boundary
point algorithms plus modified versions of these routines, as well as
the other unit processes. A1l of the unit processes are presented in

this appendix.

2. SUMMARY OF THE CHARACTERISTIC EQUATIONS

The equations for the characteristic surfaces and the compatibi]ity
equations valid along these surfaces are developed in Appendix B. A
summary of the pertinent results is given below.

For steady three-dimensional supersonic flow, compatibility equa-
tions may be written which are valid when applied along either stream-
Tines or bicharacteristics. A streamline is represented by the equa-

tion
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dxi = u, dt (i=1,2,3) (E.1)

where Xs (i=1,2,3) denotes the three cartesian coordinates x, y, and

z, respectively, u, (i=1,2,3) denotes the corresponding velocity com-
ponents u, v, and w, respectively, and t is the time of travel of a
fluid particle along the streamline. The compatibility equations valid

*
along a streamline are given by

24,
R Fe (E.2) :
du, |
dpP R :
@t Py gt uFy (E.3)

where P denotes the pressure, p is the density, a is the sonic speed,
Fi (i=1,2,3) denotes the transport forcing terms in the x, y, and z
component momentum equations, respectively, and Fe is the transport
forcing term in the energy equation. The operator d{ )/dt in equa-

tions (E.2) and (E.3) represents differentiation in the streamline

we

direction. The forcing terms Fi and Fe are defined by equations (A.6)
and (A.27), respectively.
A bicharacteristic, which is a ray or generator of the Mach cone,

is represented by
dxi = (ui + co,cos0 + cBisine)dt (i=1,2,3) (E.4) i

where 6 is a parametric angle denoting a particular element of the Mach

cone and has the range 0 < 6 < 21, t is the time of travel of a fluid

*Repeated indices imply summation over the range of 1 to 3 unless other-
wise noted.
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particle along the streamline that is the axis of the Mach cone, and ¢

is defined by
¢? = q%a?/(q? - &%) _ (E.5)

where q is the velocity magnitude. The vectors a, and B,i in equation
(E.4) are parametric unit vectors with s Bi’ and ui/q (i=1,2,3)
forming an orthonormai set. The compatibility equation valid along a

bicharacteristic is given by

_d_E + 1 ---.—-Ch‘l-i = : 2 i
0t pc(aicase + 8151"e)dt $ -.pc (ais1ne
ou,
- 3icose)(ajsine - Bj°°$e)5§j (E.6)

In equation (E.6), the operator d{ )/dt represents differentiation in

the bicharacteristic direction, and the parameter ¢ is given by
_ 12,2 _
& = (c/a )(Fe aniFi) (E.7)

where ny is the ith component of the wave surface unit normal and is

given by

n; = (a/c)(cu]./q2 - 05086 - Bisine) (i=1,2,3) (E.8)

In addition to the above relations, the following noncharacteristic

relation is applied along a streamline

ou,
o _ 2 3
dt =0 pcC (a.iuj + BiBj)axj (E°9)

where the operator d( )/dt represents differentiation in the streamline

direction, and the:parameter o is given by
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G = (c2/a2)Fe - (cz/qz)(uiFi) (E.10)

Equations (E.1) to (E.10) form the basis of the numerical inte-

gration method.

3. GENERAL COMMENTS CONCERNING THE UNIT PROCESSES

An inverse marching scheme is employed in the numerical algorithm,
The solution is obtained on spacéF1ike planes of constant x, with the
x-axis being the longitudinal axis of the centerbody and cowl. For the
internal flow field, the solution is also obtained on the space curves
which represent the intersection of the internal shock wave with the
solid boundaries. These space curves are defined by the locus of shock
wave solution points.

Except in the vicinity of a shock wave-solid boundary intersec-
tion, the distance between successive solution planes is determined
by the application of the Courant-Friedrichs-Lewy (CFL) stability
criterion, which is presented in Appendix K. The axial step in the
vicinity of a shock wave-solid boundary intersection is controlled by
special constraints which are also discussed in Appendix K.

Each of the unit processes is presented below. In general, a unit
process is divided into a predictor step and a number of enusing cor-
rector steps. In most cases, a unit process employs an outer iterative
loop for determination of the flow properties at the solution point,
and an inner iterative loop (or loops) for location of bicharacteristic-
initial-value plane intersection points, etc. The terms "inner" and

:“outer” are used in this context in the following discussions.
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4. INTERIOR POINT UNIT PROCESS

Figure E.1 is a depiction of the computational network used in the
determination of the solution for a typical interior point. Points (1)
to (5) are located on the initial-value plane which is a plane of
constant x on which the solution is known. Points (1) to (4) represent
the intersection points of four rearward-running bicharacteristics with
the initial-value plane, and point (5) is the intersection point of the
streamline with this plane. Point (6) is the interior solution point,
which is Jocated at the intersection of the forward projection of the
streamline with the solution plane. The axial (x) distance between
the initial-value plane and the solution plane is determined by either
the application of the CFL stability criterion, or, in the vicinity
of a shock wave-solid boundary intersection, by the special constraints
discussed in Appendix K.

Interpolated values of the three velocity components u, v, and w,
the pressure P, and the density p are required at the bicharacteristic-
initial-value plane intersection points, points (1) to. (4) in Figure
E.1. For this purpose, the following bivariate interpolation poly-
nomial is employed

- ~ 2 2
f(y,z) = ay tay tagztayztay +agz (E.11)

)

where f(y,z) denotes a general function of the coordinates y and z.
The coefficients a, (i=1 to 6) 1in equation (E.11) are determined by a

least squares fit of hine data points in-the initial-value plane

[point (5) and its eight immediate field point neighbors]. The detailed

implementation of equation (Ef]l) is discussed in Appendix C.
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In addition to using interpolated values for the flow properties
at points (1) to (4) in Figure E.1, interpolated values are also employ-
ed at point (5), the streamline base point, even though this is a field
solution point. As shown by Ranson, et al. ( 9), this interpolation
is required to produce a stable numerical scheme.

The interior point unit process is initiated by locating the
solution point, point (6). This is accomplished by extending the
streamline forward from point (5) to intersect the solution plane.

The coordinates of point (6) are obtained using the following finite

difference form of equation (E.1).
x;(6) = x;(5) = 3u; (5) + w (6)I[L(6) - £(5)]  (i=1,2,3) (E.12)

In applying equation (E.12) for the predictor (first outer iteration),
u1(6) is equated to ui(S), whereas, for the corrector (ensuing outer
iteration), the previously obtained value of ui(6) is used.

Equation (E.12) is first applied for i=1 (i.e., the x-coordinate
direction). The axial step [x(6) - x(5)] is determined prior to the
application of the unit process. Hence, the time parameter [t(6) -
t(5)] may be obtained. Then, equation (E.12) is applied for i=2 and
i=3 to determine y(6) and z(6).

At this point, four bicharacteristics are extended backward from
the solution point to intersect the 1nitia]«va1&e plane. This is
accomplished by applying the following finite difference form of

equation (E.4).

AL
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x;(6) = x;(k) = 5{Lu (k) + u;(6)] + [c(K) + c(6)1[o;cos0(K)
+ B;sin0(IIE(S) - (k)] (i=1,2,3) (E.13)

In equation (E.13), k denotgs the bicharacteristic intersection points
in Figure E.1 and has the values 1, 2, 3, and 4 corresponding to the
a(k) values of 0, /2, w, and 3w/2, respectively. The bicharacteristic
intersection points are determined in an inner iterative loop. That is,
for every outer iteration that is performed to determine the flow
properties at point {6), a number of inner iterations are performed to
locate points (1) to (4). On the first inner iteration of the predictor
(the first outer iteration), ui(k) and c(k) are equated to ui(5) and
c(5), respectively, for each of the four bicharacteristics. On ensuing
inner and outer iterations, the flow properties previously obtained at
each of the bicharacteristic intersection points are used. The flow
properties at these points are determined by employing the bivariate
interpolation polynomial given by equation (E.11). Moreover, as was
done for equation (E.12), for the predictor (the first outer iteration),
the flow properties at point (6) in equation (E.13) are set equal to
those at point (5), whereas, for the corrector (ensuing outer itera-
tions), previously computed values of the flow properties are used at
the solution point. |

Equation (E.13) is first applied for i=1 (i.e., the x-coordinate
direction). The axial step [x(6) - x(k)] is determined prior to the
application of the unit process. Thus, the time parameter [t(6) -
t(k)] may be obtained for each of the four bicharacteristics. Then,
equation (E.13) is applied for i=2 and i=3 to determine y(k) and z(k)

for each bicharacteristic.
201
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The parametric unit vectors o, and'B,i appearing in equation
(E.13) are arbitrarily fixed at the solution point, point (6). Butler
(7), in his original work, held o and Bi constant aiong a bichar-
acteristic but varied 6 in order to insure that the bicharacteristic
remained taﬂgeﬁt to the Mach cone. Ransom, et al. (9 ) held 6 constant
along a bicharacteristic but varied ¥ and Bi to satisfy this tangency
condition. As noted by Cline, et al. (17), Butler (19) later realized
that it is not necessary to satisfy the tangency condition'in order
to achieve second-order accuracy in the resulting overall numerica]
algorithm. As a consequence, in the present analysis, both 6 and the
unit vectors o and Bi are held constant along the bicharacteristics.
For the external flow field integration, o and Bi are selected to
straddle the projection of the pressure gradient in the initial-value
piane. For the internal flow field integration, a, arif;; are chosen
to straddle the meridional plane. :

Once the positions of and the flow properties at points (1) to (4)
have been determined for a given outer iteration, the transport forcing
functions Fx’ Fy, Fz’ and Fe are computed at each of these points
and at the streamline base point, point (5), as described in Appendix F.
Approximations for the transport forcing functions at point (6) are also
made at this stage as described in Appendix F. The system of non-
linear compatibility equations is then solved for the flow properties
at point (6) as outlined below. /

‘The compatibility equations valid along a streamiine are given

by equations (E.2) and (E.3). Writing those relations in finite

difference form yields
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[P(6) - P(5)/[t(6) - t(5)] - 3{a’(5) + a’(6)1Ln(6)

- p(S)I/LL(6) - £(5)] = 4fF (5) + F,(6)] (E.14)

[P(6) - P(S)I/CE(6) - £(5)] + Mo(5)u, (5) + p(6)u;(6)1 [u (6)

The noncharacteristic equation, given by equation (E.9), is also

applied along a streamline. Writing that equation in finite differ-

ence form gives
[P(6) - P(5)1/[t(6) - t(5)] = 1La(5) + u(6)]

(5 )c (5) (o o5 + BB Jau, /Bx (5)

r\_g_.:

(6)c2(6)(ot1.ozj + By, )3u,/9%,(6) (E.16)

r\%.;

In equation (E.16), o is given by equation (E.10), and aui/axj(k) de-
notes the appropriate partial derivative evaluated at point (k) in
Figure E.1. Partial derivatives taken with respect to y and z are
found by analytically differentiating equation (E.11). Partial deriva-
tives taken with respect to x are then found by using the governing
partial differential equations.

The compatibility equation vaiid along a bicharacteristic is given

by equation (E.6). For 6 values of 0, w/2, w, and 3r/2, equation (E.6)

becomes
&P du. au.
dtl + poo, Hf; 2, - pc B BJ ax B (E.17)
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du, u

dp i_ 2 i
—_—_ pcB —_—=, - pC o0,
dt dt .
2 i 2 2 i axJ
du. ou.

dp i_ 2 j
at; " P% dE, T %3 7 P BBy ax.
3 i t3 3 it xJ
du. ou,

dP i 2 i
i o= pcB- — ¢ - pc oL.0L. ——
dt4 i dt4 4 i7J axj

(E.18)

(E.19)

(E.20)

In equations (E.17) to (E.20), the operator d( )/d‘ck denotes differenti-

ation along the bicharacteristic corresponding to 6(k), and 3 is de-

termined from equation (E.7). Writing equations (E.17) to (E.20) in

finite difference form yields
[P(6) - P(NI/LE(6) - t(1)] + 3Lp(1)c(1)
+ p(6)c(6)Jo,[u; (6) - u,(1)1/[t(6) - £(1)]
= 5L21(1) + 2,(6)] = 5(1)c*(1)g;8,0u;/0%,(1)

- 50(6)c%(6)8;8,3u;/2%, (6)

[P(6) - P(2)1/ [t(6) - t(2)] + 5lo(2)c(2)
+ p(6)c(6)18,[u;(6) - u,(2)I/[t(6) - £(2)]
= 30,(2) + 0,(6)] - J(2)c*(2)aja0u;/0%5(2)
1

i} Ep(G)cz(S)uiujaui/BXj(ﬁ)
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[P(6) - P(3)1/[t(6) - £(3)] - 5p(3)c(3)

#a

-+

p(6)c(6)Ja;Lu; (6) - u,(3)1/[t(6) - £(3)]

%{QB(B) + °3(6)] - %9(3)C2(3)816j3ui/8xj(3)

%p(e)cz(s)sisjaui/axj(a) (E.2

[P(6) - P(4)1/[t(6) - t(4)] - oLp(4)c(4)

+

o(6)c(6)18;Lu; (6) - u, (8)/[t(6) - t(4)]

32,4(8) + 2,(6)] - po(a)c? (3)oa0u,/5x,(4)

It was noted in Appendix B that only three wave surface compatibil-

ity relations are independent. To obtain three independent relation
Tinear combinations of equations (E.21) to (E.24) and the nonchar-

acteristic relation, equation (E.16), are formed in such a manner as

o TR T S S T T e

3)

1 1ey.2 :
§p\6)u (G)Qiajaui/axj(ﬁ) (E.24)

S,

to algebraically eliminate the cross derivative terms at the solution

point [i.e., terms containing aui/axj(s)]. Subtracting equation (E.

from equation (E.21) yields

23)
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[p(6) - P(1)1/[t(6) - t(1)] - [P(6) - P(3)1/[t(6) - t(3)]

+

NIJ_T

p(1)c(1) + p(6)c(6)]o,[u,(6) - us (1) 1/0t(6) - t(1)]

—

*+ 51p(3)c(3) + p(6)c(6) ], [u,(6) - u;(3)1/[t(6) - t(3)]

—r

= {2, (1) + &,(6)] - %[@3(3) + 05(6)]

- (1)c%(1)8;8;3u;/3x,(1) + 50(3)c3(3)8;B,0u;/3%,(3) (E.25)

Subtracting equation (E.24) from equation (E.22) yields
[P(6) - P(2)I/[t(6) - t(2)] - [P(6) - P(4)I/Lt(6) - t(4)]
+ 30(2)c(2) + p(6)c(6)18,[u, (6) - u.(2)1/[t(6) - t(2)]
+ 3Lo(4)c(4) + o(6)c(6)18;[u; (6) - u. (4)1/[t(6) - t(4)]
= 3(2,(2) + 8,(6)] - 3{8,(4) + 2,(6)]
- (2)c (2)au0u;/0%,(2) + 30(4)c”(A)aa0u; /3%, (4)  (E.26)

Adding equations (E.21) and (E.22) and subtracting equation (E.16) from

the sum yields
[P(6) - P()I/(6) - £(1)] + [P(6) - P(2)V/LL(6) - t(2)]
- [P(6) - PS)I/LE(6) - £(5)]
+ 5Lo(1)c(1) + p(6)c(6)Toyu; (6) - u (NI/LE(6) - £(1)]

+ Wo(2)c(2) + 0(6)c(6)18,[u;(6) - u,(2)1/[1(6) - £(2)]
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= 502,(1) + ¢,(6)] + H,(2) + 2,(6)] - Lo(5) + a(6)]

- (e (1)8,8,0u;/3%,(1) - Jo(2)c(2)oga0u;/0x(2)

+ %p(S)cz(S)(miaj + 8:8;)3u;/3x,(5) (E.27)

Equations (E.14), (E.15), (E.25), (E.26), and (E.27) are the five
finite difference equations which are used to solve for the flow
properties u(6), v(6), w(6), P(6), and p(6). Since these equations are
nonlinear, an iterative scheme is required to obtain the solution. On
the first outer iteration (the predictor), all of the flow properties
at point (6) appearing in the coefficients of the derivatives in the
above set of equations are set equal to the respective properties at
point (5). This produces a system of simultaneous linear equations
which is solved using a Gaussian elimination method with complete
pivoting (18). On ensuing corrector applications (outer iterations),
previously computed values for the flow properties at point (6) are
employed in the scheme. This method is similar to the Euler predictor-
corrector algorithm used to obtain the solution for initial-value
problems for o?dinary differential equations, and can be shown to have
second-order accuracy either by direct numerical calculation ( 9) or
by substituting an exact solution into the difference equations and
expanding the resulting terms in a Taylor series and thereby determining
the truncation error. The iterative scheme is terminated when all five
flow properties at point (6) have converged to within specified toler-

ances.
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5. SOLID BOUNDARY POINT UNIT PROCESS

Figure E.2 is a depiction of the computational network used in
determining the solution for a typical point on a solid boundary. The
point notation used in Figure E.2 is the same as that used in Figure
E.1 (interior point scheme). In this unit process, however, point (4),
corresponding to the bicharacteristic with 6 = 37/2, falls outside of
the flow field and cannot be employed. Furthermore, the streamline
points (5) and (6) 1ie on the stream surface formed by the solid boun-
dary. The formulations used for representing the solid boundaries
are presented in Appendix D.

The boundary condition used in this unit process is simply that
the flow velocity component normai to the wall equals a specified
constant C. Let n. (i=1,2,3) denote the x, y, and z components,
respectively, of the outward unit normal to the solid boundary surface.

Then, the appropriate boundary condition may be written as

u1(6) "bi(s) =C (E.28)

The solid boundary point unit process is virtually identical to
the interior point unit process, except that the wave surface compati-
bility equation valid along the bicharacteristic corresponding to 6 =
3m/2 is not employed. That equation is replaced by equation (E.28).

Thus, the system of compatibility equations used for determining the

solution at a solid boundary point consists of equations (E.14), (E.15),

(E.25), (E.27), and (E.28). This system of equations is solved using

the same iterative scheme that was employed in the interior point

solution.
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The Tocation of the solution point, point (6) in Figure E.2, ob-
tained by applying the finite difference form of the streamline equa-
tion, equation (E.12), is adjusted along the projection of the body
normal in the solution plane so that the solution point lies on the

solid boundary. The orientation of the parametric unit vectors o, and

B

by employing the orthonormal relations between O s Bi’ and ui/q. This

is selected such that g; = - Nps (i=1,2,3), and o (i=1,2,3) is found

selection for the reference vector set produces a computational network
in which the bicharacteristics corresponding to 6 = 0, n/2, and w
intersect the initial-value plane for corvex bcundaries. For concave
boundaries, those bicharacteristics intersect an extrapolatior of the
initial-value plane (the required extrapolation is assumed to have an
error third-order in step size). The bicharacteristics corresponding

to 6 = 0 and w lie in the elemental plane which is tangent to the solid

boundary at point (6).

6. BOW SHOCK WAVE POINT UNIT PROQESS

A depiction of the computational network used in determining the
solution for a typical bow shock wave point is given in Figure E.3. A
segment of the shock wave surface extending from the initial-value plane
to the solution plane is shown in this figure. The space curve (A) is
defined by ﬁhe intérseétioh-bf the gEEckkwave with thé'inifia1-va1ue
plane, whereas, space curve (B) is defined by the intersection of the
shock wave with the solution plane. The axial distance between the
initial-value plane and the solution plane is determined by the appli-
cation of the CFL stability criterion.

The bow shock wave solution point is denoted by point (2) in

Figure E.3. The flow properties upstream of the shock wave are known -
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a priori. Hence, in the following discussion, the flow properties u(2),
v(2), w(2), P(2), and p(2) refer to the properties at point (2) down-
stream of the shock wave. Point (1) is the intersection point of a
rearward-running bicharacteristic with the initial -value plane. This
bicharacteristic is extended backward from the solution point. Point
(3) is an interior point in the solution plane which is used to define
the meridional plane in which the shock wave solution point lies. Point
(4) is the intersection point of space curve (A) with the meridional
plane which passes through points (2) and (3).

In this unit process, a local cartesian coordinate system is
émp]oyed for the description of the orientation of the local shock wave
surface. This local coordinate system has coordinates x', y', and 2',
where x' is coincident with the x-axis, y' is in the radial direction
corresponding to the meridional plane which subtends an angle 6 with the
(x,y)-planesand z' is normal to the(x',y;)-p1ane (see Figure E.3). The
unit vectors in the x, y, and z directions are denoted by ?, 3, and ﬁ,
respectively, whereas, the unit vectors in the x', y', and z' directions
are denoted by ?', 3', and ﬁ’, respectively. A vector quantity A may be

represented in these coordinate systems by

R=hAd+AJ+AK (E.29)
A= Ax;?' + Ay.S" + AZ.@Z' (E.30)

The relationships between the respective components in equations (E.29)

and (E.30) are given by

A, = A | (E.31)

i
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Ay. = Aycose + Azsine (E.32)
Az' = Azcose - Aysine ) (E.33)
A, = A | (E.34)
;Ay = Ay,cose - Az.sine (E.35)
A, = A .cose + Ay.sine | (E.36)

The orientation of the local shock wave surface is specified by
a set of unit vectors referenced to the (x',y',z')-system. This set of
unit vectors, illustrated in Figure E.4, consists of a unit vector HS
which is normal to the shock wave surface and two unit vectors E and %
which are tangent to this surface. The tangential unit vector % lies
in the meridional plane [(x',y')-plane], subtends an angle ¢ with the
x'-axis, and is defined by the intersection of the shock wave with the
meridional p]ane'at point (P). The tangential unit vector E Ties in
the transverse plane [(y',z')-plane], subtends an angle o with the
z'-axis, and is defined by the intersection of the shock wave with the
transverse plane at point (P). The tangential vectors % and E are

therefore given by

t

I}

coso i +sing 3' (E.37)

2 = sino 3‘ + cosa k! _ (E.38)

The shock wave normal unit vector, denoted by ngs is given by

n =L xt/]Lxt (E.39)
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The interior point and solid boundary point unit processes achieve
second-order accuracy by using locai iteration. In local iteration,
a corrector application gmploys previously determined flow property
values at the solution point, but does not require using flow property
values at other points in the solution plane. The shock wave point
unit process, however, requires that global iteration be performed in
order to achieve second-order accuracy. In global iteration, a cor-
rector application employs previously determined flow property values
not only at the solution point, but also at neighboring points in the
solution plane. As a consequence, before a corrector application in
global iteration can be performed, the entire solution plane (or at
least an appropriate section of it) must be determined by a priér
calculation. In practice, since the interior point and solid boundary
point schemes require local iteration only, the interior point and
solid boundary points are computed first. Then, a prediction for each
shock wave solution point is made, thereby giving a tentative solution
for all of the shock wave points. Then, a global iteration is con-
ducted for the shock wave solution points using the previously de-
termined field points in the so]uttnq plane. In the following discus-
sion, the term "predictor" will refer to the first application of the
shock wave point unit process used to obtain an initial estimate of the
solution without usingﬁfield point data in the solution plane. The
term "global correctbr“ will refer to the application of the shock wave
point unit process which uses field point data in the solution plane.

The shock wave point unit process is now outlined.
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The shock wave point unit process is initiated by locating the
solution point, point (2) in Figure E.3." The meridional plane in which
the solution point lies is arbitrarily selected to contain point (3).
Point (3) is the interior solution point adjacent to the shock wave sur-
face whose location ié determined prior to the application of the shock
wave point unit process. The angle subtended by a meridional plane

and the (x,y)-plane is denoted by 6. Then
8(2) = 8(3) = tan" [2(3)/y(3)] (E.40)

Denote the radial position of a point by r. Then the radial position

of point (2) is obtained from
(@) = r(4) + [x(2) - x(9)] tan {Hs(2) *o(0]}  (E.41)

where [x(2) - x{4)] is the axial distance between the initial-value
plane and the solution plane and is determined by the CFL stability
criterion. On the first application of equation (E.41), the shock wave
angle ¢(2) is equated to ¢(4), whereas, on ensuing applications, the
previously determined value of ¢(2) is used. At point (4), the radial
position r{4) and shock wave angle ¢(4) are determined by interpolation

using the quadratic univariate formulae

2

r(e) = a; + 2,0 + agh (E.42)

- K al
¢(0) = by + b?_e + bgo

(E.43)
In equations (E.42) and (E.43), the coefficients a; (i=1,2,3) and b;
(i=1,2,3) are determined by fitting these expressions to three Tocal

shock wave solution points on space curve (A) as described in Appendix C.
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For the case of axisynmetric flow, or on a plane of flow symmetry in

three-dimensional flow, point (4) coincides with a previously determined

shock wave solution point so the interpolation would not be required.
In general, however, pofnt (4) does not coincide with a known point
so the interpolation is necessary.

After the solution point has been located, the shock wave normal
unit vector 35 at the solution point is found by forming the normalized
cross product of the tangential unit vectors E and % [see egpation
(E.39)]., The tangential vector % is obtained by using the éurrent
value of ¢(2) in equation (E.37). The tangential vector E is obtained
by using the current value of «(2) in equation (E.38). For either
space curve (A) or space curve (B), the value of a{2) may be obtained

from

a(2) = tan™! (—:;-%%}

For a predictor application, the analytical form of r(8) used in equa-

(E.44)

8(2)

tion (E.44),%s~gﬁ¥en by equation (E.42) applied along space curve (A),
whereas, for a global corrector application, r(6) is obtained from
equation (E.42) applied along space curve (B).

After the shock wave normal unit vector has been determined, the

local Hugoniot equations may be applied across the shock wave, thereby

yielding a solution for the flow properties u(2), v(2), w(2), P(2), and

o{(2). In general, the local Hugoniot equations take the form (16)
(E.45)

Pyt Vo, =Pyt pdvnd (E.46)
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Viu = Vid (E.47)
Vou = Vad (E.48)
h +a2/2 = h, + q2/2 (E.49)
u U d qd *

h = h(P,p) | | (E.50)

In equations (E.45) to (E.50), h is the entha]py per unit mass, q is the

velocity magnitude (q2 = u2 + v2 + wz),vn is the velocity component in

~

the ';s direction, Vt is the velocity component in the % Qirection, ;2
is the velocity component in the g direction, and the subééripts u and
d denote the properties on the upstream and downstream sides of the
shock wave, repsectively. Equations (E.45) to (E.50) are solved simul-
taneously for the downstream flow properties. Toc obtain the velocity
components gnu’ Vtu’ and Gku’ the upstream velocity vector is first
transformed from the (x,y,z)-system to the (x',y',z')-system using
equations (E.31) to (E.33), after which the appropriate dot products
are formed with -HS, %, and E. Similarly, the downstream velocity
components Vnd’ th, and sz are transformed back to the (x,y,z)-system
after the local Hugoniot equations have been applied.

In the computer program, the local Hugoniot equations are contained
in a separate subroutine. The assumed thermodynamic model is that of
a thermally and calorically perfect gas. Other thermodynamic rodels
may be used by suitably modifying the existing subroutine or replacing
it. For the assumed model of a thermally and calorically perfect gas,

the pressure ratio across the shock wave is given by

e Rk

o mke




p
4.2y w2 _xy-1
A M = Yy (E.51)

where Mnu is the incident normal Mach number given by

~

Moy = Vi3 (E.52)

and vy is the specific heat ratio. Using the result of equation (E.51),
the density ratio across the shock wave is given by

pg G+ /(v - 1) + (P /Py)

by TFI ¥ D77 = DIF,/Py) (E.53)

With the downstream pressure and density determined, the downstream
normal velocity component Gnd may be obtained from equation (E.46), and
the tangential downstream velocity components gtd and gzd may be com-
suted from equations (E.47) and (E.48). Transformation of the down-
stream velocity components back into the (x,y,z)-system yields the
required flow properties at the solution point.

At this stage, a rearward-running bicharacteristic is extended from
the solution point, point (2), back to the initial-value plane, inter-
secting this plane at point (1), as illustrated in Figure E.3. This
is accomplished by employing the following finite difference form of

equation (E.4) evaluated for the parametric angle 8 = w/2.
_ 1
x;(2) = % (1) = 3 {Tu; (1) + ug(2)]
s L)+ e@)Ipgfltie) - €T (i=1,2,3)  (E.54)

As in the interior point and solid boundary point schemes, an inner

iteration is pefformed to locate point (1). On the first application
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of equation (E.54), the flow properties at poinf (1) are equated to
those at point (2), whereas, on ensuing applications, previously ob-
tained values of the flow properties at point (1) are used. The flow
property values at point (1) are found by employing the bivariate inter-
polation polynomial given by equation (E.11). The coefficients in
equation (E.11) are obtained by a least squares fit of nine data

points in the initial-value plane using a boundary-type stencil as
described in Appendix C.

Equation (E.54) is first applied for i=1 (i.e., the x-coordinate
direction). Since the axial step [x{2) - x(1)] is known from the
application of the CFL stability criterion, the time parameter
[t(2) - t(1)] may be determined. Then, equation (E.54) is applied for
i=2 and i=3 to determine y(1) and z(1). For axisymmetirc flow, or for'
a plane of flow symmetry in three-dimensional flow, point (1) lies in
the meridional plane which contains points (2) and (3). In general,
however, for other flow situations, point (1) lies outside of this
plane.

The orientation of the parametric unit vector Bi in equation (E.54)

is arbitrarily selected such that
83/82 = tan[6(2)] (E.55)
This relation, in conjunction with the orthonormality conditions
B.u.(2) =0 | (E.56)
B.B; = 1 | L (E.57)

allows the values of Bi (i=1,2,3) to be determined. Since equation

SRR




(E.57) is a quadratic equation, a multiplicity of roots exist for the
B, (i=1,2,3),§ The roots are chosen such that point (1) lies under-
neath the shock wave in the initial-value plane. Once the values of
B; (i=1,2,3) are determined, the values of ay (i=1,2,3) are found
through use of the orthogonality relation between ;s Bys and ui/q
(i.e., a= 8 xV/q).

After the position of and the flow properties at point (1) have
been determined, the transport forcing functions Fx’ Ey’ Fz’ and Fe are
computed at point (1) as described in Appendix F. Approximations for
the transport forcing functions are also made at point (2) at this
time as described in Appendix F,

At this stage, the wave surface compatibility equation correspond=
ing to the parametric angle 6 = w/2 is applied between points (1) and
(2). From equation (E.6), ﬁhe appropriate equation is

dp du. 2 au,

dP b ) ol
dt T PCRy gr T g2 T PC %404 3

(E.58)

where Qn/Z is obtained from equation (E.7) for the parametric angle 6 =
/2. Writing equation (E.58) in finite difference form, solving for
the pressure at point (2), and denoting this pressure by P*(2), the

following equation is obtained.

Pe(2) = P(1) + 58 ,(1) + o, (2)][t(2) - t(1)]

i %{pmc?u)aiajau]./axju)
+ p,(z)c?(z)aiajaui/axj(2)][t<2) -t
- Ho(De(1) + p(2)e(2)Ig;[u;(2) - u;(1)] (E.59)
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Note that the cross-derivative terms [aui/axj(k)] in equation
(E.59) appear at both point (1)} in the initial-value plane and at

point (2) in the solution plane. In general, these terms can be

evaluated by employing equation (E.11) fit to nine data points in the

appropriate plane, differentiating this expression analyticaily to ob-
tain partial derivatives with respect to y and z, and then using the
governing partial differential equations to obtain the required partial
derivatives with respect to x. On the predictor application of the
shock wave point unit process, the flow property field in the solution
plane is not known, so the cross-derivatives at point (2) are set equal
to those at point (1). On a global corrector application of the
shock wave point unit process, the cross deriatives at point (2) are
evaluated in the manner just described.

The pressure P(2) is calculated from the local Hugoniot equations.
The pressure P*(2) is calculated from equation (E.59). The difference
between P(2) and P*(2) is driven to within a specified tolerance of
zero by employing a one-dimensional secant iteration scheme which
iterates on the shock wave angle $(2). Two initial estimates of ¢(2)

ar ‘equired to initiate the subiteration.

The shock wave point unit process is first applied as a predictor
for each shock wave solution point. In this application, the value of
o used in equation (E.38) is obtained by curve fitting points along
space curve (A), and the cross-derivative terms at the shock wave solu-

tion point are equated to those terms at the bicharacteristic base
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point in the initial-value plane, point (1). After a tentative solution
is obtained for all of the shock wave points, a number of global cor-
rector applications are performed. Here, the value of o used in equa-
tion (E.38) is based on data along space curve (B), and the cross-
derivative terms at the shock wave solution point are evaluated at that %
point. The resulting overall scheme has second-order accuracy when

the global correction is performed. The global iteration is terminated
when successive values of o have converged at each of the shock wave
solution points.

In the course of the program development, an alternative algorithm
to the one just presented was devised in an attempt to compute the bow
shock wave solution points. In this alternative scheme, a muTtiplicity
of bicharacteristics were used, and, 1ike the interior point or solid

boundary point unit processes, linear combinations of the wave surface

wr

compatibility equations were formed as to algebraically eliminate the
cross-derivative terms at the solution point. A two-dimensional
Newton-Raphson method was devised for determining the angles ¢ and
explicitly, and second-order accuracy was achieved without resorting to
global correction. This scheme was successful in computing axisymmetric
flows, but an apparent instability arose when attempting to compute

three-dimensional flow fields.

7. SOLID BODY-SHOCK WAVE POINT UNIT PROCESS

The solid body-shock wave point unit process is used to determine
the flow properties downstream of the shock wave at a point where the
shock wave intersects a solid boundary. This unit process is used to

determine the solution for the points on the cowl on the downstream side

e
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of the cowl 1lip shock wave, énd for the points on the centerbody or cowl
on the downstream side of an internal reflected shock wave. The method
of computation is essentially the same for either application and is
discussed below. The solution points on the downstream side of the
incident shock wave at an internal shock wave reflection are computed
using the field-shock wave point unit process which is presented later.

A depiction of the computational network used in the solid body-
shock wave point unit process is presented in Figure E.5. A typical
solid body-shock wave solution point is denoted by point (P) in this
figure. At point (P), the outward unit normal vector to the solid
boundary is denoted by Hb' The locus of solid body-shock wave solution
points represents the intersection of the shock wave with the solid
boundary, and defines space curve (A) in Figure E.5. The intersection
of the shock wave with the meridional plane passing through point (P)
is denoted by space curve (B). The tangential unit vectors to space
curves (A) and (B) at point (P) are denoted by E and %, respectively.
The unit normal vector to the shock wave at point (P) is denoted by

A

ng.
As was done for the bow shock wave point unit process, the unit
vectors E, %, and GS are referenced to a local cartesian coordinate
system (x',y',z'), where again x' is coincident with the x-axis, y' is
in the radial direction along the meridian which suhtends the angle 5
with the (x,y)-plane, and z' is normal to the (x',y*)-p]ane. The rela-
tions between the components of a vector in the (k,y,z)-system and in
the (x',y',z')-system are given by equations (Eg31) to (£.36). As in

the bow shock wave point unit process, the tangential unit vector t lies
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in the meridional plane [{x',y')-plane] and subtends the angle ¢ with

the x'-axis. Hence,
t= cos¢ i sing 3' (E.60)

Unlike the bow shock wave point unit process, however, the tangential
unit vector £ does not, in general, lie in the transverse plane
[(y',z')-plane], but rather it may have a nonzero x'-component. This

tangential vector along space curve (A) may be represented by

odx' 3, dy' 3, dz g

[ ittt g k (E.61)
where ds is the differential arc length given by

(ds)? = (dx")2 + (dy')2 + (dz')? (E.62)

The derivatives in equation (E.61) are obtained by analytically

differentiating the expressions

VA = 2
x'(8) = a; t a8 +as0 « (E.63)
' _ 2 ,
y'(8) = by + by8 + b8 (E.64)
2'(8) = ¢, + C 0 + Co0° (E.65)
1 2 3 *

In equations (E.63) to’(E.65), the coefficients a5 bi’ and c
(i=1,2,3) are obtained by fitting the respective expressions to three
points on space curve (A) as described in Appendix C. For the cowl 1lip
shock wave points, space curve (A) is defined by the cowl 1ip itself
since the shock wave is assumed to be attached to the cowl 1lip. 1In

this case, the x'-componert in equation (E.61) is identically zero,
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and, as a consequence, E lies in the transverse plane. Furthermore, if
the cowl is axisymmetric, the y'-component is also identically zero.
Alternatively, for computing the downstream properties at a reflected
internal shock wave, space curve (A) igrdefined by the intersection

of the incident shock wave with the solid boundary. Except for an axi-
symmetric flow field, or for a point on a plane of flow symmetry in
three-dimensional flow, the x'-component in equation (E.61) is nonzero.
With the tangential unit vectors determined, the shock wave normal unit
vector ;S is obtained from equation (E.39).

The solid body-shock wave point unit process is initiated by
determining the body normal unit vector ;b and the tangential unit
vector Q at point (P), expressing both of these vectors in the
(x',y',z')-system. Then, an initial estimate is made for the value of
¢ in equation (E.60), and, by use of equation (E.39), the shock wave
normal unit vector is obtained. In exactly the same manner as was done
in the bow shock wave point unit process, the downstream flow properties
at point (P) are computed by use of equations (E.45) to (E.53). At
this stage, the velocity normal to the body an at point (P) is computed

from the equation

1 [ ] I
nb = Yd"bx' T Vdpy' t WMz (E.66)

where ua,'vé, and wé are the downstream velocity components at point

(P), and n 41 are the components of the body normal unit

bx' * nby,, and ny
vector, both vectors being expressed in terms of the (x',y',z')
coordinates. The body normal velocity an is reduced to within a
tolerance of a specified constant by varying the angle ¢ using a one-
dimensional secant iteration procedure. Two initial estimates of ¢ are
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required for starting the iterative procedure. Once convergence has
been obtained, the downstream velocity components are transformed back
into the (x,y,z)-coordinates using equations (E.34) to (E.36)Q

In the course of the program devé1opment, an alternative algorithm
to the one just presented was devised to compute the solid body-shock
wave points. That algorithm determined the shock normal vector (and
thereby the downstream properties) by employing the shock wave rela-
tions which link the flow turning angle and the shock wave angle, both
these angles being measured from the approach streamline direction in
a plane defined by the approach velocity vector and the shock wave
normal vector. Since the shock wave normal vector is required to de-
fine this plane, an iterative procedure for determining that vector is
required in this method. This method was tested and produced results
identical to the method described earlier. However, due to the greater
complexity of the alternate method, it was not selected for use in the

final algorithm.

8. SHOCK-MODIFIED INTERIOR POINT UNIT PROCESSES

In some situations during the computation of the internal flow,
the interior point unit process must be applied in a modified form.
One such application is illustrated in Figure E.6. In this situation,
the Mach cone, with apex at the solution point, intersects not only the
initial-value plane but also a solid boundary and an internal shock ;
wave. The point notation used in Figure E.6 is the same as that used
in the computational network of the basic interior point scheme, which

is illustrated in Figure E.1.  The solution point, denoted by point (6)
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I

in Figure E.6,1ies on the current solution plape. Point (5? represents
the streamline base point on the initial-value p1ane; As in the basic
interior point unit process, points (1) to (4) represent the bichar-
acteristic base points. Point (1), in this case, 1ies on the surface
of the internal shock wave, and point (3) 1ies on the solid boundary.
Points (2) and (4) lie on the initial-value plane.

The axial distance between the initial-value plane and the solu-
tion plane is determined by either the CFL stability criterion or by
the special constraints which apply when an internal shock wave inter-
sects a solid boundary. Those procedures are discussed in Appendix K.
In either case, the axial step is determined prior to the application
of the unit processes.

In the overall algorithm for the computation of the internal flow,
the order of integration is selected so that the shock wave solution
points and the body solution points are determined before any attempt

is made to obtain the solution at any of the interior field points

which lie in the flow field sector that is downstream of the shock wave.

As a consequence, the flow property fields on the downstream side of
the shock wave and on the stream surface formed by the solid boundary
are determined before the solution at an interior point, such as
point (6) in Figure E.6, is attempted.

The procedure used to obtain the solution at point (6) in Figure
£.6 is almost identical to the basic interior point unit process, which
is presented in Section 4 of this appendix. The major difference be-
tween the two algorithms is that, in the present case, the bicharacter-

jstic intersection points on the shock wave [point (1)] and on the

Pt
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solid boundary [point (3)] must be determined in addition to those bi-
characteristic intersection points [points (2) and (4)] on the initial-
value plane. Along with the location of these points, flow property
values and first partial derivatives of the flow properties at these
points must also be obtained.

As in the basic interior pointidhit process, flow property values
at points (2) and (4) on the initial-value plane are obtained using
the bivariate interpolation polynomial given by equation (E.11). The
coefficients in this equation are determined by a least squares fit of
nine data points in the initial-value plane as discussed in Appendix C.
Flow property values at point (1) on the shock wave surface or at
point (3) on the solid boundary surface are obtained using the tri-

variate interpolation polynomial

, 2 2
f(X,y,z) = a tay tagz *a,yz toagy” +acz

+ agxy + agxz (E.67)

The coefficients a, (i=1 to 8) in equation (E.67) are determined by a
least squares fit of fourteen data points on either the downstream side
of the shock wave for interpolation on that surface, or on the solid
boundary for interpolation on that surface. The detailed implementa-
tion of equation (E.67) is presented in Appendix C.

An outline of the unjt process used to determine the solution at
point (6) in Figure E.6 is now presented. The computation is initiated
by determining the location of the solution point, point (6), using

equation (E.12) in a manner identical to the procedure employed in the

basic interior point unit process. After the position of the solution
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point has been obtained for a given outer iteration, the four bi-
characteristics, corresponding to the values of the parametric angle

6 =0, m/2, m, and 3r/2 in equation (E.13), are extended rearward from
the solution point to the initial-value plane. From the bicharacteris-
tic-initial-value plane intersection point coordinates, denoted by
y*(k) and z*(k) (k=1 to 4), the radius v*(k) = [y*(k)% + z*(k)?1"/2 and
the polar angle 6*(k) = tan'T[z*(k)/y*(k)] of each intersection point
are computed. The radius r*(k) is then compared to the shock wave
radius rs and the body radius ' in the meridional plane defined by the
polar angle 6*(k). The shock wave radius is determined from the uni-

variate interpolation polynomial

_ 2
rs(e) =a; + a,0 + 240 (E.68)

where the coefficients 3, (i=1,2,3) are determined by fitting this ex-
pression to three shock wave solution points in the initial-value plane
as described in Appendix C. The solid body radius 'y is obtained by
employing the formulations presented in Appendix D. For the orientation
shown in Figure E.6, if re < r¥(k) < Pps the bicharacteristic inter-
sects the initial-value plane and the analysis proceeds as in the basic
interior point unit process. If r*(k) < rss the bicharacteristic
intersects the interna1 shock wave. In this case, the bicharacteristic
base point location on the surface of the shock wave is foundrby

employing the bicharacteristic-surface intersection scheme presented in

~Appendix D. For a shock wave intersection, that scheme requires that

equation (E.68) also be fitted to three shock wave solution points in_

the current solution plane. If r*(k) > rys the bicharacteristic

B et g

ey,

“e



intersects the solid boundary. The bicharacteristic base point loca-
tion on the solid boundary is also obtained by using\the jterative

scheme presented in Appendix D. As in the basic interior point unit

process, an inner jteration is performed for locating points (1) to (4).

Interpolated values of the flow properties at the respective points
are obtained by using either equation (E.11) or equation (E.67),
whichever is applicable.

After the bicharacteristic base points, points (1) to (4), havex
been located, the first partial derivatives of the flow properties
with respect to y and z at these points are obtained by analytically
~ differentiating the appropriate interpolation poiynomial. In a like
manner, these derivatives are also obtained at the streamline base
point, point (5). Then, using the governing partial differential
equations, the x-partial derivatives of the flow properties are found
at points (1) to (5). For any bicharacteristic which intersects the
shock wave or the solid boundary, the time parameter [t(6) - t(k)] is
found using equation (E.13) app]iéd for i=1 (i.e., the x-coordinate
direction) while employing the appropriate intersection coordinates.
At this stage, the system of compatibility equations may be solved
for the flow properties at point (6) in a manner identical to that
employed in the basic interior point scheme. |

The situation illustrated in Figure E.6 is quite general. In some
instances, there are no bicharacteristic intersections with the solid
boundary. Alternatively, there may be no intersections of the bi-
characteristics with the internal shock wave. There may be two bichar-

acteristics intersecting with the shock wave, etc.
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Another situation in which the interior point unit process must
be applied in a modified form is illustrated in Figure E.7. In this
figure, the Mach cone, with apex at the solution point, intersects
both the initial-value plane and the internal shock wave. The point
notation used in Figure E.7 is the same as that used in Figure E.6.
However, in this case, the streamline base point, point {5), does not
lie on the initial-value plane, but rather lies on the surface of
the internal shock wave.

The Tocation of the streamline base point is obtained by extending
the streamline from the initial-value plane to the surface of the shock
wave. The point of intersection of the streamline with the shock wave
is determined by employing the iterative scheme which is presented in
Appendix D for finding a streamline-surface intersection point. That
procedure requires that equation (E.68) be applied to three known
shock wave solution points in the initial-value plane and three shock
wave solution points in the current solution plane. Furthermore,
interpolated values of the velocity components are required on the up-
stream side of the shock wave at the point where the streamline inter-
sects the shock wave. For this purpose, the following linear tri-

variate interpolation polynomial is employed.
F(x,y52) = a; + aX + agy + 3,2 (E.69)

The coefficients a; (i=1 to 4) in equation (E.69) are determingq
by fitting this expression to four data points on the upstreamvéide
of the shock wave, as discussed in Appendix C.

After the streamline-shock wave intersection point has been de-

termined, the following fractjon is formed
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€ = [XS - X(S)]/(XS - XI) (E-70)

where Xq and Xg are the axjal positions of the initial-value plane

and the so]utf@n p]ané;‘;éspectively. If € is greater than a specified
minimum value, an interior point unit process is performed on the
downstream sidé of the shock wave. This unii process is almost iden-
tical to that used for determining the solution at point (6) in

Figure E.6. In this case, however, the streamline formula given by
equation (E.12) is applied between the streamline-shock wave inter-
section point and the so1ution plane. Interpolated flow property
values at point (5) are determined by applying equation (E.67) to four-
teen data points on the downstream side of the shock wave.

.If, on the other hand, € is less than the specified minimum value,
an interior point unit process on the downstream side of the shock wave
is not performed. Instead, the streamline from point (5) is projected
onto the solution plane, and the flow properties at the solution point
are determined by interpolation in the solution plane. The streamline
integration from point (5) to point (6) employs equation (E.12). The
flow property values at point (5) are obtained from equation (E.67)
applied to fourteen data points on the downstream side of the shock
wave. Flow property values at the streamline-solution plane inter-

section point are determined from the linear bivariate polynomial

fly,z) = ay +agy +agz (E.71)

The coefficients ai (i=1,2,3) in equation (E.71) are determined by
fitting this expression to three data points in the current solution

plane, as described in Appendix C. The order of integration for
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determining the internal flow field is specified so that the downstream
shock wave points and outer interior points in the downstream flow
field sector are determined first. The location of the solution point,
in this case, is determined by an iterative loop which is terminated
when the y and z coordinates of the prqjected solution point have

converged.

9. SHOCK-MODIFIED SOLID BOUNDARY POINT UNIT PROCESSES

In some situations, the solid boundary point unit process must
be applied in a modified form. One such application is illustrated in
Figure E.8. In this situation, a portion of the Mach cone, with apex
at the solid body solution point, intersects both the initial-value
plane and the internal shock wave. The point notation used in Figure
E.8 is identical to that used in Figure E.2, which depicts the computa-
tional network for the standard bodj point unit process. The unit
process employed in the present case is almost jdentical to the standard
body point unit process. In the present case, however, the bichar-
acteristic-shock wave intersection is handled in a manner identical to
that employed in the shock-modified interior point unit process pre-
sented in the previous section.

In some situations, the entire Mach cone intersects the shock wave,
as illustrated in Figure E.9. This situation occurs at a body point
on the solution plane that is immediately downstream of a solid body-
shock wave reflection, or at a body point on the solution plane that is
immediately behind the shock wave emanating from the cowl 1ip. 1In the
former case, the shock wave~solid body -intersection is a space curve

in three-dimensions, whereas, in the latter case, the shock wave-solid
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body intersection is a curve\in a plane of constant x. The appropriate
intersection algorithm is used as presented in Appendix D, and for the
most part, procedures identical to those employed in the shock-

modified interior point unit process are employed in this case.

10. INTERNAL FLOW FIELD-SHOCK WAVE POINT UNIT PROCESSES

Figure E.10 illustrates the overall computational network used in
determining the solution for a typical shock wave point in the internal
flow field. To determine the solution at the shock wave point, an
interior point unit process must be performed to obtain the upstream
flow properties at the location of the shock wave solution point.
Figure E.10 illustrates both the computationai network for the interior
point unit process (denoted by primed numbers), and the computational
network for the standard shock wave point unit process (denoted by
unprimed numbers). The point notations employed in these computational
networks are identical to those used in the corresponding standard
unit processes.

The computational procedure employed for deteémining the solution
for an internal flow field-shock wave point is almost identical to the
bow shock wave point unit process. The major difference between the
two procedures is that for an internal flow shock wave point, the up-
stream flow preoperties at the solution point are obtained from an
interior point computation, rather than using free-stream data as in
the bow shock wave point unit process. The required interior point
upit process is eésentia]ly the same as the basic interior point unit
process presented in Section 4 of this appendix. In the present case,

however, the streamline is not extended froma field point in the
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§

initial-value plane to the so]utibn plane, but rather it is extended
from the shock wave solution point back to the initial-value plane.
The position of the shock wave solution point is determined by the
shock wave point unit process. To initiate the interior point computa-
tion in the present case, flow property values are used from an
adjacent field point in the flow field sector that is upstream of the
shock wave in the solution plane. This modified interior point unit
process requires searching the flow field sector upstream of the shock
wave in the initial-value plane for the field point that is closest
to the streamline-initial-value plane intersection point. Thjé point
is then used as the base point for the stencil of initial-value plane
field points that are used in formuiating the bivariate interpolation
polynomial given by equation (E.11) (see Appendix C).

For the first solution plane inside the inlet, the downstream
bicharacteristic base point, point (1) in Figure E.11, does not lie
on the initial-value plane, but rather is located on the stream sur-
face formed by the cowl boundary. To compute the pressure at point (2)
from the wave surface compatibility relation, equation (E.59), the
flow property values must be available at point (1), which requires
that the flow property field must be known on the cowl surface. The
body points on the cowl surface at the first internal flow solution
plane, however, must be obtained from the unit process described in
Section 9 of this appendix. That unit process requires that the
flow property field on the downstream side of the shock wave be known.
Hence, a simultaneous solid body point-shock wave point algorithm must

be employed. This procedure was not developed in the present
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investigation. Rather, the shock wave points on the first internal
flow solution plane are computed using a value of ¢ in equation (E.37)
equal to the value of ¢ at the shock wave point in the initial-value
plane which lies in the same meridional plane as the solution point.
This provides a solution at each shock wave point on the first solu-
tion plane without employing the compatibility relation along the
bicharacteristic. The body points on the cowl are then computed in the
manner outlined in Section 9. On ensuing solution planes, except for
the one immediately after a solid body-shock wave intersection, the
bicharacteristic base point is located and the angle ¢ is iterated

to convergence.

When the internal shock wave intersects a solid boundary, as illus-
trated in Figure E.12, a modification is required to the shock wave
point unit process. In this case, instead of performing an interior
point unit process to obtain the upstream flow properties at the solution
point, a modified solid boundary point unit process must be employed.
Moreover, the shock wave solution point, in this case, does not lie
on the solution plane, but rather its position must be obtained by
computing the intersection of the incident shock wave with the solid
boundary.

Finally, it should be noted that in order to achieve strict
second-order accuracy in the internal flow shock wave point solution,
global correction must be performed [this involves evaluating the

cross derivatives at the solution point and using updated values of o

in equation (E.38)]. Time constraints in the present investigation

did not permit the development of the global correction capability for
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the internal flow shock wave points.

be performed for those points.

Hence, only local iteration can
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APPENDIX F
CALCULATION OF THE TRANSPORT TERMS

1. INTRODUCTION

The numerical procedure developed in this investigation has the
capability to include the influence of molecular transport on the
solution by treating the viscous and thermal diffusion terms in the
governing equations as forcing functions, or correction terms, in the
method of characteristics scheme. At present, the computer program
has the capability to include the influence of viscous and thermal
diffusion in the computation of the external flow field about the
forebody, and in the computation of the internal flow field in which

shock waves are not discretely traced. The program option which per-

“forms discrete fitting of the internal shock wave system does not have

the capability to include the influence of molecular transport in the

computation, but rather assumes the flow to be inviscid and adiabatic.

2. EXPRESSIONS FOR THE TRANSPORT TERMS
The expressions for the transport forcing functions are derived in

Appendix A, and are summarized below.
Fomufdu - (v +w )| +u(u, +v.) +u(u +w)
X x{3 'x 3 'y Z YUy X z'Vz X

) 4 1
+ u[é Uy + uyy tu,, +73 (ny + wxzil ‘ (F.1)
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-4 14, _2
F =u vy -3 (ux + wzil + ux(vx tu )+ (v, + wy)

y y|3 y
+u ﬂ-v +v .tV + 1 (u . +w ) (F.2)
3 yy XX zz 3 ‘yx yz *
F, = uz[? W, - u + vyi] + ux(wx + uz) + uy(wy + vz)
1 (
* “[? Wor * Wyt (u,y + szg] F.3)
Fo = { K(T + TZZ) K, Tt KyTy +x,T,
2 2 2 2 2
+ u[%(ux + vy tw, + uyvx + u_w, + vzwy) + v t Wy
2 2 2
+ uy + wy tu, t v (u + v +w )?]} (F.4)
where
£ = pT (as 0 (E.5)

In equations (F.1) to (F.5), u, v, and w denote the velocity components
in the x, y, and z coordinate directions, respectively, P is the pres-
sure, p denotes the density, T is the absolute temperature, s denotes
the entropy per unit mass, u represents the dynamic viscosity, and k is
the thermal conductivity. The subscripts x, y, and z on the right-hand
sides of equations (F.1) to (F.4) denote partial differentiation in the
corresponding coordinate direction, whereas Fx’ Fy, and FZ on the left-
hand sides denote the transport forcing functions in the x, y, and

z component momentum equations, respectively. Fe is the transport

forcing function in the energy equation.
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3. COMPUTATION OF THE TRANSPORT FORCING FUNCTIONS
During the course of the program development, a number of methods
were devised in an effort to obtain a good approximation to the trans-

port forcing functions. One such method was based on embioying a

{

quadratic trivariﬁt&ﬂiﬁterpo]ation polynomial whose coefficients were
determined by a least squares fitting of a number of known field points
on the initial-value plane and the previous solution planes. This
polynomial was employed to determine the five dependent properties u,
v, W, P, and p. The spatial derivatives of the velocity components ap-
pearing in equations (F.1) to (F.4) were then obtained by analytically
differentiating the respective interpolation polynomials. Spatial
gradients of préssure and density were obtained in a similar manner.
Then, by differentiation of the thermal equation state, temperature
der{vatives were expressed in terms of the pressure and density deriva-
tives. The molecular transport propertiés and their spatial gradients
were obtained using the procedures presented in Appendix A.

This method of calculating the transport forcing terms was con-
sidered to have good accuracy. The computer execution time requiredvby
this method, however, was felt to be unacceptable. This prohibitive
execution time was primarily due to the least squares curve fitting of
the trivariate interpolation polynomials. Consequently, a more
efficient method with acceptable accuracy was sought for approximating
the transport terms. The method which was selected is presented below.

For the interior point and solid boundary point unit
processes, the transport termS'must be computed at all points in the

computational network (see Figures E.1 and E.2). For the bow shock

249

e



250

WO AR I RLELE B L TR L I R R s . e seman nen B AN

wave point unit process, the transport terms must be computed at the
solution point and at the intersection point of the bicharacteristic
with the initial-value plane (see Figure E.3). For each of these

unit processes, partial derivatives of the dependent properties with
respect to y and z in the %nitia]-va]ue plane are obtained by analyti-

cally differentiatiny the quadratic bivariate interpolation polynomial

= 2 2
fly,z) = ayp tayy tazztayztagy +agz (F.6)

The coefficients a, (=1 to 6) in equation (F.6) are determined by a
least squares fit of nine data points in the initial-value plane as
discussed in Appendix C. Equation (F.6) is applied for the five
dependent flow properties u, v, w, P, and p. Spatial derivatives of
pressure and density are required [even though they do not appear
explicitly in equations (F.1) to (F.4)] because spatial derivatives
of temperature are expressed in terms of pressure and density deriva-
tives through differentiation of the thermal equation of state as
discussed in Appendix A.

In the solution plane, partial derivatives of the dependent
properties with respect to y and z are equated to the corresponding
derivatives in the initial-value plane. For the interior point and
boundary point schemes, the derivatives at the solution point are set
equal to those at the streamline base point. For the bow shock wave
point scheme, the solution point derivatives are equated to those ay
the bicharacteristic base point. The evaluation of these derivatives
in the solution plane would require that a global iteration algorithm

be employed. In this algorithm, the property field on the solution
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plane would first be determined by a predictor application of the
appropriate unit process at each point in the computed sector. Then,
by fitting equation (F.6) to solution plane field points the appropriate
partial derivatives could be obtained. In a similar manner, ensuing
corrector applications would be performad until overall convergence was
achieved. The attendant increase in algorithm complexity and computer
execution time using this global iteration procedure; however, was felt
to be unwarranted since the transport terms are assumed to be of
secondary importance in determining the solution.

Partial derivatives with respect to x in equations (F.1) to
(F.4) are obtained from the following quadratic univariate interpolation

polynomial.

_ 2
f(x) = a; +aXx + agx (F.7)

The coefficients a (i=1,2,3) in equation (F.7) are determined by fitting

this expression to three data points. The first data point is located
on the solution plape that is immediately upstream of the current
initial-value plane, the second data point is on the initial-value
plane, and the third data point is the solution point itself. For the
interior point and boundary point unit processes, the fit points are
located on the streamline which passes through the solution point. For
the bow shock wave point unit process, the fit points are the shock
wave solution points corresponding to the circumferential index of the
solution point. Special logic in the computer program takes account
of point deletion and addition in the forebody flow field computation
and thereby insures that the appropriate fit points are selected. Of

course, for a predictor application of either the interior point or
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boundary point unit processes, property values at the solution point
are equated to those at the streamline base pojnt in the initial-value
plane.

Equation (F.7) is applied for the five dependent flow properties
u, v, w, P, and p. Analytical differentiation of equaticn (F.7) yields
approximations to the x-partial derivatives. Differentiation of the
thermal equation of state allows the spatial derivatives of temperature
in the x-coordinate direction to be expressed in terms of the correspond-
ing pressure and density derivatives. This formulation yields an x-
partial derivative which is constént in a given x-plane.

Since equation (F.7) uses data on a previous solution plane,
derivatives cannot be evaluted using this representation until at least
one previous solution plane is available. Furthermore,.the derivatives
obtained using this formulation are only approximations to the x-partial
derivatives since the y and z coordinates of each of the three fit
points are not, in general, identical. Considering that the effects of
molecular diffusion are assumed to be small, this approximatioh is
acceptable.

The molecular transport properties and their spatial gradients

are obtained using the procedures presented in Appendix‘A.
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APPENDIX G
GOVERNING EQUATIONS FOR THE BOUNDARY LAYER FLOW

1. INTRODUCTION

The‘major assumptions constituting the fluid dynamic model for
the boundary layer flow are:

1. steady flow,

2. negligible body forces,

3. thermodynamic equilibrium (i.e., mechanical, thermal, and
chemical equilibrium),
4. negligible radiative heat transfer and no internal heat
generation other than viscous dissipation, and
5. negligible pressure variation in the boundary layer normal .
direction.
The governing equations for the assumed flow model are written in an
orthogonal body-fitted curvilinear coordinate system. They consist
of the continuity equation, the component momentum equations, the
energy equation, the thermal and caloric equations of state, and
expressions for thevmolecu1arbtransport properties and turbulent

eddy diffusities. These relations are presented in this appendix.

2. DIFFERENTIAL EQUATIONS OF MOTION
The governing equations for the three-dimensional boundary layer
flow have been derived by Vaglio-Laurin (10) in orthogonal curvilinear
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coordinates. For the present investigation, a body-fitted curvilinear
coordinate system has beei selected, which is comprised of geodesics
and geodesic parallels. The coordinate system is illustrated in
Figure G.1, and consists of the coordinates X, y, and Z, where X is
coincident with the body surface and 1ies in a given meridional plane,
y is locally orthogonal to the body surface, and z is orthogonal to
both x and y.
When employing the coordinate system of Figure G.1, the continuity

equation may be written as

B (ph,i) + 2 (o) + 2 (hihot) = 0 6.1

iz et g e S (61
In equation (G.1), U, vV, and w denote the mean velocity components in
the ¥, y-»and z-coordinate directions, respective]y,.and p denotes the

mean density. The overbar (~ ) denotes a time averaged'product with

pv = pv + p'v' (6.2)

where the primed quantities denote the respective time fluctuation
components. In equation (G.1l), the parameters hl and h2 are metric
coefficients which are generally dependent on X and Z, only. The metric

coefficients for axisymmetric geometries are given by the simpie

expressions
hy=1 _ (6.3)
hy = r = r(x) (G.4)

where r is the body radius at the position X.

we
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The component momentum equations in the X and z directions are
termed the streamwise and cross flow momentum equations, respectively.

Those equations are given by, respectively,

p il My o W B, G Rk, + pnK
1 ox 2 3z oy .
o A R R I (6.5)
1 93x oy oy
p ol M, oM DM G K+ pitK,
1 3x 2 3z oy
R (R A (6.6)
2 3z 3y ay

where P denotes the mean static pressure, u denotes the molecular
viscosity, and K1 and K2 are geometric parameters known as the geodesic
curvatures of the curves X = constant and zZ = constant, respectively.

Both K, and K, are generally functions of x and z, only, and are given

by
oh
1 2
Ky, = = coiee b (6.7)
1 h1h2 ox
oh
1 1
Ko = = TR (6'8)
2 h1h2 9z

For axisymmetric geometries, the geodesic curvature terms are given by

K. = - —T (6.9)

1 )
r/f2 + 1
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K2 =0 (6.10)
with
_ dr _ dr(x} ‘ '
f = ax ax | (G.11)

where r is the body radius, and x is the position measured along the

longitudinal axis of the body.

The third momentum equation, which is the yor normal momentum

equation, is given by the classical expression

=0 (6.12)

P

wr

3 EPR._aﬂ+ u{l - _l_J L {.GE_*Z'_WE} - ov'fi
3y LT ¥

z] (G.13)

where H denotes the mean total enthalpy per unit mass, H' denotes its

Q

time fluctuation component, and Pr is the molecular or laminar Prandtl

number. The total enthalpy H is given by

H=h+ 2ot (G.14)

wherz h is the mean static enthalpy per unit mass. It is assumed in

equation (G.14) that
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>>> 2 | (6.15)

and thereby v can be neglected in défining the total enthalpy.

The boundary layer equations of motion are subject to the follow-

ing boundary conditions:

y=20: u
H
9 =8: U
H

where 8 denotes the

=0, w=0, V= vw(x,z)
(G.16)
- H (%) or {1@] = H!(%,3)
ay
= ue(x,z), W= we(x,z)
(6.17)

He(x,z)

boundary thickness which is dependent upon x and z,

the subscript w denotes wall conditions, and the subscript e denotes

boundary Tayer edge conditions. Note that equation (G.16) allows for

distributed mass transpiration or bleed at the wall.

At the boundary layer edge, the x and z- component momentum equa-

. tions reduce to the
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following expressions:

w_ Su
e %Yo ~ o~ ~2 1 3P ,
— 4+ p —=-pUWK, +p WK = - (G.18)
e h2 83 eee? ee 1 h1 ™
W W
e Mg o~ ~2 1 3P
p.—— - pUwK +pu-K,=-== (6.19)
e h2 83 eeel e'e 2 h2 57

g

!

SRR

-



S g T A TR

2 XAX

ORIGINAL PREZ 5
OF POCR QUALITY

3. BOUNDARY LAYER ATTACHMENT LINE EQUATIONS

On a plane of flow symmetry, the cross flow velocity (w) is

identically zero, as is the cross flow pressure gradient (5P/3z).

The flow on this plane is referred to as attachment 1ine flow. The

attachment 1ine is a streamline on the body on which both w and 3P/3z

are identically zero. The cross flow momentum equation will be

singular on a flow symmetry plane since both w and Kz vanish there.

As suggested by Moore (11), a nonsingular equation may be obtained

by first differentiating the cross flow momentum equation and then

substituting into it the appropriate symmetry conditions. Performing

the proper operations yields the following system of equations for the

attachment 1ine flow:

&= (phyl) + phyii, + 2= (hihyp¥) = 0 v (6.20)
ax 3y
p.hu_ég_J,po_g:-hLif_d:[ua_‘j- i (6.21)
1 3x oy 1 3x 9y Ay
Lo W . o 3K
p—”——a&‘rpvi_z fwz""zz"““"Kl”’“z'i—2
hl ax 3y 2 9z
2 — 3w —
p e
= - Fl-%*‘ L lh—2- p(w'V'), (6.22)
2 3z oy -~ ay
U oH, =oH_ 5 [T oH 1) 5 (i8] =
1 3x dy oy L ay oy
(6.23)
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where Wz = 9w/dz. Equations (G6.20) to (G.23) represent the continuity,
streamwise momentum, cross flow momentum, and energy equations,
respectively. N

{

Boundary conditions for the attachment 1fhe~a§yations are given

\

by
y=0: u=0, w,=0, v= vw(x,z)
(G.24)
H=H (%3 or [f'-ﬂ-] - H'(%.3)
3y
y =8 u=ug(x,z), W, = W, (x,2) ] |
(G.25)
H = He(x,z)

At the boundary layer outer edge, equation (G.21) reduces to

oo—&._ 9P
peue - — (6.26)
which is of the form of two-dimensional flow.
Note that the attachment line flow is quasi-two-dimensional in
that the velocity vector lies in a plane. However, the solution is

influenced by flow off that plane.

4. THERMODYNAMIC MODEL AND MOLECULAR TRANSPORT PROPERTIES

The thermodynamic model and molecular transport property repre-
sentations are identical for the boundary flow and the supersonic
core flow. As a consequence, the relations given in Sections 3 and 4

of Appendix A are applicable for the boundary layer flow.
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5. THREE-DIMENSIONAL TURBULENCE MODEL

The computation of turbulent boundary layer flows requires that
assumptions be made for the Reynolds stress terms in the governing
equations of motion. Mathematical closure is achieved in the present
study by using an eddy viscosity formuiation along with mixing length
and velocity defect concepts.
' The computer program developed in the present investigation is
;ritten in a modular fashion and allows for the rapid substitution of
alternate turbulence models. Either algebraic or transport-equation
models may be incorporated into the program along with improved transi-
tion modeling functions.

The present turbulence model is algebraic and is based on the

Boussinesq eddy viscosity concept. The Reynolds stresses in equations

(G.5), (G.6), and (G.13) can be written under this assumption as

-pu'vt = pE, 2%- ‘ (G.27)
oy :

- oW =g, M (6.28)
5y '

- p W' =g, 2 (6.29)

where e and e, are the turbulent eddy viscosities in the % and z-

coordinate directions, respectively, and g, is the turbulent eddy

5]
thermal conductivity. Isotropic turbulence has been assumed in the

present study, thereby
€, =€, (6.30)
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The present turbulence model is a two-layer representation (20)

where

€. =€, = e.;(oiyiyt) (6.31)
€ =€, = gy" (;t <y <8 (6.32)

In equations (G.31) and (G.32), e; and e, represent the inner and outer
region eddy viscosities, respectively, and yt is the value of the
normal coordinate determined by continuity of the eddy viscosity, that
is, where €; = gy

A mixing length representation is employed for the inner layer

eddy viscosity

s = strLZ[[_Z%]z . %}T/z | (6.33)

where L is the mixing length, and Gtr is a function accounting for the

transition from laminar to turbulent flow. The mixing length L is

'given by

L = ky[l - exp(-y/A)] (G.34)
where k 1is the von Karman constant given by

k = 0.40 (6.35)

and A is defined by

I
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A=A 3 pw/”T (G.36)

In equation (G.36), v denotes the kinematic viscosity, the subscript
w denotes wali conditions, AT s the van Driest damping factor which

is given by
At = 26.0 (6.37)

and GT is given by
i [—-—"5] (6.38)

where Tus is the shear stress at the wall. Equation (G.36) s valid
for cases with and without distributed wall mass transfer. For

impermeable walls, the parameter N in equation (G.36) is given by

o —1/2
N = E 18 M [ES] p‘] (6.39)

He (Py
where
v .u_ u
R (G.40)
U as
T

where Gs is the velocity in the external streamline direction s. For
cases of wall transpiration or bleed, N is given by )
1/2
P2 pt U Wy o
S ATV s ) R P 2wt ox W oo
N { ] ~4_[§ exp[11.8 . Vi 1] + exp[ll.S TR
(6.41)
263
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~4 . .
where vy 18 amass transfer parameter given by

<

ot Y
LR (6.42)

fty

T

The outer region eddy viscosity is given by the velocity defect

expression

(6.43)

€ = Gtro‘

(e <52 - 39

In equation (G.43), the parameter o is taken to be a constant at the

value
o = 0.0168 (G.44)

The turbulent eddy thermal conductivity is expressed in terms of

the turbulent eddy viscosity as

gy = ﬁ,—t— (G.45)
with
> 011/2
€ = [ex te, ] = /2 €y (G.46)

where Prt is the turbulent Prandtl number which is assumed to be a
constant in the analysis.

The parameter §,,. in equations (6.33) and (G.43) is an inter-
mittency factor which can account for the progressive tranéition from
laminar to turbulent flow. The transition parameter atr takes on the

following values:

T

-



2;
g

8y = 0: (laminar flow)
Sy = 1t (turbulent flow) r (G.47)
0< 8, < 1: (transitional flow)

A number of transition models have been incorporated into the
computer program. One model requires specification of the axial

position where transition occurs, and the flow is assumed to

instantaneously transition from laminar to turbulent using this model.

An alternative model requires that two Reynolds numbers be specified:

the first denoting the onset of transition, and the second denoting

the onset of fully turbulent flow. Analytical functions are then used

to model the parameter str in the transition region. A full descrip-

tion of the available transition models may be found in the user's

manual.
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APPENDIX H
TRANSFORMATION OF THE BOUNDARY LAYER EQUATIONS

1. INTRODUCTION

The boundary layer equations may be solved numerically in terms of
the physical variables presented in Appendix G. Alternatively, the
boundary layer equations may be first transformed using a normal
coordinate stretching function and then numerically solved. An advan-
tage of using the. transformed variabie formulation is that larger
step sizes may be taken in the streamwise and cross flow coordinate
directions, thereby improving computational efficiency. Use of the
transformed variables removes much of the boundary layer property
profile and thickness variation, especially for laminar flows. These

same advantages exist for turbulent flows but to a lesser degree. The

boundary layer equation transformation used in the present investigation

is presented in this appendix.

2. TRANSFORMED BOUNDARY LAYER EQUATIONS

The boundary layer transformation used in the- present investigation
has been suggested by Moore (11). Following Moore, a two-component
vector potential is defined such that

phyu = %‘g : | (H.1)
y
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ohyw = 8, (H.2)

hyh,o¥ = - [i-lr :dz’] + hohy(oV),, (H.3)

In equations (H.1), (H.2), and (H.3), u, v, and w denote the mean
velocity components in the %, y4 and z-curvilinear coordinate direc-
tions, respectively, p denotes the mean density, the overbar denotes

a time averaged product, h1 and h2 represent metric coefficient param-
eters defined in Appendix G, ¢ and ¢ denote the component potential
functions, and the subscript w denotes wall conditions. The last term
in equation (H.3) accounts for wall mass transfer and is identicaily
zero for impermeable walls. Substituting equations (H.1), (H.2) and
(H.3) into the continuity equation, given by equation (G.1), identi-
cally satisfies that equation.

The governing equations of motion are now reformulated according

to the transformation

(is 93 2) - (§3 Ny z) (H4)
with
X = X (H.5)
Z=12 (H.6)
~ i
u 2
dn = e~ pdy C (H.7)
PaHeX
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where n is the stretched normal coordinate, u is the dynamic viscosity,
and the subscript e denctes boundary layer edge conditions. Under this

transformation, the functions y and ¢ take the forms

1
V= (piglX) hy F(Xs n, 2) (H.8)
PR (770 B
¢ = (pgHalieX) ™ hy |51 9(Xs ns 2) (H.9)
u
e

where the functions f and g are to be determined numerically in the
analysis.

As noted earlier, the continuity equation given by equation (G.1)
is identically satisfied by equations (H.1), (H.2), and (H.3). Substi-

tuting equations (H.1) to (H.9) into equations (G.5), (G.6), and

(G.13) results in the following system of equations:

toyeult " n M_ E)_e_ 112
E;(1+ex)f +P2ff + Pagft + ¢ [D-(f):l

1
p ' Y
e .2 e __e__ "n
+P4E;—-(9)]+P5E;f - p] Tf
SE (e e T K fpan oo (4.10)
1 X X Ug 2 9z 9zZ]
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+ " ' 1 | p ]
[C(l t e, )9] + P,fg" + Pygg" + Pﬁlzf- - (f )2]

[ + Pr}| 6' u 1 ﬁ:
—— — - e 1eh L Atan
IC[HePr] -+ [1 Pr,]ff + 5 g'g

(H.11)

(H.12)

where the primes denote differentiation with respect to n, H denotes

the mean total enthalpy per unit mass, and Pr and Pr_ denote the

laminar and turbulent Prandtl numbers, respectively. Equations (H.10),

(H.11), and (H.12) represent the streamwise momentum, cross flow

momentum, and energy equations, respectively. The following parameter

definitions are used in equations (H.10), (H.11), and (H.12).

L
f! = u/ue
g' = w/we
g = H/He

(H.13)
(H.14)

(H.15)
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(1+M+5S - X
2K;h,X)/2h,

=.e_1 "
(2P - N +R - 2K,hox)

zh,

(H.

(H.

(H.

(H.

(H

(H

(H.

.16)

.17)

18)

19)

20)

21)

.22)

.23)

.24)

.25)

26)
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Ge .
Pe = =% KX (H.27)
We
Py = (thlx - Q)/hl (H.28)
+_ By
€& =Y (H.29)
+_ 5
e, ® (H.30)
+_ ‘
Ee = "\—)— (H.31)
&= e+ (] (H.32)
X z .
+, +
Pro =€ /e6 (H.33)
c = B (H.34)
PeHe
(Dv)w i
T 8w R* (H.35)
pLu X
ee

In equations (H.13) to (H.35), v denotes the kinematic viscosity,

e.s €,5 and gy are the X and Z eddy viscosities and thermal conduc-

tivity, respectively. and K1 and K2 are geodesic curvature parameters

which are defined in Appendix G.
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Boundary conditions for equations (H.10), (H.11), and (H.12) are

given by
n=0 f=0, g=0, f'=0, g'=0
. . (H.36)
e-ew or e=ew J
n=ng f'=1,¢'=1, 8=1 } (H.37)

The boundary conditions for f and g in equation (H.36) follow from
the transformed equation for pv which is given by

= .
pv = -(peueue/x) (sz ¥ P3q)

" W .
- {puu x)” [—Li)é* gl":gggJ + (ov),, (H.38)
1 ox 2 u_ 09z

e
It should be noted that the above equations assume that He is

effectively constant.

3. TRANSFORMED ATTACHMENT LINE EQUATIONS
As for the three-dimensional boundary layer equations, the
attachment line equations can be transformed by defining a two-

component vector potential given by

oh,ii = W (H.39)
3y
phyii, = 2—% | (H.40)
y

wr
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T~ - oy ~
hy ¥ (a;( + o] + hyhy(ed), (H.41)
The transformation relations given by equations {¥.4) to (H.7) are
alsc employed for the attachment line flow. Moreover, the vector
potential given by equation (H.8) is again used. The vector potential

¢, however, is now defined by
. )k - B
¢ = {p M U X] * hl G—ZSQ(XsnaZ) (H.42)

Substituting equations (H.39), (H.40), and (H.41) into the
continuity equation given by equation (G.20) identically satisfies

that equation. Substituting the above equations into equations (G.21),

(6.22), and (G.23) yields the following system of equations:

—

P .
+ al’ " __1._ n ,M__ E)_e___ 1£112 - "
EI(1+ €, )f:{ *Rff o I:p (f )’J Tf

- X [f. L m‘_] (H.43)

1 39X ax

C(1+e) )g" "+ P fg" + El-99" + P, |f'g' - Ze
z 2 hy 8 p

P1 -}J P |
+ s € ! 2] + I?_E_ - ' 2] - "
s [ (907 + P |- (7)) - s

~ .
L fpal guaf (.48
1| ax |
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~2 .

+pr) e, Ye 1 l
C[[l-’-e "Pr—t'} Pr+ﬁ—[1-'ﬁ;]ff]
e J

yp - °
+ P,fo! + ﬁl-ga' - Te' = ﬁi- f! Q%__ 3"&2 (H.45)
V4 1 9X oX

Equations (H.43), (H.44), and (H.45) represent the streamwise momentum,
cross flow momentum, and energy equations, respectively. The following

new parameter definitions are employed in equations {(H.43), (H.44), and

(H.4Z;.
f! = u/ue - (H.46)
gl = wz/wze ’ ) (H.47)
6 = H/He (H.48)
o~ oW
Py = -8 (H.49)
: ue Y4
~ W
. c.x Tzel 1 | |
P8 = [K] h] X - 5% } hl (H.50)
ze
Xu_ 8K
P :—~e——-— (H'sl)
S W a3
ze

HERHBL L

Boundary conditions for equations (H.43), (H.44), and (H.45) are

given by

e TR
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(H.52)

@
1l
D

-
(=]
-3
D

n
@D

n = ng: f'=1, g' =1, 8=1 } (H.53)

The boundary conditions for f and g in equation (H.52) follow from the

transformed equation for pv, which is given by

o % ae
ov = =(pug)* || =] Pof
L\ X
) -
~ o~ 1 of 1 [Vze ~
UX) T =R 29| (ev), (H.54)
'l 3x 2 (Ug

The above equations assume that He is effectively constant.
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| APPENDIX I
SOLUTIOH OF ‘THE BOUNDARY LAYER EQUATIONS

1. INTRODUCTION

The transformed boundary layer equations presented in Appendix H
form a parabolic system of partial differential equations. Those equa-
tions are solved in the present investigation using a second-order
implicit finite difference algorithm in which marching is performed in
the streamwise direction. The numerical algorithm that is empioyed is
based on the Keller box scheme (12). Cebeci and Keller have success-
fully applied this method to the computation of two-dimensional
boundary layer flows (13). Recently, Cebeci, Khattab, and Stewartson
(14) have suggested an extension of this scheme for three-dimensionai
flows. The analysis given in Reference (14) accounts for the wave-like
properties of the three-dimensional boundary layer flow in planes
parallel to the body surface, and as such is capable of computing both
positive and negative cross flows. |

The numerical solution technique used for the boundary layer
computation is presented in this appendix. Three differencing schemes
are employed in the boundary layer computation; the choice of which
scheme depending upon whether the cross-flow velocity is positive,

negative, or identically zero (attachment 1ine flow). Each differenc-

ing scheme is discussed fully below. See Appendix H for the nomenclature

employed in this appendix.
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2. FINITE DIFFERENCE ALGORITHM FOR THE ATTACHMENT LINE FLOW
The numerical solution algorithm that is employed for the boundary
layer computation is based upon solving a system of first-order partial

differential equations. The transformed streamwise momentum, cross-

flow momentum, and energy equations for the attachment line flow, given

by equations (H.43), (H.44), and (H.45), respectively, can be written

as a first-order system of equations by defining the following variables:

f' =u (1.1)
u' = v = f" (1.2)
g' = w | (1.3)
wio=t=g" I (1.4)
0' = A . (1.5)

where the primes denote differentiation with respect to the stretched
normal coordinate n (see Appendix H for definition of the flow vari-
ables). Introducing equations (I.1) to (I.5) into equations (H.43),

(H.44), and (H.45) yields the following system of first-order equations:

] i £ - _M_ _ 2 )
bv' + (b' + qu + Plg/h2 T)v + hl (A = u%)
= Ky ) | (1.6)
1 X X
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<o

p
ct' + (c' + Pyf + Pyg/hy)t + Po(uw - 1)+ Hé()\ - wz)

#
¢
~ ¢
+Pg(h - uf) - Te = X fy 2 BT (1.7)
1 X 09X j
dA' + (d' + sz + Plg/h2 - T)A + e'fv + e(f'v + fv')
e (1.8)
1 X X
In equations (I.6), (I.7), and (I.8), the following parameter defini-
tions are used:
+ ;
b=C(1+c¢,) (1.9)
+ f
c=C(1l+ €, ) (1.10) ;
d-c[1+e+%{-—]/i>r {1.11) P
¢ v t
i
e=Cq>(1-1/pr) (1.12)
e
A=p/p (1.13)
' i
The computational network used in solving equations (I.1) to (I.8) i
?
is illustrated in Figure I.1. In this figure, the computational cell ﬁ
step sizes are given by % )
1
3
x
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. =n. . + h, .
ny = My.pthy (I.14)
Xp = X1 F Ko (I.15)

where hj_1 and k _, denote the mesh Tengths in the n-and x-coordinate
directions, respectively. Both hj and kn are varied in the computation

as deemed necessary. In particular, the n mesh is determined by

hy = Khy_g (1.16)
Jil h Jil K1 (1.17)

Nn: = .= .

L =5 L =51 1

where K is the ratio of consecutive cell mesh lengths (assumed
constant), and h1 is the n mesh length of the first cell.

The finite difference expressions used to approximate equations
(I.1) to (I.8) are now written using the computational network i1lus-
trated in Figure I.1. Equations (I.1) to (I.5) are approximated by
using second-order accurate centered difference and averaging expres-
sions taken about point (1) in Figure (I.1). Point (1) is the midpoint
of the cell segment connecting/points (in, n.) and (in, nj-l)' Per-

- J
forming the differencing yields the following system of equations:

h.
n_en o g-1 g, noy . |
fJ fj~1 5 (u, + uj-l) 0 (1.18)
AT -ﬁj—'—l(vn+v")-0 (1.19)
J -1 2 '3 J-1 )
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h-'
gn-gn __J__l(wg-{-w'])_

j j_l 2 J"l = 0 (1020)
wh - oWl —Ej—'i(t"+t")-0 (1.21)
T Wiy T T Myttt '
" - " -Ei"—l(A"+A")=o (1.22)
37 % T Byt ey '

The finite difference approximations to equations (I1.6), (I.7), and
(I.8) are obtained using second-order accurate centered difference and
averaging expressions taken about point (2) in Figure I.1. .Point (2)
is the midpoint of the computational cell. kPerform‘ng the differencing

yields the following system of equations:

| D DR N (1 -
s I v I e P YL P 1 C R T
(—-—
|- I
: h x| Tk L L .
i 1| 9 n-1 J n-1 ]
‘.' \ _-J
: T - T <. - T P
~ J J"l] + J J"l + T \E + _1_ —_ -
* TR } My (Pp)¥ 5 hy | %%| "

(1.24)

it
i
f

¥
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. — . — _
A. - A ] d. - d P
q., = d d-ly .. + |-tlg., - .
J* hj-l J hj-l (PZ)fJ* h2 gJ* (T) AJ*
e -% | F - 7. -v
.~ B s - v, = Vv
+_l___l'_]:.'?v +e..lv. __J____.J_'lq,lr: _J___l'_l_
h. J* J* J* J* h J* h'
j-1 j-1 i-1
\ J
=l 5 -3 A
~ g - f -
X ||= n n-1 - n n-1
= |=lu - A » (1.25)
") ] K- 3*| kpop U

In equations (I.23), (1.24), and (I.25), the following averaging

notations are employed:

282

(o) = %‘(an + an_l) (1.26)
- _1,n n-1

o5 =3 (uj + oy ) (1.27)
o == (o +al ) (1.28)
(A R S | :
— l1,n, n n-1, n-1 -
== (o) F ol . Falt+ g )
Uik = 7 (OLJ aj_q oy O‘J—l) (1.29)

where o denotes a general function.

for variables which are dependent upon X and z only.

Equation (1.26) is used solely

Equations (I.18) to (I.25) form a system of 8(N - 1) equations

when written for N points along the solution normal.

An additional

eight relations can be obtained from the boundary conditions given

below:

“ i
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(1.30)

n=mn: ou=1l, w=1, 6=1 1} _ (1.31)

This yields a total of 8N relations for the 8N unknowns along the
attachment Tine solution normal provided that the flow properties at

the streamwise station X_ , are known.

n-1
In order to accelerate convergence, the system of difference
equations is solved using Newton's method. Newton's method expresses
any dependent variable at the (k + 1)th iteration as the sum of ‘that

variable at the (k)th iteration and a perturbation. Thus,

[ -6

where fg denttes any dependent variable at point (in, ”j)’ the
superscript in parentheses ( ) denotes the iteration number, and

ng denotes the perturbation or difference in fg between successive
iterations.

| The final forms of the finite difference equations are obtained
by substituting expressions like equation (I.32) for each of the eight
dependent -variables into equations (I1.18) to (I.25), expanding all
products of the dependent variables in terms of the perturbation
quantities, and then neglecting all quadratic or higher-order terms.

Performing this operation for equations (1.18) to (I1.22) yields the .
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following results (note that the iteration superscript is omitted):

where

Incorporating Newton's method into equation (I1.23) yields

sf"
J
n
Su,
J
Gn
93

Sw

&6

n
651

Jj-1

2

=

(su” + 6u
J

.._.jé-_l_(ﬁvr:‘ +

J

5
z M

n —
j_l) - R].

n
6vj_l) = R

2

n
Sj.p) = Ry

1
x

n

8ty ;) =

(1

(I

(1

(1.

(1

(I

(1

(1.

(I

.33)

.34)

.35)

36)

.37)

.38)

.39)

40)

.41)

.42)
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.51)

.52)

.53)
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m 2 -
hl] (XG ‘)\j*)

Y, = =X, = X, X_ +

1 1 475

x| -1 - _
¥ [EI] kn-1 [¥6l%7 = Tho1) - Xg (Kg - fn-li]

Incorporating Newton's method into equation (I1.24) yields

T.6f" + T.6F" . + T.6u" + T.6u. . + T.6q + T &g
1975+ Toffyy 7 Tgbuy * Tplls g + 1500, + 18654
FToo  Toow -+ Tt + T, 8t0 L+ T sy
EARFTRRE: S B WM S (1 it B SRS S R
n
MRV O I
where
(Y -1
PR P SR
1 ;i ) A
_ — -1
R T FA L ST
2 i} hy| T2
5 ) -1
o Pg) Xy (Pg) Xg )51 ¥ po Xon =)
3 7 7 h| ~& 137 ¥n-
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(1.54)

(1.55)

(I.56)

(1.57)

(1.58)

(1.59)

(1.60)
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(I1.61)
— () () -1
7 4 ~h2J 2 \hlj
— () ) -1
N YR S T Y SR (1.63)
8 q hyl 2 hy| 2 :
S L )
T ——— "1 '--.— -1
C.y h. X ~1 K
e g _J=1, 711 | x| Tn-1 F y
Tq 5 gt {hll 7 (Xg - fn_l) (I.64)
e =1 —_) =1
Cuq N X ~ 1k
= —J* J-1 11 . (x| _n-1 = v
10 i o ["1] 7 (Xg - Ty (1.65)
Tl’l = 0.0 (1.66)
Tip = 0.0 (1.67)
Ya = = Kg = Xygkyy - (Pg) (Xgkyp - Aje)
7,
1 pa — ——, 2 —
+ = (X, - + (P)(X] - X,
) ;
+3—k'1 X, (X Woo) =X (Xg = F ) (1.68)
hlj n-1 {76 ‘13 n-1 10 '8 n-1 A

Incorporating Newton's method into equation (I.25) yields
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o Usf L+ Usel U+ U sg, + U Sa
Upsfy + USF5 g + Uglly + Ugtyg * 06595 ™ 567551

N Ust .+ UGSt + U St L+ Uy eV
+ Updwg + Ugluy ) + Ugdty * Byg%5-1 7 "11®';
N uea  ULsAT L+ U S0
+ Uppvy g ¥ Upgfhy ¥ U1g0085.1 7 T15%Y;

on
+ U, .86,

_ 1.69
16%85-1 = Y3 (1.69)
- -1 ) -1
D TN LM O U I RS i
7 7t e 2 2|ty T2
(1.70)
1oy X = L x
(Po) Xy5 , By, M1, 18] N RS Rt
= 7 |72 v ||y T2
(1.71)
- _|x) n-1 Ny )
= -ln 5 (g = Byt (1.72
L L)
f___w k_l
= - .;Xv-- _..ﬂ:_l.. - a . 1.73
| 4 (X19 = Bp-1) (1.73)
J
‘P‘J X
= __1. .__1_5_ (I..74)
hy| 3
Pl X o
- 1] 115 (1.75)
hy|
J

S T SR M TR
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0
o/
0
0
BX, €., X T, bt
g 3 2
BX, Tix X Bl X, hl
2, 8 M7 & R My
4 4 2
— -1 ) -1
J* hJ'l + Xlﬁ + _;(_ kn-l (Xo - 7 )
a, i x. (=1t
kel j-1 , 716 . (X n-1(x ST )
4 h1 4 8 n-1
— -1
_(_;:(_ kn-l X6
hy| T2
’ \ _1
% *a-1 %6
) T2
-X14 - X1.5X16 - BX2X4 - ej*(qu17 + x.2X18
+ —z e C =
hy n-l[ﬁ( 19 = Onop) - Xs(Xg - T

)

)

(I

(I

(1

(I

(1

(I.

(1
(1

(I

.76)

J77)

.78)

.79)

.80)

81)

.82)

.83)

.84)

.85)

.86)
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In equations (1.43) to (I.86), the following parameter definitions

have been employed:

b., h.
_ 3* §-1 ..M n-1 _n ; n-1
X —J—iriL—- (vj + Vj - Vi Vj-l) (1.87)
=1 M, en * ,
Xp =g (Fy+ Fip) + 15, (1.88)
1,0 *
= = + + .
Xy =g (95 +95,,) + 9, (1.89)
_Llgn * '
S - P -
_Lo 0, 0 *
_1,n_n ,
_1,n, .0 ‘
X8 =5 (fj + fj-l) (1.94)
o ht '
= 9% j-1 .0 n-1 .0 .n-1
Xg = 3= (t5 + £ -t typ) (1.95)
N L L *
Kg =3 (6 + by ) + b, (1.96)
X.. =hl (& -¢C )+ (P,) X, + —P—l— X~ (T) (1.97)
11~ Mo V% T G4 2! "2 7 |h,| "3
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L]
P
3

(1.98)

(1.99)

(I.100)

(I.101)

(1.102)

(1.103)

(1.104)

(I.105)

(I.106)

(1.107)

In equations (1.33) to (I1.107), the following averaging notations are
) "

used:
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@) = 5 (" + o™ (1.108)
o = 7 (o + a?_l + o™y a;.‘j) (1.109)
a;* = %— (ag-l + ag:i) (1.110)
cx_J' = %— (o, + ag-l) (1.111)
o =3 (o + ag_l) (1.112)

where o denotes a general function. Equation (I.108) is used solely
for variables which are dependent upon x and z, only.

The above finite difference equations for the perturbation quanti-
ties are solved using an efficient block tridiagonal matrix factoriza-

tion procedure presented later in this append{x.

3. FINITE DIFFERENCE ALGORITHM FOR POSITIVE CROSS FLOW
The transformed streamwise momentum, cross-flow momentum, and
energy equations for three-dimensional boundary layer flow, given by

equations (H.10), (H.11), and (H.12), respectively, can be written as

a system of first-order equations by employing equations (I.1) to (I.5).

Introducing those parameter definitions into equations (H.10), (H.11),

and (H.12), yields the following first-order system of equations:

ol B L T s L E A

TR e i Y D

R NS R AR RS G HiL

R
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Vg (B . M2l -
bv' + (b' + sz + P3g T)v + hl (A = u®) + P4(A W
+ Ps(uw -A)
~ w_X 1
1 90X X “ehz' 0z 9z
1 1 i 2\ eP
ct' + (c +P2f+P3g-T)t+P6(A-u)+ -—F—(A
u. 2
e
+ P7(uw - A)
~ W_X
o 3X oX ueh2 { 9z 9zj -
dA'+(d'+P2f+P3g-T)A+e‘{iJv+ £ w]'
u
e
W,)2
+ efuv' +u'v) + e :9 (wt' + w't)
Ue)
~ (W X
=-ﬁL- u 3%-- A 3;- + :g___ w E%. A 3%-
1 X 99X kueh2 V4 9z

In equations (I.113), (I.114), and (I.115), the pafémeters b,

e, and A are again defined by equations (I.9) to (I.13).
Equations (I.1) to (I.5) and equations (I.113) to (I.115)

solved for positive cross-flow velocities (w > 0) using the co

tional network illustrated in Figure I.2. The cell step sizes

2)

(1.113)

- w?)

(I.114)

(1.115)

c, d,
are
mputa-

are
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FIGURE I.2. THREE-DIMENSIONAL POSITIVE
CROSS FLOW COMPUTATIONAL

NET WORK.
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again given by equations (I.14) and (I.15), and by

z. = 2,

i7 %1 e (I.116)

where r;_, is the cell mesh iength in the z-coordinate direction.

The finite difference equations used to approximate equations
(I.1) to (I.5) are obtained by using second-order accurate centered
difference and averaging expressions taken about point (1) in Figure
1.2. Point (1) is the midpoint of the cell segment connecting points
(in,'n., Zi) and (in, ns_ps Ei). The differencing procedure yields

J
the following system of equations:

5 fgi K 52:1' (“;’1 + ”2:1) =0 (1.117)
ug’i i “2:1 - 55—_1' “2’1 + Vgii) =0 (1.118)
oot - gl - L e < (119
“?’i ” ngi - Ell2:'1' ("2’1 * tgi;) =0 (1.120)
07" - 9231 - E‘%l (Ag’i +a221) = 0 (1.121)

The finite difference approximations to equations (I.113), (I.114),
and (I.115) are obtained using second-order accurate centered
difference and averaging expressions taken about point (2) in Figure
1.2. Point (2) is the midpoint of the computational cell. Perkforming

the differencing yields the following system of equations:
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AR - -
s b -
hJ-l h + (P, )f .. + =
Jj-1 23 (P3)gj*
+ [Eq{§f V]
h sk T (u :l — _—
1 LJ 17t (P4)_E«j* (wj*)ﬂ
F Ve -
(Pg) (Ug Wa = Xs)
ZE= [ -y _
= |ny [T 5 I W 7]
h ”E‘ *{n n-1} _ n -
Pomm—— Y n’],
wXx i u. -u - —
¥ ~e WJ*[-I—EJ—-—]'- -7 9; - .9—1_1*
tuehZJ - "i-1 *| v :l

(1.123)
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aj

J-1

2

Wi tj*

(V. - V. U. = U.
OO [P o M L2 R -1
Eh fa*( hi-1 } VJ*(“:H ﬂ

o= 1

=y
S
—
[N
*
€
»*
e
[

— P =
S T e T B i I |

S e | e B ey
ue 2 i-1 i- ]

'1] i~ -1, movE Py
é,f + (P + (PR)age - (M55

J

(1.124)

In equations (1.122), (1.123), and (I.124), the following averaging

notations are used:

(a) =

a 2

Q|

%(an,i LTS 55 R 5 IR ) 5
%_(a 1, a?,i—l + a:l-l,'i + ag-l,i—l)
%{ (otg’i + on?’i-l + a?i’; + ag_’i_l)
71;'(0‘?’1 + 311,1' +a‘r]1:1 + ;\-_—1,1)

(1.125)

(1.126)

(1.128)
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= 1, n,i n,i n-1,i n-1,i n,i-1
i* = B (aJ tas’) +oy vyt o
n,‘i-l n-].,i"l n'l,i"l
o™+ o +a5 ') . (1.129)

where o denotes a general function. Equation (I.125) is used solely

for variables which are dependent upon X and z, only.

Boundary conditions for the above equations are given by
equations (I,30) and (I.31). Taken with the boundary conditions,
equations (I.117) to (I.129) form a system of 8N equations for the
8N unknowns along the boundary layer normal located at X = in and
Z= %i' The solution may be determined if the flow properties at
stations (Xp» Z; 1), (X _y5 Z;)» and (X _;» Z; 4} are known.

Newton's method is again employed for obtaining the solution to
the difference equations. Relations of the form given by equation
(I1.32) are again substituted for each dependent variable into the
appropriate difference equations. A linear system of equations is
obtained by neglecting quadratic and higher-order terms in the
perturbation quantities. Incorporating Newton's method into equations

(I1.18) to (I.22) yields

n,i _ eyl j-1 n,i n,iy _ :
5fj 6fj,_1 5 (8u + 5“3‘-1) R (1.130)
s - sl Ei:l—(sv"" + ™) = R (1.131)
J j-1 2 J =] 2 :
n,i . n,i _ j-1 n,i Nyly _
ag’j 59j-1 5 (ij + an_l) Ry (1.132)

ATRRESRINET Y
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. . h. .
n,i _ o M1 -1 N, n-1, _
U —U= (sl + 6ty ) = Ry (1.133)
so™t - el - "i-1 (sa™1 + a1y = R (1.138)
j j-1 " "2 j 1 5 .
where
TS U B S AP B B (1.135)
1 j-1 J 2 J j-1 ’
X h. . .
- n,] - n,] -_]_-_ n"' n’1
R2 uj_1 uj + —%f (Vj + Vj-l) (1.136)
. h. . . '
n = oMl _ Nyl j=1 (. Ns1 nyi
Ry gj_1 gj + -3 (_wj + wjal) (1.137)
. . h. . . :
I P S | P BN o S P% | PR B Py i
Ry Wil =W + =5 (tj 4 ’j—l) - (1.138)
. . h. . .
—g N1 _gNyl J=1 (AMs1 AN
Rg =0 527 -0 37+ == (A7 + A (1.139)

Incorporating Newton's method tato equation (1.122) yields

S, sfg" +5, 612} + 5

n,
2 i1 3 -

nsi n,'i‘
auj + 54 Su. +S svj

5

(1.140)
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— — -1
(Pl (5] *a-1 e
8 h| ~ &
. \ /

N ) k!
(Pl . (%] ¥no1 X
8 h| ~ &

\ /
] %e o |88
h| % " 8|78

x| -1 11 m
hy Kn-1 [é (Xy0 = Upop) *
R
o — -1
__M_. £6_+X '(_P_s_.)_..ari'l
n| 7 " e\ B A
\
3 1|1 -
[h1] kioq 1§ (Kig = Up-1) *
-1
X T k
- -1 75 (x| ‘n-1
bye 1t * fag| T8
arily
g (X3 - 94)
-1
X ) k
1 o1 L5, (%) -
Fhx Mt T hy| 78
ity
g (X453 = 95.1)

(1.141)

(1.142)

(1.143)

(1.144)

(I.145)

(1.146)
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(F)X, ar:-, X
' 3 i-1 "4
S5 %t
-1
o Pl o X
878 3
Py (PolXg aril _
Sg=-——*—g— -5 Kz = Uiy
(Fitg  (Fghkg arfl) —
S T - =g (K = Uy
Y= -X x4x5 Xy - Xg * (PS)(AJ* - x6x8)
X Xg(Xyg = Ty) = XXy = Ty
1 10 n-1 4’711 n-1
+ ) E( 12 7 Ujop) - XKy - 95 1]

Incorporating Newton's method into equation (1.123) yields

n,i n,i n,i n

n,i
+ T66QJ 1 + T

n,i
+ T106t3 1

7Gw

..Ya

n,i
J

+ Taaw“

»i

+7

9

E L S e R

o1 + N,i
o1 T5<SSJ;i

6tn )i

(1.147)

(1.148)

(I.149)

(1.150)

(1.151)

(I.152)
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LR Ee

\a1° PACE 1S
ORIGINAL PACE 13

BT =) k-1
o2 Walys 7] ks Kis
1 8 hy| ~ 4
\ J
o =) k-1
L T P R T
2° 78 hy| ~ 4
L +)

o) P =) kL
L L T P S Ko <)
3 3 8 hy| 78 19 7 ¥n-1

(Pei¥s  (PXg (3] Kl
T = - 6 6 + / 8 - _X_ ﬂ-l (X - W )
4 3 8 hi| 78 ‘19 7 ¥n-1

\ J
(POX,.  aril. X
1= 235 M N
5 8 4
— -1
M R I S BT
6 § 4

= 5= — -1
SN S - B LV
7T T e |8 hy| ~4

e -

-1 -1
- ?_r_L:l (X = Ws <) 0m’i-l x8

8 ‘20~ Wia 7

WP | X F7) oy kL
T = o e ___§_+ X 7 _ _)S_ n'l
8 o ) 6| 8 hy 4

e2

-1 -1

Bk T I 16 U

8 ‘%20 " %i-1 3

(I.

(I.

(I.

(1.

(I

(I.
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154)

155)

.156)

.157)

158)

.159)

160)

AR T 1w i e e e

- e



AT T i s R,

ORIGINAL PAGE IS
OF POOR QUALITY

a”}h —
+ —L (- ;) (1.161)
- -1
C.. h X ~
- _ _J* j-1 16 X! “n-1 F
T10 7 tgot m g (Xy1 - Foo)
ou";}l _
t—g (X3 - 95) (1.162) 4
Yy = Xy - Xkie - Xy + (P (Nox - XXg)

X |-l v -7
* m kn-1 [X6(*19 = ¥n-1) - X350y fn-lz]

-1 — - v ’
tariy E‘s(xzo " Wip) - X5ty - gi-lﬂ (1.163) :

-

Incorporating Newton's method into equation (I1.124) yields

Uldfg 1y Uzaf" 1 + U36u?’i + Uy g 1 + U56gg,1
+ Ussg + U, 6w ni U86w i, Ug(stJ | | \
+ Uma‘i:\']1 1 + Ulldv Ty Ulzdv;.‘:i + U136Ag’i
+ Uy 005 i ulsaeg’ + Uy 6805 Tev, o (1.164)
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P ) k-1
o = ol %] K1 *a
1778 a4
\ J
o =) -l
o Pl (x) kno1 %20
2 5 ny) 8
X X.. X
B oo Pk
Ug = 5 * &5 0y { g T 4}
-1
) k
X | _n-1 -y
" |ny| T8 (Xog = 81
ax .. X
-_ 4.z 1 |24 _ "4
Up =5+ &4 Ny [ 8 4]
-1
1 k
_ | n-1 )
" |ny| T8 (Xog = 851
(o)X, aril X
' 3%22 |, -1 A
5 3z
(F)X., aril X
o= Palap i Ko
6 8 z
W BX X X
Yl By 1 [*es |, Ris
Yy {~ ] g T Yh [ g t 2 }
u
e
!
ar.
i-1 ry
- —g— (X5 - 85_4)

(1.

(1.

(I.

(I.

.165)

.166)

167)

168)

169)

170)

.171)
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X X
-1 26 15
t i ["s‘ - —4“]

i

-1
%23 , |&] fn-1
8 " |nj| 8
13 = 9.1
k'1x -l

.172)

.173)

.174)

.175)

.176)

.177)

.178)

.179)
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-1 -1
~ 1 k X ar. X
Ujg = - (%’ ";1 6 _ 1-}1 8 (1.180)

mil

2
1 |
-1 %91 = X5pKo3 - BX Xg - [e] BXgX 5

|

J

.

R ‘ -1
- ejx Myg (Rekag + Xg¥og) - vhy g (Xghpg + Xq5%y7)
x| -1 ST ) - ¥
HORS E‘s(xzs On-1) = Xaol¥q fn-l{]

-1 — —~
R E‘s(ng - 05) - XXz - gi-lﬂ (1.181)

In equations (I.140) to (I.181), the following parameter definitions

have been employed:

X1 = Bj* hJ-}lE[(Vg’i - v?:}:) + v; - v;_ljl ' (1.182)
Xy = (Py) %(f?’i + f?ji) + fj{ (1.183)
X3 = (P3) :%(92’1 +gl2l) 4 93{ (1.184)
Xy = %3‘ (v;},i + vgj) + vg* (1.185)
Xg = h;-}l (EJ. - Ej_l) Xyt Xg - (T) | (I.18‘6)
X = % <“3‘”‘"+ u;-'_’})‘ + u;* | : (1.187)
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W) o 2
ny| A3x = %)
1 n,'i n,i *
g Ml Wj-l) t Wiy
— = 2

*kk

+ 92:1) t g,

T pol Lot gnad
CJ-* h~_1 [4 (tj - tj"l

J

1 n,i nsi *

*
P+t -t
/ J

-1 - ~ * T

*
i

(I

(I.

(1

(I.

(I.

(I

(I.

(1

(I.

(I

.188)

.189)

190)

.191)

.192)

193)

194)

.195)

196)

.197)

198)

.199)
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1 ,.n,i *k

5 v ¥j- 1) * Wy

LWt +wmly & ™

4 J- WJ w,l‘

1 ,,n,i n,i * *
T (A - A2 ) + AL, - A.
7 { J AJ-l) By = 8541
_1'_ n’i ,.i *

g (457 +421) + By

-1 = T o\ -
h.” (d, - d, .) + Xy + Xg - (T)

1 n,i N,1 * *
(v’ - v ) 4y, -y,

g { J J-l) "Vy T Vi
1 (u'?” - un’-l) + u*

47 j-1 i~ Y5-1
47 j-1/ j-1
1 N, *
= (W + -

1 ,.n,i

1 (en,i + en,i) N Fokk
g\ Ot Yy

(I.

(1

(1

(1.

(I.

(1

(1

(I.

(I.

(1

(1.

(1.
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.201)

.202)

203)
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w12
- e
= e. = I
Y % {ue] (
(pv)
T=—4 g2 (1

Pele

In equations (I.130) to (I1.214), the following averaging notations
employed:
(@) = %_(an,i PN LPS B3 NSNS 53 % I O‘n—l,i-'l) (1
_5* - é.(ag,i + 42:1 + ag-1’1 + @32%’1 + ag,]-l
+ “?:1-1 + cLg\-l,i-l + ag:%,i-l) (1
a;* =3 (a; * 1) (1
a; = %—(a;’i-l + ag-l’i + a?-l’i-l) (1
a; = %-(a?" + ag'1’1 ¥ a?’1-1 + a?‘l’i'l) (1
&h = %-(ag’] + agji + ag’g‘i + o ’1_1) (1
ay = @7+ olel ) (1
a; = %-(a§’1 + agf, + oLy ag:i’i) (I

.213)

.214)

are

.215)

.216)

.217)

.218)

.219)

.220)

.221)

.222)
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k1, n-1,i n-1,i
@ =7 (aj + 5 g ) (1.223)
where o denotes a general function. Equation (I.215) is used solely
for variables which are dependent upon x and z, only.

The above finite difference equations for the perturbation quanti-

ties are solved using an efficient block tridiagonal matrix factoriza-

tion procedure presented later in this appendix.

4. FINITE DIFFERENCE ALGORITHM FOR NEGATIVE CROSS FLOW

The previous section presented the finite difference algorithm
used for the computation of three-dimensional boundafy layer flow
when the cross-flow velocity is positive. Due to numerical stability
considerations, alterations to the above %cheme must be made when
attempting to compute boundary layer flows with a negative cross-flow
velocity component. The physical reasoning behind this and the
resulting algorithm are presented in this section.

Although the three-dimensional boundary layer equations are
formally parabolic, they do exhibit a hyperbolic or wave-like
character in planes parallel to the local body surface. This behavior
was first noted by Raetz (21) who enumerated the general principles
to which any successful three-dimensional boundary layer numerical
solution procedure must conform. Because of the wave-like character
of the governing equations, it is possible to identify wedge-type
zones of influence and dependence of any point in the three-dimensional

boundary layer flow. In two-dimensional boundary layer flow, these
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zones collapse into the plane of computation, and, consequently,
further consideration of this aspect need not be given.

Figure I.3 illustrates two possible streamline orientations for
three-dimensional boundary-layer flow, Botih Figures I.3.(a) and
1.3.(b) represent streamline projections in a plane that is parallel
to the local body surface, and in both cases the streamline passes
through the body normal located at the station X = in and z = Z;.
Figure I.3.(a) illustrates the case when the cross-flow velocity is
positive (W > 0), whereas Figure 1.3.(b) illustrates the case when the
cross-flow velocity is negative (w < 0). In order to achieve numerical
stability, it is mandatory that the finite difference algorithm employ

field points at the initial-data station X = X which engulf the zone

n-1
of dependence of the solution point. The zone of dependence of the
solution point is delineated by the streamline passing through the

point. Consequently, for the situation occurring in Figure I.3.(a),
i should be used, whereas for the
situation occurring in Figure I.3.(b), points from the stations at

points from stations at Z, ; and Z

Z. and 21 should be used. Examination of the finite difference

i +1
algorithm presented in Section 3 of this appendix indicates that it
is applicable for the positive cross-flow velocity case provided that
the streamwise marching step is not so great as to have a streamline

. e . -~ ~ L Ak ~ P
interseciion at station x = x such that z < z, ,. The finite

n-1
difference algorithm that is employed for the negative cross-flow
velocity case is now‘presented.

- The pertinent governing equations for reversed cross-flow cases
are again given by equations (I.1) to (I.5) and equations (I1.113) to
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. STREAMLINE N
X w-'(O-JECTION X
. n-1 | . n
Zi-1
7%
VZi > ;
(w>0)
Ziel !
z
(a) POSITIVE CROSS FLOW.
Xn-| Xn
Zi-|
STRE/ MLINE
;I —x PROJECTION -
7*\} (w <0)
Zi+l 'T
p:

" (b) NEGATIVE CROSS FLOW.

FIGURE I.3. STREAMLINE PATTERNS FOR POSI-
312 TIVE AND NEGATIVE CROSS FLOW.




(I.115). Those equations are solved for negative cross-flow cases
using the computational network illustrated in Figure I.4. The compu-
tational cell step sizes in the p-and x-coordinate directions are
again given by equations (I.14) and (I.15), respectively. The compu-
tational cell now is staggered in the z-coordinate direction with the

respective step sizes being given by

s -3 4
21 Z1-1 i-1

Zi,, = Z.F T, (1.225)

The finite difference equations used to approximate eguations
(I.1) to (I.5) are obtained by using second-order accurate centered
difference and averaging expressions taken about point (1) in Figure
1.4. Point (1) is the point midway between points (in, nss Ei) and
(;n’ nj-l’ zi). Performing the differencing again yields equations
(I.117) to (I.121). The finite difference approximations to equations
(1.113), (I.114), and (I.115) are obtained by using second-order
accurate centered difference and averaging expressions taken about
points (2), (3),\and (4) in Figure 1.4. Points (2), (3), and (4)
are the midpoints of the three faces of the computational cell.

Performing the differencing yields the following system of equations:
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ey g b s

(1.224)

e

-




ORIGINAL PAGE IS
OF POOR QUALITY

, X (n)

j-1 X e -z (i)
e

i-1 i i+

-

FIGURE 1.4 THREE-DIMENSIONAL NEGATIVE

CROSS FLOW COMPUTATIONAL.
NETWORK.
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v, - B; - By
= j j_l] i —
ba‘*l b J+l iy () Ty (P3) 9 '(T]VJ*

i-1 i-1 3*
Ml . -

+ [:J:]E\j* (U:]—;)ﬂ + (P E\J* Wiw ﬂ
(.'?5—) (UJ*WJ* XJ*)

(I.227)
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o
— —

A, - A d. - d.
T J -1] NI = e P G
d.; ( N, . l + hj-l + (Pz) fj* + (P3) -Q‘J* (TﬂA‘j*

(1.228)

In equations (I.226), (I1.227), and (1.228), the following averaging

notations are employed:

@) =% @™+ ") (1.229)

o 1 n,i n—l,‘i R K ‘
== (an 4 oas .

a =3 (OLJ oy ) (1.230)
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~ 1, N n,1
@ =5 (otJ uj-l) (I.231)
— 1 ,.n,i n,i n-1,i n-1,1
e = o Y Lt ta. Yt 5! .

where & denotes a general function. Equation (I1.229) is used solely
for varﬁab1es which are dependent on x and z, only. The final terms
in equations (I1.226), (I.227), and (1.228) are centered at points (2),

(3), and fﬁ). The mesh parameter £ is given by

£ = i (1.233)

The above equations are again linearized using Newton's method.
This again results in the finite difference relations given by equa-
tions (1.130) to (I.139), which employ the parameter definition
equations given by equations (I.117) to (I.121). Incorporating
Newton's method into equation (I1.226) yields

n,i n,i n,i n,i n,i
n,i n,i n,i n,i
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where
(Pt | a1kl X
51 = 4 + ! N
F%, okl x,
Sy = gt y »
~ T/r o el -1 % . X6
37" h_l— R LY vl o (1 - "
(1.237)
| ¥ (T)X \ X
= _| M| 6 577 a e %) |
S = —[hll > % oqkn—l(z; + 2] sl - ENX,
(1.238)
Byhil | X5 kil - o
S5 = gt 7t oyas(l - £) 5= |
b.y h, X . X | "
= .y J-1 5,71 'n-179 .y 17 (1.240)
6 2 gt ) + a2a3(1 £) ;
(Fg)x
= it 0t20‘3(1 - E)X15 .
(]5”))(4 %
7t a04(l - E)X{s (1.242) q
Y
(Py)%; . (P)X -
T T 16
7t 4 T d2a3(1 - £) ol

(1.243)
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(P X (P=)X X
- 4 7 576 16 :
S10 = 3 - a2a3(1 -£) T . (1.244)

-1 M2 T == vl T
Yy = -b, hJ 1Xp - XgXg * [hl](x6 - Aj*) + (Pg)(Xs - Aj*)

) (% -1
+ (Pg) (R - Xghp) + agkyy (Xghg = Xgkg)

+ agb(Xy ko - Xy9Xq3)
+ ay0a(1 = £) (K X = XqsKq7) (1.245)

Introducing Newton's method into equaticn (I.227) yields

n,i 51 n,i n,i n,i
T1 Gf + T2 6f ’1 + T3 auj + T4 GuJ 1 + T5 ng

; n,i n,i n,i n,i
+ T ng_l + T7 6wj +Tg wJ + Tg atj

n,i _
+ Tw.atj_1 = Y2 (I.246)
; where
(P,)X X
2’719 -1 719

Tl = i + dlkn_l —2—' (1.247)

(P.)X X : :

_ o219, -1 19 e

T2 = 7 + alkn—l 5 (1.248)
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.250)
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.252)

.253)

.254)
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- = -l 2 =
Y, = -C..h Xiq - X19 o0 ¥ (P )(X6 - )

2 j*'j-1"18

2

+ a4(X7 - Aj*) + (P7)(Aj* - X6X7)

+ o,k -1

1Kn-1 (Xg¥aq - - X

Xg 19) *+ (X 0¥ o3

o3l = E)(X 4¥p5 = Xy7Xp4)
Incorporating Newton's method into equation (I.228) yields

n,i

i
+ U Su. ?
h

n,i 51 n
U16f + Uzst 1 + U46u gt USch3

22%13)

(1.257)

# Ugsgl?) + ot + ugals] + ugsele Ty et
+ UVt s e+ ugalt ey el]
¥ Ulsaeg’i + Uleaeg‘j} = Y, (1.258)
where
i (P§>X27 + alk;}1 X§7 (1.259)
U, = (p—z—‘)lx” +akl %l | (1.260)
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X (X X))
- eg S i S| B - )
Uy 5+ ej*h.j-l it 2| ok 1 7 (1.261)
X (X Xa)
B -SrS U i S -1 31 .
oy 7+ ej*hj-1 e ] - oks1 T (1.262)
(PR)X
3/%e7 ,
7 ageg(l - E)Xg, (1.263)
(P)X
27
g F gl - E)Xgy (1.264)
a fa_;Z e CIPRES B e I ) I ar(1 - ) %35 (1.265)
5 4 6 J-1{ 4 2 273 ) .
\ e)
a ’EZ "‘-‘Xlg + achst —-——X18 - X——-—lg =00, (1~ £) '—'X35 (1.266)
515)] & T63-1(4 2 |"%2%3 4 .
e
2 Y -1
o (W agh. X
D el 4 6j-1 -1 30
712 ~] ey faghs 7 (1.267)
u
. \ e —
e (W12 ahil X
5 el __63j-1 -1 30
%713 ~} T2 | Y g (1.268)
u
L \"a _
a-X (X X
5% . — -1 |"6, "29
7 ej*hj-l L_é— 2 } (1.269)
X [ X, X
5%6 , = -1 6, 29 o
T e |t T r } (1:270)
- -1 |
d..h. X X X
Jj* -1, 728 -1 g Y/
7t okl gt opag(l - E) - (I.271)
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d.n7l X

' X X
L R W R o tu
Uig 7t Tk 7t aes(l-8)
X
= -1 76 _ -
Ujg = -ogkp g 5 - agog(l = E)Xpy
)3
T .
Upg = -akpoy 5 = a0g(l - E)Xqy
:""‘2
Y, = a E e o oo - aliox + e x|
37 "9yhi-1tas - Xar¥es o5 Xa%e T || K7kig
e

— o1 ey 4y -1 4, -
- eguhy (X Xg ¥ XgXpg) - aghy”y (XpXig * X1g¥Xgp)

+ koL (XeX

1Xn-1(XeX3y = XgXpg) + 0pB(X)gX3g = X35Xy3)

+agag(l - E)(K)gXgg - X17X3,)

(I..272)

(1.273)

(1.274)

(1.275)

In equations (I.234) to (I.275), the following parameter definitions

are employed:

= _L n - n"i - n-l,]
X1 =5 (vJ + vj vJ_1 vj_1 )
= 1lyen,i n,i n-1,i n-1,1
X?_ 4(f-'j + fJ-‘l + fj + fj-l )

(1.276)

(1.277)
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+ gj-

n-1,i+1 _

1

(1

(I.

(1

(1.

(1

(1

(I

(1.

(1.

(1

.278)

279)

.280)

281)

.282)

.283)

.284)

.285)

286)

287)

.288)
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(C' = EJ—l) + (;);)XZ + (iB;)X3 = ﬁ:)

(I

(I

(1.

(I

(1

(1

(I

(I.

(1

(I

(1

(1

(1

.290)

.291)

292)

.293)

.294)

.295)

.296)

297)

.298)

.299)

.300)

.301)

.302)
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-1 =
hj—l(dJ ) + (Pz)xz + ( 3)X = (T)
1,0, n-1,i _ n,i n-1,i
AR Uil " Y517
1,.n,i n-1,i _ n,i _  n-1,i
z(wj + W Wity - Wi )
1,.n,i n,i =
2057 +0521) - 84
n-1,i+1 , ,n-1,i+1 | \n-1,i n-1,1i
n-1,i+l _ .n-1,i+1 _ .n-1,i _ . n-1,i
7% %-1 % %5-1")
1,.n,i n,i n,i-1 _ ,n,i-1
ARG S T S i
n,i n,i n,i-1 n,i-1
o+ 0.0, - - 9,
% %-17 % %31
£
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ughy
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- el -
o = hJ._l(eJ e; 1) (1.315)
a = (3.., - 2.)7 Y2 (1.317)
-7 i+l i *

In equations (1.234) to (1.317), the following averaging notations are

employad:
(@) = L™ + oM 1o1) (1.318)
CR G a§'1’1 ¥ ag:%’i) (1.319)
= %(ag.‘" 4 qg‘l") (1.320)
a, = %—(ag"' + ag:i) | (I.321)

where o denotes a general function. Equation (I.318) is used solely
for functions which are dependent upon X and Z, only.

The solution for points at which the cross-flow velocity is nega-
tive is obtained by substituting the above equations into the algorithm
presented in Section 3 for those cells at which the average cross-flow

velocity is negative.
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5. SOLUTION OF THE DIFFERENCE EQUATIONS

The difference equations for the Newion iterates are solved using
an efficient direct matrix factorization procedure. The difference
equations can be ordered into a linear systém of simultaneous equations
which has a coefficient matrix that is block tridiagonal in form.
Except for minor alterations, the matrix solution algorithms fornbbth
the three-dimensional flow and the attachment Tine flow are identical.
The solution algorithm for three-dimensional flow is outlined below.

The boundary conditions for three-dimensional flow, given by

equations (1.30) and (I.31), are repeated below:

(1.322)

LIS NER 1, w=1, 6-=1 } (1.323)

Using Newton's method, any function f at the (k+1)th iteration is given

by

if1 () =y (K) 4 gy (K | (1.324)

where [f](k) is the functional value at the (k)th iteration, and

[Gf](k) is the Newton iterate at the (k)th iteration. Noting the wall
conditions by the subscript 1 and the edge conditions by the subscript"
N, the boundary conditions given by equations (1.322) and (I.323) canf

be written as
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$(k) 2 gl - () 2 MK - g

1 £
(1.325) ;

e%k) =0, A{k) =, z
uék) = w&k) = eék) =1 ‘ } (1.326) %

This mandates that the Newton iterates have the following values for EA

any iteration:

selk) <0, sglk) =0, sk =0, st =0

(1.327) %
segk) =0 or 6A§k) = 0 |
Guék) =0, awék) = 0, ae&k) =0 } (1.328) 3

The pertinent finite difference equations for the Newton iterates
for three-dimensional flow are given by equations (1.130) to (I.134)
and by equations (1.140), (I.152), and (I1.164). Those equations,
plus the boundary conditions given by equations (I.327) and’(I.328),
can be written for N points across the boundary layer in the fol]owing ‘

matrix form:

TA = Q (1.329)

In equation (I1.329), the solution vector A is defined by the column

vector
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(1.330)

where 35 (1 < j < N) denotes the jth vector subset which is defined by

the eight element column vector

7T I/
ij 4

Guj

ng

oW .
J (1.331)

Gej

o]
1t

.
%

th

GAj

In the above and subsequent equations, the iteration superscript will
not be noted. The right-hand side vector Q in equation (I.329) is

given by

oD

LS

RGP

B § U
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(1.332)

where EJ (1 < J < N) denotes the jth right-hand side vector subset
which is a column vector of dimension eight. The coefficient matrix

T in equation (I.329) is defined by the block-tridiagonal matrix

A, € 0 0 O
B, Ay C, 0 O
0 By Ay C3 O
r= :
By-1 An-1 On-1
- e
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where Aj, Bj, and Cj (1 < j < N) are square submatrices of dimension

eight by eight. The forms of Aj, B

below.

For j = 1:

v O O O o

- 4 Wwn o o

oy

c 4 »n O O

o O o

—

j’

J

o 0 o
o 0 o0
0o 0 0
0 0 0
1 0 0
0 S, O
00 Ty
Y16 Y12 Y10
0 0 0
0 -h/2 O
0 0 0
0 0 -h/2
1 0 0
0 S5 O
0 0 Ty
Vg Uiz U

cC O o o o o o o
]

—
'

C., and 65 (1< J < N) are given

(1.334)

(1.335)
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For j = N:

(1 w2 0 o o 0o 0 o |
0 1 0 0 0 -h2 o0 o0
0 0 1 -h/2 0 0 0 o0
0 0 0 1 0 0 -h/2 o0

Ay = . (1.336)
0 0 0 0 1 6 0 -p2
6 1 0 0 0 0 0 o0
0 0 0 1 o0 0 0 o0
(00 0 0o 1 1 0 o0 )

For all j:

(1 w2 0 o 0 0o 0 o0 |
0 -1 0 0 0 -h/2 o0 0
0 0 -1 -h/2 0 0 0 0
0O 0 0 -1 0 0 -h/2 0 |

B, = - (1.337)

J 0 0 0 0 -1 0 0 -h2
0 0 0 0 0 0 0 o0
0 0 0 0 0 0 0 ¢
0o 0 0 0 0 0 0 o

333

-



. R

R R T S M e, T e S8Ry E s Nasbter ﬁn.ﬂ
= L S T Sl

(I.339)

.
0
o
™
—
g
| 1
[ap]
P
O 0o O O o o o o
€ S o o
s O O O O O O - D
1\
(O —t
<2 © o o o o & o =
Lo
-l oo i
=) —
..N.O O O O O o o o o
¢J 0.
(3™ N~
™~
(o Ne] O O O O O »n = oD
™~ [Te] [¥¢]
o O © O O wv == D
[
O O O © © w»vi = o
d |
i — —
O O O O O »n - D o O o o o
. J L
~ i -t
o ) 1
— 5
© -
1 s
O o
w -

334



ORIGINAL PAGE i3
OF POOR QuaLITY

For (2 < j < N-1):

I

| (1.340)
q; = !

For j = N:

(1.341)
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The parameters Yk’ Rys Sk’ Tk’ Uk’ and h in equations (1.334) to
(1.341) are applied between succe§§ive normal (n) stations (i.e.,
j-1, j, j+1). The above equatiohs are for the case when the wall
temperature is specified. If, instead, the normal temperature deriva-

tive at the wall is specified, then the submatrix A1 takes the following

form:
(1 0 o 0o 0 0 0 o0 |
6 1 0 0 0 0 0 0
© 0 1 0 0 0 0 0.
6o 0 0 1 0 0 0 0
A, = (1.342)
o 0 0 0 0 0 0 1
S, S, Sg S0 0 S 0 0
T, T, Tg Tg 0 0 T 0
(Y2 Uy U Vg Ui Upp Yo Uyg |

A similar set of matrix definitions exists for the attachment
line flow. Only minor modifications must be made to the previously
defined submatrices Aj and Cj (1 < Jj < N).

The system of linear equations given by the matrix equation (I.329)
is solved using a direct matrix factorization procedure (22). This
procedure assumes that tha coefficient matrix T can be factored into
two matrices; one of which is upper triangular, the other of which is
lower triangular. Denoting the upper and lower triangular matrices

by U and L, respectively, then

r =L (1.343)

TR L2 wr e

T
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i where
1 F —
A, 0 0
0 B3 A .;
L=] " . ) (1.344)
By Ay
and
Fll Y4 0 0
0 I2 Yo 0
u=|0 0 I3 v, (1.345)
I

In equations (I.344) and (I.345), A; and Y; (1 < J < N) denote square
submatrices of order eight which are to be determined in the analysis,
and Ij denotes the identity matrix of order eight. Performing the
matrix multiplication of L and U and equating lTike elements to those

in T yields the following recursion relations for determining Aj and yj:
(I.346)

(I1.347)
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v. = Allc, (1.348)

HWith the elements of U and L determined, an intermediate solution

vector B is obtained from

=117 (1.349)

where

B=1. (1.350)

The elements of B are obtained from the recursion relations

5 = Al (1.351)

}\J. (qj B. o

5 95.q) (1.352)

Q

J

With the elements of B determined, the solution vector A is found from

the backward recursion relations

i
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It should be noted that it is inefficient to compute matrix
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N

p—

%7 %n

inverses for use in the respective recursive formulae.

ency can be realized if the linear systems are solved using direct

methods.

(1.353)

(1.354)

Better effici-
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APPENDIX J
SHOCK WAVE-BOUNDARY LAYER INTERACTION ANALYSIS

1. INTRODUCTION

The second-order inplicit finite difference algorithm, presented in
Appendix I, is used to compute all of the boundary layer flow except for
that in the shock wave-boundary layer interaction regions. The inter-
action region flow exhibits an elliptical character in that downstream
disturbances can propagate through the subsonic portion of the boundary
layer to affect the upstream flow. Thig phenomenon is evidenced by a
thickening of the boundary layer ahead of the shock wave reflection.
Because of this, it is not possible to adequately model the interaction
region flow by solving a parabolic system of governing partial differen-
tial equations which by their very character do not allow for downstream
influence. An accurate simulation of the interaction region flow requires
using a three-dimensional compressible Navier-Stokes analysis with appro-
priate modeling of the outflow boundary conditions. Aithough such an
analysis is possible, the large attendant increase in computer execution
time makes this method undesirable.

Realizing this, an efficient three-dimensional integral analysis was
chosen for use in the present investigation. The analysis presented herein
solves integral forms of the continuity, streamwise momentum, and cross-flow
momentum equations. The energy equation is approximated by assuming that
fTow in the interaction region is isoenergetic.

The integral analysis is based on the following assumptions (most of
which are supported by experimental evidence):

1. The flow is quasi-two-dimensional in a plane normal to the shock wave

SR

1%




and the wall, and the flow properties are approximately constant
pariilel to the shock wave.

2. The static pressure is constant in the wall normal direction down-
stream of the interaction region.

3. The interaction region is sufficiently short so that mass entrainment
and viscous shear stress effects may be neglected.

Mass bleed occurs normal to the wall.
The flow in the interaction region is isoenergetic.

The boundary layer velocity profiles may be represented by power laws.

NUREY- ST S
« - &« =  »

The boundary layer thickness is small compared to the local body radius,
and thereby a local planar analysis is applicable.

The shock wave-boundary layer interaction region analysis is presented
in this appendix. This analysis presented herein represents an extension

of the methods reported in References (23) to (27).

2. INTEGRAL ANALYSIS FOR THE SHOCK WAVE-BOUNDARY {AYER INTERACTION REGION

The three-dimensional integral conservation equations are applied to
a series of contrnl volumes where each control volume comprises a circum-
fe}ential segment of the three-dimensional shock wave-boundary layer inter-
action region, as illustrated in Figure J.1. A given control volume is
bounded by the current boundary Tayer initial-value and solution surfaces
in the streamwise direction, and by the wall and the boundary layer edge
surfaces in the normal direction.

Following the suggestion of Paynter (25), Peake(26) and Green (27),
the conservation equations are applied in a plane which is orthogonal to
both the wall and to the space curve defined by the intersection of the
shock wave with the wall. This plane is shown in Figure J.2. passing
through the point (P), arid can be defined by the orthonormal triad of

vectors €, ﬁb,andB. The unit vector t is tangent to the space curve at
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point (P), the unit vector ﬁb is orthogonal to the solid boundary at point

(P), and the unit vector g is orthogonal to both t and ﬁb at point (P) and

is given by
g =Ny X £ (3.1)
The tangential unit vector t can be determined from
I dx, « < dz\¢
t= (G + (P03 + (PR (9.2)

where ds is the differentialarc length along the space curve and can be
expressed as
(d5)2 = (dx)2 + (dy)? + (d2)? - (3.3)
where x, y, and z form the base coordinate system of Figure 1, and 1, 5,
and Kk are the unit vectors in the X-, ¥-, and z-directions, respectively.
After determining the unit vector &, the angle o subtended by‘the
unit vectors 6 and A may by determined, where A is tangent to the body
and lies in the meridional plane of point (P). A coordinate rotation may
then be employed to obtain the upstream boundary layer velocity components

in the plane containing ﬁb and 6. The coordinate rotation formulae are

given by
x L - .
U = u cosa + W sina (J.4)
~% ~ ~
W =W cosa - U Sina (J.5)
I ~k
Uu=u cosa-w sino (J3.6)
~ “'* . ~*
w=u sina +wW cosa (0.7)
~ ok
vV =y (J.8)

where U, v, and W represent the velocity components in the curvilinear
coordinate directions X, y, and Z, respectively, and ﬁf, V*, and W repre-
sent the velocity components in the curvilinear coordinate directions i*,
y, and E*, respectively (see Figure J.2). The body tangent curvilinear

coordinates contained in and orthogonal to the plane of ﬁb and ¢ are

e
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denoted by X" and i*, respectively (see Figure J.2).

After the velocity components at the initial-value surface have been
transformed into the (i*, ¥, E*)-coordinate system, the integral conserva-
tion equations are applied to deteymine the boundary layer property pro-
files on the downstream side of the interaction region. A cross-section
of the control surface used in the integral analysis is depicted in Figure
J.3, where the initial-value surface corresponds to station 1 and the solu-
tion surface corresponds tostation2. The respective boundary layer thick-
nesses are denoted by 81 and 62.

The conservation equations consist of integral forms of the continuity

~* . ~*
~equation, the streamwise (x ) momentum equation, and the cross-flow (z )

momentum equation. The energy equation is approximated by the assumption
that the total enthalpy at station 2 is constant in the }-direction, and
is equal to the average total enthalpy at station 1. The integral conser-

vation equations take the form

8y 82
SR kL,
J pu dy = [ pu dy + mb]eed (3.9)
o] (o]
— 82 %2 . 1 x2 .
P18y - P28y + P(8, - 6)) = J pu ) dy - J p(U ) dy (4.10)
o o
51 ~kok o 52 kL
[ pu w dy = [ pu W dy (3.11)
o Jo
"H‘] = H, (3.12)

where equations(J.9) to (J.12) represent the continuity, streamwise momentum,
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cross-flow momentum, and energy equations, respectively. In the above
equations, P, and P2 represent the static pressure at stations 1 and 2,
respectively, and are assumed to be constant in the y-direction, and P

is an appropriately weighted average pressure acting on the upper surface
of the control volume and is determined from the supersonic core flow so-
lution. The mean density and total enthalpy are denoted by p and H,
respectively. It was assumed in writing the above expressions, that
negiigible mass is entrained into the boundary layer between stations 1
and 2, that mass bleed occurs normal to the wall and is denoted by ﬁb]eed,
and that viscous shear stress effects are of secondary importance.

Since the upstream flow properties have been determined by applica-
tion of the finite difference algorithm, the integrais appearing in
equations (J.9)'to (3.11) that are eva1uated at station 1 may be deter-
mined directly by numerical quadrature. To evaluate the integrals at
station 2 requires that representations for the downstream velocity pro-
files be chosen. In the present investigation, the following turbulent

power law profiles have been selected

i = g n® (9.13)

W= W:nsz (J.14)
where

n=yls | (3.15)

The exponents g, and B, appearing in equations {J.13) and (J.14) are bounded
in the range
0 <By <1 (3.16)
0 <8y <1 | (3.17)
The mean total entha\py H may be expressed in terms of the mean static
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2 28 ~k 2 23 B
H=h+y {:u*) n (w*) n ] (3.18)

Since both g, and B, are bounded and, in general, (ﬁ:)2 < << (ﬁe)z.
equation (J.18) may be approximated as
hEH - (i (3.19)
which serves to uncouple equation (J.11) from equations (J.9) and (J.10).
For a simple system in thermodynamic equilibrium, the following expression
can be written
p = p(h,P) (4.20)
where for a thermally and calorically perfect gas
o = Xrn (3.21)
with .
= §'¥‘T p (3.22)
where y is the specific heat ratio.
Using the above relations allows the downstream integrals in equations

(J.9), (J.10), and (J.11) to be written for a thermally and calorically

perfect gas as
1

2 o Bldn (J.23)
pu dy = Kzazuez - o8
° [Hz-§(u ) no 'l ‘

1
28
1dn (J.24)

JUS DR

82
~%. 2 ~% 2
[ o) 47 = Kyb (i ) J
2

0

§a 1
kK ok .* -
[ pu W dy = Kzazu [ nBlnBZdn (J.25)
0 0.

; 1,~*% 2 281
[Hz‘ §(Ue2) n ]
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To obtain the downstream property profiles, initial estimates are
made for the exponents B; and B8,. Then equations (J.9), (J.10), and
(J.12) are solved simultaneously while incorporating equations (J.23)
and (J.24) for the downstream integrals. This produces a system of two
equations for the downstream unknown quantities &, and B;. These equa-
tions are solved using a Newton-Raphson iteration scheme with B; serving
as the perturbation quantity. After convergence has been obtained for
8, and B, equation (J.25) is incorporated into equation (J.11), with
the resulting expression being solved using a Newton-Raphson iteration.
scheme employing B, as the perturbation quantity.

Determining the downstream boundary layer thickness &, and the
power law exponents B; and B, completely defines the downstream property
field since H, was determined from equation (J.12). After the downstream
velocity components ﬁ: and WZ have been calculated, the velocity components
Uy and wp can be determined by a coordinate rotation using equations (J.6)
and (J.7).

By applying the above analysis to a series of control volumes, the
flow properties downstream of the shock wave-boundary layer interaction
region may be determined for the entire computed sector. This solution
is then used as initial data for restarting the finite difference bound-

ary layer computation.
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APPENDIX K
OVERALL NUMERICAL ALGORITHM

1. INTRODUCTION

In this appendix, the control logic used in the numerical algorithm
is discussed. Regulation of the marching step size, generation of the
initial data, and considerations of flow symmetry are also discussed.
A11 of the characteristic unit processes referred to in this appendix
are discussed in Appendix E. The boundary layer subalgorithms referred

to this in this appendix are discussed in Appendices I and J.

2. GENERAL COMMENTS CONCERNING COMPUTATION OF THE SUPERSONIC CORE FLOW

The overall numerical algorithm for the supersonic flow consists of
the repetitive application of the various characteristic unit processes
to generate the global solution for given boundary conditions #nd a speci-
fied set of initial data. |

The goemetric boundary conditions are represented by the formulations
presented in Appendix D. The initial data are specified on a space-like
plane of constant x (see Figure Kf1). The x-coordinate axis is the longi-
tudinal axis of the forebody/centerbody and the cowl. Moreover, the mean
supersonic flow direction is assumed to be in the x-coordinate direction.

An inverse marching scheme is employed in the supersonic flow overall
numerical algorithm. The supersonic flow solution is obtained on space-
1ike planes of constant x. The solution points on each plane represent
the intersection points of continuous streamlines which are propagated
from the data points specified on the initial-value pTane. In addition

to the streamline solution points, are the solution points representing

-y
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the intersection of either the external or the internal shock wave with
the solution plane. For the internal flow, the solution is also obtained
on the space curves which represent the intersection of the internal shock
wave with the solid boundaries. These space curves are defined by the
Tocus of shock wave solution points.

Except in the vicinity of a shock wave reflection with a solid bound-
ary, the axial (x) distance between successive solution planes is deter-
mined by the application of the Courant-Friedrichs-Lewy (CFL) stability
criterion. In the vicinity of a shock wave intersection with a solid
boundary, the axial step is controlled by special censtraints which en-
sure that the entire shock wave-solid boundary intersection falls between
two adjacent solution planes.

After each solution plane is computed, the mass flow rate across
that plane is calculated using trapezoidal rule integration. Constancy
of the overall mass flow rate in the internal flow field computation gives
an 1ndigation of the overall accuracy of the numerical integration if the
inlet walls are impermeable. The stagnation pressure and stagnation tem-
perature are calculated at each solution point. For the adiabatic flow
of a calorically perfect gas, the stagnation temperature should remain

constant.

In the numerical analysis, the flow field is divided into two regimes:

the internal flow regime and the external flow regime, as illustrated in
Figure K.1. The supersonic flow field integration in each of these two
regimes is controlled by separate logic modules in the computer program.
The forebody supersonic flow field integration is performed first. Then,

the internal supersonic flow field is computed. The computer program de-

| veloped in the present investigation has the capability to perform the

o,
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internal supersonic flow field integration with or without the discrete
fitting of the internal shock wave system. The option in which shock
waves are not discretely fitted might be employed if the internal shock
waves are of relatively weak strength, and thereby an acceptable solution
could be obtained by smearing the internal discontinuities.

From a computation point of view, the internal supersonic flow field
in which shock waves are not discretely fitted is the easiest solution
to compute. For flow fields in which shock waves are discretely fitted,
the external supersonic flow about the forebody is less difficult to ob-
tain than the internal flow, since in the external flow the shock wave
represents a bound to the computational regime. Discrete fitting of the

shock wave throughout the computational regime, as is done in the internal

supersonic flow field integration, greatly complicates the numerical

algorithm.

3. COURANT-FRIEDRICHS-LEWY (CFL) STABILITY CRITERION

Except in the vicinity of an internal shock wave-solid boundary inter-
section, the axial marching step between successive solution planes in the
supersonic flow éo]ution is determined by the application of the Courant-
Friedrichs-Lewy (CFL) stability criterion (8). The CFL stability criterion
will be satisfied at eéch solution point if the convex hull of the finite
difference network contains the differential zone of dependence of the
solution point. The convex hull of the finite difference network, il1-
lustrated in Figure K.2, is defined by the outer periphéry of initial-
value plane field points used in determining the fit point stencil for
the quadratic bivariate interpolation polynomial. The differential zone
of dependence, also illustrated in Figure K.2, is the region defined by

the intersection of the Mach cone (whose apex is at the solution point)
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with the initial-value plane.
The maximum allowable marchiﬁg;step for each streamline is the
x-step for which the Mach cone just touches the convex hull. That

step size is given by

ax = [u2/(ca) [T - (c/q)(q%/u? - ])]/ZJRmin (K.1)

where Ax is the maximum allowable axial step, u is the x-component of the

velocity, g is the velocity magnitude, and c is given by
@ = a%%/(q% - a?) (K.2)

where a is the local sonic speed. In equation (K.1), R is the distance

min
from the streamline base point in the initial-value plane to the nearest
field point on the convex hull of the finite difference network (see Figure
K.2).

Equation (K.1) is applied at every streamline solution point, the
actual marching step being selected as the Ax value at the most restric-
tive point. It should be noted that this expression is applied only to
streamline points, the shock wave points being excluded. Furthermore, in
the internal flow field integration, the shock wave points are ignored in

defining the convex hull of the finite difference network when application

of the stability criterion is made to a streamline point.

4. SUPERSONIC FLOW INITIAL-VALUE PLANE

The supersonic flow initial data are specified on a plane of constant
Xx. The flow must be supersonic at every point on this plane. For unique-
ness and existence of a génuine solution, the values of the dependent
variables prescribed on this surface must have at least continuous first

partial derivatives. : 355
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If the forebody flow field is to be determined, the initial-value
plane must be specified at an axial (x) station that is upstream of the
forebody computational flow regime (see Figure K.1). The solution is
then found along the streamlines that pass through the data points speci-
fied on the initial-value plane, although some streamline addition and
deletion are performed on the ensuing solution planes as deécribed in
Section 6 of this appendix.

If only the internal flow field is to be determined, the supersonic
fiow initial-value plane must be specified at the axial statien which
corresponds to the x-position of the cowl 1ip (see Figure K.1). The
cowl 1ip is assumed to be contained ina plane of constant x. For the in-
tegration of the internal flow field, a point redistribution is performed
on the initial-value plane. This point redistribution is required in
order to have streamlines which 1ie in the strear; surface formed by the
cowl boundary. The solution is then found along the streamlines that
pass through the redistyibuted points on the plane at the cowl 1ip axial
statioh. _

The supersonic flow initial-value plane may be specified by the user,
or if the forebedy is conical up to the axial station where the initial-
value plane is Tocated, the flow property field on the initial-value
plane can be generated internally in the computer program by one of two
methods.

One method of internally generating the supersonic flow initial-
value plane is by using an approximate technique which employs the Taylor-
Maccoll solution for the flow about a circular cone at iero incidence. A
superposition procedure is used to obtain an approximation to the flow

about a circular cone at nonzero angle of attack by neglecting the cross
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flow effects. This superposition procedure effectively amounts to com-
puting the flow turning angle in the meridional p]ane of the given solu-
tion point, and then obtaining the flow nropert1es *% hat point by

applying the Taylor-Maccoll solution for a cone ha]f—ang]e equal to the
flow turning angle. The shock wave angle is then measured from the ori-
ginal streamline direction in the appropriate meridional plane. It must
be emphasized that this is only an approximate technique, giving the

well accepted Taylor-Maccoll solution at zero incidence, but becoming in-

5 oAy 0 e

5 g £ PO 0

creasingly less accurate as the angle of attack is increased.

An alternate method of generating the supersonic flow initial data
is to employ the solution obtained by Jones (28) for the flow about a
circular cone at incidence. The Jones algorithm has been incorporated
into the computer program developed in the present investigation. Many

of the computed results presented in Section X were obtained using the

L d

results of the Jones algorithm as initial data. For situations in which e
the forebody is conical up to the axial station where the supersonic flow
initial-value plane is located, the Jones algorithm is the recommended
source for the initial data.

If the forebody is not conical ahead of the axial station of the
initial-value plane, another source of initial data must be used. If

available, experimental data may be employed.

Iy A 5, £ AR
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5. SUPERSONIC FLOW SOLUTION PLANE POINT NETWORK AND FLOW SYMMETRY

The supersonic flow computational point network is based on a series
of circumferential and radial staticns. The point networks for the various
flow symmetry options are illustrated in Figure K.3. In this figure, the ‘ ;;
index i corresponds to the i th circumferential station and the index j |

corresponds to the jth radial station. In all cases, the streamlines on
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the surface of the centerbody are denoted by j = 1. For the forebody
flow field, the bow shock wave solution points are denoted by j = n. For
the internal flow field, the streamlines on the surface of the cowl are
denoted by j = n. The computed sector, 1n'genera], is bounded by the cir-
cumferential stations corresponding to i =1 and i = m. This point ar-
rangement produces a rectangular logic array in the computer program. .

The points at any circumferential station in axisymmetric flow, or
on a plane of flow symmetry in three-dimensional flow, lie on a straight
line. Moreover, for axisymmetric flow, the radial stations correspond to
circular rings. In general, however, the solution points ar a given cir-
cumferential station do not lie on a ray, nor do the radial stations cor-
respond to circular rings. |

For the internal flow option in which shock waves are discretely
fitted, the shock wave solution points are also represented in this point
arrangement. Special logic is used in the Computer program such that the
shock wave solution points float in the storage arrays as the shock wave
travels between the centerbody and cowl on successive solution planes. On
a given solution plane, the shock wave solution points at adjacent circum-
ferential stations do not, in general, have to lie at the same radial
station.

The computer program takes advantage of flow symmetry when it exists
in the flow field. In these instances, the entire solution plane does
not have to be computed, but rather only an appropriate section of it.
The remaining sections of the solution plane may be obtained by reflection
of the points in the computed §ector. This procedure yields a significant
reduction in computer execution time.

The four flow symmetry options that have been incorporated into the

- g

R W




it
i

1
&

analysis are depicted in Figure K.3. Figure K.3(a) illustrates the most
general case when no Tlow symmetry is present. Figure K.3(b) illustrates
the case when one plane of flow symmetry is present. In this case the
computed sector is the half-plane bounded by the y-axis and containing
the +z-axis. The integration region in this case is bounded.by the i = 1
circumferential station on the +y-axis and by the i = m circumferential
station on the -y-axis. This case of flow symmetry is the one most likely
to arise in the class of problems being considered in this investigation.
Figure K.3(c) illustrates the case when two planes of flow symmetry are
present. This option would be used to compute the flow field about asym-
metric bodies at zero angle of attack. In this instance, the computed
sector is the quadrant bounded by the +y-axis and the +z-axis. The
circumferential station corresponding to i = 1 lies on the +y-axis and
the circumferential station corresponding to i = m lies on the +z-axis.
Finally, Figure K.3(d) illustrates the axisymmetric flow option where

the computed sector is limited to the single circumferential station
(ray) lying on the +y-axis. This option would be used to compute the
flow field about axisymmetric bodies at zero angle of attack.

The numerical algorithm does not apply special characteristic unit
processes when a solution point lies on a plane of symmetry. Rather, a
point reflection about the plane of symmetry is performed in the initial-
value plane, and the appropriate unit process is then applied in standard
form. This procedure yields satfsfactory results and eliminates the need

for devising special unit processes.

6. SUPERSONIC EXTERNAL FLOW ABOUT THE FOREBODY
With the forebody geometry specified and the flow property field on

the initial-value plane determined, the supersonic external fiow about
' 361
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the forebody can be calculated. In the computation of this flow field,

the distance between successive solution planes is determined by the
application of the CFL stability criterion. Ths last solution plane in

the forebody flow field computation is made to coincide with the x-position
of the cowl lip.

After the axial step between the current initial-value plane and the
current solution plane has been determined, the solid boundary point unit
process (see Appendix E) and the interior point unit process (see Appendix
E) are applied. These unit processes achieve second-order accuracy with-
out the need for global iteration. Hence, these unit processes are applied
at the appropriate points until convergence is obtained without using in-
formation from neighboring points in the solution plane.

Once the solution at each solid boundary point and interior point
has been determined, the bow shock wave point unit process (see Appendix
E) is applied at each shock wave solution point in the computed sector.
Global correction is then applied for these points, if desired. The
position of each shock wave solution point is made to 1ie in the meridional
plane defined by the outer-most interior field point which is on the same
circumferential station as the shock wave point. As a consequence, in
axisymmetric flow, the streamline and shock wave solution points on'a
given circumferential station 1ie in the same meridional plane on all
succeeding solution planes. In three-dimensional flow, however, except
on a plane of flow symmetry, the solution points corresponding to a given
circumferential station do not lie in the same meridional plane on suc-
cessive solution planes.

In the forebody flow field integration, periodic streamline addition

and deletion are performed. The streamline addition is required to retain
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a well-dispersed computational mesh, since at successive solution planes
more and more mass is captured. Moreover, convergence of the streamiines
towards the forebody occurs as the flow progresses downstream. Periodic
point deletion is required since the continued addition of streamlines
would produce an excessively large number of computational mesh points,
thereby unduly increasing computer execution time and machine storage
requirements. The streamline addition and deletion procedures are out-
Tined in the following. A depiction of a typical forebody flow stream-
line pattern is given in Figure K.4.

For the purposes of point addition, after the points on the solution
plane have been computed, the mass flow rate across that plane is calcu-
lated. If this mass flow rate is significantly larger than the mass flow
rate across the last solution plane where point redistribution was performed,
a new ring of solution points is added between the ring of shock wave so-
lution points (j = n) and the ring of outermost interior field solution
points (j = n - 1). The coordinates of each of these inserted solution
points is obtained by forming the arithmetic average of the coordinates
of the shock wave solution point and the outermost interior field point
corresponding to the circumferential station of the new point. The flow
properties at each of the inserted solution points are obtained by inter-

polation using the quadratic bivariate polynomial
f(y,z) = a; + a,y + aq2z t a,yz + a (I a 22 (K.3)
¥ [ M L 5Y T % :

where f(y,z) denotes a general function of the coordinates y and z. The
coefficients a; (i=1 to 6) in equation (K.3) are obtained by a least squares
fit of nine data points in the solution plane, as described in Appendix C.

Point deletion occurs when}the number of radial stations has reached
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a specified Timit. In point deletion, the body streamline points are
retained in storage, while selected interior streamline points are deleted
from storage. Refinement of this technique is provided by having two
1imits to the number of allowable radial stations. The first limit is
employed when the mass flow rate at the given solution plane is less than
a specified fraction of the estimated flow rate at the cowl lip. The

second and larger limit is employed when that fraction has been exceeded.

7. SUPERSONIC INTERNAL FLOW IN WHICH SHOCK WAVES ARE NOT DISCRETELY FITTED

The program option in which the supersonic internal flow field is com-
puted without the discrete fitting of the internal shock wave system might
be employed in the cases where the internal shock waves are weak in
strength, and thereby an acceptable solution could be obtained by smear-v
ing all internal discontinuities. This option requires that only two unit
processes be employed: the interior point unit process and the solid
boundary point unit process. The influence of molecular transport can be
included in the computation of this flow field.

The initial-value plane of the internal flow computation is consti-
tuted by the last solution plane of the forebody flow field integration.
Alternatively, the initial-value plane may be specified at the cowl Tip
axial station without employing the forebody flow field integration option.
This technique is recommended if the forebody is conical up to the cowl
1ip axial station.

The computer program developed in the present investigation assumes
that the bow shock wave falls outside of the cowl 1ip, or, in the limit,
intersects the cowl 1ip exactly. The program does not have the capability
to compute the internal flow field when the bow shock wave has been in-’

gested into the annulus.
. 365
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With the initial-value plane specified, a point redistribution on
this plane is performed to obtain a uniform point distribution and to
obtain streamlines which T1ie in the stream surface formed by the cowl
boundary. The redistributed points are arranged symmetrically in the
computed sector. These points lie on rays which have equal angular incre-
ments from one another, with the points on each ray being spaced at equal
radial increments. The radial station j = 1 corresponds to the centerbody
streamline points, and j = n corresponds to the cowl streamline poin%s.
The properties at these points are obtained by interpolation.

With the point redistribution performed, the internal flow field in-
tegration proceeds in a manner similar to the external flow field integra-
tion, except that oniy two unit processes are used: the interior point
unit process and the solid boundary point unit process. No point addition
or deletion is performed. The internal flow field integration is termi-
nated either when a specified axial station is reached or when the flow

becomes subsonic.

8. SUPERSONIC INTERNAL FLOW IN WHICH SHOCK WAVES ARE DISCRETELY FITTED

A point redistribution is first parformednon the initial-value plane
at the axial station of the cowl 1ip as described in the previous section.
After the upstream flow properties have been determined at each of the
cowl 1ip solution points in the computed sector, the downstream flow
properties are obtained at each of these points by application of the
solid body-shock wave point unit process.

In the integration of the internal flow field in which shock waves
are discretely fitted, the axial step is obtained by the application of
the CFL stability criterion, except in the vicinity of a shock wave re-

flection, where special constraints are employed. After the axial
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station of the solution plane has been determined, the internal shock
wave is projected from the current initial-value plane to the current
solution plane in the meridional plane passing through the x-axis and
the previous shock wave point on the initial-value plane as illustrated
in Figure K.5. The location of the shock wave solution point is obtained

by applying the following equation.
dr/dx = tang; (K.4)

In equation (K.4), drs is the increment in radius between the projected
shock wave point and the previous shock wave point on the initial-value
plane, dx is the corresponding increment in axial distance, and B is

the angle subtended by the shock wave and the x-axis at the initial-
value plane shock wave point and in ¢%e meridional plane defined by the
initial-value plane shock wave point. Equation (K.4) is applied for

each Shock wave point in the computed sector, thereby yielding the locus
of projected shock wave points in the solution plane. Interpolated values
of the shock wave radius in the solution plane are obtained by employing

the following equation.

2

rs(e) = a; taye + ago (K.5)

In equation (K.5), rs(e) is the shock wave radius at the polar angle

6 = tan_](z/y), and the coefficients a (i=1,2,3) are obtained by fitting
this expression to three projected shock wave points, as described in
Appendix C. Equation (K.5) is applied at every circumferential station

in the computed sector. Hence, the shock wave location in the solution

plane is represented by a series of overlaping one-dimensional curve fits.

After the tentative position of the shock wave in the solution plane
367
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has been determined, the streamlines that are in the flow field sector
that is upstream of the shock wave in the initial-value plane are pro-
jected from the initial-value plane to the solution plane, as illustrated
by streamlines 1 to 6 in Figure K.5(a) and by streamlines 9 to 13 in
Figure K.5(b). This is accomplished by app]yiﬁg the equation of a stream-

line

dx; = updt  (i=1,2,3) (K.6)

where X5 (i=1,2,3) denotes the three cartesian coordinates x? y, and z,
respectively, uj (i=1,2,3) denotes the corresponding velocity components
U, Vv, and w, respectively, and t is the time of travel of a fluid particle
along the streamline. Equation (K.6) is first applied in the x direction.
Since the axial step dx is known from the application of the CFL stability
criterion, the time parameter dt may be determined. Then, application of
equation (K.6) for the y and z directions allows the y and z coordinates
of the projected streamline point to be computed. The radiuSvr=(y2+zz)]/2
and polar angle o = tan'](z/Y) ¢ each of the projected streamline points
are then computed.

The radius of the projected streamline point is then compared to ti
radius of the shock wave, given by equation (K.5), in the meridional plane
defined by the projected streamline point. If the projected streamline
point is in the upstream flow field sector on the solution plane (i.e.,
the stream]ihe does not intersect the shock wave), then a standard interior

point or solid boundary point unit process is applied to obtain the solu-

~tion at this point. If the streamline appears to intersect the shock

wave, as illustrated by streamlines 5 and 6 in Figure K.5(a) and stream-

lines 9 and 10 in Figure K.5(b), then the application of,the‘unit process
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to determine the solution is deferred.

At this stage, the upstream and downstream shock wave solution points
are determined at each circumferential station in the solution plane com-
puted sector using the internal shock wave point unit process. This pro-
cedure defines the property field on both the upstream and downstream sides
of the internal shock wave.

Next, the body streamline solution points are computed at every cir-
cumferential staticen in the downstream flow field sector on the solution
plane. In some instances, computing the solution at these points may
entail using flow property information from the downstream side of the
internai shock wave if the Mach cone, with apex at the solution point,
intersects the shock wave surface. Determining the solution at each of
these points thereby defines the flow property field on the boundary
stream surface in the downstream fiow field sector.

At this stage, the solution on each of the streamlines which kave not
yet been computed is determined. The streamlines that are in the downstream
flow field sector on the initial-value plane will remain in the downstream
flow field sector on the solution plane (see Figure K.5). The solution at
these points is determined by the application of the standard interior
point unit process, unless a portion of the Mach cone, with apex at the
solution point, intersects the internal shock wave or the solid boundary,
in which case the modified interior point unit process is applied. For
streamlines which penetrate the internal shock wave [streamlines 5 and 6
in Figure K.5(a) and streamlines 9 and'lo in Figure K.5(b)], the appro-
priate modified interior point unit process is aﬁp]ied. For the stream-
Tines whose solution was deferred due to a possible shock wave penetration,

but which ultimately did not intersect the shock wave, the standard interier
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point scheme is applied. The solution points are ordered in the storage

arrays in the order of increasing radius on a given circumferential station.

So a post computation interchange of the streamiine solution points with
the shock wave solution points is performed for the streamlines which ini-
tially appeared to intersect the shock wave but ultimately did not.

The process just outlined is applied repetitively until the internal
shock wave intersects a solid boundary. Special logic is used in the
computer program for the computation of a shock wave reflection. The
overall scheme used in this case is now presented.

The initial step in the computation of the shock wave-selid boundary
reflection is to obtain an estimate of the axial location, at a discrete
number of points, where the incident shock wave intersects the solid
boundary. Except for the case of axisymmetric flow, the intersection of
the incident shock wave with the solid boundary defines a three-dimensional
space curve, as illustrated in Figure K.6. In axisymmetric flow, this
curve lies in a plane of constant x. Points along the space curve are
determined by obtaining the intersection of the shock wave and the solid
boundary, where both of these surfaces are represented as straight line
segments in the meridional planes passing through the shock wave poinfs
in the initial-value plane. For a given meridional plane, the shock wave
is represented by equation (K.4), where drS is the increment in radius
between the shock wave-body intersection point and the shock wave point
in the initial-value plane, dx is the corresponding 1ncrement in axial
distance, and B is the ang]é subtended by the shock wave and the x-axis
in the meridional plane defined by the appropriate shock wave solution
point in the initial-value plane. The local body surface is approximated

in the meridional plane by the equation
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dry/dx = m (K.7)

where drb is the change in the radius of the body between the shock wave-
body intersection point and the body point in the initial-value plane,
dx is the corresponding increment in axial distance, and m is the local
slope of the body in the given meridional plane. Equations (K.4) and
(K.7) are solved simultaneously to obtain the intersection point in the
given meridionaf plane. The intersection point for evé;y meridional
plane defined by the shock wave points on the initial-value plane is so
determined. The locus of these intersection points determines the space
curve illustrated in Figure K.6.

At this stage, the points on the space curve which are nearest to
and farthest away from the initial-value plane are determined. If the
axial distance between the nearest point and the initial-value plane is
greater than a specified fraction of the marching step allowed by the CFL
stability criterion, then another solution plane is computed, the location
of this plane being just slightly upstream of the shock wave-body inter-
section. The entire procedure outlined above is then repeated. Alter-
natively, if the distance between the nearest shock wave-body intersection
point and the initial-value plane is less than this fraction of the allow-
able marching step, then the axial position of the next solution plane
is selected such that the space curve representing the incident shock
wave-body intersection is entirely contained between the initial-value
plane and the solution plane. At high angles of attack, this procedure

may require that the axial step between the initial-value plane and the

solution plane be greater than that allowed by the CFL stability criterion.

This implies that the Courant number, which is the ratio of the axial step

o




taken to the axial step allowed by the CFL stability criterion, is greater
than unity. To maintain an effective Courant number less than unity, the
fit point stencils used in the univariate, bivariate, and trivariate inter-
polation polynomials are adjusted in accord with the Courant number of

the actual step taken. That is, if the Courant number is approximately
two, then every other point is used in the interpolation fit point sten-
cils instead of the immediate neighbors (which correspond to a unity
Courant number), etc. This ensures that the convex hull of the finite
difference network enguifs‘the differential domain of dependence, thereby
satisfying the CFL stability criterion.

After the axial position of the solution plane has been determined

and the Courant number computed, the interral shock wave point unit process
is applied at every circumferential station in the computed sector at the
intersection of the incident shock wave with the ¢olid boundary. This
procedure defines the property field on both the upstream and downstream
sides of the incident shock wave. !
At this stage, the initial-value plane upstream sector body stream-
Tines are extended from the initial-value plane to the space curve defined’
by the intersection of the incident shock wave with the solid boundary,
as illustrated in Figure K.6. The solution for both the upstream and
downstream shock wave properties has beern obtained on the space curve by
the application of the internal shock wave point unit process. Hence,
both the upstream and downstream properties at the points where the body
streamlines intersect the space curve may be found by interpolation. For

this purpose the following quadratic univariate polynomial is employed

f(8) = a; + 2,8 + a392 (K.8)

375
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where f(8) denotes a general function of the polar angle 6. The coef-
ficients ay (i=1,2,3) in equation (K,8) are obtained by fitting this
expression to three data points on the space curve as described in Appen-
dix C. To determine the intersection point of the body streamline with
the space curve, an iterative technique is used. Moreover, after each
iteration, the projected streamline point is adjusted along the direction

of the body normal projection in the (y,z)-plane such that the streamline

point lies on the boundary surface. Equation (K.8) is applied for both

the upstream and downstream shock wave properties. Hence, the incident
shock wave downstream properties are known at the body streamline points.

At this stage, the solid body-shock wave point unit process is applied
at each of the body streamline points in the computed sector that are on
the space curve. This defines the reflected shock wave downstream pro-
perties at the body streamline points on the space curve.

Using a procedure similar to that used previously, the shock wave is
then projected from the space curve to the current solution plane. This

projection is performed in the meridional planes cortaining the body

streamline points on the space curve. This procedure yields the tentative

shock wave shape in the solution plane.

At this stage, the body streamline points in the solution plane that
are in the downstream fiow field secter in the initial-value plane are
computed by use of the solid boundary point unit process (see Figure K.7).
This unit process ig appliied at every such point in the computed sector.
As a consequence, the flow property field on the stream surface formed
by the solid boundary is defined.

Next, tﬁe remaining streamlines that are in the initial-value plane

downstream flow field sector are projected from the initial-value plane
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onto the solution plane. A test is then made to determine whether or

not each of these streamlines intersects the reflected shock wave (see
Figure K.7). Those streamlines which do not intersect the reflected
shock wave will 1ie in the upstream flow field sector on the solution
plane (points 7 to 13 in Figure K.7). The solution at these points is
determined using the standard interior point scheme, or if the Mach cone,
with apex at the solution point, intersects the incident shock wave or
solid boundary, the appropriate modified interior point unit process is
applied. Those streamlines which appear to intersect the reflected shock
wave have their computation deferred.

At this stage, the upstream and downstream shock wave points are
determined at every circumferential station in the solution plane com-
puted sector. This procedure defines the property field on both the up-
stream and downstream sides of the reflected internal shock wave.

Next, the solution is obtained at each body streamline point in the
downstream flow field sector on the solution plane (see Figure K.7). The
modified solid boundary point unit process is applied in this situation,
which requires using flow property information on the downstream side of
the reflected shock wave. After the application of the body point unit
process at each point in the computed sector, the property field on the
solid boundary is defined.

At this stage, the streamlines that are in the downstream flow field

sector in the initial-value plane and that intersect the reflected shock

wave are computed. These points require using the modified interior point

unit process and use flow property information on beth the upstream and

downstream sides of the reflected internal shock wave (see Figure K.7).

Finally, the streamlines that are in the upstream flow field sector -
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in the initial-value plane are extended to the surface of the incident
shock wave and their respective intersection points with this surface are
determined (see Figures K.7 and K.8). These streamlines are then extended
from the downstream side of the shock wave to the current solution plane.
If the projected streamline does not intersect the reflected shock wave,

a modified interior point unit process is applied using'flow property in-
formation on the downstream side of the incident shock wave. If the pro-
jected streamline intersects the reflected shock wave, the intersection
point is found with this surface. A modified interior point unit process
is then applied on the downstream side of the reflected shéck wave.

After all of the points have been determined on the solution plane
that is immdiately downstream of the shock wave-solid body refiection,
control is returned to the driving algorithm until another shock wave-
solid body reflection is encountered.

Figures K.6 to K.8 illustrate the intersection of the shock wave with
the centerbody. Similar results hold when the shock wave intersects the
cowl.

The internal flow field integration is terminated when eith@r a speci-

fied axial station is reached or when the flow becomes subsonicf

9. COMPUTATION OF THE BOUNDARY LAYER FLOW

The overall numerical algorithm for the boundary layer flow computa-
tion consists of the repetitive application of the attachment line flow,
three-dimensional flow, and shock wave-boundary layer interaction region
flow subalgorithms to generate the glcbal solution for given boundary
conditions and a specified set of initial-data.

The boundary layer flow initial-data are specified on body normal
rays of constant X. The X-coordinate axis is the streamwise curvilinear
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coordinate coincident with the body and contained in a given meridional
plane (see Figure 9). The mean boundary flow direction is assumed to be
in the x-coordinate direction. Separate sets of initial data are required
to initiate the forebody/centerbody and cowl boundary layer computations.

The implicit finite difference algorithm is applied to compute all
of the boundary layer flow except for that in the shock wave-boundary
layer interaction regions where the integral analysis is employed. The‘ﬁ
finite difference algorithm first applies the attachment line flow sub-
algorithm to calculate the boundary layer flow on the windward and lee-
ward planes of symmetry. The three-dimensional flow subalgorithm is then
applied to compute the boundary layer flow between the planes of flow
symmetry starting at the windward meridian and marching to the leewar
meridian for a given solution surface. The boundary layer solution is
obtained on an orthogonal curvilinear mesh conforming to the Tocal surface
curvature. As opposed to the bicharacteristic supersonic flow solution,
individual streamlines are not followed in the boundary layer computation.
The boundary layer external flow properties are determined by interpola-
tion of the supersonic flow solution.

When a shock waye-boundary layer interaction region has been en-
countered, the three-dimensional integral analysis is applied to compute
the property profiles on the downstream side of the interaction region.
The boundary layer properties on the upstream side of the interaction
region are supplied by application of the implicit finite difference
algorithm. The external flow properties are obtained from the supersonic
core flow solution.

The streamwise step size used in the boundary layer computation is

selected to correspond to the axia] marching step determined from the
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Courant-Friedrichs-Lewy stability criterion used in the supersonic flow
computation. As a consequence, the supersonic flow and boundary layer

flow solutions are determined at the same axial stations.

10. BOUNDARY LAYER FLOW INITIAL DATA

The boundary layer flow initial data are specified at stations of
constant X (see Figure 9). Separate sets of initial data must be speci-
fied to initiate the forebody/centerbody and cowl boundary layer computa-
tions. For uniqueness and existence of a genuine solution, the prescribed

initial data must have at least continuous first partial derivatives.

The forebody/centerbody boundary layer flow initial data must be speci-

fied at the same axial station at which the supersonic flow initial data
are specified. If the forebody is conical ahead of the axial station
where the computation is to be started, then the initial data may be gen-
erated using the implicit finite difference algorithm deyeloped by Adams
(29), which is applicable to determining the boundary layer flow for a
circular cone at incidence. The Adams algorithm has been incorporated
into the computer program developed in the present investigation. Use
of the Adams algorithm mandates specification of the wall temperature.

If the forebody is not conical ahead of the axial station where the
computation is to begin, then the initial data must be specified by the
user. Experimental data may be employed, if available.

The cowl boundary layer initial data must be specified at the axial
location of the first supersonic flow solution plane inside the annulus
since the boundary layer thickness at the cowl lip is identically zero.
The cowl boundary layer initial data may be internally generated in the
computer program using an approximate technique. Alternatively, arbi-

trary initial data may be specified by the user;
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The internally generated cowl boundary layer initial data are ob-
tained by an approximate analysis. The boundary layer thickness at
each circumferential station is approximated by formulae appropriate
for two-dimensional flow (4). For laminar flow, the boundary layer

thickness & is calculated from

1/2

o~

. Ve X
§(x) = 5.0(—= (K.9)
u
e

whereas for turbulent flow, the boundaiy layer thickness is given by
| -1/5
) LU
8(x) = 0.37 x |— (K.10)
v 3
e
In equations (K.9) and (K.10), X denotes the streamwise body-coincident
curvilinear coordinate contained in a given meridional plane and measured
from the cowl 1ip (see Figure K.9), ﬁe is the x-velocity component measured

at the boundary layer edge, and v_ is the kinematic viscosity at the

e
boundary layer edge. Although x is constant at each circumferentia]
station used in the initial data specification, the boundary layer edge
properties do vary, and thereby so does the boundary layer thickness.

With the local boundary layer thickness determined, the velocity pro-
files at each circumferential station are obtained by assuming profile
functional forms. For laminar flow, the following functional forms are
assumed

) ;
a; *+ a,n + agn (K.11)

-
/ue

‘ o ‘
W/Wg = by + byn + ban® (K.12)
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with

~

n=y/é (K.13)

In equations (K.11), (K.12), and (K.13), u and w denote the boundary layer
velocity components in the streamwise (;) and cross flow (2) directions,
respectively, ﬁe and &e are the respective velocity components at the
boundary layer edge, 9 is the distance measured normal to the wall (see
Figure K.9), and aé and bi (i=1,2,3) are coefficients in the polynomial

expansions which are ascertained by applying the following boundary con-

ditions:
y=0(n=0): u=0,w=0 (K.14)
y=6(n=1): u=u,w=s, (K.15)
y=26(n=1): ﬁg = 0, é@.; 0 (K.16)
oy 3y

Appiying equations (K.14), (K.15), and (K.16) yields the following final

forms for equations (K.11) and (K.12)

i

u/uy = 2n - nl (K.17)

2

&/&e 20 - n (K.18)

The velocity profiles for turbulent flow are assumed to be given by

1
3

u/ug = n* (K.19)

Wiy = 1 | | - (K.20)

where the power law exponents & and g are user specified. In obtaining
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equation (K.10j; the following exponent values were assumed

a=8=1/7 (K.21)
(;}
However, o and g generally can fall in the Reynolds number dependent
range
T (K.22)
TiEst (K.23)

The mean total enthalpy H distribution across the boundary layer is.

assumed to be given by
H=cq+ con + Can® (K.24)
17 fen T e Te

where the polynomial coefficients <4 (i=1,2,3) are obtained by application
of the appropriate boundary conditions. For the case of a specified wall
temperature, orequivalently a specified total enthalpy at the wall Hw,

the following conditions apply

-~

y=0(n=0): H = H, (K.25)
y=6(n=1): H=H, (K.26)
; o

y =38 (n=1); ay=0 (K.27)

‘where He is the total enthalpy at the boundary layer edge. Applying equa-
tions (K.25), (K.26), and (K.27) yields the following final form of equa-
tion (K.24)

Ho= H, o+ 2(H, = H)n + (H - H)a® (K.28)

2
L T
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For the case of a specified normal temperature gradient at the wall, or

equivalently a specified total enthalpy gradient at the wall H;, the

following conditions apply

; =0 (n=0): §§-= H; (K.29)
ay

y=8 (=1 H=H (K.30)

y=s(m=1: M =9 (K.31)
3y

Applying equations (K.29), (K.30), and (K.31) yields the following final
form of equation (K.24)

) '] ” - R
H= (Hy - 5 Hi6) + Hosn = 4 H an? (K.32)
With the total enthalpy and velocity profiles determined for a given

circumferential station, the mean static enthalpy h profile is obtained

from

h 2 H - (@8 + W) (K.33)

Assuming a constant pressure along a given normal then allows the tempera-
ture and density to be computed by using the caloric and thermal equations

of state, respectively.

11. BOUNDARY LAYER FLOW SOLUTION MESH AND FLOW SYMMETRY
The boundary layer flow is determined on a body-fitted computational

mesh. The solution points are located on body normal rays, the circumfer-
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ential distribution of the rays being the same on each solution surface.
Each solution surface corresponds to stations of constant x where x is
the curvilinear streamwise coordinate coincident with the body and con-
tained in a given meridional plane.

The point network on a given boundary layer solution surface is
iliustrated in Figure K.10. In this figure, the index i corresponds to
the i th circumferential station and the index j corresponds to the jth
radial (or normal) station. In all cases, the points on the body are
denoted by j = 1 and the points at the boundary layer edge are denoted
by j = ngy or j= Ny for the forebody/centerbody and cowl boundary layers,
respectively. The computed sector, in general, is bounded by the circum-
ferential stations i = 1 and i = m for the forebody/centerbody and cow?
boundary layers. The spacing in the normal direction is specified by the
use of the formulations given in Appendix I.

One flow symmetry option has been incerporated into the boundary
layer algorithm, This option is for the case of one plane of flow
symmetry as illustrated in Figure K.10. In this case the computed
sector is bounded by the i = 1 circumferential station on the -y-axis

and by the i = m circumferential station on the +y-axis.

12. TEMPERATURE AND MASS TRANSFER BOUNDARY CONDITIONS

The boundary layer computation requires specification of the tempera-

ture or of the normal temperature derivative at the wall. Constant temper-

ature or temperature derivative boundary conditions may be specified. Al-

ternatively, an arbitrary wall temperature or temperature derivative dis-

tribution may be specified by tabular input. Quadratic interpolation is
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employed to obtain the temperature boundary condition at the required
axial stations when the tabular input option is employed.

Mass transfer boundary conditions are specified by entering the
axial locations of the boundary layer bleed zones and the mass flux with-

in each zone.
]
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ENGLISH SYMBOLS

a

3;,b4,¢;,d;

FeoFysFyoFe

hy sh,

P23,k

7,3k

KysKo

lﬁ; = (Roxl’gl |,.RIZI)

y
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APPENDIX L
NOMENCLATURE FOR
SELECTED VARIABLES

sonic speed
general curve fit coefficients !
van Driest damping factor

body force vector in index notation

velocity of divergence of Mach conoid surface
internal energy per unit mass

general interpolation polynomial function

forcing functions in the x, y, and z component
momentum equations and energy equation, respectively
mean static enthalpy per unit mass

mean total enthalpy per unit mass

metric coefficients

unit vectors in the x, y, and z directions, respectively

unit vectors in the x';, y', and 2’ directions,
respectively |
geodesic curvature terms

unit vector along the space curve defined by the
intersection of the shock wave with either the
initial-value plane or a solid boundary

mixing length
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Ny = ("bx’"by’nbz)
b

ns=("sx"" ' 5N

sy sz')

N -= (Nx’Ny’Nz)

S = (Sx,Sy,SZ)

ct>
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bleed mass flow rate

Mach number

unit vector normal to a wave surface

above unit vector in index notation

unit vector normal to a solid boundary

above unit vector in index notation

unit vectér normal to the shock wave surface

[expressed in the (x',y',z')-system]

vector normal to either a wave surface or a stream

surface

pressure

laminar Prandtl number

turbulent Prandtl number

velocity magnitude

radial position of a point

gas constant

cowl lip radius

distance from streamline base point to nearest
point on convex hull

either entropy per unit mass; or arc length
temperature base in Sutherland's formula
vector in the wave surface and normal to the
bicharacteristic direction

time or time-like parameter

unit vector along the space curve defined by the

intersection of the shock wave with a meridional plane
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S

U,V,w

GREEK SYM3OLS

)

absolute temperature, or mass transpiration term
velocity components in iha‘x, Yy, and z directions,
respectively

mean velocity components in the X, y, and Z directions,
respectively

velocity in index notatior

velocity vector

cartesian coordinates of base coordinate system
orthogonal curvilinear coordinates for the boundary
Tayer computation

base system coordinates in index notation

cartesian coordinates of local coordinate system

either the angle of attack, the angle subtended by
the unit vector % and the z'-axis, or turbulence
model constant

unit vectors used in the parameterization of

the characteristic equat%ons

specific heat ratio

boundary layer thickness

Kronecker delta

intermittency factor

turbulent eddy viscosity

turbulent eddy thermal conductivity
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e

1,3,k

XsYsZ
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second coefficient of viscosity, or transformed
normal coordinate

either the angle used in the parameterization of

the characteristic equations, or the angle subtended
by a meridian and the (x,y)-plane

thermal conductivity, or von Karman parameter

term in the wave surface compatibility relation
dynamic viscosity

kinematic viscosity

thermodynamic parameter

density

term in the noncharacteristic relation

angle subtended by the unit vector t and the x'-axis,
or vector potential function

either the viscous dissipation function, or a term
in the wave surface compatibility relation

vector potential function

boundary layer edge conditions

rectangular cartesian coordinate indices ranging

from 1 to 3

wall conditions

denotes either partial differentiation with respect to
X, ¥, and z, or the x, y, and z components of a vector

free-stream conditions
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OPERATORS

b( )/ot

)
(")

()
a()

BX.i

material derivative

vector

unit vector

tima fluctuation component, or partial derivative

with respect to n

partial derivative with resepct to x;
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