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CALCULATION OF THE FLOW FIELD INCLUDING BOUNDARY LAYER 'EFFECTS

FOR SUPERSONIC MIXED-COMPRESSION INLETS AT ANGLE OF ATTACK

Joseph Vadyak and Joe D. Hoffman
School of Mechanical 'Engineering

Purdue University, West Lafayette, Indiana 47907

SUMMARY

An analysis has been developed for calculating the flow field in super-
sonic mixed-compression aircraft inlets at angle of attack. A zonal modeling
technique is employed to obtain the solution which divides the flow field
into different computational regions. The computational regions consist of
a supersonic core flow, boundary layer flows adjacent to both the forebody/'
centerbody and cowl contours, and flow in the shock wave-boundary layer
interaction regions. This report describes the details of the zonal modeling
analysis and presents some computational results.

The governing equations for the supersonic core flow.form a hyperbolic
system of partial differential equations. The equations for the character-
istic surfaces and the compatibility equations applicable along these surfaces
are derived. The characteristic surfaces are the stream surfaces, which are
surfaces composed of streamlines, and the wave surfaces, which are surfaces
tangent to a Mach conoid. The compatibility equations are expressed as
directional derivatives along streamlines and-bicharacteristics-, which are
the lines of tangency between a wave surface and a Mach conoid. The numerical
integration procedure devised by D. S. Butler was employed to develop a
numerical integration algorithm that is second-order accurate, explicit, and
does not violate the domain of dependence of the differential equations.

The bow shock wave surrounding the forebody and the internal shock wave
system inside of the inlet are determined by discrete shock wave fitting.
The continuous flow field between shock waves is determined by the method of
characteristics numerical integration procedure, and the flow properti,>es
across the shock waves are determined by the application of the Hugoniot jump
conditions.

Characteristic unit processes were developed for interior field points,
solid boundary points, field-shock wave points, and solid boundary-shock 	 k
wave points. An inverse marching scheme is employed in which the solution is	 {
obtained on planes perpendicular to the axis of the centerbody and the cowl
The distance between successive solution planes is determined by the Courant- 	 j
Friedrichs-Levy stability criterion. Although the numerical integration



procedure developed herein is capable of analyzing three-dimensional flows
in three-dimensional geometries, only axisymmetric geometries at angle of
attack were considered in the present investigation.

The governing equations for the boundary layer flow adjacent to both the
forebody/centerbody and the cowl form a parabolic system of partial differential
equations. That system of equations is solved using a second-order implicit
finite difference scheme which can compute both positive and negative cross
flows. The finite difference algorithm is employed to compute all of the
boundary layer flow except for that in the shock wave -boundary layer interaction
regions.

The shock wave-boundary layer interaction region flow is characterized by
an elliptic system of partial differential equations. The flow in an interaction
region is computed using an efficient integral analysis which determines the
property profiles in the boundary layer downstream of the interaction region.
These profiles are then used as starting data for the analysis of the boundary
layer flow downstream of the interaction region.

Selected computational results are presented for both external and
internal flow cases to illustrate application of the analysis. Correlations
with experiment are also given.

i
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SECTION I

INTRODUCTION

1. INTRODUCTION

The purpose of this investigation was to develop a method for

calculating the flow fiend, including boundary layer effects, for a

supersonic mixed-compression aircraft inlet operating at angle of

attack. A typical mixed-compression inlet is illustrated in Figure 1.

Compression takes place both in the external flow about the forebody

and in the internal flow inside the annulus. Since the free-stream

velocity iS supersonic, a bow shock wave is generated at the forebody

tip. An internal shock wave emanates from the cowl lip and makes a

number of reflections with the centerbody and cowl before terminating

in the divergence downstream of the geometric throat of the annulus.'

The flow is subsonic downstream of that location.

A major objective in the design of any aircraft inlet is to

achieve maximum flow compression with a minimum reduction in stagna-

tion pressure. Moreover, since an adverse pressure gradient exists,	 -

suitable control of the boundar In er is a major d e4 n consid ratioy y	 e g	 a	 n.

This is especially true for an inlet such as that iliustrated in

Figure 1, since a number of oblique shock wave-boundary layer inter-

actions occur. In a mixed-compression inlet, it is not unusual to

remove 10 percent or more of the cowl lip mass flow rate by boundary

layer bleed to control separation of the boundary layer.

_	 3
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U yŷ ^^V

p
r-

':

^

W 8
I^U) 

Q
x n-{

}
Q
-NO

 7
4

v



The inlet illustrated in Figure 1 is axisymmetric. At zero

incidence, the flow field is axisymnetric and can be cowputed using

a two-dimensional method. However, at angle of attack, cross flow

develops, and computation of the flow field requires a three-

dimensional algorithm.

2. METHOD OF SOLUTION

A zonal modeling approach is employed in the present investiga-

tion. In this approach, the flow field is divided into different

computational regimes, as illustrated in Figure 1.- These regimes

consist of the supersonic core flow, the centerbody and cowl boundary

layers, and the shock wave-boundary layer interaction regions on both

the centerbody and the cowl. 'An appropriate analysis is used for each

of the different regimes.

The supersonic core flow is characterized by a hyperbolic system

of governing partial differential equations. That system of equations

is solved using a second-order pentahedral bicharacteristic scheme.

k
The bow shock wave and the reflected internal shock wave system are

`	 computed using a discrete shock wave fitting procedure. The influence

of viscous and thermal diffusion may be included inin the supersonic

core flow solution by treating the molecular transport terms as

forcing functions in the bicharacteristic analysis.

The boundary layer flow is characterized by a parabolic system

of governing partial differential equations. That system of equations

is solved ,using a second-order implicit finite_ difference scheme which

can compute both positive and negative cross flows The finite

5
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difference algorithm is used to compute all of the boundary flow except

for the shock wave-boundary layer interaction regions.

The shock wave-boundary layer interaction region is character zed

by an elliptic system of governing partial differential equations.

The flow for this region is computed using an integral analysis which

yields the property profiles in the boundary layer downstream of the

interaction region. These profiles are then used as starting data

for the analysis of the boundary layer flow downstream of the inter-

action region.

The present investigation is an extension of the study reported

in References (1) and (2), which dealt with the development of the

numerical algorithm used for the computation of the supersonic core

flow. The present analysis deals with the development of the boundary

layer and shock wave-boundary layer interaction computational pro-

cedures. A detailed description of the computer program developed

to compute the entire flow field is given in NASA TM- 	 , "A Computer

Program for the Calculation of the Flow Field Including Boundary Layer

Effects for Supersonic Mixed-Compression Inlets at Angle of Attack,"

{	 s.

{
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SECTION II

GOVERNING EQUATIONS FOR, THE SUPERSONIC CORE FLOW

1. INTRODUCTION

The fluid dynamic model for the supersonic core flow is based on

the following major assumptions:

1. steady flow,

2. negligible body forces,

3. the working gas can be represented as a simple system in

thermodynamic equilibrium,

4. no internal heat generation other than viscous dissipation, and

5. viscous and thermal diffusion effects of secondary importance.

The governing equations for the assumed flow model are written in the

Cartesian coordinate system of Figure 1, and consist of the continuity

equation, the component momentum equations, the energy equation, the

thermal and caloric equations of state, and appropriate representations

for the molecular transport properties. These equations are briefly

presented in this section. A detailed development of these equations

is given in Appendix A.

2. GOVERNING DIFFERENTIAL EQUATIONS

The continuity equation* [see Reference (3)] is given by

D +	 0
au .

t p axi  t1)

*RPnPatPd indirpc imnl y cummatinn nvar tha ranap of 1 to 3 unlasr



where xi (i = 1, 2, 3) denotes the three rectangular Cartesian

coordinates x, y, and z, respectively, u i denotes the corresponding

velocity components u, v, and w, respectively, p denotes the density,

and t denotes the time. The operator D( )/Dt in equation (1) is the

material derivative given by

D( ^j) + u 9(	
(2)Dt	 at	 j axj

For steady three-dimensional flow, equation (1) may be written in

expanded form as

r:r

pux + PV  + pwz + up  + VP  + wtpz , p	 (3)

where the subscri pts x, y, and z denote; ps rtial differenr , ,.pion with

respect to the corresponding direction.

The momentum equation is giver, by the Navier-Stokes equation

(Ref. 3), which, in component form, is given by

{
	Dui	

ap	 a^	
Mau i 	au

	P Dt	 B1	 ax + axe u axj + a

2 a
	

au.	 aau.

	

axi 
V axj + axi n axj 	(i	 1, 2 3)	 (4)

where Bi (i = 1, 2, 3) denotes the x, y and z components of the body

force, respectively, P denotes the pressure, U denotes -the dynamic

viscosity, and -n denotes the second coefficient of viscosity.

8

y^
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D

k^ 	 One of the assumptions of the present study is that the influence
V

of molecular transport is considered to be of secondary importance as

compared to the inertial effects in determining the supersonic core

`1ow solution. As a consequence, the viscous and thermal diffusion

terms appearing in the governing partial differential equations are

treated as forcing functions or source terms in the method of charac-

teristics scheme to be presented. In what follows, the molecular

transport terms are placed on the right-hard sides of the respective

governing equations, and the convective terms are placed on the left -

hand sides of those equations. The convective terms then are considered

as constituting the principal parts of these equations. Hence, by

assuming steady flow, negligibl e. body forces, n = O [Stokes's hypothesis'

(4)], inertial dominance, and variable transport properties, equation

(4) may be written in expanded Corm for each of the three coordinate

directions as

a
1

puux + pvuy + pwuz + Px = F 	 (5)

puvx + Pvvy + pwvz + Py = Fy 	(-6)

PuWx + pvwy + pw z + Pz Fz	 (7)
	 E

vhe re

F = u	 u	 2 (v + wz ) + u (u + v) + uz (uz 
+ wx )X

	 xL3 x 3 Y	 ^	 Y Y X )

+ u u xr: + uYY + uzz + 3 ( ^xy + Wxz]	 ($)

9
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Fy uy 3 vy - 3(ux + wZ ) 4. P (
vx + u

y ) + uz (vz + WY)

+ u 3 vYY + vxx + Vzz + 3(Uyx +w yz )	 (9)

Fz	 z[13 Wz 3(ux + vy) + ux (wx + uz ) + uy (wy + vz)

+ u 3 wzz + Wxx + Wyy + 3 (uzx + vzy )	 (10)	

l

1

The appropriate form of the energy equation is now derived. In the

following, the pressure P and density p are considered as being the

primary thermodynamic variables. All secondary thermodynamic vari-

ables are then expressed in terms of the pressure and density.'

L	 It is assumed in the present investigation that the working .gas	 s
1	 ^	

_

may be represented as a simple system in thermodynamic equilibrium. For

a simple system, specification of any two independent thermodynamic

properties defines the thermodynamic state of the system (5 ). Hence, 	
3

the following functional relationship may be written

E	
P	 P(P's)	 (11)

4	 ,,

where s is the entropy per unit mass. Employing the concept of the
s

total derivative, and introducing the material derivative operator

given by equation (2) , the following equation is obtained.

DP	 (-	 (12)
s

a—P Dp + (aP Ds
Dt	 lapj Dt	 [ sj Dt	 y

I	 p,
The sonic speed a is defined.by

€	
a2 = 

(a P)	
(13)

1S

F	 10
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Introducing equation (13) into equation (12) yields

DP _ 2 Dp _ faPj Ds

Dt 
a 

Dt	 8s p Dt

The material derivative of entropy appearing in equation (14) may

be expressed in terms of a thermal conduction function and a viscous

dissipation function. The entropy maybe expressed in terms of the

internal energy by use of the thermodynamic relation (Ref. 5)

(14)

T ds = de +• P d(1 /p)
	

(15)

where T is the temperature, and a is the internal energy per unit mass.

The internal energy may be expressed in terms of a thermal conduction

function and a viscous dissipation function by use of the energy

equation (Ref. 3)

P Dt = axi K axi + p Dt +	
(16)

where K is the thermal conductivity, and 0 is the viscous dissipation

function, which for n = 0 is given by
2

_ 1

u
9ui a

+

_ 2 auk 8
17(	 )2

3 X
ax i 3 axk 	i^

where 6	 is the Kronecker delta.	 Combining equations (14) to (17) and
fr	

^

I

writing the resulting expression in expanded form for steady three-

dimensional flow with variable transport properties yields

uPx + vPy + wPZ - a2 (upx + vpy + wpZ ) = Fe (18)

3

r

where

11'

3

't



and

r	 a

1

u

(19)

m

ORIGINAL PAG 13

OF POOR QUALM'](

Fe 
= E{ K(Txx + Yy + Tz2 ) + KxTx + KyTy + 

K z 
T 
z

+ 11[2(u 2 + v2 + wz + uyvx + U Wx + vzW ) + 
Vx

+ Wx+uy+ y + uZ+vz -  3(ux+vy+Wz)2]I

P —JT 1a sp (20)

3. THERMODYNAMIC MODEL

Before a solution to the system of governing partial differential

equations may be obtained, the temperature T, the sonic speed a, and

the parameter E defined by equation (20) must be expressed in terms

of the primary thermodynamic variables P and p. The general functional

forms of the relations for T, a, and E are given by

T = T(P, p )	 (21)

a = a(P,p)	 (22)

E V p ' p )	 ( 23)

The derivatives of the temperature appearing in equation (19) are ex-

pressed in terms of the derivatives of the pressure and the density

by analytically differentiating equation (21).
f
r	

For the special case of a thermally and calorically perfect gas,

equations (21) to (23) take the following simple forms

T = p/pR	 (24)

Y

a = (YP/p)1/2	 (25)

12

2	
lei

gym..:..	 ....	 . 	,_	 .......... ..	 _	 ...	 _ 	 . ,._	 ..	 , ...



_	 a

=Y-1	 (26)	 j

where R is the gas constant, and y is the specific heat ratio..
f

4. MOLECULAR TRANSPORT PROPERTIES
t

The dynamic viscosity u and the thermal conductivity K must be

expressed in terms of the primary thermodynamic variables P and p..

Ri	 In general, both the viscosity and the thermal conductivity are assumed

k	
to be functions of temperature only. Hence,

p

u	 u(T)	 (27)

K = ic(T)	 (28)

The derivatives of the transport properties appearing in equations (8),j

E? (9), (10), and (19) are obtained in terms of the derivatives of the

pressure and the density by analytically differentiating equations (27)

and (28) with respect to the temperature, with the resulting tempera-

ture derivatives being obtained by analytically differentiating

equation (21).

A widely accepted representation for equation (27) is the

Sutherland formula (Ref. 4)

T 1.5 To + S
u uo ^T	 CT 5 ,	 (29)

0

where uo i s the viscosity at the reference temperature To, and S is a

k	 ' constant. The thermal conductivity may be represented as

uc

	

4	
K = R	

(30)

13

a

	

n	 ,

	

i	

Sjtfpj

	

e	

t



n

where cp is the constant pressure specific heat, and Pr is the laminar

Prandtl number which is assumed constant in the analysis.

The contribution of turbulent transport may be considered in the

computation by adding the appropriate eddy viscosity and eddy thermal

conductivity functions to the molecular transport properties given by
f

equations (27) and (28), respectively.

5. SUMMARY

Tn summary, the differential equations of motion for steady

supersonic three-dimensional flow are given by equations (3), (5),
a}

(6), (7), and (18). For a thermally and calorically perfect gas,

the thermodynamic model is represented by equations (24) to (26).

The molecular transport properties are represented by equations (29) 	 J
Yt

and (30).

f

`f

1

i

s
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SECTION III

SUPERSONIC CORE FLOW CHARACTERISTIC EQUATIONS 	 n
d
Y
a

i

1	 INTRODUCTION

Written in the farm shown, with the left-hand sides constituting

the principal parts, equations (3), (5), (6), (3), and (18) may be

classified as a system of quasi-linear nonhomogenous partial differ-

ential equations of first order. The system is hyperbolic if the

flow is supersonic. Systems of hyperbolic partial differential equa-

tions in three independent variables have the property that there

exist surfaces in three-dimensional space on which linear combinations

of the original partial differential equations can be formed that con-

tain derivatives only in the surfaces themselves. These special sur-

faces are known as characteristic surfaces, and the linear combinations

of the original partial differential equations are interior differen-

tial operators known as compatibility relations. In this section, the

equations for the characteristic surfaces and the compatibility rela-

tions valid along these surfaces are listed and briefly discussed. A-
z

detailed development of these equations is given in Appendix B.

2. CHARACTERISTIC SURFACES

For steady three-dimensional supersonic flow, two families of

characteristic surfaces exist, as illustrated in Figure 2. One family

of characteristic surfaces consists of the stream surfaces given by

15
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Ax +vNy +wNZ = 0
	

(31)

where N = (Nx,Ny,NZ) denotes the normal to a stream surface. The

envelope of all stream surfaces at a point forms a single pencil of

planes whose axis is a streamline. A streamline may be represented by

dx/dt = u	 dy/dt v	 dz/dt = w
	

(32)

where t is the time of travel of a fluid particle along the streamline.

The second family of characteristic surfaces consists of the wave

surfaces given by

A +vNy+wNZ -alN(	 (33)

where N = (Nx ,Ny , NZ) denotes the normal to a wave surface. The envelope

of all wave surfaces at a point forms a conoid known as the Ma,:h conoid.

The Mach conoid may be represented locally by a right circular cone
9

known as the Mach cone. In differential form, the quadric surface of

the Mach conoid is given by

Cu e - (q 2 - a2)](dx)2 + Cv2 - (q2 - a2 )](dy ) 2
	

.a

+ [w2 - 
(q2 - a

2)](dz) 2 + 2uv(dx)(dy)

+ 2uw(dx}(dz) + 2vw(dy){dZ)	 0	 (34)

where q is the velocity magnitude (q 2 u2 + v2 + w2 ). The line of

contact between .a particular wave surface and the Mach conoid is known

as a bicharacteristic. A bicharacteristic is a generator of the Mach

E	 conoid,

t

17
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3. COMPATIBILITY RELATIONS

The cc atibility relations which are applicable on the stream

surfaces are given by

up  + vpy + wPz - a 2 (up x + vpy + wpz ) = Fe

Pu(uux + vu  + wu z ) + Pv(uvx + vv  + wvz)

(35)

(36)
1

(37)

F	
a

F_,,

+ pw(uwx + vwy + wwz) + up
 
 + vpy + wPz

= uF + vF + wF
x	 y	 z

PSx(uux + vu  + wuz) + pSy(uvx + vvy + wvz)

+ PSZ(uwx + vwy + wwz) + SxPx + S 
y 

P y + S 
z 
P 
z

_ S 
x 

F x + SyFy + S 
z 

F 
z

In equation (37) S (Sx,y Is
z
) denotes a vector which lies in the

stream surface and that is independent of the velocity vector. Equa -

tions (35) and (36) may be written in a form which contains differen-

tiation in the streamline direction as follows.

dP	

3a

_T
dt	 a2 dt	

Fe	(38){

du	 dw
PU dt + Pv dt + Pw dt + dt = uFx + vFy + wF 	 (39)

In equations (38) and (39), the operator d( )/dt represents the direc-

tional derivative along a streamline._ 	 u

; 	 ^ 8

^	 r
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The compatibility relation which is applicable on the wave sur-

faces is given by

pan x (uux + vu  + wuz ) + pany (uvx + vvy + wvz)

+ pan z(uwx + My + wwz) + (anx - u)Px + (any OP 

+ (anz - 
4I)Pz - Pa2(u

);
 + vy + wz ) = a	 (40)

where	
4

X = a(nxFx + nyFy + n 
z 
F z ) - Fe
	

(41)

In equations (40) and (41), n = (nx ,ny , nz) denotes the unit normal

vector to the wave surface. Equation (40) may be written in a form

which contains differentiation in the bicharacteristic direction as

follows.

panx dt + pang dt +Kun	 2C( 2 - 1)uz dt dt _ l - panx

+ (n2 - 1)vy + (n2- 1)wz + nxn Au + vx)

+ nxn z (u z + wx) + nynz(vz + wy ) 7 	(42)

In equation (42), the operator d( )/dt denotes the directional derivative

along a bicharacteristic. The terms in brackets in equation (42) repre-

sent differentiation in the wave surface but in a direction normal to

the bicharacteristic direction. Hereafter, these terms will be refer-

red to as the cross derivatives.

At any point in the flow field there exists an infinite number of

stream surfaces and wave surfaces. The number of independent

_19
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compatibility relations cannot exceed the number of independent equa-

tions of motion. As a consequence, it is necessary to determine which

of the possible combinations of the compatibility relations form an

independent set. Rusanov ( 6), using a proof in the space of char-

acteristic normals, has shown for steady three-dimensional isentropic

flow that two of the stream surface compability relations applied

along a stream surface and the single wave surface compatibility

relation applied along three different wave surfaces form an indepen-

dent set of five characteristic relations. Rusanov's results may be

extended to the present case since the principal parts of equations

(3), (5), (6), (7), and (18) are the same as those for isentropic

flow. Hence, the set of compatibility relations used in the present

investigation consists of equations (38) and (39) applied along a

streamline and equation (42) applied along three different bicharacter

istics.

4. BUTLER'S PARAMETERIZATION OF THE CHARACTERISTIC EQUATIONS

D. S. Butler (7) developed a parameteric form for representing

a bicharacteristic and the wave surface compatibility relation

applicable along it. A detailed development of Butler's method is

presented in Appendix B. A brief summary is given here.

Butler introduced the following parameteric form to represent a

bicharacteristic.

dx i = (ui + COL cose + coi sine)dt	 (i=1,2,3)	 (43)

9

{

a

ŷ

41

In equation (43), t is the time of travel of a fluid particle along

the streamline that is the axis of the Mach cone, a is a parametric

;i

20	 {
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angle denoting a particular element of the Mach cone and has the range

0< A< 27r, and c is given by

c2 = 
g2a2/ (q2 - a2 )	 (44)

where q is the velocity magnitude, and a is the sonic speed. 	 The
3

vectors a i and	 in equation (43) are parametric unit vectors withi
i

ail S i , and u i /q (i=1,2,3) forming an orthonormal set.

The corresponding parametric form of the wave surface compatibility

relation, equation (40), is given by

dP	
du.

d	 + Rc(ai cosh + Sisine)
dt^

2	 au
PC (ai sine - S i cos9)(a^sine - S^cose) axe

	
(45)

J

In equation (45), the operator d( )/dt represents differentiation in ?^

the bicharacteristic direction, and kk is given by

{c2
/a 2 )[Fe - 

a(nxFx	 nyFy + nZFZ
)]	 (46)

where n = (nx ,ny ,n z ) denotes the unit normal to the wave surface,

which may be written in parametric form as

n i = (a/c)(cu i /q 2 - aicosa - O i sine)	 (i=1,2,3)	 (47)
E

In addition to the above relations, Butler also developed a non-

characteristic relation which is applied along a streamline.	 This

noncharacteristic relation is given by k

r^

µ

ff

^^	 21
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f s

t.	 4

dP _ r _ PC2
(aa 

+ 
8•
^) Du i 	

(48)dt	 i J	 8xi	 a

3

3

where the operator d( )/dt denotes differentiation along a streamline,

and a is given by

a = (C	 (C- (c2/g2j (uF + vF + wF)	 (49)	 he	 x	 y	 z
r 	

r

77j

R

 ff

F

1
J

yy

1[

1 
j

3

t

{

T

C

}
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SECTION IV

NUMERICAL SOLUTION OF THE SUPERSONIC CORE FLOW EQUATIONS

1. INTRODUCTION

A variety of unit processes are employed in the computation of

the supersonic core flow field. The unit processes maybe classified

into four major types: interior point, solid boundary point, field-

shock wave point, and solid body-shock wave point. The basic unit

processes are briefly discussed in this section. A detailed presenta-

tion of each unit process is given in Appendix E.

In the overall numerical algorithm, an inve lese marching scheme

	

	
a
a

is employed. The supersonic coreflow solution is obtained on space

like planes of constant x, where the x-axis is the longitudinal axis-

of the centerbod_y and the cowl. For the internal flow, the solution

is also ohtained on the space curves which are defined by the inter-

sections of the internal shock wave with the solid boundaries.

Except in the vicinity of a shock wave-solid boundary intersection,

the distance ox between successive solution planes is determined by

4y

	

	 the application of the Courant-Friedrichs - ' Pwy (CFL) stability	 -

criterion (8). In the vicinity of a shock wave-solid boundary inter-

section, the axial step is controlled by special constraints,-which
t

	

	
are discussed later. The distance ox is determined prior to the appli-

cation of the unit processes.

}

23



2. INTERIOR POINT UNIT PROCESS

The computational network used in determining the solution for a
o-i

typical interior point is illustrated in Figure 3. Points (1) to (4)

represent the intersection points of four rearward-running bicharacter-
^1 ?E

istics with the initial-value plane, point (5) is the streamline

intersection point with the initial-value pl,7,1e, and point (6) is the

solution point on the solution plane. The axial (x) distance between

the initial-valuie plane and the solution plane is determined prior to

the application of the unit process by applying the CFL staFllity

criterion. As in all the unit processes, the interior point unit pro-

cess is divided into a predictor step and a corrector step. The cor-

rector may be iterated to convergence if desired.

The interior point unit process is initiated by determining the

location of the solution point, point (6). The coordinates of point

(6) are determined by extending the streamline from point (5) to the

solution plane using the following finite difference form of equation

(32).

a

I

x
i
 (6)- x

i (5)= 2 [u i (5) + ui(6)][t(6)	 t ( 5 )]	 ( i=1 ,2 ,3)	 (50)

For the predictor, u i (6) is equated to u i (5). For the corrector,	 fi

the previously determined value of u i (6) is employed. The axial step

[x(6) - x(5)] is computed before the unit process is applied. Hence,

the time parameter [t(6) - t(5)] may be obtained, after which the	 r

coordinates y(6) and z(6) are computed. Interpolated flow property

values at point (5) are used in the integration, even though point (5

is a known field point. As shown by Ransom, Hoffman, and Thompson (9),

t
24
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i

this interpolation is required to produce a stable numerical scheme.

The interpolated flow property values are obtained from the following

quadratic bivariate interpolation polynomial

f (y,z) a l + a2y + a3  + a4yz + a5y2 + a
6
 z2(51)

where f(y,z) denotes a general function of the coordinates y and z, and

the coefficients a  0=1 to 6) are obtained from a least squares fit

of nine data points in the initial-value plane [point (5) and its

eight immediate neighbors] as described in Appendix C.

With the location of the solution point determined, four bichar

acteristics are extended from the solution point back to the initial-

value plane to intersect this plane at points (1) to °(4), as illustrated

in Figure 3. The coordinates of each of these intersection points are

determined using the following finite difference form of equation (43).

x
i
 (6) - x i (k) _ 2 {u i (k) + u i (6) + [c(k) + c,(6)][aicos6(k)

+ Si sine(k)]}[t(6) - t(k)] 	 (i=1,2,3)	 (52)

The index k in equation (52) denotes the-bicharacteristic-initial-
r	 ^

value plane intersection points illustrated in Figure 3, and has a

range of 1 to 4, corresponding to the -6 (k) values of q , 7r/2, 7r, and

3Tr/2, respectively. Since the axial step [x(6) - x(k)] is known,

equation (52) is used to calculate [t(6) - t(k)], y(k), and z(k). The

flow property values at points (1) to (4) are obtained by interpolation	 k

using equation (51). On the initial applicationiof equation (52), the

flow property values at point (k) are equated to those at point (5). 	 .

26
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For the external flow field integration, the parametric unit 'vectors t

a. and 6. appearing in equation (52) are selected to straddle the pro-

jection of the pressure gradient on the initial-value plane. 	 For the

internal flow field integration, these vectors are selected to straddle t

the meridional plane through point (6).

} Once the positions of and the flow properties at points (1) to
a

(5) have begin determined, the system of nonlinear compatibility equa-

tions, written in finite difference form, is solvedto obtain the five

dependent flow properties u(6), v(6), w(6), P(6) and p(6). 	 Two of the
It

five required compatibility equations are given by equations (38) and

(39).	 These equations are written in finite difference form by re-
f	 ;

placing the derivatives with sample differences, and by replacing the

: coefficients of the derivatives with the arithmetic average of the

coefficients at the solution point and at the appropriate point in the

initial -value plane.	 To obtain the remaining three required compati-

bility equations, appropriate linear combinations of the wave surface

compatibility relation, equation (45), applied along each of the four

bicharacteristics, and the noncharacteristic relation, equation (48)

applied along the streamline are formed.	 Writing equation (45) for 6

values of 0, 7r/ 2 5 7r, and 3Tr/2 yields

du.	 au.

dtl	dtl	 1
PC 	

i aj axj

{

:

du.	
2	

au.
dP	 + pcO	 _ ^	 - pc a. a.	

i	 (54)
dt2	 dt2	 j

,,
-	 27



y

dP	
du	 au

	

dt - 
pcot 

dt^	 3 - Pc2si sj ax (55)
3	 3

dP	
c5.

 du.
	 2	

aui

- P i dt4	 4 - Pc
 aiaj 

axj	
(56)

dt4 
'a

In equations (53) to (56), the operator d( )/dt k denotes differentiation

along the kth bicharacteristic, and (D
k
 denotes equation (46) evaluated

for the specified value of 6(k). One independent linear combination

of the compatibility equations is obtained by subtracting the finite

difference form of equation (55) from the finite difference form of

equation (53). Another independent linear combination is obtained by

subtracting the finite difference -form of equation (56) from the finite

form of equation (54). The final independent linear combination is

obtained by subtracting the finite difference form of the nonchar-

acteristic relation, equation (48), from the sum of the finite differ-

ence forms of equations (53) and (54). The resulting compatibility

equations do not contain cross derivatives at the solution point [i.e.,

al:; .terms containing 3u i /ax
1
(6) are eliminated]. These five finite

difference equations are solved using Gaussian elimination. For the

predictor, the flow property values at the solution point appearing

in the coefficients of the derivatives in the set of difference equa-

tions are equated to those at point (5). For the corrector, the flow

property values at point (6) obtained on the previous iteration are

t	 used. The resulting scheme has second-order accurac y (9)_.

}
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3. SOLID BOUNDARY POINT UNIT PROCESS

The computational network used for determining the solution at a

typical point on a solid boundary is shown in Figure 4. The point

notation used in this figure is identical to that employed in Figure 3.

Here, however, both points (5) and (6) lie on the solid boundary, and

point (4) is not used since it lies outside of the flow regime.

The unit process used to obtain the solution at a solid boundary

point is almost identical to the interior point unit process. Here,

however, point (4) corresponding to the bicharacteristic with 9 = 3W/2

is not located, and the corresponding compatibility relation valid

along this bicharacteristic is not employed.. That equation is replaced

by the boundary condition

ui (6)nbi(6) = c	 (57)

where nbi (6) (i=1,2,3) is the unit normal to the solid boundary at point

(6), and c is a specified constant which is identically zero for imper-

meable walls.

f
{	 4. BOW SHOCK WAVE POINT UNIT PROCESS

k ; The computational network used in determining the solution for

a typical bow shock wave point is illustrated in Figure 5. A segment

t	 of the shock wave surface extending from the initial-value plane to

4	 the solution plane is shown in this figure. The intersection of the

shock wave with the initial-value plane defines space curve (A), and

!as	 the intersection of the shock wave with the solution plane def-nes

space curve (B). The axial distance between the initial-value plane

i	 and the solution plane has been previously determined by the applica-

tion of the CFL stability criterion. The bow shock wave solution point
i^

f 29
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is denoted by point (2). The flow properties at point (2) on the up-

stream side of the shock wave are known from the free-stream condi-

tions. Hence, in the following discussion, the flow properties u(2),

v(2), w(2), P(2), and p(2) refer to the flow properties at point (2)
	

Lon the downstream side of the shock wave. Point (1) is the intersec-

tion point of a rearward-running bicharacteristic with the initial-

value plane. This bicharacteristic is extended backward from the

solution point, point (2). Point (3) is a predetermined interior ,solu-

tion point which is adjacent to the shock wave and is used to define

the meridional plane in which the bow shock wave solution point Lies.

Point (4) is the intersection point of space curve (A) with the

meridional plane which passes through points (2) and (3).

In this unit process, a local cartesian coordinate system is

employed for the description of the local shock wave surface. This

local coordinate system has coordinates x', y', and z', where x' is
F a"a

coincident with the x-axis, y' is the radial direction in the meridional

plane containing points (2) and (3), and z' is normal to the (x',y')-

plane. The unit vectors in the x', y', and z' directions are denoted,

by i`, j' and k', respectively. The orientation of the local shock

wave surface at a point (P) is specified by a set of three unit vec-

tors referenced to the (x' ,y' ,z')-coordinate system, as illustrated

in Figure 6. This set of unit vectors consists of the unit vector ns'

which is normal to the shock wave surface at point (P), and'two unit	
5

vectors Q and t which are tangent to this surface at point (P). The

tangential unit vector t lies in the meridional plane [(x',y')-plane],

subtends an angle ^ with the x'-axis and is defined by the intersection

32	
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of the shock wave with the meridional plane at point (P). The tan-

gential unit vector 2, lies in the transverse plane [(y',z')-planer,

subtends an angle  with the z'-axis, and is defined by the intersec-

tion of the shock wave with the transverse plane at point (P). The

tangential unit vectors t and R are given by

n	 n	 n

t = cos ^ V + sin ^ j'	 (58)

A	 n	 n.

Q = sin a j' + cos a k'	 (59)

The shock wave normal unit vector n  is given by

ns = Qxt/Itxtj	 (60)

k	 To achieve second-order accuracy in the shock wave point unit
f	 ,`

process, global iteration must be performed. In global iteration,

the corrector employs flow properties not only at the solution point

	

f'	 itself, but also at neighboring points in the solution plane. As a

w?

consequence, before the corrector can be applied in global iteration,

the entire solution plane (or at least an appropriate section of it)

must be determined by a prior calculation. The interior point and

i
solid boundary point unit processes do not require global iteration

	

s	 to achi-eve second-order accuracy.- Consequently, those solution points

	

5	 are determined first. Then, the predictor is applied for each shock

	

r`	 wave solution point, thereby giving a tentative solution for all of

the shock wave points. At this stage., global correction is performed

for the shock wave solution points using the previously determined

f' 1 	 t	 th s 1+4^n lan	 In the followin discussion thei C	poin s an	 e o u i	 p	 e.	 9

term "predictor" refers to the first application of the shock wave i

3



point unit process used to obtain air `Y^nl tial estimate of the solution
7

without using field point data in the solution plane. The term "global

corrector" refers to the application of the shock wave point unit

process which uses field point data in the solution plane. The shock

wave point unit process is now outlined.

The shock wave point unit process is initiated by locating the

solution point, point (2) in Figure 5. Denote the angle subtended by

a meridional plane and the (x,y)-plane by e. The solution point

meridional plane is arbitrarily selected to contain the interior solu-

tion point, point (3), whose location is determined prior to the

application of the shock wave point unit process. Hence, 6(2) = e(3).

Denote the radial position of a point by r. Then the radial position

of point (2) is obtained from

r
r(2) = r!^,4) + [x(2)	 x(a- tan J{2 [^(2) + 0(4)1} 	 (61)

where [x(2) - x(4)] Is the axial distance between the initial-value

plane and the solution plane. On the initial application of equation

(61), the shock wave angle ^(2) is equated to ^(4), whereas, on ensuing

applications, the value of $(2)' obtained on the previous iteration is

used. At point (41/, the radial position r(4) and the shock wave angle

0(4) are determined by interpolation using the quadratic univariate 	 u

formulae

r(e) = a l + a 20 + a362	 (62)

0(e) = b1 ;+ b2  + b3 e2(63)
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where the coefficients a i and bi (i=1,2,3) are determined by fitting

these expressions to three local shock wave solution points on space

curve (A).

After the solution point has been located, the shock wave normal

unit vector ns at the solution 'point is found by forming the normal-

}
A

ized cross product of the tangential unit vectors Q and t [see equation

s

4

(60)]. The tangential unit vectors t and k are obtained by use of

the current values of ^(2) and a(2) in equations (58) and (59),

respectively.	 For a predictor application, a(2) is approximated by
f

equating it to the a value at point (4). 	 For a global corrector`

E application, the value of a(2) that is employed is that avaluated at -'

'
F

point (2).	 In either case, the value of a(2) may be determined by
^^

a(2)	 tan-1 Cr dr
(64)r de),e 

(2) -

where, for the predictor, the analytical form of r(e) used in equation x

" (64) is given by equation (62) applied along space curve (A), and for

the global corrector, r(e) is obtained by applying equation (62) along

space curve (B).

" At this stage, the local Hugoniot relations are applied at point

(2) to obtain the downstreamflow properties u(2), v(2), w(2), P(2),

and p(2).	 Next, a rearward-running bicharacteristic is extended from

the solution point, point (2), back to the initial-value plane, inter-

secting this plane at point (1), as illustrated in Figure 5. 	 The

coordinates of point (1) are obtained using the following finite

'	 difference form of equation (43) evaluated for the parametric angle of

e = Tr/ 2
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xi (2) - xi 0 ) = 2 {ui (1) + u (2)

+ (c(1) + c(2)15 iI (t(2) - t(1)]	 (i'=1,2',3) (65)

For the first application of equation (65), the flow properties at

point (1) are equated to those at point (2), whereas, for ensuing

applications, the flow properties previously obtained at point (1) are

employed. The flow properties at point (1) are obtained by interpola-

tion using the quadratic bivariate polynomial given by equation (51).

Since the axial step [x(2) - x(1)] is determined by the CFL stability

criterion, equation (65) is used to compute [t(2) - t(1)], y(l), and	
1

z(1). The orientation of the parametric vector 5i in equation (65) is

selected so that this vector lies in the meridional plane that con- 	
j

tains the solution point. The unit vector a  is obtained using the 	 a

orthonormal relationship between a i , 5i, and ui /q (i=1,2,3).

At this stage,, the wave surface compatibility equation correspond-
a

ing to the parametric angle g = 7r/2 is applied between points (1) and

(2)	 The appropriate equation is obtained by writing Equation (54) in

finite difference form and solving for the pressure at point (2). De-

note this pressure by P (2). The resulting equation contains cross

derivatives (terms containing Du
i
 /ax 	 at both points (1) and (2).

the c oss derivatives t point 2 are equated toFor the predictor,	 r	 ^	 iv	 a p i	 ( )	 q 

those at point (1), whereas, for the global corrector, the cross

derivatives at point (2) are evaluated at that point by fitting inter-

polation polynomials in the solution plane:

The pressure P(2) is calculated from the local Hugoniot equations.

The pressure P (2) is calculated from the 'wave surface compatibili ty
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relation. The difference between P(2) and P (2) is driven to within

a specififed tolerance of zero using the secant method with iteration

being performed on the shock wave angle 0(2). Two initial estimates

of 0(2) are required to start the iterative process.

The shock wave point unit process is first applied as a predictor

for each shock wave solution point. In this application, the value of

a used in equation (59) is obtained by curve fitting points along space

curve (A), and the cross derivatives at the solution point are equated

to those at the bicharacteristic base point in the initial-value plane.

After a tentative solution has been obtained at each shock wave point,

a number of ensuing global corrections are performed. Here, the value

of m used in equation (59) is based on data along space curve (B), and

the cross derivative terms at the solution point are evaluated at that

point. The resulting overall algorithm has second-order accuracy when

the global correction is performed. The global iteration is terminated

when successive values of a have converged at each of the shock wave

solution points.

j

5. SOLID BODY-SHOCK WAVE POINT UNIT PROCESS

The solid body-shock wave point unit process is used to determine

the flow properties downstream of the shock wave at a point where the

shock wave intersects a solid boundary. This unit process is used to

determine the solution for the points on the cowl on the downstream

side of the cowl lip shock wave, and for the points on the centerbody

or cowl on the downstream side of an internal reflected shock wave. {

The method of computation is essentially the same for either applica
t

F	 4 t	 1 h k	 fl t'	 th fl	 t.tion.	 or the in erna s oc wave re ec ion, 	 a	 ow proper ies
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downstream of the incident shock wave, which constitute the upstrean

flow properties for the reflected shock wave, are computed by the

modified field-shock wave point unit process discussed in Appendix E.

A depiction of the computational network used in the solid body-

shock wave point unit process is presented in Figure 7. A typical

solid body-shock wave solution point is denoted by point (P), with the

outward unit normal vector to the solid boundary at this point denoted

by nb . The locus of solid ,body-shock wave solution points represents

the intersection of the shock wave with the solid boundary and defines

space curve (A) in Figure 7. The intersection of the shock wave with

the meridional plane passing through point (P) defines space curve (B).

The _unit vectors tangent to space curves (A) and (6) at point (P) are

denoted by Q. and t, respectively. The unit vector normal to the shock

wave at point (P) is denoted by ns.

As for the bow shock wave point unit process, the unit vectors Z.

t, and n  are referenced to the local coordinate system (x',y',z'),

where x', y', and z' have the same definitions as noted before. More-

over, the tangential unit vector t again lies in the meri di onal plane :and

is defined by equation (58)	 In this scheme, however, the tangential

b;
unit vector Q does not lie in the',(y',z')-plane in most cases, but 	 j

rather can have a nonzero x'-component. This tangential unit vector

along space curve (A) may be represented by

k

x	
Q - dx' i + dy'	 + dz' k'

	 (66)	 1t	
ds	 ds	 ds

i

where ds is the differential arc length given by

(ds) 2	(dx')2 + (dy')
2
 + (dz')

2
	(67)

µ
^x	
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The derivatives in equation (66) are obi'^ained by analytically differ-

entiating the expressions

X'(0)	 a l + a26 + a3e 2 	(68)
,R

q

Y'(e) = b  + b 26 + b362 	 (69)

Z' (8) = c  + c 26 + c30 2 	(70)

where coefficients a i , bV and c  (i =1,2,3) are obtained by curve

fitting the respective expressions to three points on space curve (A).

For the cowl lip shock wave points, space curve (A) is defined by the

cowl lip itself, since the shock wave is assumed to be attached to the

cowl lip. Alternatively, for `computing the downstream flow properties

at a reflected internal shock wave, space curve (A) is defined by

the intersection of the incident shock wave with the solid boundary.

The shock wave normal unit vector is found from equation (60). 3

The solid body-shock wave point unit process is initiated by

determining the body normal unit vector n 	 and the tangential unit

vector Q.	 An assumption is then made for the shock wave angle ^ in

equation (58), and, by use of equation (60), the shock wave normal unit

vector is determined ..	 The local Hugoniot equations are then applied to

obtain the downstream flow properties at point (P).	 The velocity
y

normal to the wall is then obtained by forming the dot product of the

body normal vector and the downstream velocity vector. 	 The normal

velocity is reduced to within a tolerance of a specified constant c by

varying the shock angle 0 using the secant iteration method.	 For

impermeable walls, the constant c is identically zero.

x
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6. INTERNAL FLOW SHOCK WAVE POINT UNIT PROCESSES

The unit process employed to compute the solution at a shock wave

point in the internal flow field is similar to the bow shock wave point

unit process.' In the internal flow shock wave point unit process,

however, the i'low properties upstream of the shock wave at the solution

point must be determined by the application of a modified interior

point unit process. Moreover, modifications to the internal flow

shock wave point unit process must be made when an internal flow shock

wave solution point lies on or close to a solid boundary. The various

versions of the internal flow shock wave point unit process are pre-

sented in Appendix E.

7. INTERNAL SHOCK MODIFIED-INTERIOR POINT AND -SOLID BODY POINT UNIT

PROCESSES

In some situations during the computation of the internal flow

field, the interior point and solid boundary point unit processes

must be applied in a modified form. One such instance in-which

a modified form of the interior point unit process must be applied it

shown in Figure 8 Here, the Mach cone, with apex at the interior

solution point, intersects not only the initial-value plane but also

the internal shock wave and a solid boundary. The unit process used in

this case requires determining the bicharacteristic intersection points

with the shock wave and the solid boundary in addition to the inter-

section points with the initial-value plane. Moreover, flow property
t

values must be determined at all of these points The bicharacteristic-

shock wave and bicharacteristic-body intersection coordinates are cal-

culated using the procedures discussed in Appendix D The flow

42
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♦. 	 IX

uproperty values at these points are obtained by interpolation, either
}

using a quadratic bivariate polynomial 4equation (51)] for points on

the initial-value plane, or using a quadratic trivariate polynomial

for points on the shock wave surface or solid boundary surface. The

various interpolation schemes are discussed in Appendix C. All of the

unit processes, including the schemes incorporating the necessary

1
modifications to handle the internal shock wave, are presented in

Appendix E.
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SECTION V

GOVERNING EQUATIONS FOR THE BOUNDARY LAYER FLOW

1. INTRODUCTION.

The fluid dynamic model for the boundary layer flow is based on

the following major assumptions:
,i

1. steady flow,	
y

k

2. negligible body forces,

3. the working gas can be represented as a simple system in

'thermodynamic equilibrium,

4. no internal heat 9eneration other than viscous dissipation,

and	 4

5. negligible pressure variation in the boundary layer normal

direction.

The governing equations for the assumed flow model are written in the

;r	
orthogonal curvilinear coordinate system of Figure 9, and consist of

the continuity equation, the component momentum equations, the energy	 r

equation, the thermal and caloric equations of state, and representa-

tions for the molecular transport properties and the turbulent eddy

diffusities. These equations are briefly presented in this section.

A detailed development of these equations is given in Appendix G.

F
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2. GOVERNING DIFFERENTIAL EQUATIONS

The equations of motion for the boundary layer flow have been

derived in orthogonal curvilinear coordinates by Vaglio-Laurin (10).

The coordinate system selected for the present application is the

orthogonal curvilinear body-fitted coordinate system illustrated in

Figure 9. The curvilinear coordinate x is coincident with the body

surface and lies in a given meridional plane, the coordinate y is

orthogonal to the body surface, and the curvilinear coordinate

is orthogonal to both x and y.

The continuity equation, when written in the (x, y, i)-coordinate

system, takes the form

(ph 2u) + a- (ph 1w) +	 (h 1 h2pv) = 0	 (71)
ax	 az	 ay

where u, v, and w denote the mean velocity components in the x ,y-,and
D

z-directions, respectively, and p denotes the mean density. The
	 r

overbar { ) denotes a time averaged product with

where the primed quantities denote the respective time fluctuation

components. The parameters h l and h2 are metric coefficients which

are functions of x and z only. 	 or axis
^n	

y.	 ymmetrc geometries, the metric

it
coefficients h l and h2 can be represented by simple algebraic expres

sions.

The component momentum equations in the x-and z-directions,are
{

termed the streamwise and cross flow momentum equations, respectively.

47
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They and z-momentum equations, respectively, are given by

P u 

au + p w au + P 
au - 

puwK2 + pw2K1

	

h i ax	 h2 az	
ay

	

_ - 1 a  +a lu au - pu'v' I	 (73)

	

h1 ax	 ay l ay	 1

V 

	

P 

h aw + p h. 2—w+ 	
pv awl 	 + P62 K2

1 ax	 2 a	 ay

	

_ - 1 aP + a 

lu 

aw - pw'v' I	 (74)

	

h2 
az	

ay l ay	 )))

In equations (73) and (74), P'denotes the pressure, u denotes the

molecular viscosity, and K1 and K2 denote the geodesic curvatures of

the curves x constant and i constant, respectively, and are

defined by

a h
K	 =	

-1	
2 (75)

1	
h 1 2	 ax

a	 ^

ah1	 1K	 _ - h
2	 1 2	 az

(76) ..

The third component momentum equation, the normal	 (i,.e., y) momentum

s

equation, is given by

r aP = 0
(77)`

j ay
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The energy equation is given by

	

u aH	 w aHaHp h — - +p
h —+pv -^

	

1 ax	 2 az	 ay

	

= a r aH + r	 i a u"2 + w2Pr

	
uIl- Pr)- ^ 2
	

- pvH^	 (78)
ay L ay	 `	 ay

where H denotes the mean total enthalpy per unit mass, H' denotes the

corresponding time fluctuation component, and Pr denotes the laminar

Prandtl number. It is assumed that they-component of velocity is

small compared to the x and z-components, so that the mean total

enthalpy can be expressed as
t

H=h+ u2
+w2	

(79)	 y2

where h is the mean static enthalpy per unit mass.
If	 1

Iit	 Boundary conditions for the above: equations of motion may be

written as

y= 0: u = 0, w = 0, v	 vw(x, z)

H
I 

(80)

k	 H = Hw(x,
	

or P
(— 

= H' w(x, z)
lay

y	 b: u= ue (x, i), w' = we (x, z)

r

	

	 (81)
r

^^	 H = He(x^ Z)
r
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where S denotes the boundary layer thickness, the subscript w denotes

wall conditions, and the subscript a denotes boundary layer edge

conditions.

They- and i-component momentum equations reduce to the following

expressions at the boundary layer edge:

	

P u 
au  + P we aue 	 p u w K + p W2 K _ _ 1 aP	

(82)
e hi 

ax	
a h

2 az	 e e e 2	 ewe 1	 hl ax

ue awe+	 we ewe

Pe	

p	
- puwK +pu 2

K --1 
aF	 (83)

ehi ax	 1 2 az	 eeel	 ee 2	
h2ai

3.: BOUNDARY LAYER ATTACHMENT LINE EQUATIONS

The cross flow velocity component (i.e., w) is identically zero

on a plane of flow symmetry. The flow on such a plane is usually

referred to as attachment line flow. The attachment line is a stream-

line on the body on which both the cross flow velocity component and

	

?	 the cross flow pressure gradient are identically zero. The cross flow

	

'	 momentum equation will be singular on a flow symmetry plane since both 	 h

w and K2 vanish there. The singularity may be removed by first dif-

ferentiating the cross flow momentum.equation with respect to z and

then employing that result in the analysis.

	

`	 Performing the required differentiation and noting the appropriate

symmetry conditions yields the following system of equations for the

	

G.	
attachment-line flow:
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F

(ph 2u) + phIWz + —^ (h 1 h2pv) = O
Y

Nh_au+ pvau =_^ aP + a
	 VI)
ax1 ax	 ay	 1 ax ay ( ay

p u awz + pV awz + _p w2 - 
puw K + pu2 uh2

hl ax	 ay	 h2 z
	 z 1	

az

	

1 a2P + a 
u 

awZ	
p(W'^')

h2 az2 day a"

Ẑ

Y
(86)

ax

2u aH ^ aH a	 aH	 a u l	 ^
p h —+ pv — _ — ^P + u(1 1/Pr) — ^

21 
- pv'H] (87)

1 ax	 ay ay L ay	 ay	 J^JJ1

where wz = aw/az. Equations (84) to (87) represent the continuity,

streamwise momentum, cross flow momentum, and energy equations,

respectively.

Equations (84) to (87) are subject to the following boundary

conditions:



^y
7i

The edge condition equation for the attachment line flow is given
by

Pe u

au

	

e ! _ aP	 (90)
e e ax
	 ax

4. THERMODYNAMIC MODEL AND MOLECULAR TRANSPORT PROPERTIES

The thermodynamic model and molecular transport property repre-

sentations for the boundary layer flow analysis are identical to those

used for the supersonic core flow analysis. Consequently, equations

(24), (25), (29), and (30) are employed in the boundary layer compu-

tation.

5. THREE-DIMENSIONAL TURBULENCE MODEL

Assumptions must be made for the Reynolds stress terms in the

E	 boundary layer governing equations in order to compute turbulent flows.

In the present investigation, turbulent closure is achieved by employing

eddy viscosity and mixing length formulations. It should be noted that

the associated computer program is written in a modular form which

allows, for the rapid substitution of alternate turbulence models

whether they be algebraic or higher-order transport equation models.

The present model is based on the Boussi'nesq eddy viscosity

concept. With this assumption, the Reynolds stress terms in equations

f	 (73), (74), and (78) are represented by
r
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_pu, , = pEx au	 (91)
ay

aw	
(92)Z 

ay

_pH,^, = pEe aH	 (93)ay

j

--a
In equations (91) to (93), ex and e  represent the turbulent eddy

Viscosities for the streamwise and cross flow directions, respectively,

and E8 represents the turbulent eddy thermal conductivity. For the

present study, isotropic turbulence has been assumed, thus

ex = eZ .	 (94)

A two-layer turbulence model (2-0) is employed in the present study

where

ex	 EZ = ci	 (0 <_ y < yT)	 -	 (95)

Ex EZ = 
C 
	 (yT y s)	 (96)

where ei and co are the inner and outer region eddy viscosities,

respectively, and yT"s the value of the y-coordinate where ei = co,

For the inner layer, the following mixing Length expression is used

E= 6	 L
2 au 

2+ 
`aw 

2	

(97)	 ai	 TR	
a	 la^^Y	 Y	 {
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where L is the mixing length, and 6
TR 

is a-parameter accounting for

the transition from laminar to turbulent flow. The mixing length is

given by

L = Ky[1 - exp(-y/A)l
	

(98)

where K is the von Karman parameter, which is taken to be a constant

at the value

K = 0.40
	

(99)

and A is defined by	 a;
J

{`	 f

y	 A = A+ N 3p / uT 	(100)
w  

a

i '	 In equation (100), v denotes the kinematic viscosity, the w subscript

denotes wall conditions, A+ is the van Driest damping factor given by

A+ = 26.0	 (101)

and uT is given by

f

T (wS)2

	
rU _

	
( 102)

where T N s is the shear stress at the wall. The parameter N in equation 	 f

(100) takes different forms depending on whether or not there is mass

transfer at the wall. For impermeable walls, N is expressed as

54
r



where

\)eus aus
P+

u 3 as
T

(104)_
4

7^7
OF ^K/lY^	

^^^iti L^	 y

QU'gL1

p- p 2	 z	 3	 3
N =	 - 11.8	 e^ Pfl	 (103)

L	 ue (pw 

where u s is the velocity in the external streamline direction S. If

wall mass transfer exists, then N is given by

N_
 p IIPW)

e 2 P} 1- exp (11.8 uW vw
 De 	 v	 l 

w

+ exp 11.8 u vW
  )]
 2	 (105)
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The expression for the turbulent thermal conductivity €8 involves

the turbulent Prandtl number Pr	 and is given by s
t e

-i

E
E8 - Prt

(109)

x

 .y

where

r 2

E _ 
L
EZ 	 EZ^ (110)

§	
3

^ff

The parameter d	 incorporated into equations (97) and (107)
TR

is

an intermittency factor accounting for the transition from laminar to

turbulent flow.	 The assumed representations for S
TR 

are presented in
E_

Appendix G.
Y

aa

7
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The boundary layer equations may be solved in either physical

variables or transformed variables. Solving the equations when they

have been expressed in transformed variables has a distinct computa-

tional advantage in that larger steps can be taken in the x and

directions. This is because the solution profiles do not vary as

much when using transformed variables as they do when using physical

variables. The transformation used in the present study also stretches

the body normal coordinate and removes a large portion of the boundary

layer thickness variation for laminar flows. It also has the same

advantages for turbulent flows, although there is a greater variation

in boundary layer thickness for turbulent cases.

2. TRANSFORMED BOUNDARY LAYER EQUATIONS

The transformation used in the present investigation was proposed

by Moore (11). A two-component vector potential is defined such that

ph2u = â '	 (111)
ay

phlW ^$	 (112)
ay
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hlh2pv	 " +	 + h l h2 (pv)w 	(13)
lax	 2z

The last term in equation (113) accounts for mass transfer at the wall

and is identically zero for impermeable walls. The governing equations

are now transformed according to the formal transformation

( x ! y  Z ) -1- ( X If n  Z)
	

(114)

where

x=x
	

(115)

Z
(116)

Ue	 2
do =

^Pe

pdy (117)

s1

ex

where n is the stretched normal coordinate.	 The functions	 and c^
t

} take the forms

(peueuex) 2 h^ f(x, n,	 z) (118`)

^^.	 w
(PeueUex)Z 

hl	 -e
9(x

'

 n, Z) (119)
u
e

- where f and g are to be determined by the analysis.

Equation (71)	 is satisfied identically when equations (111) to

(1.13) are substituted into it. Substituting equations (111) .to (113)
a

into equations (73),	 (74), and (78) results in the following system of

equations:
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+ P4[Lp _(g,)+ P5 g'j f ^  eP Tf"

- x
r "i

(f
(

af'	 _ ru afl
ax	 ax^

Wp ,v	 (
1g

h2 l

of i
- fu

azaz
ue

rC(1L + EZ )gu	 + P 2f go^ + P	 g^^ + p 6 pe _ ^f' )2p
+ We P

h2
Ae _	 ^g , ) 2
A

+ P 
[97

If'
e
p Tg

ue

_ ?L
i

I
(f,
l

_ g „ of	 +

a x ax)

We x	
I(9

n 2 ` az

_ g ,1

az^a 
e

{	 a

(120)

(121)
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L (1 + Ex )f'_ + P f f" + P3g f " + M	 - (f )^1

s

^,	 a
2	 2M

fc [(, 
++ Pr 

Pr+
H
e 1 _ 

A
df1 f il + Ŵ  g 1 g11

	

t1	 e l	 ^	 u
e

,£6	 + P2fel + P3ge'
	

Tel

(f' 89 -	 .6' of + we x (g , ae _ e'	 (122)h1 l	 aX	 aye 	 n 2 1	 az	 azJe

where the primes denote di fferentiation with respect to n.

Equations (120) to (122) represent the streamwise momentum, cross flow

momentum, and energy equations, respectively. The following parameter

f definitions are used for equations _(120) to (122):
.t
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f'	 =
r u/ue

(123)

f

g'	 - w/we (124)
W

9 = H/He (125)
P

Rx - uex/ve
(126)

G

,t	
_

M
X	 aue

(127)

u	 ax
e

-

N =^
X	 aue

(128)

y ue az
xj

{

P = x
	

awe
(129)

we az

Q = x awe (130)

we ax

S x	 a- (peue) -	 (131)

peke ax a,

^Lt

Q _	 x	 a f^ , 1 (132) $b̂.
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p2 = (1 + M + S - 2Klh lx)/2hl (133)

}

}
P	 = We.,t	 3 1	 (2P-N+R-2Khx)2h2 	2 2 (134) x

u e

P4 -
we 2
(-^	 Kix (135)

i.k

ue

r=-
p5

We 	 1	
(	 )
-K h x+ N

u	 h 2	 2 2 
(136)

e

ti	 P6 =

ue K
2x (137)

we

IP

6

(Klh 1x — Q)/hl (138)

t

E+
x..

E
= X

-

(139)
6

V

E }Z
= E? (140)	 p

v

Eg

E8
_ v (141)

E+ _ [Ex )2 + (e z+ )] 2 (142)
6

Pry _ E+/Ee (143)
K

.z	 ^a

n
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i
C = Pu

Peue

(P^)
w R 31T

Pe ue 
x

The appropriate boundary conditions are given by

n = 0:	 f = 0, g = 0, f' = 0, g' = 0

e = ew or e' = e' w 	 J

(146)

3. TRANSFORMED ATTACHMENT LINE EQUATIONS	 k

The attachment line equations can be transformed in a similar
Y

manner to that just outlined. Again, define a two-component vector

potential

u

r

	

ph2u 	 (148)

ay

ph lwz =

	

	 (149)
ay

5

	

h lh2Pv	 -^	 + $, + h 1 h2(Pv ) w 	(150)
ax

C..	 .J
N

Equations (114) to (118) are again used, however 	 is now defined as	 5

i

(p }a u _ x)^ h ` wze 9( X , n , z)	
(15`1)e e e i

e

62r 	 -
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Substituting the above relationships into equations (85), (86),

and (87) yields

P
IC(1+ EX ^ f" + P2f f.. + hl g f" + 	^e - (f' )` - T f"
 1	 2	 _1 LP

x (f, af t _ f" afl
hl 1	 ax	 axJ

I
.P
C

+Z)g+P2fgn +hl
2
 gg+p8 f ^ g ^ _ 

P 
e^

 l 

+
 hl 

pe - (g' ) 2 + Pg Pe - ( f l ) 	 - Tg2 P	 P

x

	

(f,q_ got afl 	 (153)h l	 ax	 aXJ

(152)

"

C+ E+ Pr[(1
 Prt,

2
ue_ + 	 e	 1 -	 ff	 +P f6'

Pr	 He	 Ad 	 11	 2
z

ik
+	 g o'	 - To'hl = h	

(f ► 	 ae _ e ,	 afl (154)
2

l	 11
1	 ax	 ax

' q	 ns	 (152) to (154)Equations represent the streamwise momentum, cross:
f

flow momentum, and energy equations, respectively.	 The following new

°q parameter -definitions are employed:

u/ue (155)

g'' = wz/wze (156)
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6	 H/He	 (157)

r

x awe

Ue az

P	 Klhlx _ x awze8	 1

W	 ax) h
ze	

1

x u e aK2
P9 

w	 az

a
f r

The appropriate boundary conditions are given by

^d

n	 0:	 f - 0, 9 = 0, f' = 0, g' = 0

(161)
6	 eW	 or *

 
e''	 gW'

)n = na:	 f°	 1, g'	 1, 8 = 1	 }	 162	 ^	 y
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SECTION VII

NUMERICAL SOLUTION OF THE BOUNDARY LAYER EQUATIONS

1. INTRODUCTION

The transformed parabolic boundary layer equations presented in

Section VI are solved numerically using a second-order implicit finite

difference algorithm in which marching is performed in the x-direction.

The numerical algorithm that is employed in the present investigation

F

	

	 is based on the Keller box scheme (12) originally used by Cebeci and

Keller for the computation of two-dimensional boundary layer flows (13)

An extension of that scheme to three-dimensional flows has been
a

reported by Cebeci, Khattab, and Stewartson (14). The finite differ-

ence procedure given in Reference (14) is capable of computing both

G	 positive and negative cross flows.

The finite difference algorithm used for the boundary layer

computation is briefly outlined in the .present section. In order to

compute this flow, three different types of differencing schemes are

employed. The choice of which scheme to use depends upon whether the

cross flow velocity is positive, negative, or identically zero (plane

of symmetry flow). Since the respective difference equations are

I

	

	 quite lengthy, only a summary of the most pertinent equations is

presented in this section. A detailed development of those equations

is given in Appendix I.

r
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u # = V = fu

9' w

(164)

(165)
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i

2.	 ATTACHMENT LINE FLOW

The numerical algorithm employed in the bou J iaory layer computation

-is based on solving a system of first-order partial differential equa-

tions. The transformed streamwise momentum, cross flow momentum, and

energy equations for the attachment line flow, given by equations

(152) to (154), respectively, can be written as a first-order system

by defining the following variables:

V = u	 (163)

w' =t =gif
(166).

8' = d (167) 1

where the primes denote differentiation with respect to n.	 Introducing
1

equations (163)	 to (167) into equations (152) to (154) yields the

a	 following system of first-order equations-:

bv' + (b'	 + P 2 	 + P 19/h2 - T)v

+h u2)
(168)

1 1	 aX	 aXJ

ct' + (c'	 + P2 	 + P lg/h2 T).t+P$ (uw - a)
P

+ h-1 w2)

+P9 (a
_ x	 (	 aw	 afl

_	 2	 -	 lu-- t —
Ju)	

hi
(169)

p

ax	 ax r
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(170)

r

.{LR ^tt ^ 	 cn
alts, ii-v, ♦ 	 ,, .,^,	 .

ki

dA' + (d' + P2f + P 1g/h2 - T)A + e'fv

+ e f'v + fv' = x
lu
aef

) l
h1	 ax	 ax)

In equations (168) to (170), the following parameter definitions are

employed:

b = C(1 + eX )	 (171)

c C(1 + C +	(172)

d=ill}
	 Pr 

/Pr	 (173)	
t

Prtj

3	 u 2
e = C He 

(1 - 1/Pr)	 (174)	 +,

= Pe /P	 (175)

Equations ( 163) to (170) are solved using the computational

network illustrated in Figure 10. In Figure 10, the computational

cell step sizes are given by
o

n	 + h.	 (176)
j-1-1

h

Xn xn-1 + kn-1	
(177)

where hi-1 and kn_1 are the mesh lengths in the	 and x-coordinate

directions, respectively. Both b. and kn may be varied in the

calculation as deemed suitable. A variable -n step size capability
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has been incorporated into the computer program by using the following

relations:

a

hj = K hj-1

j-1	 j-1
n = ^ hi 	 ^ Ki -

1 hl
J	 i=l	 i =1

(178)

(179)

The computational grid point distribution for the n-coordinate is

then determined by specifying the constant step size ratio factor K -'

and the initial step size h l . s,

The finite difference expressions used to approximate equations

n (163) to (170) are now presented in terms of the computational point
t

network presented in Figure 10. 	 The five parameter definition equa-

tions, Equations (163) to (167), are approximated by using centered

difference and averaging expressions taken about point (1) in

Figure 10, which is located midway between the points(x n , nj ) and
4

(xn , nj _ 1 )•	 Performing the differencing yields;
r

h
hiI	 - f n	 -	 -1 (u n + U  ) = D

-1	 2	 j
(180) a

j	 j j	 -1

-
un	 -un	 --J 1 (v.n	 +vn	 )=0

2 (181)` i
J	 J-1	 J	 J-1

gn	 _ g n 	 _ hj -1 (w n 	 + wn- 1) - 0
-1	 2

(182)
J	 JJ	 J

h^^^

wn	 - w
n 	

- -= (t n + t o-1) = 02 (183) j
J	 J-1	 j	 J 1

c	 r,:
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h
e^ - e^ 1 - all- (, + A^ 1 ) = 0	 (184)

The finite difference approximations to equations (168) to (170) are
f

obtained by using centered difference and averaging expressions taken

about point (2) in Figure 10, which is the midpoint of the computa-

tional cell. This procedure yields the following equations:

	

v - v	 6. - b	 P
+	

Jh 
j-1 + (P2) fj* + hl gj* _ ^T) vj*

	

^-1	 ,7-1	 2

	1 1J Ri	 I

x —	 un un-1	
fn-fn-1

.	 -
 V.	 (185)

hl j*	 kn-1	 J*	 kn-1

	

t - ^	 c - c _	 _ _	 P
cj* ^ h -1 

+ ^3h	
1 + (P2)fj* + hl j* tj*

	

^-1	 ^-1	 2

P 11

	
2

2	 3

x 
u 

wn wn-1 -	 ^fn - fn_1	 (S86)

h l	 ^*	 kn-1	 j* l kn-1y 

t

r	 m
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+ 	 + (P—) f- + r(^ ^-

2^#
	9^*	

^*
k

	

T. -T.	 V. - v
+ J	 j-	 — — 	 J 1	 f. J	 J-1

	

ha, 	f^*vi + e^* v^* . hj_1	 + ^*

	

1	 hj-1

_
141) 

u^* en '8n-1	 f n (187)
 kn-1	 ^* kn-1

In equations (185) to (187), the following averaging notations are

used:

la) = 1_
(an + an-1

^	
(188)

S

J = 1{a^n + j -1)	 (189)

an =	 + a ^)	 (190)

r
,a

n-1

	

J* = 4 a + a 1 + _1 + aj_1 )	 (191)

where a denotes - a general function. Equation (188) is used solely

for variables which are functions of x and z only. 	 -

Equations (180) to (187) form a system of 8(N - 1) equations

when wri teen for `N points along the sol ution normal An additional

eight expressions can be obtained from the boundary conditions given

below.

71
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n = nl	0• f 0,	 g 0,	 u= 0,	 w 0
(192)

	

e = ew ,	 or	 _ 
^w

T1 =	
u = 1,	 w	 1,	 9 = 1	 }	 (193)

This then yields a total of 8N expressions for the 8N unknowns along

the attachment line solution normal provided that the flow properties

at station xn-1 are known.

The system of difference equations is solved using Newton's

method. In this method, the solution for any variable f at iteration
i

(k + 1) is found from the solution at iteration (k) plus a perturba -

tion. Thus,
i

t

h	
fn (k+1) = f n (k) + afn (k)
If	 Li I	 E i]	

(194)

r
where f9 denotes any dependent variable and 8f- denotes its perturba-

tion. The difference equations are obtained by substituting expressions	 {

like equation (194) into equations (180) to (187) and then neglecting

quadratic and higher-order terms in the perturbation quantities. This 	 I

i produces a system of linear simultaneous equations for the perturbation

quantities which is block tridiagonal in form and which is solved using

an efficient direct matrix-factorization algorithm. The details of

the Solution procedure are presented in Appendi x I.

3.	 POSITIVE CROSS FLOW

The transformed streamwise momentum, cross flow momentum, and

energy equations for three-dimensional flow, given by equations (120),
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	 (121), and (122), respectively, can be writters , as a system of first-	 f

order equations by again using equations (163) to (167). Introducing

z	 those parameter definitions yields the following first-order system 	
r	

9y
i4	 for equations (120) to (122):

bv' + (b' + P2f + P3g - T)v + h (7^ - u2 ) + P4 (71 - W2)
1

we
 P5 (uw - 1^) = h u au v of + e	 w au _ v	 (195)

i	 az	 ax	 ueh2	 ai	 ai	
J

ct' + (c' + P2f + P39 - T)t + P6 (a - u2 ) + we 	 (X

P_
(a - w2)

ua 2 '1	 g

j,	

U

i' 1
_ xaw	 of	

wex	
8w	 (196) a

+P7 (uw-a)- h a--t-- +	 w	 -t

i ax	 az	 ueh2	 az	 azi

w 2
	

+	 ^^
de' + (d' + P2  + P39 T)e + e' uv +

	

we wt	 f
u
e

2
w

+ e(uv' + u'v) + e e (wt' + w't)

ue	
f

_ x u ae _ e af + we 	 wae _ e	 197

hi ax	 ax	 ueh2	 az	 az	 a

In equations (195), (196), and (197), the parameters b, c, d, e, and

A are againgiven by equations (171) to (175).

#r	 Equations (163) to (167) and equations (195) to (197) are solved 	 x

for positive cross-flow velocities (w > 0) using the computational

73
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network illustrated in Figure 11. The computational cell step sizes

are again given by equations (176) and (1:7), and by
y^

z i
 = zi-1 + ri-1
	

(198)

where r i-1 is the cell mesh length in the z-coordinate direction.

The finite difference equations used to approximate equations

(163) to (167) are obtained by using centered difference and averaging

expressions taken about point (1) in Figure 11, which is located midway

between the points (x n , ni t z i ) and (xn , nj-1 , zi ). This procedure

yields the following equations:

f	 - f	 'i
h

- 2 l (u^ ' i
1

+ u^	
1

= 0

n,i	 n,i. _ hj-1'	 i
n'f

n	 l
+ v,i I	 = 0ui 	 - uj -1 2	 v j

j-1 (20'0)
	

b	 a

n ^
gi

n,i	 _	 -1 (wjn,
 

i } w n '^ , 0	 201j - 1 	 2 j -1
^	 a

r
t

wn'i	 _ w n,	 _ hj-1 (t .n,i + t n,i 1
I	=0 (202)

A

d i-1	 2 1 a i-1 J

`	
8 n ' i 0 n '	 --1 , n ' i

2 + p n '	 lj-1 1= 0	 (203)j

The finite difference approximations to equations (120),	 (121), and

(122) are obtained by using centered difference and averaging expres-

sions taken about point (2) in Figure 11, which is the midpoint of the

computational cell. This procedure yields the following equations:
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V. - v	 b. - b.
b	 + i	 1 -1
j* h	 + (V-) Tj + (h	 2	 V3

+	 (U
+ (V" )	 (wj	 j 

*wj yj J

u - u
n	 n-1

v
•

n
k
n-1	 kn-1

+
9e	

rui

w

	

ri'	 (204)
eh 21 Ij 	

r• -i

Rj .F
h	

J-1
ci	 i	 gjL	 -F —	

-fl) Ti
+	 +	 + 3)

+ 'e
r;	 ^	 h CJ 

	
Wi

e 21

	w
n
 w 	

T n-1uj*w	 x	
"	 Yn-1) ^* (fin—j* )^77)	 -Gj*	 k 1k

	

n-	 n-1
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_ E. - T. 1	 d - d'. 1d^*	+h J- ± (P2 ) f^* + (P3)9j* - (T) aj*

	

hJ -1 	 j-1

+-- 1 u	 + we 2—
hj-1	 J* J*	 u	

wJ*tJ*
e

J* J*
^

r h '-1	 J*NJ 	 JJ	 -1

— 2
+ e 

we Iij 
jj

-1 + t jwj -1

J ue 	 hJ-1	
j*	

hj- 1

_ 
h [

j* f6 n  e n-1	 — fn fn-1^
 Tj

1'	 ^n-1	 J	 kn-1 j

+ w ex — e i	Oi -1 _	 9i - g -1	 (206)
11

	ueh2 WJ* 	 J* ri-1

In equations (204), (205), and (206), the following averaging notations

are used:

r (a) 1(= 4 an, +an,i-1 +«n-1,i	 n-l,i-11+ a 	J (207}

_ n,i n,i-1 n-1,i	 n-1,i-1A
a^ 4(aj + a. + a.	 + a.

J	 J (208) 11J
a

_ nyi nj-1 n,i	 n,i-1
an 4(ai + aj + aj-1	 + aj-1 (209)

_ n, n-1,i n,i	 n-1 ,i
a. = — a4l j +a .J +a.	 +a

-J -1	 -1 (210)

r

is

t

r.'
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01

1 n,i	 n,i	 n-1,i	 n-1j	 n,i -1
aj*	

8 
°i'j	 + O

'j-1 + aj	 + aj-1	 + aj

n,i-1	 n-1,i-1	 n-1,i-1

+ 'j-1	 + a
i	+ aj-1	 (211)

where a denotes a general function. Equation (207) is used solely for

variables which are functions of x and z only.

Boundary conditions for equations (199) to (206) are given by

equations (192) and (193). Taken with the boundary conditions,

equations (199) to (206) form a system of 8N equations for 8N

unknowns along the boundary layer normal located at = 
Vn 

and z zi,

provided that the properties at stations (x n , z i _ 1 ), (xn_ l ,z i ), and

(xn-1' Zi
-1) are known. The system of difference equations is again

solved using Newton's method with a direct matrix solution procedure.
t

The details of the solution procedure are given in Appendix I.

4. NEGATIVE CROSS FLOW

x	
The previous section presented the finite difference algorithm

used for the computation of three-dimensional boundary layer flow

when the cross flow velocity component is positive. Due to numerical

stability considerations, more fully explained in Appendix I, altera-

tions to the above scheme must be made when attempting to compute

boundary layer flows with a negative cross flow velocity component.

These modifications are briefly discussed in this section.

t

	

	 The pertinent governing equations for reversed cross flow cases

are _again given by equations (163) to (167) and equations (195) to

78



zi+1 = z  + ri (213)

(197). These equations are solved for negative cross flow cases

using the computational network illustrated in Figure 12. The compu-

tational cell step sizes in the n- and x-coordinate directions are

again given by equations (176) and (177), respectively. The computa-

tional cell is, however, now staggered in the z-coordinate direction 	 ►
-a

with the respective step sizes being given by

z i	 zi-1 + r
i _ 1	(212)

The finite difference equations used to approximate equations

(163) to (167) are obtained by using centered difference and averaging

3
expressions taken about point (1) in Figure 12, which is located midway 	 3

-between the points (x n , ^, z i ) and (xn , n^_ 1 , z i ). This procedure

again yields equations (199) to (203). The finite difference approxi-

mations to equations (195) to (197,. are obtained by using centered

difference and averaging expressions taken about points (2), (3), and

(4) in Figure 12, which are the midpoints of the three faces of the

r	 computational cell. This procedure yields the following system of 	 n

equations:
s	 ^

r	 ir	 ,-

r 	 79
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x=
i
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bJ*r-ih-j

	

	 + ^h j-1 + (p2)f^* + ( p3 )9j* _ (T) y.
 J-1	 J

M	 1

r	 +	 [j* - (^j* )] + (F4 ) rj* _ (WJ*)2 + (P5) 
ruj*wj*_.*

J l

	

1	 x

s

z _ u - 
u
n-1n	 — fn

h	 *	 - v.
1' 

uJ	 k
n-1	 kn-1 id

+ we x	
w au - 

v	 + (1 - ^) w au - v

laeh2l
	 az	 az 2
	

az	 az
4

t - t

I
c

J_

+J h 
^^ -1 + ( p2 ) fj* + (P3 )9 * - (T) j

	

J-1	 J-1	 J	 J

_	 2	 w p+ (p6)J*	 (uj*)^ + e	

rj*
	 (wj*) 2 + (p7) u.*W•*

e2

^
X 

u 
wn - 'n- l '

	

	 t fn - f
n-1

h1I j* 	 kn 1	 n-1
{

9
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.	 d	 Aj 	 + 	
+ (P )f •* + (P	 * 	 a,*

J*	 hJ-1	 hj -1	 2 J	 3)'j 	 J

... 2
e^ - ej

-1 
Fuj	

we
+ 	 *vj* + e wj*f

J *

	

J°1	 L--	 ue

+ e u
V.	 vj."1 + v	 ^

.j 
u1?

	

*	 vj* j	 hj _ 1 	 j	 hj_1

^2

(w. - w

	

e wetj	
h

tj-1 +	 J	 j -1

	

*	 * h	 j*J ue	 J	 J_1	 j-1

e n _ e n-1	 f n - fn -1

^hl^ uJ*
	

kn-1	
TJ*	

kn-1

	

+ w
e x	

w a - -`^	 + (1 -) w 86 - p
ueh2	 a 	 az 

2	
az	 ai 4

(216)

F	 ,

In equations (214), (215), and (216), the following averaging notations

are used:

Via)	
1 an,i + an-1,i	

(217)

n,i	 n-1,i
a
j 

_ 2 aj	 + aj	 (218)

n,i	 n,i
an = aj	 + aj _1	 (219)

n,i	 nj	 n-1,i	 n-1,i
aj*	 4 aJ
	 + a.-1 + a.	 + a._ 1	(220)

J	 J	 J_

82	
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where a denotes a general function. Equation (217) is used solely for

variables which are functions of x and z only. The final terms in

equations (214), (215), and (216) are centered at points (2) and (4),

and C is given by

= Zi+1 - z 
	

(221)

z i+1 w zi-1

Equations (214) to (216) are substituted for equations (204) to

(206) whenever the local cross-flow velocity component becomes negative.

g
!

1j

1

s

a

}
F

I

f9}

I	
jx
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SECTION VIII	 u

SHOCK WAVE-BOUNDARY LAYER INTERACTION ANALYSIS

1	 INTRODUCTION

The boundary layer finite difference algorithm, presented in Section

VII, is employed to compute all of the forebody/centerbody and cowl bound-

ary layer flow except for that in the immediate vicinity of the shock

wave-boundary layer interaction regions. The flow in an interaction re-

gion exhibits an elliptical character in that downstream disturbances

may propagate upstream through the subsonic portion of the boundary layer.

Because of this phenomenon, it is not possible to adequately model the

flew in an interaction region using a parabolic system of governing d i f-

ferential equations whichcannot account for upstream influence. An

accurate numerical simulation of the interaction flow necessitates using

a three-dimensional compressible Navier-Stokes analysis which incorporates

the appropriate outflow boundary conditions. Although such an analysis

a

Y

4

is possible, the attendant increase in computer execution time would be

prohibitive. Recognizing this, a three-dimensional integral analysis was

selected for determining the interaction region flow in the present in-

vestigation. The analysis presented herein solves integral forms of the

continuity, streamwise momentum, and cross-flow momentum equations while

assuming that the boundary layer flow is isoenergetic immediately down-

stream of the shock wave reflection. The analysis used in the present

study represents an extension of the methods given in References (23),
f
I`	 (24), and (25)•

The shock wave-boundary layer integral analysis is briefly discussed

L
in this section. It is presented in greater detail in Appendix J.	 s
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2. INTEGRAL ANALYSIS

The three-dimensional integral conservation equations are applied to

a series of control volumes where each control volume comprises a circum-

ferential segment of the three-dimensional shock wave=boundary 'layer inter-

action region, as illustrated in Figure 13. A given control volume is

bounded by the current boundary layer initial-value and solution surfaces

in the streamwise (x) direction, and by the wall and the boundary layer

edge surfaces in the normal (y) direction.

Following the suggestion of Paynter (25), the conservation equations

are applied in a plane which is orthogonal to both the wall and to the

space curve defined by the intersection of the shock wave with the wall.

This plane is shown in Figure 14 passing through the point (P), and can

be defined by the orthonormal triad of vectors t, n b , and a. The unit

vector t is tangent to the space curve at point (P), the unit vector nb

is orthogonal to the solid boundary at point (P), and the unit vector

is orthogonal to both t and n at point (P) and is given by
s.	 b

L

a = nb x t	 (222)

The tangential unit vector t can be determined from 	 x
i

t	 (ds) i + (d )J + (ds)k	
(223)	 3

f
where ds is the differential arclength along the space curve and can be

k

expressed as

(ds) 2 	(dx) 2 f (dy) 2 + ( dz) 2	 (224)
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After the unit vector v has been determined, the angle a subtended

by ^ and A may be obtained, where a is a unit vector tangent to the body

and which lies in the meridional plane of point (P). A coordinate rota-

tion may then be employed to obtain the upstream boundary layer velocity

components in the plane containing n  and ar. The body tangent curvi-

linear coordinates contained in and orthogonal to the plane of n b and a

i
are denoted by x* and i*, respectively (see Figure 14). The boundary

k

layer velocity components in the x*- and z*-coordinate directions are

denoted by u* and w*, respectively, with ue and we being the respective

boundary layer edge velocity components.

After the velocity components at the initial-value surface have been

transformed into the (x*, y, i*)-coordinate system, the integral conserva-

tion equations are applied to determine the boundary layer property pro-

files on the downstream side of the interaction region. Across-section

f of the control surface used in the integral analysis is depicted in

Figure 15, where the initial-value surface corresponds to station 1

and the solution surface corresponds to station 2. The respective.

boundary layer thicknesses are denoted by 6 1 and a2.

The conservation equations consist of integral forms of the continu-

ity equation, the streamwise (x*) momentum equation, and the cross-flow

R*) momentum equation. The energy equation is approximated by the assump-

tion that the total enthalpy at station 2 is constant fn the y-direction,_

and is ;equal to the average total enthalpy at station 1. The integral

conservation equations take the form

61	 62

pu*dy	 pu*dy + m	 (225)
bleed

O n

i

l
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x

a

r:

y

xi

s3̂

Plat - P262 + P(6 2 - a l )	 62p(u*)2dy - 61 p(5 * )2 dy	 (226)

0	 0

61p6%*dy = 62pu*w*dy	 (227)

t	 o	 0

N1 = H2	 (228).:

where equations (225) to (228) represent the continuity,-streamwise momen-

tum, cross-flow momentum, and energy equations, respectively. In the above

equations, P1 and P2 represent the static pressure at stations 1 and 2,

respectively, and are assumed to be constant in the y-direction, and F

'is an appropriately weighted average pressure acting on the upper surface

of the control volume. The mean density and total enthalpy are again de-

noted by p and H, respectively, and rhbleed is the bleed mass flow rate.

It was assumed in writing the above expressions, that negligible mass is

entrained into the boundary layer between stations l and 2, that viscous

shear stress effects may be neglected, and that mass bleed occurs normal

to the wall.

Since the upstream flow properties have been determined by application

of the finite difference algorithm, the integrals appearing in equations

(225) to (228) that are evaluated at station 1 may be determined directly by

numerical quadrature. To evaluate the integrals at station 2 requires that
3

representations for the downstream velocity profiles be chosen. In the

present investigation, the following turbulent power law profiles have been

selected

u*= uensi	 (229)
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(230)

where

n	 Y/d	 (231)	 P

and the exponents a i and 32 are in the range

0 < a 1 < 1	 (232)

0<a2 <1
	

(233)

The mean total enthalpy H may be expressed in terms of the mean static

enthalpy h as

H=h+Z

r( 5* ) 2 2 5 	* 25
e 	

2n 
I*(^e)n 1 (234)

* 2	 * 2
Since both 51 and 52 are bounded and (we) <	 e) ,equation (234) may	 3

be approximated as	 1

r.	
= H - 1	

* 2 251	 (235)h	 2u( e ) n 

f	 For a simple system in thermodynamic equilibrium, the following expression

can be written

p	 p(h,P)	 (236)	
r

where for a thermally and calorically perfect gas

	

	 rt

p = Kph	 (237)

with

K y P	 (238)

Using the above relations allows the downstream integrals in equations

(225), (226), and (227) to be written for a thermally and calorically per-

fect gas as

i;
91
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(239)

(240)

(241)

TT

ORIGINAL
U ^^ '^OF poOR Q

62	
(1

au *dY = K 2S2ue 2 1	 nil do
0	 10 	 *

)
2n 

2a
[H 2- 1

2(ue 2 	 1^

2S1

a2P( -*2d- = K2s 2 (u*2 ) 2 1	 1 n* 2n2s1

o	
e	 [H2-2(ue2) n

0

6 2 	 1	
n0lns2dn

0 Pu w dy K262ue2 
wet 0 [H2--!(2

ue ZrI

{
To obtain the downstream property profiles, initial estimates are made

for the exponents 01 and 52.	 Then equations (225), 	 (226), and (228) are

solved simultaneously while incorporating equations (239) and (240) for

}

the downstream integrals.	 This produces a system of two equations for the

downstream unknown quantities 62 and ^1.	 These equations are solved using

a Newton-Raphson iteration scheme with S1 serving as the perturbation quan-

tity.	 After convergence has been obtained for 62 and ^ 1 , equation (241)

is incorporated into equation (227), with the resulting expression being}

solved using a_Newton-Raphson iteration scheme employing 02 as the, pertur-

bation quantity:

Determining the downstream boundary layer thickness 62 and the

j power law exponents S1 and s2 completely defines the downstream property a

field ,since H 2 was, determined from equation (228). 	 After the downstream

Velocity components _U2 and w- have been Calculated, the velocity components

62 and w2-can be determined by a coordinate rotation.

By applying the above analysis to a series of control volumes, the a

F 97.
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flow properties downstream of the shock wave-boundary layer interaction

region may be determined for the entire computed sector. This solution

is then used as initial data for restarting the finite difference bound-

ary layer computation`.

M1	 ,^

N ^
yY

F
SCEK ! -

iI

f

3

93

x'	 1



,f

r

r ^t
t?

SECTION IX

OVERALL NUMERICAL ALGORITHM

i

1.	 INTRODUCTION

1	
,i

In this section, brief discussions are presented on the overall al-

k

gorithm control	 logic, generation of the initial 	 data,,.^oundary conditions, }

regulation of the marching step size, computation of tl^,^ :transport forcing
r

functions, and numerical stability.	 A detailed discussion of the overall

f
numerical algorithm i s presented in Appendix K.

2.	 COMIPUTATION OF THE SUPERSONIC CORE FLOC!

The overall numerical algorithm for the supersonic core flow com-

putation consists of the repetitive application of the various s,haracter-

a

istic unit processes to generate the global solution for giver boundary

conditions and a specified set of initial data.

The contours of the forebody/centerbody and the cowl, in addition '.

to anyplanes of flow symmetry, constitute the boundaries of the computa-

tional	 flow regime.	 For the external	 flow field integration, the bow

shock wave also represents a computational boundary.

_ The supersonic flow initial data are specified on a plane of constant

x.	 The x-coordinate axis is the longitudinal axis of the centerbody and
^i

the cowl	 (see Figure 1).	 Moreover, the mean flow direction is assumed

to be in the x-coordinate direction.

An inverse marching scheme is employed in the supersonic flow numer-

t^

' ical algorithm.	 The solution is obtained on a,family of space-like

E= planes of constant x.	 The solution points on each plane represent the

^ 	 -
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intersection points of continuous streamlines which are propagated from

the data points specified on the initial-value plane. In addition to the

streamline solution points, solution points are also obtained at the inter-

section of the external and internal shock w,,^s with the solution plane,

and for the internal flow field, on the space curves where the internal

shock wave intersects the solid boundaries. These space curves are de-

fined by the locus of shock wave solution points.

Except in the vicinity of a shock wave reflection with a solid

boundary, the axial (x) distance between the current initial-value plane

and the current solution plane is determined by the application of the

Courant-Friedrichs-Lewy (CFL) stability criterion (8). In the vicinity

of a shock wave reflection with a solid boundary, the axial distance be-
1

tween successive solution planes is chosen so that the entire shock wave-

solid boundary intersection falls between two adjacent solution planes. 	 !

The external supersonic flow about the 'forebody is computed first.

The external flow field integration requires the periodic addition of

streamlines in order to retain a well dispersed computat'-etal-mesh. Fur-

thermore, periodic deletion of selected streamlines is also required so

that the number of computational points lies within bounds

The internal supersonic flow field canbe computed with or without

the discrete fitting of the internal shock wave system. The option in

which shock waves are not discretely fitted may be used in cases in which

the internal, shock waves are quite weak in strength, and thereby an-ac- 	 x

ceptable solution can be obtained by smearing the internal discontinuities. 	
a

3. COMPUTATION OF THE BOUNDARY LAYER FLOW

The overall numerical algorithm for .the boundary layer flow compute-
i

r tion consists of the repetitive application of the attachment line flow,
z.	 )
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three-dimensional flow, and shock wave-boundary layer interaction region

flow subalgorithms to generate the global solution for given boundary

conditions and a specified set of initial data.

The contours of the forebody/centerbody and the cowl, in addition

to the planes of flow symmetry, constitute the boundaries of the compu-

tational flow regime.

The boundary layer flow initial data are specified on body normal

rays of constant X. The x-coordinate axis is the streamwise curvilinear

coordinate coincident with the body and contained in a given meridional

plane (see Figure 9). The mean boundary flow direction is assumed to be

in the x-coordinate direction. Separate sets of initial data are re-

quired to initiate the forebody/centerbody and cowl boundary layer com-

pptations.'

The implicit finite difference algorithm is applied to compute all

of the boundary layer flow except for that in the shock wave-boundary

layer interaction regions where the integral analysis is employed. The

finite difference algorithm first applies the attachment line flow sub-

algorithm to calculate.the boundary layer flow on the windward and lee-

ward planes of symmetry. The three-dimensional flow subalgorithm is

then applied*to compute the boundary layer flow between the planes of

flow symmetry starting at the windward meridian and marching to the lee-

ward meridian for a given 'solution surface. The boundary layer solution

is obtained on an orthogonal curvilinear mesh conforming to the local

surface curvature. As opposed to the bicharacteristic supersonic 'flow

solution, individual streamlines are not followed in the boundary layer

r=	 computation. The boundary layer external flow properties are determined

by interpolation of the supersonic flow solution.
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`Y	
When a shock wave-boundary layer interaction region has been en-

a	
countered, the three-dimensional integral analysis_is applied to compute

j

	 the property profiles on the downstream side of the interaction region. 	
i

The boundary layer properties on the upstream side of the interaction re-

gion are supplied by application of the implicit finite difference algo-

rithm. The external flow properties are obtained from the supersonic

core flow solution.

The streamwise step size used in the boundary layer computation is

selected to correspond to the axial marching step determined from the

Courant -Friedrichs-Levy stability criterion used in the supersonic flow

computation. As a consequence, the supersonic flow and boundary layer

flow solutions are determined at the same axial stations.

4. SUPERSONIC FLOW INITIAL DATA

The supersonic flow initial data are specified on a plane of constant

x (see Figure 1). The flow must be supersonic at every point on this

plane. For uniqueness and existence of agdnuine solution, the values

of the dependent variables prescribed on this surface must have at least

continuous first partial derivatives.

If the forebody flow field is to be computed, the supersonic flow

initial-value plane must be specified at an axial (x) station that is

e
upstream of the forebody flow computational regime (see Figure 1). The

Last solution plane of the forebody flow field computation is adjusted

to lie at the axial station of the cowl lip, and constitutes the initial-

value plane for the internal flow field computation.. The cowl lip is

assumed to be contained in a plane of constant x. furthermore, the bow

t	 shock wave must fall outside of the cowl lip, or;, in the limit, intersect

the cowl lip exactly. The internal -flow cannot be calculated if the bow
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shock wave is ingested into the annulus. The points on the solution plane.

at the cowl lip axial station are redistributed to obtain a ring of solu -

tion points coincident with the cowl lip.

If the forebody is conical ahead of the axial station where the 	 't;

supersonic flow initial-value plane is specified, an approximate flow

property field on this plane may be internally generated in the computer 	
f

program. The internally generated initial data are obtained by an approx-

imate technique which employs the Taylor-Maccoll solution for the flow

about a circular cone at zero incidence, A superposition method is then

	 4

used to obtain an approximation for the flow about a circular cone at

nonzero angle of attack by neglecting the cross flow effects. Alterna-

tively, a more exact solution for the initial data for floe., about a cir-

cular cone at incidence may be obtained by employing the results of Jones

(28). The Jones algorithm has been incorporated into the computer program

developed in the present study.

If the forebody is not conical ahead of the axial station of the

initial-value plane, then the initial data must be specified by the user.

If available, experimental data may be employed.

r
5.. BOUNDARY LAYER FLOW INITIAL DATA

s

The boundary layer flow initial data are specified at stations of

constant x (see Figure 9). Separate sets of initial data must be speci-

fied to initiate the forebody/centerbody and cowl boundary layer computa-

tions. For uniqueness and existence of a genuine solution, the prescribed 	 }

initial data must have at least continuous first partial derivatives. 	 f

t
The forebody/centerbody boundary layer flow initial data must be speci-

fied at the same ,axial station at which the supersonic flow initial data

t	 are specified. If the forebody is conical ahead of the axial station where

yy^
	 -	
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the computation is to be started, then the initial data may be generated

using the implicit finite difference algorithm developed by Adams (29),

which is applicable to determining the boundary layer flow for a circular

cone at incidence. The Adams algorithm has been incorporated into the

computer program developed in the present investigation. Use of the

Adams algorithm requires specification of the wall temperature.

If the forebody is not conical ahead of the axial station where the

computation is to begin, then the initial data must be specified by the

user. Experimental data may be employed, if available.

The cowl boundary layer initial data must be specified at the axial

location of the first supersonic flow solution plane inside the annulus

(the boundary layer thickness at the cowl lip is identically zero). The

cowl boundary layer initial data may be internally generated in the com-

puter program using an approximate technique described in Appendix K.

Alternatively, arbitrary initial data may be specified by the user.

6. FLOW SYMMETRY

Four flow symmetry options have been incorporated into the supersonic

flow algorithm. The most general case is when no planes of symmetry exist.

This option is used to compute the flow field for fully three-dimensional

inlets at incidence. The ,second case is when one plane of flow symmetry

exists. This option is used for computing the flow field for axisymmetric

inlets at angles of attack. This second case of flow symmetry is the one

most likely to arise in the class of problems being considered in the	 c

present investigation. The third case is when two planes of flow symmetry

exist. This option is used to compute the flow field for three-dimensional

inlets with two planes of geometric symmetryat zero angle of attack. The

final option is when the flow is axisymmetric. This option is used to
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compute the flow field in axisymmetric inlets at zero fficidence.

One flow symmetry option has been incorporated into the boundary

layer flow algorithm. This is for the case of one plane of flow symmetry.

7. SOLID BOUNDARY SURFACES

The computer program developed in the present investigation assumes

that both the forebody/centerbody and the cowl are axisymmetric. For the

purposes of geometry description, the axial (x) domain is divided into a

number of intervals. In any interval, the body radius r may be specified

by either tabular input, or by supplying the coefficients in the cubic

ra
i

s

z

where the subscript i denotes the ith interval, r(x) is the body radius

at axial position x (x i < x < xi+1), and the coefficients a i , b i , ci ,_and k

i

di are obtained by curve fitting the body contour. Since equation (242)

is a cubic, slope and curvature can be matched at the junction point be-

tween two adjacent intervals (i.e., spline fits can be employed).

More arbitrary geometries may be readily incorporated into the analysis

	

by replacement of the existing geometrynodule.	 E

8. TEMPERATURE AND MASS 'TRANSFER BOUNDARY CONDITIONS

The boundary l ayer computation requires specification of the tempera-era-'/	 p	 q	 P	 p

ture or the normal temperature derivative at the wall. Constant tempera-

ture or temperature derivative boundary conditions may be specified. Al-

ternatively, an arbitrary wall temperature or temperature derivative

100

l

7

polynomial.

r(x) = a  + b i (x - x i ) + ci (x	 x i ) 2 + d i-(x	 x i ) 3	(242)



♦

t
t

distribution may be specified by tabular input. Quadratic interpolation

is employed to obtain the temperature boundary condition at the required

t	 axial stations when the tabular input option is employed.

Mass transfer boundary conditions are specified by entering the axial

locations of the boundary layer bleed zones and the mass flux within each
I

	

	 .

zone.

9. INTEGRATION STEP SIZE REGULATION

Except in the vicinity of a reflection of the internal shock wave

with a solid boundary, the axial marching step between successive super- 	 I

sonic flow solution planes is determined by the application of the Courant-

Friedrichs-Lewy (CFL) stability criterion (8). 	 The CFL stability criterion

mandates that the domain of dependence of the differential equations be
N

contained within the convex hull of the finite difference network. 	 That
1

s

4 is, the Mach cone must be inside the outer periphery of the nine initial-
Y

value plane field points used in formulating the bivariate interpolation

-polynomial, equation ( 51).	 The allowable axial step is given by

2/(cq)][1	 -	 ( c/q ) ( q2/u2 - 
1)1/2

AX	 [u	
]Rmin

9

(243)

where Ax is the marching step, and R 	 is the distance between the stream-g	 P man

line intersection point with the initial-value plane and the nearest point Y	

J

^

on the convex hull of the finite difference network.	 Equation (243) is

t
^ applied at ever	 streamline point on the initial-valuePP	 y	 lane, with theP	 p
E

actual integration step being chosen as the ex value at the .most restric-

tive point.	 Equation (243) is applied only to streamline points.	 The
F

shock wave points are excluded. 	 Moreover, in the internal flow 'field
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integration, the shock wave points are ignored in defining the convex hull

of the finite difference network when applying the stability criterion to

a streamline point.

In the vicinity of a reflection of the 'internal shock wave with a

solid boundary, the axial step is controlled by the constraint that the

shock wave-solid body intersection is contained entirely between two ad-

jacent solution planes. The fit point stencils used in formulating the

verious interpolation polynomials are appropriately expanded, in this

case, so that the CFL stability criterion is satisfied.

As noted previously, the marching step used in the boundary layer

computation (ox) corresponds to the axial step determined by the CFL

stability criterion ;max). Although there also exists a marching step

stability limitation U the boundary layer computation, discussed in

Appendix I, the CFL stability criterion is usually the more restrictive

of the two.

10. CALCULATION OF THE TRANSPORT FORCING FUNCTIONS 	 n

The numerical procedure developed in the present investigation has

the capability to include the influence of molecular transport in the

supersonic flow solution by treating the viscous and thermal diffusion

terms in the governing partial differential equations as forcing functions,'

or correction terms, in the method of characteristics scheme. The compu-

ter program has the capability to include the influence of viscous and
3

thermal diffusion in the computation of the supersonic external flow about	 j

the forebody, and in the computation of the supersonic internal flow field

in which shock waves are not discretely fitted. The program option in

i^	
k

which shock waves are discretely fitted in the supersonic internal floe
t

field does not have the capability to include the influence of molecular

102
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transport in the computation, but rather assumes the supersonic flow to

be inviscid and adiabatic. The detailed calculation procedures used for

obtaining the transport forcing terms are :presented in Appendix F.

11	 NUMERICAL STABILITY

A stability analysis of the nonlinear supersonic flow finite differ-

ence algorithm including molecular transport was not attempted. Instead,

a stability analysis for isentropic flow was conducted. Stability of the

generalized analysis was then verified by actual numerical calculations.

Ransom, Hoffman, and Thompson (9) conducted a von Neumann linear

stability analysis of the basic interior point scheme which indicated

that interpolated flow properties, instead of the actual known values,

should be used at the streamline-initial-value plane intersection point

s [point (5) in Figure 3]. The present supersonic flow analysis uses inter-

polated flow properties at all points in the initial-value plane.

Stability of the boundary layer flow algorithm was verified by actual
z a

numerical calculations,

r a

-j

1

k

3

N

2
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SECTION X

COMPUTATIONAL RESULTS

i

1. INTRODUCTION
I	

Selected computational results are presented in this section to illustrate

application of the analysis. The results presented are divided into two major

categories: external flow about the forebody, and internal flow in which the

internal shock wave system has been computed. Both axisymmetric flow and three-

dimensional flow results are shown. For the internal flow field in which shock

waves have been fitted, some comparisons with experimental data and existing

computational methods are made. Additional supersonic flow results may be 	
1

found in Reference (1).

2. EXTERNAL FLOW 'RESULTS
	

3

For the purpose of testing the external flow integration procedure, the

flow field about a right circular cone at incidence was computed. The super-

sonic flow for this case is a conical flow in that the solution is constant

along rays emanating from the vertex of the cone (i.e., there is no character-

istic length, so the solution has no dependency on x). At zero angle of attack,	 ?

the solution depends only on the angle subtended by a given ray and the x-axis.

At nonzero incidence, an azimuthal variation also exists. To obtain the re-

quired initial data, the results of Jones (28) were employed. The computed

results should maintain the conical nature of the flow field.



i

Figure 16 presents numerical results obtained for a 10.0' half-angle

cone at 2.5° angle of attack a with a free-stream Mach number M. of 3.0. The

computation employed 21 circumferential stations in the computed sector (half-

plane), and the number of radial stations on the initial-value plane was 11.

The computed static pressure P normalized by the free-stream static pressure P.

is plotted versus the axial position x normalized by the cowl lip radius Rc.

The pressure distributions on the rays formed by the forebody and the'bow shock

wave on both the leeward and windward planes of symmetry are shown. Since the

flow is conical, the solution should remain constant along each of these four

rays at the respective pressuro values at the appropriate points on the initial-

value plane. The initial-value plane pressures are denoted by the straight line

segments. The method of characteristics solution is shown at a discrete number

of axial stations, each station corresponding to the axial location of a given

solution plane. The bicharacteristic solution maintains ;.iO conical nature of

the flow field.

t

It should be noted that the increase in pressure across the leeward side

of the bow shock wave is minimal. As the angle of incidence is further increased,

the strength of the bow shock wave on the leeward side is reduced until the point

is reached ware the angle Qf at'c-.ack is equal to the cone half-angle. At this

point, no shock wave exists on the leeward meridional-plane. Further increase

in the angle of incidence causes a flow expansion to occur on the,,leeward side.
{

Since the present analysis assumes that a shock wave exists about the entire

forebody, the case where a flow expansion occurs on the leeward side cannot be

a	 computed.

B	 d	 tt'	 11	 f	 df	 100° . if	 1oun ary ayer compu a_ions w ere per U1 ilia 	 or a	 a -ang a cone

at 1.0 0 angle of attack a with a free-stream Mach number M of 2.5.. ThisCO
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i

computation employed 15 circumferential stations for boh the supersonic external

flow and the boundary layer flow. Twenty radial stations were employed in the

boundary layer computation. Figure 17 presents the computed boundary layer

velocity profiles at a station where x/R c=2,0, and where the polar angle ^

measured from the windward meridian is 90.0 0 . The normalized streamwise and

cross flow velocity components, denoted by (u/ue) and (w/we), respectively, are
plotted versus the distance y measured normal to the wall. Figure 18 presents

the normalized static temperature (T/T e) profile for the same boundary layer,

station. The boundary layer initial data were obtained using the Adams algo-

rithm (29). A constant wall temperature boundary condition was employed in

the computation. The wall temperature was selected to equal the free-stream

stagnation temperature. Moreover, laminar flow was assumed.

3. INTERNAL FLOW RESULTS

Internal flow calculations were performed for the Boeing Mach 3.5 super-

sonic mixed-compression inlet documented in Reference (30). The centerbody and

cowl coordinates of this inlet are listed in Table d. The boundary contours

A

are illustrated in Figure 19 for the design case of zero centerbody translation. 	 j
^ 	 a	 •i

This inlet has a forebody which is conical (the forebody is notshown in Figure

19). Consequently, all of the numerical solutions were started at the cowl lip
r

_axial station. The supersonic flow initial data were obtained by employing the

results of Jones (28). The forebody/centerbody boundary layer initial data were

,r
obtained using the Adams algorithm (29). The cowl boundary layer initial data

were obtained using the approximate analysis described in Appendix K.
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TABLE 1

MACH 3.5 INLET COORDINATES

CENTERBODY COWL

x/Rc r/Rc x/Rc r/Rc'
0.0 0.0 2.86 1.0
4.0 0.70532 3.1 1.004188
4.1 0.7228 3.2 1.0054
4.2 0.7387 3.4 1.0051
4.3 0.7512 3.6 0.99996

4 4.4 0.759 3.8 0.9882
4.5 0.7625 4.0 0.9681'

A

4.55 0.763 4.1 0.954
4.6 0.7625 4.2 0.9364
4.65 0.7611 4.25 0.9261
4.7 0.7585 4.3 0.9154
4.8 0.7504 4.4 0.8949
4.9 0.7391 4.5 0.8768
5.1 0.7120 4.55 0.8695
5.3 0.6829 4.6 0.864
5.5 0.6525 4.65 0.86
5.6 0.6362 4.7 0.8572
5.7 0.618 4.8 0.8533
5.8 0.5973 4.9 0.8511
5.9 0.5744 5.0 0.8502
6.0 0.5467 5.1 0.85

5.6 0.85 14
5.8 0.8574
5.9 0.8646 fi
6.0 0.8735

u

x Axial Position2

r Radial Position

Rc : Radius of Cowl Lip
i

x

J
s
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L

The first supersonic core flow results employing the internal flow computa-

tional algorithm in which shock waves are discretely fitted are for the design

conditions of M 3.5, zero centerbody translation, and zero incidence ( a=00).

At the design point, the bow shock wave intersects the cowl lip exactly at zero

incidence. Since the flow field is axisymmetric at zero incidence, it can be

computed using a two-dimensional method. Comparisons of the supersonic core

flow results obtained from the present analysis with those obtained from a two-

dimensional method of characteristics scheme (31) for the zero incidence design

point conditions are shown in Figures 20 and 21. In these figures, the static

pressure P normalized by the free-stream stagnation pressure PT is plotted

versus the axial position x normalized by the cowl lip radius Rc. Pressure

distributions are shown for both the centerbody and the cowl. The results ob-

tained by the two-dimensional method of characteristics algorithm are indicated

by solid lines, and the results obtained by the present analysis are indicated

by the dashed lines. Fifty radial stations were used in the two-dimensional
'a

q.	 9

1

3b	 a

method of characteristics solution. Figure 20 illustrates the case where a

total of 11 radial stations (9 streamline points and an upstream and downstream

shock wave point) were employed in the three-dimensional method of characteris-

tics solution. Good overall agreement is observed. A slight smearing of the

pressure distribution downstream of the second intersection of the shock wave
f

with the centerbody and a slight shifting of the shock wave=solid body inter-

secti;ons are present in the three-dimensional algorithm's results. The smearing

g
of the pressure distribution is primarily a consequence of the coarse mesh size

d
F

used in the three-dimensional scheme's solution. Figure 21 illustrates the so-

lution obtained by the three-dimensional analysis when a total of 21 radial

x
stations were used in the computation. In this case, the agreement between
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A

the three-dimensional analysis and the two-dimensional analysis is excellent.

The pressure distribution behind the second shock wave-centerbody intersection

is predicted very well,, The axial locations of the shock wave-solid boundary

intersections also agree very ,well. For this computation, the maximum devia-

tion in the computed mass flow rate at any solution plane from that at the cowl

lip solution plane was approximately 0.77 percent.

Comparisons of the results of the present analysis with experimental data

(32) for the Boeing Mach 3.5 inlet for a=00 are shown in Figure 22. Generally

speaking, good agreement is observed. Mass bleed effects were not accounted for

in this particular computation, rather an impermeable wall was assumed.

At a given free-stream Mach number, the centerbody assembly must be trans-

lated forward of its design point position as the angle of incidence is increased

to maintain supersonic flow through the geometric throat of the annulus. The

forward translation of the centerbody causes the cross-sectional area of the

geometric throat to increase. Moreover, as the free-stream Mach number is

reduced from the design point value, even further forward translation of the

centerbody is required. The prescribed nondimensional centerbody translation

will be denoted by ex/R c in the following discussion.

Results are presented below for the off-design condition of M = 2.5 with a

centerbody translation of ox/R c=0.855. Supersonic core flow results for this

case are presented in Figures 23 to 26. Figure 23 illustrates the computed

centerbody and cowl pressure distributions for an incidence angle of a=00.

+z

7
r

t

9

9

Although the centerbody has been translated forward, the coordinate system
A

origin is maintained at the forebody tip. Consequently, the internal flow	 1

computational regime begins at x/RC=3.715. Generally speaking, the strength

of the internal shock wave system for this case is somewhat reduced as compared
_.	 a
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to the design point case. Figure 24 illustrates the computed pressure distri -

butions and some experimental data for an incidence angle of a= 3.0 0 . Pressure

distributions for the centerbody and the cowl on both the leeward and the wind-

ward meridians are shown. Compared to the a =0 0 case, the strength; of the inter-
Vt

nal shock wave system is increased on the leeward side but reduced on the wind-

ward side. Experimental data are presented for the centerbody pressure on

the leeward meridian and for the cowl pressure on both the leeward and windward

meridians. Generally speaking, good overall agreementbetween theory and ex-

periment is obtained. For these three-dimensional computations, 21 circumferen-

tial stations and 11 radial stations ( 9 streamline points and an upstream and
5

downstream shock wave point ) - were employed in the computed sector (half-plane).
z

The maximum deviation of the mass flow rate at any solution plane from the mass

flow rate at the cowl 'lip solution plane for the a =3.0 0 case was 0.44 percent.

The computed pressure distributions on the centerbody and the cowl for both

the leeward and windward meridians for the incidence angle of a=5.0' are shown	
D

in Figure 25. The leeward meridian shock wave strength has been increased

over the a^3.0° case, whereas the shock wave strength on the windward meridian

has been reduced. The maximum deviation in mass flow rate for the a=5.0 0 case

was 0,.39 percent. Finally, to illustrate the effect of increasing angle of

attack on the centerbody pressure distribution, the centerbody results of

Figures 23, 24, and 25 are superimposed in Figure 26'. The results presented

in Figures 23 to 25 are for impermeable wall boundary conditions. 	 xt

Additional supersonic internal flow results for the Mach 3 . 5 inlet at other	 k

off-design conditions may be found in Reference I. Comparisons of the present

algorithm with the results of the shock -capturing algorithm developed by Presley (33)

also may be found in Reference 1.- The analysis presented in Reference 33 is based

on the use of the explicit MacCormack finite difference operator (34).-
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Internal flow boundary layer calculations were performed for the Mach 3.5

inlet again for the case of an off-design centerbody translation of nx/Rt=0.855.

All boundary layer computations were performed for an incidence angle a=1.0°,

and each computation employed 15 circumferential stations and 20 radial stations

in the boundary layer computed sector. Both the forebody/centerbody and cowl

boundary layers were determined using impermeable wall boundary conditions.. A

constant wall temperature boundary condition was employed with the specified

wall temperature being equal to the free-stream stagnation temperature. Initial

data for the forebody/centerbody boundary layer computation were obtained by

application of the Adams algorithm (29). Initial data for the cowl boundary

layer compuation were obtained using the approximate technique described in

Appendix K.

Initial attempts at computing the internal boundary layers were made assuming

entirely laminar flow. The numerical integration algorithm, however, indicated

cowl boundary layer separation at an axial distance that was approximately mid-

way between the cowl lip and annulus throat when a purely laminar flow was

specified. An ensuing computation was performed specifying transitional flow

onset locations slightly downstream of the entranceto the annulus. For the

forebody/centerbody boundary layer,'the transitional flow onset location was

specified at x/Rc=4.0. For the cowl boundary layer, the transitional flow onset

location was specified at x/Rc=0.3. Here, x is the streamwise curvilinear coos

dinate measured from the forebody tip for the forebody/centerbody boundary layer

calcualtion, and measured from the cowl lip for the cowl boundary layer compu-

tation.

Computcd velocity profiles for the internal flow forebody/centerbody bound-

ary layer calculation are presented in Figure 27. In figure 27, the streamwisew
F

k

E
129
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(u/ue ) and cross-flow (wJwe) velocity profiles are plotted against the distance

y measured normal to the wall. These results are for a boundary layer station

that is at the axial location x/R =4.505 and at the polar angle 4=90 0 where

the angle 4 is measured from the windward_ meridian. The corresponding static

temperature profile at this location is illustrated in Figure 28.

Computed velocity profiles for the cowl boundary layer calculation are pre-

sented in Figure 29 for a station located at x/Rc-4.505 and 4=90°. Again,

the streamwise and cross-flow velocity profiles are plotted against the normal

distance y. The corresponding static temperature profile is presented in

Figure 30.
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SECTION XI

CONCLUSIONS AND RECOMMENDATIONS

The flow field in a supersonic mixed-compression aircraft inlet at non-

zero angle of attack has been computed using a zonal solution algorithm which

divides the flow field into different computational regimes. The computational

regimes consist of a supersonic core flow, boundary layer flows adjacent to

both the forebody/centerbody and cowl contours, and flow in the shock wave-

boundary layer interaction regions. Separate analyses are used for each of

the different computational regions.

The culmination of the present research effort is a production type com-

puter program which has the capability to predict the flow field in a variety

of axisymmetric mixed-compression aircraft inlets. A number of conclusions

concerning the present analysis can be made:

1. The external flow field about the forebody can be accurately

calculated if a bow shock wave of reasonably strong strength

exists.

2. For axisymmetric flows, the solution obtained by the present

analysis agrees well with the solution obtained by the two-

dimensional method of characteristics.

3. Except in the regions of strong viscous interaction, the results 	 k

of the present analysis agree well with experimental data.

Although the inlets analyzed were axisymmetric inlets, the computer pro-

gram can be readily modified to analyze geometries which have noncircular
1

cross-sections. Moreover, the inclusion of finite rate chemical reactionsq s
1
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in the tharmodynami c model is reasonably straightforward. The analysis can be	
y

modified to compute the external flow about a stepped cone and to compute

the internal -flow when the bow shock wave has been ingested into the annulus.

Recommendations for enhancing the accuracy of the present analysis in-

clude improvement of the cowl boundary layer initial-data generation algorithm,

refinement of the shock wave-boundary layer interaction region analysis, and

incorporation of displacement thickness effects into the supersonic core flow

solution,
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APPENDIX A

GOVERNING EQUATIONS ;FOR THE SUPERSONIC CORE FLOW

1. INTRODUCTION

The major assumptions constituting the gas dynamic model for the super-

sonic core flow are:

1. steady flow

2. negligible body forces
h

3. thermodynamic equilibrium (i.e., mechanical, thermal, and

chemical equilibrium)

f	

4. no mass diffusion

5. negligible radiative heat transfer and no internal heat

generation other than viscous dissipation
is

6. viscous and thermal diffusion effects of secondary importance
t

in determining the solution

The governing equations for the assumed flow model are written in Cartesian
}

coordinates and consist of the continuity equation the component momentum

equations, the energy equation, the thermal and caloric equations of state,

and the appropriate representations for the molecular transport properties.

These relations are presented in this appendix,.

:
9

2. DIFFERENTIAL EQUATIONS OF MOTION

The general continuity equation* (3) is

*Repeated indices imply summation over the range of 1 to 3 unless other

G	
wise noted.
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f
P au.
k a	 Dp+_ p

Dt p axi	 A.1

G
k

where t denotes time, p is the density, x i (i=1,2,3) denotes the three

r,._ctanqular coordinates x, y, and z, respectively, and u i (i=1,2,3)

f	 denotes the corresponding velocity components u, v, and w, respectively .P	 Y

The operator D( )/Dt in equation (M) is the material derivative

given by

( ) = D( ) + u a( ) 	 (A.2)Dt	 at	 j ax 

For steady three-dimensional flow, equation (A.1) may be written in

expanded form as

pux + PV  + PWz + UP  
+ vpy + wpz = 0	 (A.3)

where the subscripts x, y, and z denote partial differention with re-

spect to the corresponding direction.

The appropriate momentum equation is the Navier-Stokes equation

( 3), which written in component form is

Dui	
B	

ap + a 
u 8u i + auk 	2 a u

nP Dt	 i	 axi	ax 	 ax i 	 3 ax i	axj

	

+aX	 n ax
i	 J	

(i-1,2,3)	 (A.4)

where B i denotes the ith component of the body force, P is the pressure,

u denotes the dynamic viscosity, and n is the second coefficient of



A major assumption of the present analysis is that the effects

of viscous and thermal diffusion are of secondary importance in de-

;r termining the solution as con—pared to the inertial effects. Consistent
.ir

with this assumption —..r inertial dominance, the viscous and thermal

diffusion terms in the governing differential equations will be treated

as forcing oi, correction terms in the method of characteristic scheme

`

	

	 to be presented. In the following, the viscous and thermal transport

terms will be placed on the right-hand sides of the respective govern-

ing equations. The convective terms will be placed on the left-hand
_	 a

sides, and will be considered as constituting the principal parts of

i
these equations. Thus, writing equation (A.4) with the assumptions of

steady flow, negligible body, forces, n = 0 [Stokes's hypothesis (4)],

and inertial dominance gives

J

pu 
aui + 3P_ = F.	 (i=1,2,3)	 (A.5)

j 
axj

	axi

E	 where

F. = a	
u aui 

+ 
a	

_ 2 a	 u a	 (i=1,2,3)	 (A.6)	 J
axj 	axj axi 	3 axi 	axj

Treating the viscosity as a variable, equations (A.5) and (A.6)

can be written in expanded form for each of the three coordinate

directions as

puux + pvuy + pwuz + 
px - 

Fx 	(A.7)	 1
r	 ;

puvX + pv y + pwvZ + Py 
y	

(A.8)	 [

puwx + ,pvwy + pwwZ + PZ = Fz	(A.9)

i
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where

1

1

Fx 11ux 3(vy +wZ) + uy (y+ vx ) + 11 (uz + wx)

r
+ u L?3 Uxx + uyy + uzz + 3(vXy + W

	 (A.10)

Fy = Py y - 32 (ux 
+ wz^ + 

ux (vx + uy) + Pz (vz + WY)	
e

+ ur 
vYY + vxx + vzz + 

3(uyx + 
yz^	

(A.11)
{F

Fz =uz w " 3
(u +v) +u(w +u)+ uy (wy +vz)'

	

r z	 x y]	 x x z 

+u —w +w +w +^(u +v )	 (A.12)

	

zz	 xx	 yy 3 zx	 zy

Finally, it remains to obtain an appropriate form of the energy

equation. It is assumed in the present analysis that the working gas

can be represented as a simple system in theAnodynamic equilibrium.

Under this assumption the thermodynamic relation (5)

}

Tds = dh - PP
	

(A.13)

is valid, where T denotes the absolute temperature, s is the entropy

per unit mass, and h is the enthalpy per unit mass. For a simple

system, specification of any two independent thermodynamic properties

defines the thermodynamic state of the system (5). Thus,

E E	 P = P(A,$)	 (A.14)
I

Employing the concept of the total derivative, and introducing the ma-
,t

terial derivative operator given by equation (A.2), the following

relation may be obtained from equation (A.14).,

140	 5
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DP = (DPI	 e +	 aP
Fas)
	 Ds

lapj	 Dt (A.15)Dt Dts	
P i

The sonic speed	 a	 is defined by

a2 =
rap)

(A.16)

Thus, equation (A.15) may be written as

DP	 2
Dt	 Dt	 e

where

Fe ^a s,
(A,.18)

Dt
P

The material derivative of entropy in equation (A.18) may be

expressed in terms of a thermal conduction function and a viscous dissi-

pation function.	 Consider the energy equation in the following form

(3)

P De _ _a K aT	 + P Dp + (A.19)
Dt	 axi 8xi P Dt

In equation (A.19), e denotes the internal energy per unit mass, K is

thethermal conductivity, and 0 represents the viscous dissipation func-

tion which for p = 0 is -gi ven by {

2
1

u

aui	 ate. - 2 
auk

+
(A.20)

2 3 axkax 	 axi

where 6 	 the Kronecker delta.	 Using the definition of enthalpy

(h = e + P/ p) in equation (A.13) yields
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(A.23)

Tds = de - 
P2 dp	 (A.21)
p

From equation (A.21) the material derivative of internal energy may be

written as

De=TDs+P
Dt	 Dt P2 Dt

t	 3

Introducing equation (A.22) into equation (A.19) yields

Ds _ a
	 fl

pT Dt - axi K
l +

Substituting equation (A.23) into equation (A.18) gives

(A.22)

Fe K aX
 i

+ (A.24) x

1L^xi

where
a

= pT i5sj (A.25)
f^l	 P ,,	 a

By treating the thermal conductivity as a variable, and assuming

steady three-dimensional flow, equations (A.17) and (A.24) may be

written as

up	+ vPy + wPZ - a
2

(upx + vpy + wpz )	 Fe (A.26)

where r;

Fe{K(Txx + Th
y + TZZ ) +	 xTx,+ yTy + KZTZ

A
i

+u[2(ux +vY+wz +uyvx+ uZWx
+ Vzwy) +

vx +Wx

2
+ u	 + w2	 2+ u	 + v2	

2
-	

u	 + v	 + w3^z	 x	
y

,	 Z)}
A.27 ) .

j y	 y	 z
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a	
As in the component momentum equations, the viscous and thermal

diffusion terms in the energy equation have been placed on the right-

hand side and will be treated as forcing functions in the method of

characteristics scheme to be presented. The left-hand side is composed

of the convective terms which are considered to constitute the princi-

pal part of this equation.

3. THERMODYNAMIC MODEL

Before a solution to the system of governing partial differential

equations can be obtained, the temperature T, sonic speed a, thermo-

dynamic parameter E, viscosity p, and thermal conductivity K must be

expressed in terms of the dependent variables P and p. The representa-

tions for T, a, and E are discussed in this section. The relations

for p and K are presented in the next section.

The general functional forms of the temperature T, sonic speed a,

and thermodynamic parameter E may be expressed as

T = T ( P ,P)	 (A.28)

a	 a(P,P)	 (A.29)

E = V P ' P)	 (A.30)

i
.i

j

J

y

y

For multicomponent systems, with either frozen or equilibrium chemical 	 fi

composition, the functional relationships for T, a, and E are obtained

from thermochemical calculations. In the case of a thermally and

calorically perfect gas, the functional relationships for T, a, and

are simple analytical expressions given by
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Y	 1	 (A.33)

^	 a

T = P/ pR

a	 (YP/ p )
1/2

(A.32)

n

where Y is the specific heat ratio, and R is the gas constant.:

In the computer program developed in the present investigation,

the temperature, sonic speed, and thermodynamic parameter ^ are calcu-

lated in a separate subroutine. The assumed thermodynamic model is

that of a thermally and calorically perfect gas, thus, equations (A.31)

to (A.33) are employed. Substitution of a replacement subroutine for

the existing one allows other thermodynamic models to be specified.

4. TRANSPORT PROPERTIES

Representations are required for the viscosity, the thermal

conductivity, and their spatial gradients. Both viscosity and thermal

conductivity are functions of temperature and pressure. Hence,

u	 u(T,P)	 (A.34)

K	 K(T,P)	 (A,35)

Using equations (A.34) and (A.35), the spatial derivatives of viscosityr

and thermal conductivity may be written as

ap = 
^jl_ 

aT + (mil aP
axi	 aT' P axi	 ( @

3T
 T axi	

(A.36)	 i
T

aKaK aT + N I a

axi	^aT^ axiP	 (aP,T axi
P {A. 37)

x



F

Hence, spatial derivatives of pressure and temperature are also

required. Spatial derivatives of pressure and density are employed

in the basic integration scheme (even for the inviscid flow case).

Thus, those derivatives are already available. Spatial derivatives
i

of temperature can be expressed in terms of spatial derivatives of

pressure and density by differentiating the thermal equation of state,

equation (A.28).

The pressure dependency indicated in equations (A,34) and (A.35)

is usually quite weak, and often both the viscosity and the thermal

conductivity are assumed to be functions of temperature only. Thus,

E
p _ p(T)	 (A.38)

a

K = K(T)	 (A.39)

S

The Sutherland formula (4) is a good representation for equation

(A.38).

 1.5 To + So [

T
T

.0^	
T + S	 (A.40}

In equation (A.40), uo is the vi scosity at the reference temperature 	
ii1

b	 i

T0 and S is a constant. Equation (A.39) can be represented by
s

PC
K = P	 (A.41)

where c P is the constant pressure specific heat, and Pr is the laminar

t	 Prandtl number which is assumed to be constant in the analysis.
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In the computer program, the viscosity, the thermal conductivity,

and their spatial derivatives are computed in a separate subroutine.

The assumed functional forms of viscosity and thermal conductivity are

given by equations (A.40) and (A.41 .), respectively. Different formula-

tions for the transport properties can be implemented into the computer

program by supplying an appropriate replacement subroutine.
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APPENDIX B

DERIVATION OF THE EQUATIONS FOR THE CHARACTERISTIC

SURFACES AND THE COMPATIBILITY RELATIONS

1. INTRODUCTION

Systems of hyperbolic partial differential equations in n inde-

pendent variables have the property that there exist surfaces in 	
i

n-space on which linear combinations of the original differential
	

a,

0

equations can be formed that contain derivatives only in the surfaces

themselves. Differentiation in these surfaces is performed in (n-l)-;

space. The resulting differential operators are interior operators
	 x	

,j

j
	

t

which are known as compatibility relations. The surfaces are called
7

r	 characteristic surfaces. A compatibility relation is valid only when

it is applied on its corresponding characteristic surface. Furthermore,-
F 	 k

data cannot be arbitrarily specif>ed on a characteristic surface, but

r	 instead must satisfy the compatibility relation.

., k

	 The method of characteristics is based on replacing the original

c	

system of partial differential equations with an equivalent number of

compatibility relations applied on the appropriate characteristic sur-

faces. In flows with two independent variables, the method of char-

4

	

	
acteristics has the advantage of reducing the solution of a system of

partial differential equations to the solution of a system of ordinary

r	 differential equations. In three-dimensional flow, however, the

i	

resulting compatibility relations are still partial differential, equa-

tions in two independent directions.
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In this appendix, the equations for the characteristic surfaces

and the corresponding compatibility relations are derived for steady

three-dimensional flow. For a complete discussion of hyperbolic partial

differential equations in three independent variables, refer to Courant

and Hilbert (15). An excellent presentation of the method.of character-

istics for three-dimensional flow is given in zuC'row and Hoffman (16).

2. EQUATIONS OF MOTION

The partial differential equations of motion for steady three-

dimensional flow consist of the three component momentum equations,
z

the continuity equation, and the energy equation. Those equations are
3

developed in Appendix A, and are repeated below for reference.

puux + pvuy + pwuz + Px F 
	

(B.1)

puvx + pvvy + pw v + Py = Fy	 (B•2)

puwX + pvwy + pwwz + Pz = Fz
	 (B.3)

pux + PV  + pwz + upx + spy +'wpz 0

	
(B•4)

upx + vPy + wPz	
a2(up lti 

+ vpy + wpz) 	 Fe	 (B.5)

.c	 d

4
In equations ($.1) to (B.5,), u, v, and w denote the x, y, and z comport- 	 ri

4
ents of velocity, respectively, p is the density, P is the pressure,

a is the sonic speed, and the subscripts x, y,, and Z denote partial	 g

to

	

	 sj
differentiation in the corresponding' direction. The nonhomogeneous

	

terms F F , Fand F are the forcing terms in the x, y, and z com-	 a
x y z	 e

portent momentum equations and the energy equation, respectively. Writ-

ten in this form, with the left-hand sides constituting the prinicpal

t'E	 148
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parts, equations (B.1) to (B.5) may be classified as a system of quasi

linear nonhomogeneous partial differential equations of first order.

The system is hyperbolic (i.e., has real characteristic sdirfaces) if the

flow is supersonic.

k

3. CHARACTERISTIC SURFACES'

4C
The general compatibility relation, which is a linear combination

of the governing partial differential equations, is formed by multiply-

ing equations (B.1) to ($.5) by the arbitrary variables w  (i = l to 5),

respectively, and summing. This yields

w l (P uux + pvuy + Pwuz + Px) + w 2 ( P uvx + Pvvy + Pwvz + Py)

+ w3 (puwx + pvwy + Pwwz + Pz) + w4 (P ux + Pvy + Pwz

+ UP  
+ vpy + wp z ) + W

5 
[UP x + VP  + wPz

a2 (upx + vpy + wp Z )]	 wlFx + w2Fy + m3Fz + w5Fe (B.6)

Equation (B.6) may be written as

P(uwl + W4)ux + Pvwl uy +,pwwl uZ + puw2 vX + P(vw2 + w4) y

+ Pww2vz + puw 3wx + pvW?y + P(ww3 + w4)Wz

i

a
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By noting the coefficients of the partial derivatives in equation

(B.7), the following vectors may be defined.

al = CP(uw l + w4 ), Pvwl , pwwl ]	 (B. 8)

[Puw2, p(vw2 + w4), Pww2 1	 (B.9)

[Puw3 , pvw3' p(WW3 + w4 )]	 (B.10)

[(wI + uw5), (w2 + vw5)9 (w3 + ww5)]	 (B.11)

[u(w4	 a2w5 ), v(w4 - a2w5 ), w(w4
 - a2W5 )]	 (B.12)

it derivative of a function f in some direction

} is given by

Qx ax + y ay + ^z az	
(B.13)

By considering equations (B.8) to (B.13), equation (B.7) may be written

f	 as

du + dv + dw_ + dP + dam wF +wF + wF +wF	 (B.14
dW1	dW2 dW3 dW4 dW5	1 x	 5 e

where du/dWl is the directional derivative of u in the W1 direction,

etc.

`	 On a characteristic surface, equation (B.14) reduces to an interior

operator, that is, differentiation takes place in the surface itself.

For this to occur, the vectors W i (`i=1 to 5) must all lie in 'the

elemental plane which is tangent to the characteristic surface at the

point in consideration. This means that the vectors W. (i=1 to 5) are
i

j	 150
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linearly dependent. Let the normal to the characteristic surface be

denoted by N = (Nx ,Ny ,Nz ).	 Hence, on the characteristic surface

N	 Wi = 0	 (i=l to 5)	 (B.15)

Equation (B.15) yields five linear homogeneous equations which may be

written in matrix form as follows

pU	 0	 0	 pNx	 0	
W 

0	 pU	 0	 PM 	 0	
w2

0	 0	 pU	 pNz 	0	 W3

N 
	

N 
	

N 
	 0	 U	

w4

0	 0	 0	 U	 -a2U	 w5

0	 (B.16)

i

where

U	 uNX + vNy + wNz	(B.17)

J

Since the system given by equation (B.16) is homogeneous, a nontrivial

solution exits only if the coefficient matrix is singular, which means

its determinant must be zero. Evaluating the determinant and equating

it to zero yields	
i

(Pu )
3
 {^2 - a2 ( NX + Ny + NZ )7 = 0	 (B.18)

Equation (B.18) 'is the characteristic equation for the original system

of equations, equations (B.1) to (B.5). The form of equation (B.18)

n	
is that of a repeated linear factor and a quadratic factor.

151
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Equating the two factors in equation (B.18) to zero yields the

equations of two real nonintersecting cones farmed by the envelope of the

charactFFi,stic normals at a point. Setting the linear factor in equation

(B.18) to,zero gives (the case of p = 0 is immediately dismissed)

uNx + A + A = 0
	

(B.19)

k
n

Equation (B.19) represents a degenerate cone formed by the envelope of

characteristic normals at a point, each normal being orthogonal to the

local velocity vector. Hence, equation (8.19) represents a plane

normal to a streamline. The characteristic surface is the reciprocal

cone to this degenerate cone of normals., and, hence, is also degenerate,

consisting of line segments tangent to the streamlines. Characteristic

surfaces with normal_ components satisfying equation (B.19) are called

stream surfaces. The envelope of all stream surfaces at a point is a

single pencil of planes whose axis is a streamline. A streamline may

be represented by the following equations

dx/dt = u	 dy/dt = v	 dz/dt w	 (B.20):

where t is the time of travel of a fluid particle along the streamline.

Equating the quadratic factor in equation (B.18) to zero gives

WNX + A + wN z ) 2 - a2 (N
2
+ Ny + NZ) 0	 (B.21)

Equation (0:21) represents the quadric surface of a right circular cone

formed by the envelope of characteristic normals at a point. In gas

dynamics this cone is usually referred to as the cone of normals, and i
t

{	 is a real cone if q > a, where q is the velocity magnitude. Equation
5

(B.21) may be written as. 	 q
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unx + vny + wnz = a	 (B.22)

where n = (nx ,ny,nZ ) is the unit normal to the characteristic surface.

Equation (B.22) was obtained by arbitrarily selecting the positive root,

	

and the results which follow are consistent with that selection. Char- 	
I

acteristic surfaces whose normal components satisfy equation (B.21),

or equation (B.22), are called wave surfaces.

Equation (B.21) is the equation for the cone of normals, which is

a quadric surface. In general, a quadric surface may be expressed as

Aij dxi dxj	0	 (B.23)

where xi (i=1,2,3) denotes the three cartesian coordinates x, y, and

z, respectively, and A is a nine element coefficient matrix of order

two. A normal vector is a directed line segment, so

N i = a dx i	(i=1,2,3)
	

(B.24)

where Ni is the ith component of the normal vector, and a is a constant

a

	

	 proportional to the length of the normal. By considering equations	 s

(B.23) and (B.24), equation (B.21) may be written as

u. u. - a 2 S. dx.dx.	 0	 B.25

where u i (i=1,2,,3) denotes the three velocity components u_, v, and w,

respectively, and d i a is the Kronecker delta.

E	 *Repeated indices imply summation over the range of 1 to 3 unless other-
E	 t

wise noted.
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surfaces at a point, is the reciprocal cone co Lne cone OT normals

given by equation (B.21), or equation (B.25). The geometrical rela-

tionship between these surfaces is shown in Figure B.I. If the general

form of the equation of the cone of normals is given by equation

(B.23), then the reciprocal cone is given by ( 9)

A^dx i dx^ = 0
	

(B.26)

where A-1 is the inverse of the nine element symmetric matrix A in

equation (B.23). Using equation (B.25) to determine A from which A-1

may be determined, equation (B.26) for the characteristic cone may be

written as

(B.27)

a

Writing equation

2	 22	 2	 2	 2	 2	 2	 2	 2	 2	 2	
s

Cu	 (q _ a )]dx + [v - (q - a )^ dy + [w	 (q - a ,]dz

+ 2uv(dx)(dy ) + 2uw(dx)(dz) + 2vw(dy)(dz) = o	 (B.28)	 $°

The characteristic cone given by equation (B.28) is known as the Mach	 n
Y

cone and represents the envelope of all ware surfaces at a point. The

line of tangency between a partricular wave surface and the Mach cone

is known as a bicharacteristic. Integration of equation (B.28) gives_

r
. the curved cone known as the Mach conoid.

In summary, for steady three-dimensional flow there are two

G
families of characteristic surfaces: stream surfaces and wave surfaces

f,	 r#
f3 	 14
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The characteristic cone,

Cui u
j
 - (q2 - a2)bii]dxidx i	 0

Equation (B.27) represents a real cone if q > a.

(B.27) in expanded form yields

i
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u

(see figure B.2). The normal to a stream surface must satisfy, equation

(B.19), and, hence, the stream surface contains the local velocity

vector. The envelope of all stream surfaces at a point is the streamline

through the point. The normal to a wave surface must satisfy equation

(B.21). The envelope of all wave surfaces at a point is the Mach cone.

The line of contact between a particular wave surface and the Mach cone

is called a bicharacteristic. At any point there are an infinite

number of stream surfaces and wave surfaces.

4. SOLUTION FOR THE wi

On a characteristic surface, equation (B.14) reduces to an interior
^i

operator, that is, it becomes a compatibility relation. To obtain the
}

exact form of the compatibility relation, the w i (i=1 to 5) must be

determined.

For a stream surface, equation (B.19), repeated below, is valid. 	
fs

uNx + vNy + wNZ = U = 0	 (B.19)

Substitution of equation (B.19) into the homogeneous system given by

equation (B.16) yields

0	 0	 0	 pNx	 0	
W 

0	 0	 0	 pNy	 0	 w2

0	 0	 0	 pNZ	 0	 w3 	0	 (B.29)

NNy	 NZ	 0	 0	 w4
0	 0	 0	 0	

0	 w5r

f;

't
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The coefficient matrix in equation (B.29) is rank two (rank is the

number of nonzero rows in the row echelon form of a matrix). The

number of independent nontrivial solutions for the w  is equal to the

order of the coefficient matrix minus its rank, and hence, in this

case, is three. from equation (B.29), w4 = 0 for all solutions, w5

is arbitrary, while w1 3 w2 , w3 satisfy the following equation.

w1Nx + w 2 
N y + w3NZ 0
	

(B.30)

A set of three possible solutions is

W  = w2 = w3 = w4 09	 w5=i
	

(B.31)

W  = u, m2 = v, w3 = w,	 w4 =w5=0
	

(B. 32)

Y

^a

1

wl = Sx , w2 = Sy , w3 = SZ , w4 = w5 = 0	 (B.33)

The vector S	 (Sx ,Sy ,S2 ) in equation (B.33) lies in the stream surface

and is independent of the velocity vector.

On a wave surface, equation (B.21) is valid. That equation may be

written as

0 _ ajNj	 (B.34)

where INj is the magnitude of the normal to the wave surface. Substi—

tutng equation (B.34) into equation (B.16) yields

i

5

S

{
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pa1N1	 0	 0	 pNx	 0 (U

0	 pa ^N^	 0	
pNy	

0 w2

0	 0	 pa	 pNZ	 0 w3 -	 0 (B.35)
i

N 	
NY	 NT 	0	 a N ( w4

0	 0	 0	 aJR1	 -a 3 ^N(	 Lw5
{

r The coefficient matrix in equation (B.35) is rank four, and, hence, one

independent nontrivial solution exists for the w i .	 The solutions for

wl , w2, W
3 3'
	 w5 may be expressed in terms of w 4 .	 Arbitrarily

selecting w4 = -1 yields

W1 = nx/a,	 w2 = n y /a,	 w3 = nZ/a,	 w4

W = -1/a2 (B.36) >
5

1

where n = (n x,ny ,nZ ) is the unit normal to the wave surface.
E

z

5.	 COMPATIBILITY RELATIONS

The compatibility relations are obtained by substituting the

solutions for the w i into equation (B.6).	 The compatibility relations

val id along the stream surfaces are obtained by substituting equations
YY

-(B.31) to (B.33) into equation (B.6). 	 The results are

P

uPx + vPy + wPZ - a2(upx + vpy + wpz ) = Fe (B.37)
E

i

I '.1
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pu (uux + v
uy + wuz ) + Pv(uvx + vvy + wvz ) + pw(uwx + vwy

+ WW Z )+ upx + vPy + wPz uFx + vFy + wFz	(6.38)

pSx(uux + vuy + wu z) + pSy (uvx + vvy+ wvz) + pSz (uwx + vwy

+ wwz) + S x P x + SyPy + S z P z = S x F x + SyFy + SZFz 	 (B.39)

Note that equation (6.37) is the same as equation (B.5), which shows

that the energy equation is characteristic to begin with

Equations (B.37) and (B.38) may be written in a form that repre-

sents differentiation in the streamline direction only. From equation

(B.13), noting that for a streamline Q, x = u, ky v, and k  = w,

the directional derivative along a streamline is given by

{

#	
dd 

_ua—X(- -+vay ^-+ w a 	 (B.40)	
3

where t is the time of travel of a fluid particle along the streamline.

Using equation (B.40), equations (8.37) and (B.38) may be rewritten as

,r

dP _ a2	 - F	

r.

dtdt - 
e	 (B..41)

Pudt + pvdt + P d + dt uF + vF
y + wFz	(B.42)

The compatibility equation that is valid along wave surfaces is r

obtained by substituting equation (B.36) into equation (B.6). The

result is

u	 , 
fJ
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panx (uuX + vuy + wuz ) + pany (uvx + vvy + wvz)

+ pan z(uwx + v~y + wwz ) + (an' OP  + (any - v)Py

+ (anz w)Pz pa2 (ux + vy + wz)  	 (B.43)

where

X = a(nxFx + nY Y + 
nzFz ) - Fe	 (B.44)

Equation (B.43) may he written, in a form that contains differen-

tiation in the bicharacteristic direction. A bicharacteristic is a

ray or generator of the Mach cone. The Mach cone is the reciprocal cone

to the cone of normals (see Figure B.l). As a consequence, a bichar-

acteristic is orthogonal to the surface of the cone of normals. The

equation for the cone of normals is given by equation (B.21). Substi-

tution of equation (B.24) into equation (B.21) yields the equation for

the surface of the cone of normals in standard form [f(x,y,z) = constant].

f

¢ Differentiation of this expression to obtain the gradient yields the

direction of the bicharacteristic. This gives Qx = (u - anx),

y = (v - any ), and Qz = (w - anZ) in equation	 (B.13), so that differ-
)

E
t

entiation in the bicharacteristic direction is given by

G

d(
	 = (u - an 	 aX=)- + (v - any) a

	
+ (w - an (B.45)

az^	
(B.45)

In equation (B.45), t is the time of travel of a fluid particle ,along
s

the streamline that is the axis of the Mach cone.	 The relationship be- 1'
;.

tween-the vectors,, V, and n is shown in Figure B.3.
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{pa2[nXux + ny y + n2wZ+ 	 ( uy + v„)n xny + 
(uZ + wx)nxnz

+ 
(vZ 

+ y'MynZ]}

may be added to and subtracted from equation (B.43), and then by employ-

ing equation (B.45) the following foYm of the wave surface compati-

bility relation may be obtained.

du	 dv	 dw	 dig 2	 2
panx 

A + pany dt + panz dt - dt a _ pa [(nx - 1)ux

+ (ny - l)vy + (n2 _ 1)wz + nxny (uy + vx) + nxnZ ( uZ + wx)

+ nynZ (vZ + wy)J
	

(B.46)

E
The terms in brackets in equation (B.46) are known as cross derivatives

`	 and represent differentiation in the wave surface in a direction normal

F	 to the bicharacteristic direction.

i

	

	 Equations (B.29) and (B.35) determine the number of independent

differential compatibility relations valid along a particular stream

surface and a particular wave surface, respectively. At any point

there exist an infinite number of stream surfaces and wave surfaces

-However, the number of independent compatibility relations cannot exceed

the number of independent equations of motion. Hence_, it is necessary

to determine which of the possible combinations of compatibility rela-

tions are independent. Rusanov (6 ), using a proof in the space of

E.
characteristic normals, has shown that for steady three-dimensional

isentropic flow two of the stream surface compatibility relations and

163



the single wave surface compatibility relation applied along three

different wave surfaces form an independent set of characteristic

equations. Rusanov's results may be extended to the present problem

since the principal parts of equations (B.1) to (B.5) are the same as

those for isentropic flow. Thus, for the present problem, an inde-

pendent set of compatibility equations consists of equations (B.41)

and (B.42) applied along a streamline, and equation (B.43) [or equa-

tion (B.46)] applied along three different wave surfaces.

6. BUTLER'S PARAMETERIZATION OF THE CHARACTERISTIC EQUATIONS

The numerical algorithm that is employed in the present investiga-

tion is based on a second-order scheme devised by D.S. Butler (7).

This scheme has been used by Ransom, Hoffman, and Thompson ( 9) to

compute isentropic steady three-dimensional nozzle flows, and by Cline ,I

a

and Hoffman (17) to compute chemically-reacting steady three-dimensional

nozzle flows.

4

fA

In this section, Butler's parameterization of the characteristic

equations is presented. The discussion below is limited to the partic-

ular application of Butler's method to the present problem. An excel-

lent review of Butler's general method is given in Ransom, Hoffman, and 	
a

Thompson ( D)

For Butler's scheme to be applicable, the characteristic determin-

ant must be composed of a quadratic factor and a repeated linear factor.

The determinant of the coefficient matrix in equation (B.16) is the 	 i

characteristic determinant for the present problem, and'hy examination'

of equation (B.18) it is seen that it is composed of the required 	 -

factors The quadratic factor corresponds to the wave surfaces. The	 p
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f	 t

envelope of all wave surfaces at a point i;s the Mach cone. The line of

tangency between a particular wave surface and the Mach cone is a bi-

characteristic. The linear factor corresponds to the stream surfaces.

The axis of the envelope of all stream surfaces at a point is a

c	 streamline. Butler's method assumes that for the linear factor,

differentiation can be expressed soley along the axis of the envelope

of the corresponding characteristic surfaces. Examination of equations

(B.41) and (B.42) demonstrates that this condition is applicable.

As discussed in the first section of this appendix, if the system

of governing partial differential equations has differentiation oc-

curring in n-space, then differentiation in the characteristic surfaces
r

occurs in {n-l)-space (.e., differentiation is performed in a mani

.:	 fold of one lower dimension). As a result, for three-dimensional flow

t

	

	
(n=3), the general form of a compatibility relation valid along a

characteristic surface may be written as

E (au /ax') + r (8u /9x 	 p	 (B.47)

.1

l

V v 1	 v v 2

d
where the repeated index v implies summation over the range of 1 to 5,

x i (i=1,2) denotes two independent directions in the characteristic

surface, uv (v=1 to 5) denotes the dependent variables, and Ev,

IV
 (v=1 to 5), and D -are -general functions of xi and u V

. For stream

surfaces, differentiation may be expressed solely in the 'streamline 	
Y

direction [see equations (6.41) and (B.42)]. Consequently, in the
a	 -

following, the discussion will be limited to the wave surfaces.

For steady three-dimensional flow, Butler introduced the following

parametric representation for a bicharacteristic.

w	 165
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'	
t

{

dxi	 (u i + cai cose + a sin6)dt	 (i =1,2,3)	 (B.48)

In equation (B.48), x i (i=1,2,3) denotes the three cartesian coordinates

X, y, and z, respectively, ui (i=1,2,3) denotes the corresponding

velocity components u, v, and w, respectively, 6 is a parametric angle
F

denoting a particular element of the Mach cone and has the range

0 < e < 27r, t is the time of travel of a fluid particle along the

streamline that is the axisof the Mach cone, and c is defined by

c2 = a2g2/( q2 - a2)	 ($.49)

where q is the velocity magnitude and a is the sonic speed. 	 The vec-

tors ai and B i are parametric unit vectors with a i , B i , and

u i /q (i=1,2,3) forming an orthonormal set.	 A geometrical representation

of this parameterization is given in Figure B.4.1

The direction specified by equation (B.48) lies in the wave surface i

!	 and	 is	 in the bicharacteristic direction. 	 A direction in the wave

surface and orthogonal to the bicharacteristic direction may be written
7

in parametric form as
^s

mi = cBicosB - cai sin6	 (i=1,2,3.)	 (B.50)

Verification of the orthogonality of the directions given by equations

(B.48) and (B.50) may be accomplished by forming the dot product

(midxi) and using the orthonormality relations-

l y

166
i

(t



BID

I

r = C

z
¢	 t

1

r

t

r

C



ORIGINAL PAGE IS
OF POOR QUALITY

'g7

F

u ia i - ui B = ai Bi = 0i
(B. 51)	

a,

alai = Bi Bi = ui ui /q2	1

By considering equation (B.47) and selectin,

directions given by equations (B.48) and (B.50),

following form of the wave surface compatibility

8 uv

Av (u i + cai cose + 0 sine) 8x.
i

3 xi and x2 as the

-respectively, the

relation is obtained.

8u

B + Cv (o cose - caisine) 
8xv	

(B. 52)
i

In equation (B.52), Av , B, and 
C. 

are functions of 8, uv , and xi.

Employing equation (B.13), and noting from equation (B.48) that along a

bicharacteristic

Qi = u  + cai cose + 0 i sine	 (i=1,2,3)	 (B.53)

equation (B.52) may be written as

au
Av 

d,	
B + C^(Cs.cose	 cai sine)	 v	 (B'•54)

8xi

where the operator d( )/dk represents the directional derivative along

the bicharacteristic. The general forms of the coefficients Av, B,

and C
V 

are given by _Butler as

Av AN + A2vcos6 + A3vsine	 (B.55)

tr

B = B
1 
+ B2cose_+ B3sine	 (B.56)
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C = Civ + C 2 cosa + C a) sine	 (B.57)

where the Akv , Bk , and 
Ckv 

(k=1,2,3 and v=1 to 5) are independent of e.

In addition to the parametric wave surface compatibility relation,

given by equation (B.54), Butler also developed a noncharacteristic

relation which is applied along a streamline. This noncharacteristic

relation is used in the numerical scheme in conjunction with the wave
p

surface compatibility relation applied along four different bichar-
x

acteristics, and permits the formulation of three independent linear

combinations of these five equations which do not contain cross deriva-

tives at the solution point. The cross derivative terms [see equation

(B..46)] represent differentiation in the wave surface but in a direc-

tion orthogonal to the bicharacteristic direction [i.e., differentia-

tion in the direction given by equation (B.50)]. Butler presents the

noncharacteristic relation in the form 	
s

A 
duv	

a u

	

= B + (C co	 i- C ca ) y	(B.58)

	

i	
`

lvdl	 1	 2v	 3v 	 axi

where the operator d( )/dA represents the directional derivative along

the streamline. The coefficients Alv' Bi' C2v, and C 3 (v=1 to 5) in

equation (B.58) are obtained by inspecting the form of equation (B.54)

and then using equations (B.55), (B.56), and (B.57).

For the present problem, the actual form of the parametric wave

surface compatibility relation, equation (B.54), may be obtained by

substituting the appropriate parametric form of the wave surface unit

normal into the compatibility relation, equation (B.43). The normal

to the wave surface is also the normal to the Mach cone at a point	 i

common to both surfaces. The quadric surface of the Mach cone is 	 -
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represented by equation (B.27), repeated below.

[ui uj - (q2	 a2)6ij]dxidxi 
:2

	
a	

(B.27)

Substituting the parametric form for dxj , given by equation (B.48),

into equation (B.27) yields

[u i ui --- (q2 - a2 ) 6ii INi + cai cose + caisine)dx i = 0 (B.59)

The ith component of the normal Ni to this surface is

N	 7

N i	 [uiuj - (42
 - a2)6ij7(uj + cajcose

+ Cs sine)	 (i=1,2,3) (B.60)

s

Employing the orthonormality conditions given by equation (B.51), equa-

i
tion (B.60) may be written as

N	 a2 [u. - (q2/c)(a i cose + S i sine)]	 (i=1,2,3) (B.61)

Dividing equation (B.61) by the magnitude of the normalN

T (NiNi)1/2 and using equation (B.51), the parametric form of the wave

surface unit normal is obtained.

n i = (a/c)(cu /q2 - ai cose - ai sine)	 (i=1,2,3) (B.62) 

Substituting equation (B.62) and the orthonormality relation

<< aidj + BiBj + uiuj/q2 = 6ij (B.63)

into the wave surface compatibility relation, equation (B.43), gives

the following parametric form of that equation

170
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t

du.dP	
PC	 PC+ Sisine)dtl =	 - pc2(aisinedt + `.

au.
- B i cose)(aisine - sicose) ax' (8.64)

J

where
t

2	 2
_ - (c /a )a (B.65)

The operator d( )/dt in equation (B.64) denotes differentiation in the

bicharacteristic direction.

It should be noted that the direct yional derivatives in equations

(B.46) and (B.64) are not identical.	 The directional derivative in

equation (B.46) is based on equation (6,45).	 Substitution of the

parametric unit normal, given by equation (B.62), into equation (B.45)

yields

5

dd = (a2/c2)(u: + Ca.cose + c6sine)9 ( (B.66)
 axei	 i

The directional derivative in equation (B.64) is given by

k

d" = (u i + Cai cose + Ca si'ne)a ( (B.67)

4

Hence, the two expressions differ by the factor (a2/c2).

Finally, it remains to determine the actual form of the nonchar-

acteristic relation, equation (B.58).	 Denote uv (v=1 to 5) and

xi	 (i
=1,2,3) in equations (B.54) and (B.58) by

r
6

U, = u,	 u2	 v,	u3 = W,	 u4 _ P S 	u5 	 P

p

w x1 = x,	 x2 = y,	 x3 = z (B.68)

EF
e
6
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By inspection of equation (B.64), and use of equations (B.68), (B.55),

(B.56), and (B.57), the noncharacteristic relation is seen to be

au.
dt : a_ pct(a

iaj + 
	 (B.69)

J

where

Cr = ( c2/a2 ) F
e - (c2/g2 )(uFx + vFy + wFZ )	 (B.70)

.`	 The operator d( )/dt in equation (B.69) denotes the directional deriva-

tive along a streamline.

I

t	
In summary, Butler has developed a bicharacteristic parameteriza-

tion given by equation (B.48). 	 The corresponding parametric form of

the wave surface compatibility relation is given by equation (B.64).

Butler also developed a noncharacteri tic relation, given by equation

(B.69), which is applied along a streamline.	 These relations, along

with the stream surface compatibility relations, equations (B.41) 	 3

and (B.42), constitute the system of compatibility relations. 	 The use	 i
,t

of this system of equations in the various unit processes is presented

in Appendix E.

f

r	 y	 ^

f

i
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APPENDIX C

INTERPOLATION

1. INTRODUCTION

In the course of computing the flow field, a number of situations

arise which require. i nLerpol ati on. To this end, uni vari ate, bi vari ate,

and trivariate interpolation polynomials are employed in the numerical

algorithm. These interpolation schemes are presented in this appendix.

UNIVARIATE INTERPOLATION

Univariate interpolation is required in geometry description,

calculation of the transport forcing terms, and in determination of the 	 x

properties along a space curve formed by the locus of shock wave solu-

tion points. Applications to geometry description and transport term

computation are discussed in Appendices D and F, respectively. The

application to the determination of properties along a shock wave is

discussed here,	 a

When a shock wave intersects either a solid boundary or a solution 	 s
ir

plane (a plane of constant x), a space curve is defined as illustrated

in Figure C.l. Interpolated values of position, shock _wave angle, and 	 e

flow properties are required along this curve. For this purpose, the
1

C

;-	 a	 quadratic polynomial

j	 f(8) =a +a6+aE2
1	 2	 3	

(C.1)
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r

is employed, where f(8) denotes a. general function expressed in terms

of the polar angle 6 given by

s	 tan-1 (z/Y)
	

(C.2)

where y and z are the coordinates of a point on the space curve. The

	

coefficients a; (i=1,2,3) in equation (C.1) are determined by fitting 	
]j

this expression to three data points on the space curve, and, as a

consequence, a system of three simultaneous linear equations must be

solved for the coefficients a i of each function representation. The

solution to this system of equations is obtained using a Gaussian

elimination method with complete pivoting (16).

Figure C.1 illustrates typical data point stencils used for de-
k

19

termining coefficients in equation (C.1).	 The fit point array con-

sists of a base point, which is the point closest to the position of

the interpolated point, and the immediate neighbors of the base point.

a

a
^	 3.	 BIVARIATE LNTERPOLATION r

Bivariate interpolation is required for property determination in
v^

a given solution plane (a plane of constant.x).	 Two types of bivariate

s	 interpolation polynomials are employed in the numerical algorithm.

They are a linear bivariate polynomial whose three coefficients are
1

determined by fitting this expression to three data points, and a

quadratic bivariate polynomial whose six coefficients are determined

i
by a least squares fitting of nine data points.

-	 The linear bivariate polynomial is used in the single appli-

cation when a streamline-shock wave intersection point is sufficiently 3

close to the current solution plane so that an interior point unit

175
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(C.3)f(y,z) = a l + a 2y + a 3 z

process on the downstream side of the shock wave is not performed.

In that case the projection of the streamline onto the solution plane

and subsequent property interpolation in this plane is performed. The

bivariate interpolation polynomial used in '.his case is

where f(y,z) denotes a general function ! of the coordinates y and z.

The coeffficients a  (i=1,2,3) in equation (C.3) are determined by

fitting this expression to three data points. This yields ,a system

of three simultaneous linear equations for the coefficients a  of each

function representation. This system of equations is solved using a

Gaussian elimination method with complete pivoting [as was done for

equation (C.1)].

A typical data point stencil used for determining the coefficients

in equation (C.3) is illustrated in Figure C.2. Two shock wave solu-

tion points and a field point constitute the fit point array.

In all other situations which require b'ivariate interpolation, the

quadratic polynomial

f (y , z) = al + a
2y + a 3 + a4yz + a5y2 + a 6 z 

2
	 (C.4)

is employed, where f(y,z) is a general function of the coordinates y

and z. The coefficients a  0=1 to 6)

by a least squares fit of mine points.

least squares (18),, the system of norm

the coefficients in equation (C.4) is

in equation (C.4) are determined

Using the standard theory of

al equations which determines°

l
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y

9a l +	 y i a2 + I z i a3 + F yi z i a4 +	 yja5 + I z^a6 =	 fi 	 (C.5)

yial + I yia2 +'^ yi z i a 3 '+ Y z i a4 +	 y3
 
a5

+	 y i z?a6 =	 yi fi (C.6)

Za	 + ^	 za	 + ^ z?a	 +i	
1	

y
i2	 i 3

^ y z?a
ii4

+ ^ yZ Z 
i	 i	 5

^{

+	 z^a6 =	 z i fi (C.7)

y i z.a 
+ I y?z a + I y.z2a + y?z 2a + y3z a^1	 i#2	 ^i3	 ii4	 i i 5	 }t.

+ yi zia6 	yizifi	 (C.8)

y a l + y^a2 + yiz i a 3 + yiz i a4 + y4a 5 	iI

+ ^ yz a6 = yifi	(C.9)

Zia 1 + J yi z2a2 + zi a3 + yi z i a4 + yi zi a5

+ Y z4a6 =	 z2f.
	

(C.10)

rt,
In equations (C.,5) to (C.10), the	 sign implies summation over the

range of 1 to '9, whi le the subscript i denotes the ith data point

0=1 to 9). This system of simultaneous linear equations has a sym-

metric coefficient matrix and is solved using a Gaussian elimination

-method with pivoting in the main diagonal'.	 k

Figure C.3 illustrates typical data point stencils used in de -

termining the coefficients in equation (C.4). Basically, there are two

z
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x

h
L

types of stencils:	 interior point and boundary point. 	 Since the

shock wave mathematically represents a discontinuity, the boundary

point stencil must be employed when the interpolation base point (the

data point closest to the interpolated point) is on the shock wave.

The fit point array consists of the base point and its eight immediate

neighbors.	 Special logic in the computer program is used to insure4
that no stencil bridges the shock wave.

4.	 TRIVARIATE INTERPOLATION

Trivariate interpolation is required for property determination

on the surface of a solid boundary (a stream surface) and for property

determination on the upstream and dbWnstream sides of the shockwave.

Two types of trivariate interpolation polynomials are employed in the

numerical algorithm. 	 They are a linear trivariate polynomial whose

four coefficients are determined by fitting this expression to four

data points, and a quadratic tri variate polynomial whose eight coef-

ficients are determined by a least squares fitting of fourteen data

points.

The linear trivariate polynomial is used in the single applica-

tion for property determination on the upstream side of the shock wave

surface.	 This polynomial has the form

f(x,y ,z) = a 1	 2+ a x+ a3y
	 4
+ a z	 (C.11)

where f(x,y,z) is a general function of the coordinates x, y, and z.

The coefficients a i	 (i=1,2,3,4) in equation (C.11) are determined by

fitting this expression to four data points. 	 Hence, a system of four

r
simultaneous linear equations must be solved for the coefficient a.i
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of each function representation. This system of equations is solved

using a Gaussian elimination method with complete pivoting [as was

done for equations (C.1) and (C.3)].

A typical data point stencil used for determining the coefficients

in equation (C.11) is illustrated in Figure CA. Three data points

are located on one space curve and one data point is located on the

other space curve.

In all other situations which require trivariate interpolation,

the quadratic polynomial

f(x,y ,z) = a l + a2y + a 3 z + a4yz + a5y2 + 
a 
6 
z 2

+ a
7
xy + a8xz	 (C.12)

is employed, where f(x,y,z) is a general fu ction dependent on the

coordinates x, y, and z. The coefficients a. (i=1 to 8) in equation
t

(C.1'2) are determined by a least squares fit of fourteen data points.
F

a	 From the theory of least squares, the system of normal eq uationst	 ^;	 y	 4	 ^	 Y	 q 
r

which determines the coefficients in equation (C.12) is

1	 i 2 	 ^3	 ii4	 i 5 	 ifi14a	 +	 y.a	 +	 z.a	 +	 y.z.a	 +	 y2a	 +	 z?a	 '.

xyi a^ +	 x^z^a8 	 fi	(C.13)

^y.a	 +^y2a	 +y.z a 	+y?za	 +y3a	 +^y.za
i1	 i2	 iii	 ^4	 ^5	 ii6

r'

k`
+	 x 7yia

7
 +	 xiyi zia8	 yifi	 (C.14)

t
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zi a l + yizia2 + zia3
 + yizia4 + Yizi aS + I za6

+ I xiyi z i a7 + I x i zia 8 =	 z i fi	 (C.15)

yizial + X yizia2 +'X Yi zia3 + Y i zia4 + Yizia5

yial + X y a? + X Yiz i a3 + X Y z i a4 + Y4a5 + Yi z a6

+ I x iy a 7 + X x iyiz i a8 = yifi
	

(C.17)

Z i a, + X y i'ia2 + I Zia 3 + I yi zia4 + I yizia 5 + I Zia6

t

t^

f

fp
F

+ Y Yi z ia6 + Y xiyizi a7
 + Y xiyizia8 = y

i z i fi	 (C.16)

+ I xiyizia7 + I xi zia8 = z2 f.	 (C.18)

xiYial + I xiYia2 + I x
iy i z i a 3 + ^ xiyi Z i a 4 + I xiyia5

+ X xiyi za6 + I xiyia7 + 1 xiyi zi a8 = xiyifi	 (C.19)

x
i 
Z i a l + Y xiyizia2 + I xi zia3 + xiyizia4 + I xiyizia5

x	 ^

}

+	 xz3a
ii6

+	 x2y.;z.a	 +	 x z2 	 =	 x.z.f.
i	 7	 ^1aii8

(C.20)
p

i
In equations	 (C.13) to (C.20), the	 sign implies summation over the

range of 1 to 14, while the subscript `i denotes the ith data—
poin±

^ T

(i=1 to 14).	 This system of simultaneous linear equations has a sym-

metric coefficient matrix and is solved using a Gaussian elimination

}

F method with pivoting i,n the main diagonal [as was done for equation

` 183
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Figure C.5 illustrates typical data point stencils used in deter-

mining the coefficients in equation (C.12). The fit point array

consists of seven data points along each of the appropriate space

curves on either the shock wave or the solid boundary.
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APPENDIX D

SURFACE REPRESENTATIONS, AND STREAMLINE AND

e
BICHARACTERISTIC-SURFACE INTERSECTIONS

1. INTRODUCTION

The procedures employed for representing the solid boundary and

shock wave surfaces are presented in this appendix. The technique used 	 =1

for determining the intersection point of either a streamline with the

shock wave, or a bicharacteristic with either the shock wave or the

solid boundary, is also discussed.
	 F

2. SOLID BOUNDARY SURFACES

The centerbody and cowl surfaces are specified in thecomputer

program by a separate geometry module that has the capability f:) de-	 k

scribe a variety of axisymmetric contours. More arbitrary geometries,

such as those having elliptical or superelliptical cross sections, may

be considered by supplying an appropriate replacement module. In

general, to specify a surface completely, its functional form

[f(x,y,z) = constant] and its gradient at any point [o f(x,y,z)] must

be available.

The existing geometry module, which describes axisymmetric con- 	 l

tours, divides the axial (x) domain into a number of intervals. In aR,

interval, the body radius may be specified by either tabular input,

or by supplying the coefficients in a cubic polynomial written as a
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function of x. for the tabular input case, linear interpolation is

performed to obtain the radius r(x) between the points (xi ,ri ) and

(xi+l ,ri+l ) where (x i < x < xi+l). Alternatively, employing the

cubic polynomial

r(x)	 a  + bi (`x - x i ) + c i ( x 	 xi ) 2 + d i (x - xi)3

(xi < x < x
i +l )
	

(D.1)

requires that the coefficients a i , bi , ci , and d i be supplied for the

ith interval (these coefficients must be externally generated). Since

equation (D.1) is a cubic, slope and curvature can be matched at the

junction point between two adjacent intervals (i.e., spline fits can

be employed).

3. SHOCK WAVE SURFACE

Some of the unit processes, which are described in Appendix E,

require an analytical representation for the shock wave surface.

During the course of the program development, a number of different

representations were devised, including the fitting of both planar

surfaces and quadric surfaces to locally approximate the shock wave

surface. The quadric surface formulation displayed a tendency to

produce a (local) surface with undulations. The planar surface

representation did not exhibit this effect, and, for fine mesh spacings,

produced results essentially the same as the representation that was

ultimately selected for use in the numerical algorithm. However,	 a

the accuracy of the planar surface representation suffered at coarse

mesh spacings. The shock wave surface formulation that was selected	
j

for use in the algorithm is presented below,
i 8 t"



7.	 -------

The shock wave surface is represented as a family of straight

lines between two space curves, as illustrated in Figure D.I. The

space curves represent either the intersection of the shock wave with

a solution plane (which is a plane of constant x), or the intersec-

tion of the shock wave with a solid boundary (i.e., an interpTanar

ring of shock wave solution points), Each space curve is represented

by the two quadratic expressions

r i (a) = a i + b i e + c i e 2
	

(i=1,2)	 (D.2)

xi(0) = d i + e i 0 + f i 0 2
	

(i=1,2)	 (D.3)

where r 
i 
is the radius of a point on space curve i (i =1,2), xi is the

corresponding axial position of a point on space curve i, and 0 is the

polar angle given by

tan (z /Y)	 (D.4)

where y and z are the coordinates of a point on the space curve. In equa-

tions (D.2) and (D.3), the coefficients a 
i 

to f 
i 

(i=1,2) are determined

by fitting these expressions to three known points on each space

curve as described in Appendix C. When the space curve lies in a

solution plane, x of course has no e dependency.

Once equations (D.2) and (D.3) are determined for the two space

curves, the shock wave surface is represented as an infinite family of

straight lines between the two space curves, where each straight line

falls in a meridional plane (i.e., a plane of constant e). Conse-

quently, for a given value of e and x, the shock wave surface is

represented by the linear interpolation formula
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u-

189 

x

n
t



(x - x (a })	 (x - x (e })
rx'6) _ .l 8 

_2x2 
6 -^- r^ (D)	 X2 8 _1 xl 6	

r2 (0) (D• 5 )

In equation (D.5), r(x,e) is the shock wave radius at axial position x

and polar angle e, r (©) and x (e) are given b+° equations (D.2) and
1	 1

(D.3), respectively, for one of the space curves, and r 2 (a) and x2(e)

are given by equations (D.2) and (D.3), respectively, for the other

space curve (see Figure D.1). A strong point of this representation

is that a smooth (local) surface is produced because linear interpola-

tion is performed for the shock wave radius in a meridional pane,

while transverse curvature information is introduced through equations

(D,2,) and (D.3)..

4. STREAMLINE- AND BICHARACTERISTIC-SURFACE INTERSECTIONS

A number of unit processes require determining the intersection

point of either a streamline with the shock wave, or a bicharacteristic 	 A

with either the shock wave or a solid boundary. The technique used

is the same for all cases.and is presented below.

r
A streamline or bicharacteristic may be represented by the equa-

tion

r

dx i = P i dt	 (i=1,2,3)	 (D.6)

F

where x
i 

(i =1,2,3) denotes the three cartesian coordinates x, y, and z,

respectively, and t is a_ parameter proportional to the length of the

streamline or bicharacteristic. For a streamline, the parameter r in

k,	 equation (D.'6) is given by

g	 190
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r  = u 	 (i=1,2,3)
	

(D.7)

where 
u  

(i=1,2,3) denotes the velocity components u, v, and w,

respectively. For a bicharacteristic, 
r  

is given by

r  = u  + cai coso + ca i sino	 (i=1,2,3)
	

(D.8)

where ai l 6 i , ^, and c are the parameters employed in Butler's

parameterization of the Mach ,;one (24), which is discussed in Appendix B.

Using equation (D.6), the following equation may be written.

dx/r l = dy/r 2 = dz/r 3	(D.9)

Solving equation (D.9) simultaneously, the linear expressions

y = Wy k - (r2
/r 1

)xkI + (r2/r l )x	 (D.lo)

M

Z	
[zk - (r

3/r
1
)xk I + (r 3/r

1
)x 	 (D.11)

may be obtained, where x k , yk , and zk are the coordinates of a known

r

	

	 point on the streamline or bicharacteristic, while x, y, and z repre-

sent the coordinates of the point of intersection of the streamline

or bicharacteristic with a surface (see Figure D.2)-.

An iterative procedure is employed to determine the coordinates

x, 'y, and z. First, the values of r i (i=1,2,3) are evaluated at the

known point. Then, a trial value is assumed for the axial coordinate i

x. From equations (D.10) and (D.11), the corresponding coordinates y

and z may be obtained Then, the radius r * _ (y
2 + z2 )1/2 and the

polar angle _e = tan- 1 (z/y) of the assumed intersection point may be

computed. From the assumed value for x and the calculated value for 6,
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the body radius r [determined from the tabular wall data or equation

r	 (D.1)] or the shock wave radius r 	 by equation (D.5)] may be	 F'

obtained. The difference between r* and r 	 reduced to within a
t6

specified tolerance by employing a numerical relaxation technique 	 a
t	 a

(secant method) which iterates on x. Once convergence has been ob-

tained, the values of r i at the intersection point are computed using

the trivariate interpolation method discussed in Appendix C. Appropri-

ate averages of the values of r  at the known point and the intersec-

tion point are then formed, and the entire process is repeated until

overall convergence is obtained.

It should be noted that it is possible to use 8, instead of x,
a

as the variable upon which the iterative scheme is based. The resulting 	
j

formulation, however, is singular when the streamline or bicharacter

istic lies in a meridional plane.

^y

:i

t
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APPENDIX E

SUPERSONIC CORE FLOW UNIT PROCESSES

1. INTRODUCTION

Computation of the flora field requires that a variety of unit

processes be employed. These subalgorithms may be classified into four

major types: interior point,,solid boundary point, field-shock wave

point, and body-shock wave point. Computation of the external flow

field about the forebody portion of the centerbody requires using the

basic versions of the first three aforementioned ;algorithms. Computa-

tion of the internal flow field, with its attendant reflected shock
	

:t

wave system, requires using the basic interior point and solid boundary

point algorithms plus modified versions of these routines, as well as

the other unit processes. All of the unit processes are presented i_n

this appendix.

2. SUMMARY OF THE CHARACTERISTIC EQUATIONS

The equations for the characteristic surfaces and the compatibility

equations valid along these surfaces are developed in Appendix B. A

summary of the pertinent results is given below.

For steady three-dimensional supersonic flow, compatibility equa-

tions may be written which are valid when applied along either stream-



dxi = u  dt	 (i=1,2,3)	 (E.1)

where xi (i=1,2,3) denotes the three Cartesian coordinates x, y, and

z, respectively, u  (i=1,2,3) denotes the corresponding velocity com-

ponents u, v, and w, respectively, and t is the time of travel of a

fluid particle along the streamline. The compatibility equations valid

along a streamline are given by

dP
dt a 

2 d - Fe	 (E•2)

dP + 
pu 

dui = UF.	 (E,3)
it	 i dt	 i -i

where P denotes the pressure, p is the density, a is the sonic speed,

F  (i=1,2,3) denotes the transport forcing terms in the x, y, and _z

component momentum equations, respectively, and 
F  

is the transport

forcing term in the energy equation. The operator d( )/dt in equa-

tions (E.2) and (E.3) represents differentiation in the streamline

direction. The forcing terms F  and Fe are defined by equations (A.6)

and (A.27), respectively.
a

A bicharacteristic, which is a ray or generator of the Mach cone,

is represented by

9

Ox 	 (ui + Ca Cosa+ 0 sine)dt	 (i=1,2,3)	 (E.4)
i

where a is a parametric angle denoting a particular element of the Mach

none and has the range 6 < e < 27r, t is the time of travel of a fluid

*Repeated indices imply summation over the range of 1 to 3unless other-
wise noted.
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particle along ttie streamline that is the axis of the Mach cone, and c

is defined by

c2 = g2a2/(q2 _ a2 )	 (E.5)

where q is the velocity magnitude. The vectors a  and 
i 

in equation

(E.4) are parametric unit vectors with ai , R i , and ui /q (i=1,2,3)

forming an orthonormal seta The compatibility equation valid along a

bicharacteristic is given by

du

dt + pc (ai cos6 + 0 sin8)dt^, = (Dpct (ct.s ine

3u.

- S ; cose)(a^sine- g^cose) ax	(E.6)

In equation (E.6), the operator d( )/dt represents differentiation in

the bicharacteristic direction, and the parameter 0 is given by

(
c2/a2)(Fe 	 an i F i )	 (f.7)

where n i is the ith component of the wave surface unit normal and is

given by
r

ni = ( a/c)(cu i
/q2

 - ai cos8	 ^ i sin8)	 (i'=1,2,3)	 (E.8)

In addition to the above relations, the following noncharacteristic

relation is applied along a streamline

au.
it

dt = a - pc2 (a.a. + 5i ^i ) ax^ 	(E.9)
d t	 i J	 ^ J	 J	

^aF

where the operator d( )/dt represents differentiation in the streamline

direction, and thelparameter a is given by
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Cr = (c2/a2 )Fe - (
c2/g2 )(ui F i )

	
(E.10)

Equations (E.1) to (E.10) form the basis of the numerical inte-

gration method.

3. GENERAL COMMENTS CONCERNING THE UNIT PROCESSES

An inverse marching scheme is employed in the numerical algorithm.

The solution is obtained on space-like planes of constant x, with the

x-axis being the longitudinal axis of the centerbody and cowl. for the

internal flow field, the solution is also obtained on the space curves

which represent the intersection of the internal shock wave with the

solid boundaries. These space curves are defined by the locus of shock

wave solution points.

Except in the vicinity of a shock wave-solid boundary intersec-

tion, the distance between successive solution planes is determined

by the application of the Courant-Friedrichs-Lewy (CFL) stability

criterion, which is presented in Appendix K. The axial step in the

vicinity of a shock wave-solid boundary intersection is controlled by

special constraints which are also di scussed in Appendix K

Each of the unit processes is presented below. In general, a unit

process is divided into a predictor step and a number of enusing cor-

rector steps. In most cases, a unit process employs an outer iterative

,r	 loop for determination of the flow properties at the solution point,

and an inner iterative loop (or loops) for location of bicharacteri'stic-

initial-value plane intersection points, etc. The terms "inner" and

"outer" are used in this context in the following discussions.

^	 197
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4.	 INTERIOR POINT UNIT PROCESS

Figure E.1 is a depiction of the computational network used in the u

determination of the solution for a typical interior point. 	 Points (1)

to (5) are located on the initial°-value plane which is a plane of

constant x on which the solution is known.	 Points (1) to (4) represent

the intersection points of four rearward-running bicharacteristics with

the initial-value plane, and point (5) is the intersection point of the

streamline with this plane. 	 Point (6) is the interior solution point,

which is located at the intersection of the forward projection of the

{

rt

streamline with the solution plane. 	 The axial	 (x) distance between

the initial-value plane and the solution plane is determined by either

the application of the CFL stability criterion, or, in the vicinity

of a shock wave-solid boundary intersection, by the special constraints

discussed in Appendix K.

Interpolated values of the three velocity components u, v, and w,

the pressure P, and the density p are required at the bicharacteristi,c-
^	 1

initial-value plane intersection points, points 	 (1) to (4) i'n Figure

E.l.	 For this purpose, the following bivariate interpolation poly-

nomial is employed 9

2	 2
f(y,z) = al + a2y + a 

3 
z + a4yz + a 5	 + a 6 z	 (E.11) ,f

)
where f(y,z) denotes a general function of the coordinates y and z. J

The coefficients ai
	
0=1 to 6) in equation (E.11) are determined by a t

S
least squares fit of nine data points in°the initial-value plane

c	 [point (5) and its eight immediate field point neighbors]. The detailed
v

implementation of equation '(E.11) is discussed in Appendix C.

s	
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ii

In addition to using interpolated values for the flow properties
tt

at points (1) to (4) in Figure E.1, interpolated values are also employ-
!

a	 ed at point (5) , the streamline base point, even though this is a field'

solution point. As shown by Ranson, et al. (9), this interpolation

is required to produce a stable numerical scheme.

`

	

	 The interior point unit process is initiated by locating the

solution point, point (6). This is accomplished by extending the

streamline forward from point (5) to intersect the solution plane.

The coordinates of point (6) are obtained using the following finite

`	 difference form of equation (E.1).

x
i
 (6) - x

i (5) = 2 u i ( 5 ) + ui(6)][t(6) - t (5)]	 (i=1,2,3) (E.12)

In applying equation (E.12) for the predictor (first outer iteration),

ui(6) is equated to ui (5) whereas, for the corrector (ensuing outer
	 a

!
iteration)-, the previously obtained value of ui(6) is used,

Equation (E.12) is first applied for i=1 (i.e., the x-coordinate

direction). The axial step [x(6)	 x(5)] is determined prior to the

ri	 application of the unit process. Hence, the time parameter [t(6) -	
+r
+}1

	
t(5)] may be obtained. Then, equation (E.12) is applied for i =2 and

	 N!

i= 3 to determine y(6) and z(6).
	 `l

At this point, four bicharacteristics are extended backward from

the solution point to intersect the initial-value plane. This is

accomplished by applying the following finite difference form of

equation (E.4).

P

1
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E.

xi (6) - xi (k) = 2 [ui (k) + u i (6)] + [c(k) + c(6)][aicose(k)

+ 0isin6(k)]}[t(6) - t(k)]	 (i=1,2, 3) 	 (E.13)

In equation (E.13), k denotes the bicharacteristic intersection points

in Figure E.1 and has the values 1, 2, 3, and 4 corresponding to the

e(k) values of 0, Tr/2, Tr, and 37r/2, respectively. The bicharacteristic

intersection points are determined in an inner iterative loop. That is,

for every outer iteratio^y that is performed to determine the flow

properties at point (6), a number of inner iterations are performed to

locate points (1) to (4). On the first inner iteration of the predictor

(the first outer iteration), u i (k) and c(k) are equated to u i (5) and

c(5), respectively, for each of the four bicharacteristics. On ensuing

inner and outer iterations, the flow properties previously obtained at

each of the bicharacteristic intersection points are used. The flow

properties at these points are determined by employing the bivariate
J

interpolation polynomial given by equation (E.11). Moreover, as was

done for equation (E.12), for the predictor (the first outer iteration),

the flow properties at point (6) in equation (E.13) are set equal to 	 a
:x

those at point ( 5), whereas, for the corrector ( ensuing outer itera-

tions), previously computed values of the flow properties are used at

the solution poi nt.

	k z 	Equation (f.13) is first applied for i=l (i.e., the x-coordinate

di'recti ,on). The axial step [x(6) - x(k)] is determined prior to the

	

^	 P	 p	 ,a

application of the unit process. Thus, the time parameter [t(6)

t(k)] may be obtained for each of the four bicharacteristics. Then,

equation (E.13) is applied for i=2 and i=3 to determine y(k) and z(k)
r

for each bicharacteristic.

w.
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The parametric unit vectors a  and 
0  

appearing in equation

(E.13) are arbitrarily fixed at the solution point, point (6). Butler

(7), in his original work, held a  and 
a
  constant along a bichar-

acteristic but varied a in order to insure that the bicharacteristic

remained tangent to the Mach cone. Ransom, et al. (9 ) held a constant

along a bicharacteristic but varied a  and 
6i 

to satisfy this tangency

condition. As noted by Cline, et al. (17), Butler (19) later realized

that it is not necessary to satisfy the tangency condition-in order

to achieve second-order accuracy in the resulting overall numerical

algorithm. As a consequence, in the present analysis, both a and the

unit vectors a  and 
0  

are held constant along the bicharacteristics.

For the external flow field integration, a i and 5i are selected to

straddle the projection of the pressure gradient in the initial-value

plane. For the internal flow field integration, a i ar.-, 
r 

are chosen

to straddle the meridional plane.

Once the positions of and the flow properties at points (1) to (4)

have been determined for a given outer iteration, the transport forcing

functions Fx , Fy , Fz , and Fe are computed at each of these points

and at the streamline base point, point (5), as described in Appendix F.
F

r
Approximations for the transport forcing functions at point (6) are also

made at this stage as described in Appendix F. The system of non-

linear compatibility equations is then solved for the flow properties

at point (6) as outlined" below.

The compatibility equations valid along a streamline are given
it

U	 t'	 (E 2) a d (E 3)	 W `tin those relations in finitey equa ions	 n	 ri	 g

difference form yields

;	 9
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EP(6) - P( 5 )1/Et(6) - t(5)] - 2 a2 (5) + a2 (6)1[p(6)

- A(5)]/Et(6)	 t(5)] = 2 Fe (5) + Fe ( 6 )]	 (E.14)

EP(6) - P ( 5) 1/Et(6) - t (5 )] + 2p( 5)ui (5) + p(6)u i (6)3 Eui(6)

- ui(5)]/Et(6) - t(5)] = 1 ( 5)Fi ( 5 ) + ui ( 6 ) Fi (6)] (E.15)

The noncha^acterist c equation, given by equation (E,9), is also

applied along a streamline. Writing that equation in finite differ-

ence form gives

CP(6) - P(5)1/Et(6)	 t(5)] = 2 a(5) + c(6)]

( 5 ) c2 (5)(aia + 6 i o )au i/ax^(5)

2 (6)c2 (6)(ai a + $ V'Jau i /ax^(6)	 (E.16)

In equation (E.16), a is given by equation (E.10), and Du i /ax i-(k) de-

notes the appropriate partial derivative evaluated at point (k) in

Figure E.l. Partial derivatives taken with respect toy and z are

found by analytically differentiating equation (E11). Partial deriva-

tives taken with respect to x are then found by using the governing

partial di fferential equat ions._
a

The compatibility equation valid along a bicharacteristic is given

by equation (E.6). For 0 values of 0,_w/2, 7T and 37r/2, equation (E.6)

becomes

du,	 @u.

dt + pca at' 	 1	 PcZSiS . DX^	 (E.17)

a
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1

du	 ?u

dt + pc^ ^1 = ^
2 - 

pc2aiaj 9x^	
(E.18)

2	 2

A

dP	 _

d 
pcai 

dt1 - iD
	 pc26isj ax1
	

(E.19)
3	 3	 a

dP	
du.	

2dt	
pcai dt1 
	
4 Pcaiaj ax^4	 4

(E. 20)

In equations (E.17) to (E.20), the operator d( )/dt k denotes differenti-

ation along the bicharacteristic corresponding to 6(k), and z  is de-

termined from equation (E.7). Writing equations (f.17) to (E.20) in

finite difference form yields

[P(6) - P(1)]/[t(6) - t(l)1 +2{P(1)c(1)

+ p (6)c( 6 )1ai [u i (6)	 ui(1)]/[t(6) - t(1)]

_ 1[ (1) + (D (6)] = yp(l)c2{1)6 	 au /ax (1)2 1	 1	 2	 i

2p ( 6 )c2 (6)6i6 aui /axj (6)	 (E.21)

p

[P(6) - P(2)]/ [t(6) - 
,t(2)] + -22[P(2)c(2)

n

+ p (6)c(6)]0 i [U 6) - ui (`2)1/[t(6) - t(2)]

= ^{ (2) +	 (6)]	 2P( 2 ) c2 ( 2 )a a au /ax (2)	
s

2 2	 2	 2	 i j i	 j
a

12-p(6)c2 (6)ai aj au /axj (6)	 (E.22)

a

i
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[P(6) - P ( 3)1/Et(6) - t(3)] - 2p(3)c(3) 
u

+ p(6)c(6)]ai Eui (6) - ui(3)]/Et(6) - t(3)]

2 X3 (3) + ID 3 (6)] - 2 (3)c2(3)s i 0^aui /ax^(3)

-
21- 

(6)c2 (6)0-B au i /ax^(6)	 (E.23)

[ P (6) - P(4)]/[t(6) - t(4)] - 2 p(4)c(4)
+ P(6)c(6)16-[u(6) - ui(4)]/Et(6) 	 t(4)]

r	 = 2 (4 (4) + X4(6)] - 2P(4)c2(4)aiajaui/ax.(4)

- 2 (6)c2 (6)ai a^aui /ax (6)	 (E.24)

3

It was noted in Appendix B that only three wave surface compatibil-

ity relations are independent. To obtain three independent relations,

linear combinations of equations (E.21) to (E.24) and the nonchar-

acteri_stic relation, equation (E.16), are formed in such a manner as

r	 to algebraically eliminate the cross derivative terms at the solution

point [i.e., terms containing au k /ax^(6)]. Subtracting equation (E.23)

from equation (E.21) yields
r

G

(

N
,r

a
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C

E [P(6) - P(1)]/Et(6) - t ( 1 )] - [P (6) - P(3)1/[t(6) - t(3)]

2{P(1)c(1) + P( 6 ) c( 6 )]ai [u i ( 6 ) - ui(1)1/[t(6) - t(1)]

+ 2{P( 3 ) c(3) + P(6 )C(6)]ai [ u i (6) - ui(3)1/[t(6) - t(3)] n

= 2 1 (1) + I1(6)] _ 424)3(3)  + X3(6)]

-
1	 2	 1	 2
2p Mc Ml	 o

j
au i /ax 

i
(1) + P(3)c ( 3 )a0 au k /axe(3) (E.25)

Subtracting equation (E.24) from equation (E.22) yields

[P(6) - P(2)]/[t(6) - t(2)] -- [P ( 6 ) - P(4)]/[t(6) - t(4)]

+ 121p(2)c(2)  + A(6)c(6)]s i [ u i (6) - ui(2)1/[t(6) - t(2)3

{ + 2[P(4)c(4) + P( 6 ) c ( 6 )]3i [u i
( 6) - ui(4)]/[t(6) - t(4)] -:1

9

2 X
2 (2) + X2 (6)] -	

I'D 
4(4) + X4(6)]

- 2 ( 2 )c2 (2)a a^a u i /axe(2) + 2 (4)c2(4)aiaj au i /ax^(4) (E.26)

a

Adding equations (E.21) and (E.22) and subtracting equation (E.16) from ''	 a

the sum yields t=

[P(6) - P(1)]/[t(6) - t(1)] + [P(6) - P(2)]/[t(6) - t(2)]
a	 J

Pi

[P(6) - P(5)]/[t(6) - t(5)]
4

r

+ZP(1)c(l) + P(6)c( 6 )]ai [u i ( 6 ) - ui(1)]/[t(6) - t(1)]

1	 -+ 2[P( 2 ) c (2)	 P(6)c(6)]6 i [u i ( 6 )	 ui(2)]/[t(6) - t(2)]
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2 0 1 (1 ) + ID 1 (6)] + 2 02( 2 ) + 02 (6)] - `1[Q(5) + a(6)]
- 2 ( 1 ) c2 (1 yiau i /ax 

i
(1) - 2 (2)c2(2)aiajDui /axj (2)

+ 2 (5)c2 ( 5 ) (aiai + 0iai 
)au 

i 
/ax j(6)
	

(E.27)

Equations (E.14), (E.15), (E..25), (E.26), and (E.27) are the five

finite difference equations which are used to solve for the flow

properties u(6), v(6), w(6), P(6), and p(6). Since these equations are

nonlinear, an iterative scheme is required to obtain the solution. On

the first outer iteration (the predictor), all of the flow properties

at point (6) appearing in the coefficients of the derivatives in the

above set of equations are set equal to the respective properties at

point (5). This produces a system of simultaneous linear equations

which is solved using a Gaussian elimination method with complete

pivoting (18). On ensuing corrector applications (outer iterations),

previously computed values for the flow properties at point (6) are

r	
employed in the scheme. This method is similar to the Euler predictor

corrector algorithm used to obtain the solution for initial-value
4	

problems for ordinary differential equations, and can be shown to have

second-order accuracy either by direct numerical calculation ( 9) or

a	
by substituting an exact solution into the difference equations and

Y	 expanding the resulting terms in a Taylor series and thereby determining

the truncation error. The iterative scheme is terminated when all five

k

r	 flow properties at point (6) have converged to within specified toler-

ances.	 x
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5. SOLID BOUNDARY POINT UNIT PROCESS

Figure E.2 is a depiction of the computational network used in

determining the solution for a typical point on a solid boundary. The

point notation used in Figure E.2 is the same as that used in Figure

E.1 (interior point scheme). In this unit process, however, point (4),

corresponding to the bicharacteristic with e = 37r/2, falls outside of	 '!

the flow field and cannot be employed. Furthermore, the streamline

points (5) and (6) lie on the stream surface formed by the solid boun-

dary. The formulations used for representing the solid boundaries

are presented in Appendix D.

The boundary condition used in this unit process is simply that

the flow velocity component normal to the wail equals a specified

constant C. Let nbi (i=1,2,3) denote the x, y, and ,z components,

respectively, of the outward unit normal to the solid boundary surface.

Then, the appropriate boundary condition may be written as

ui (6) nbi (6)	 C
	

(E.28)

The solid boundary point unit process is virtually identical to

the interior point unit process, except that the wave surface compati-

bility equation valid along the bicharacteristic corresponding to 8

3-r/2 is not employed. That equation is replaced by equation (E.28).

Thus, the system of compatibility equations used for determining the

solution at a solid boundary point consists of equations (E.14), (E.15), 	 rtrt

(E.25) 9 (E.27), and (E.28). This system of equations is solved using

the same iterative scheme that was employed in the interior point' 	 F

	

i

solution.	
ry
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The location of the solution point, point (6) in Figure E.2, ob-

tained by applying the finite difference form of the streamline equa-

tion, equation (E.12), is adjusted along the projection of the body

normal in the solution plane so that the solution point lies on the

solid boundary. The orientation of the parametric unit vectors ai and

Oi is selected such that Si = - nbi 0 =1 22,3), and a i (i-1,2,3) is found

by employing the orthonormal relations between ai , O i , and u i/q. This

selection for the reference vector set produces a computational network

in which the bicharacteristics corresponding to 6 = 0, 7r/2, and Tr

intersect the initial-value plane for convex boundaries. For concave

boundaries, those bicharacteristics intersect an extrapolation of the

initial-value plane (the required extrapolation is assumed to have an

error third-order in step size). The bicharacteristics corresponding

to a = 0 and 7 lie in the elemental plane which is tangent to the solid

boundary at point (6).

6. BOW SHOCK WAVE POINT UNIT PROCESS

-A depiction of the computational network used in determining the

solution for a typical bow shock wave point is given in Figure E.3. A

segment of the shock wave surface extending from the initial-value plane

to the solution plane is shown in this figure. The space curve (A) is

defined by the intersection of the 'shock wave with the initial-value

plane, whereas, space curve (B) is defined by the intersection of the

shock wave with the solution plane. The axial distance between the

initial-value plane and the solution plane is determined by the appli-

cation of the CFL stability criterion

i

r

^ F The bow shock wave solution point is denoted by point (2) in

f	 Figure E.3. The flow properties upstream of the shock wave are known
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a priori. Hence, in the following discussion, the flow properties u(2),

v(2), w(2), P(2), and p(2) refer to the properties at point (2) down-

stream of the shock wave. Point (1) is the intersection point of a

rearward-running bicharacteristic with the initial-value plane. This

bicharacteri_stic is extended backward from the solution point. Point

(3) is an interior point in the solution plane which is used to define

the meridional plane in which the shock wave solution point lies. Point

(4) is the intersection point of space curve (A) with the meridional

plane which passes through points (2) and (3).

In this unit process, a local cartesian coordinate system is

employed for the description of the orientation of the local shock wave

surface, This local co ordinate ustem has coordinates x'; y', and z',

where x' is coincident with the x-axis, y' is in the radial direction

corresponding to the meridional plane which subtends an angle e with the

(x,y)-plane,and z' is normal to the(x',y')-plane (see Figure E,3). The

unit vectors in the x, y, and z directions are denoted by , j, and k,

respectively, whereas, the unit vectors in they ', y', and z' directions

are denoted by i', j', and k', respectively. A vector quantity A may be

represented in these coordinate systems by

A = A 
x 
i + Ayj + A 

z 
k	 (E.29)

A	 Ax ;i' + Ay ,j' + AZ T 	(E.30)

The relationships between the respective components in equations (E-.29)

3

3

s r

{

j

and (E.30) are given by

^f
AX ,	 Ax	(E.31)
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Ay , = Aycose + Azsine	 (E.32)

AZ , = Azcose - ysine	 (E.33)

Ax = Ax ,	 (E.34)

y = Ay , cose - AZ , sine	 (E.35)

a

Az _ Az , eose + y ,sine	 (E.36)
i

The orientation of the local shock wave surface is specified by

a set of unit vectors referenced to the (x',y',z')-system. 	 This set of

unit vectors, illustrated in Figure. E.4, consists of a unit vector n 

which is normal to the shock wave surface and two unit vectors Q and t

which are tangent to this surface.	 The tangential unit vector t lies

E 
in the meridional plane [(x',y')-plane], subtends an angle 	 with the

x'-axis, and is defined by the intersection of the shock wave with the

meridional plane at point (P). 	 The tangential unit vector Q lies in

E	 the transverse plane [(y',z')-plane], subtends an angle a with the -
.	

4

z'-axis, and is defined by the intersection of the shock wave with the

transverse plane at point (P).	 The tangential vectors t and Q are

therefore given by
Y

t = cosh V	 + sink j'	 (E.37)

i
Q = sina j ! + cosa k'	 (E.38)

The shock wave normal unit vector, denoted by ns , is given by

y'	 ns _ R x t/lR x tj	 (E.39)

o
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The interior point and solid boundary point unit processes achieve

second-order accuracy by using local iteration. In local iteration,

a corrector application employs previously determined flow property

values at the solution point, but does not require using flow property

values at other points in the solution plane. The shock wave point	 F

unit process, however, requires that global iteration be performed in 	 +.

order to achieve second-order accuracy. In global iteration, a cor-

rector application employs previously determined flow property values

not only at the solution point, but also at neighboring points in the 	 x

solution plane. As a consequence, before a corrector application in

global iteration can be performed, the entire solution plane (or at

least an appropriate section of it) must be determined by a prior

calculation. In practice, since the interior point and solid boundary

point schemes require local iteration only, the interior point and

solid boundary points are computed first. Then, a prediction for each

shock wave solution point is made, thereby giving a tentative solution

for all of the shock wave points. Then, a global iteration is con-

ducted for the shock wave solution points using the previously de-

termined field points in the soluti; „ n plane. In the following discus-

sion, the term "predictor will refer to the first application of the

shock wave point unit process used to obtain an initial estimate of the

solution without using field point data in the solution plane. The

term "global corrector” will refer to the application of the shock wave

point unit process which uses field point data in the solution plane.

The shock wave point unit process 'is now outlined.

Y
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The shock wave point unit process is initiated by locating the

solution point, point (2) in Figure E.3.° The meridional plane in which
w

the solution point lies is arbitrarily selected to contain point (3).

Point (3) is the interior solution point adjacent to the shock wave sur-

face whose location is determined prior to the application of the shock

wave point unit process. The angle subtended by a meridional plane

and the (x,y)-plane is denoted by e. Then

6(2)	 6(3) = tan-1
 
[z(3)/y(3)]
	

(E.40)

Denote the radial position of a point by r. Then the radial position

of point (2) is obtained from

r(2) = r(4) + Ex(2) - x(4)] tan1 [^( 2 ) + ^(4)]}	 (E.41)

where Ex(2)	 x(4)] is the axial distance between th e initial-value

plane and the solution plane and is determined by the CFL stability

criterion. On the first applica±ion of equation (E.41), the shock wave

angle ^(2) is equated to ^(4), whereas, on ensuing applications, the

previously determined value of ^(2) is used. At point (4), the radial

pob-ition r(4) and shock wave angle ^(4) are determined by interpolation

using the quadratic univariate formulae

r(e)	 a l + a20 + a302	(E.42)

	

(8) = b
1 
+ b2  + b 3e2	(E.43)

In equations (E.42) and (E.43), the coefficients a i (i=1,2,3) and bi

(i =1,2,3) are determined by fitting these expressions to three local

shock wave solution points on space curve (A) as described in Appendix C;..
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For the case of axisymmetric flow, or on a plane of flow symmetry in

three-dimensional flow, point (4) coincides with a previously determined

shock wave solution point so the interpolation would not be required.

In general, however, point (4) does not coincide with a known point.

so the interpolation is necessary.

After -, the solution 'point has been located, the shock wave normal

unit vector n s at the solution point is found by forming the normalized
n	 h

cross product of the tangential unit vectors x and t [see equation

(E.39)], The tangential vector t is obtained by using the current

value of ^(2) in equation (E.37). The tangential vector A is obtained

by using the current value of a(2) in equation (E.38). For either

space curve (A) or space curve (8), the value of a(2) may be obtained

from

=tan-1 (
Ir  d	

(E.44)a(2)
^e2

For a predictor application, the analytical form of r(e) used in equa-

tion (E.44) :` 4 ven by equation (E.42) applied along space curve (A),

whereas, for a global corrector application, r(e) is obtained from

equation (E.42) applied along space curve (B).

After the shock wave normal unit vector has been determined, the

local Hugoniot equations may be applied across the shock wave, thereby

yielding a solution for the flow properties u(2), v(2), w(2), P(2) and

x

p(2). In general, the local Hugoniot equations take the form (16,)

'i

puvnu	 pdund	
(E.45)

a
^2	^2	

{E,46)
s

Pu + puVnu w pd pdnd
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(E.49)

(E'.50)

F,

hu + q2/2 = hd + qa/2

h = h(P-P)

In equations (E.45) to (E.50), h is the enthalpy per unit mass, q is the

velocity magnitude (q 2 = u2 + v2 + w2),Vn is the velocity component in

the -ns direction, V  is the velocity component in the t direction, VQ

is the velocity component in the R direction, and the subscripts u and

d denote the properties on the upstream and downstream sides of the
	

^i

shock wave, repsectively.. Equations (E.45) to (E.50) are solved simul-

taneously for the downstream flow properties. To obtain the velocity

components Vnu , Vtu' and VQu, the upstream velocity vector is first	
f

transformed from the (r.,y,z)-system to the (x',y',z')-system using
	

M

equations (E.31) to (E.33), after which the appropriate dot products
E	 n	 n	 nr	

are formed with -n s , t, and Q. Similarly, the downstream velocity

components V
nd , Vtd, and V

Qd are transformed back to the (x,y,z)-system

after the local 'Hugoniot equations have been applied.

In the computer program, the local Hugoniot equations are contained

in a separate subroutine.. The assumed thermodynamic model is that of

a thermally and calorically perfect gas. Other thermodynamic Models

may be used by suitably modifying the ey-isting subroutine or replacing

it. For the assumed model of a thermally and calorically perfect gas,

the pressure ratio across the shock wave is given by
j
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Pd_ y M2 _y- 1
Pu y+l nu Y+1

where Mn u is the incident normal Mach number given by

Mnu = Vnu/au

(E.51)

(E.52)

and Y is the specific heat ratio. Using the result of equation (E.51),

the density ratio across the shock wave is given by

Pd _ (Y + 1)/(Y - 
1) + (Pu/Pd)

Pu 7+ y+1 /y-1 PuP-) (E. 53)

With the downstream pressure and density determined, the downstream

normal velocity component Vnd maybe obtained from equation (E.46), and

the tangential downstream velocity components V td and VQd may be com-

puted from equations (E.47) and (E.48)., Transformation of the down-

stream velocity components back into the (x,y,z)-system yields the

required flow properties at the solution point.

At this stage, a rearward-running bicharacteristic is extended from

the solution point, point (2), back to the initial-value plane, inter-

secting this plane at point (1), as illustrated in Figure E.3. This

is accomplished by employing the following finite difference form of

equation (E.4) evaluated for the parametric angle a 	 7r/2.

X 4 (2) - xi(1)	 2 ^[u, (I) + ui(2)]

)

H	
ad

A

+ Ec(l) + c(2)la i Et(2)	 t(1)7	 (i=1,2,3)	 (E.54)	
3i

As in the interiorpoint and solid boundary point schemes, an inner

iteration is performed to locate point (1). On the first application
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of equation (E.54), the flow properties at point (1) are equated to

those at point (2), whereas, on ensuing applications, previously ob-

tained values of the flow properties at point (1) are used. The flow

property values at point (1) are found by employing the bivariate inter-

polation polynomial given by equation (E.11). The coefficients in

equation (E.11) are obtained by a least squares fit of nine data

points in the initial-value plane using a boundary-type stencil as

described in Appendix C.

Equation (E.54) is first applied for i=l (i.e., the x-coordinate

direction). Since the axial step [x(2) 	 x(1)] is known from the

application of the CFC stability criterion, the time parameter
f

[t(2) - t(1)] may be determined. Then, equation (E.54) is applied for

i=2 and i=3 to determine y{1) and z(1). For axisymmetirc flow, or for'

F	 a plane of flow symmetry in three-dimensional flow, point (1) lies in

the meridional plane which contains points (2) and (3). In general,
i

however, for other flow situations, point (1) lies outside of this

plane.

The orientation of the parametric unit vector $i in equation (E.54)

is arbitrarily selected such that

83/52	tan[e (2)]	 (E.55)

This relation, in conjunction with the orthonormality conditions

r;
{	

a ui(2) = C	 (E.56)

r	
Si ^i

7	 (E.57)

:i

i

j



(E.57) is a quadratic equation, a multiplicity of roots exist for the

Oi (i=1,2,3).,, The roots are chosen such that point (1) lies under-

neath the shock wave in the initial-value plane. Once the values of

si 0
=1,20) are determined, the values of ai (i= 1,2,3) are found

through use of the orthogonality . relation between a i , Oi-, and ui/q

After the position of and the flow properties at point (1) have 	 7

been determined, the transport forcing functions F x , y, F` , and Fe are

computed at point (1) as described in Appendix F. Approximations for

the transport forcing functions are also made at ;point (2) at this

time as described in Appendix F.

At thi-s stage, the wave surface compatibility equation correspond-

ing to the parametric angle 6	 7r/2 is applied between points (1) and

(2). From equation (E.6), the appropriate equation is

du	 au
k	 dP + pcR
	

i =	 pc2a a.	 i	 (,E.58)
dt	 i dt	 iT/2	 i J axe

where 07x/2 is obtained from equation (E.7) for the parametric angle 6 =

Tr/2. Writing equation (E.58) i n finite difference form, solving for

the pressure at point (2), and denoting this pressure by P*(2), the

following equation is obtained.

P* (2)	 P(1) + 2;[4) (1) + 0^/2(2)]Ct(2) _ t(1 )J

4

k	 - 2 P(1)c2(l )a i a^au i /^^u (1')

4	 + p (2)c 2 (2)a ia^a u ; /ax^( 2 )]Ct (2) - t(1)]

p( 1 ) c (1) + P(2)^(2)]s i Cu i (2) - u;(1)]	 (E.59)
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Note that the cross-derivative terms [au i /axj (k)] in equation

s

(E.59) appear at both point (1) in the initial-value plane and at

point (2) in the solution plane.	 In general, these terms can be n	 '
N

.evaluated by employing equation (E.11) fit to nine data points in the

appropriate plane, differentiating this expression analytically to ob-

tain partial derivatives with respect to y and z, and then using the

governing partial differential equations to obtain the required partial

derivatives with respect to x.	 On the predictor application of the

shock wave point unit process, the flow property field in the solution
a

plane is not known, so the cross-derivatives at point (2) are set equal

to those at point (1). 	 On a global corrector application of the

shock wave point unit process, the cross deriatives at point (2) are

evaluated in the manner just described.

The pressure P(2) is calculated from the local Hugoniot equations.

The pressure P*(2) is calculated from equation (E.59).	 The difference

between P(2) and P*(2) is driven to within a specified tolerance of
-°i

-^

zero by employing a one-dimensional secant iteration scheme which

iterates on the shock wave angle ^(2). 	 Two initial estimates of	 (2)

ar	 miequired to initiate the subiteration.'

The shock wave point unit process is first applied as a predictor
^r

for each shock wave solution point. 	 In this application, the value of

a used in equation (E.38) is obtained by curve fitting points along

space curve (A), and the cross-derivative terms at the shock wave solu-

tion Mint are eauated to those terms at the bicharacteristic base



point in the initial-value plane, poin

is obtained for all of the shock wave

• -VI

rector applications are performed. 	 Here, the value of a used in equa-

tion (E.38) is based on data along space curve (B), and the cross-

` derivative terms at the shock wave solution point are evaluated at that

`	 t
It

point.	 The resulting overall scheme has second-order accuracy when

the global correction is performed. 	 The global iteration is terminated

when successive values of a have converged at each of the shock wave

solution points.

r. In the course of the program development, an alternative .algorithm

to the one just presented was devised in an attempt to compute the bow

shock wave solution points. 	 In this alternative scheme, a multiplicity

fi of bicharacteristics were used, and, like the interior point or solid	 1

boundary point unit processes, linear combinations of the wave surface

compatibility equations were 'formed as to algebraically eliminate the 	 n

cross-derivative terms at the solution point.	 A two-dimensional

Newton-Raphson method was devised for determining the angles 	 and a
i

explicitly, and second-order accuracy was achieved without resorting to

} global correction. 	 This scheme was _successful in computing axisymmetric

flows, but an apparent instability arose when attempting to compute

three-dimensional flow fields.

7.	 SOLID BODY-SHOCK WAVE POINT UNIT PROCESS
b

`	 The solid body-shock wave point unit process is used to determine
3

the flow properties downstream of the shock wave at a point where the

k shock wave intersects a solid boundary. This unit process is used to

determine the solution for the points on the cowl on the downstream side

t
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of the cowl lip shock wave, and for the points on the centerbody or cowl

on the downstream side of an internal reflected shock wave. The method

of computation is essentially the same for either application and is

discussed below. The solution points on the downstream side of the

incident shock wave at an internal shock wave reflection are computed

using the field-shock wave point unit process which is presented later.

A depiction of the computational network used in the solid body-

shock wave point unit process is presented in Figure E.5. A typical

solid body-shock wave solution point is denoted by point (P) in this

figure. At point (P), the outward unit normal vector to the solid

boundary is denoted by n b . The locus of solid body-shock wave solution

points represents the -intersection of the shock wave with the solid

boundary, and defines space curve (A) in Figure E.5. The intersection

of the shock wave with the meridional plane passing through point (P)

is denoted by space curve (B). The tangential unit vectors to space

curves (A) and (B) at point (P) are denoted by Q and t, respectively.

i 	
tl

>3

u

e

P

The unit normal vector to the shock wave at point (P) is denoted by

n.
s

As was done for the bow shock wave point unit process, the unit

vectors Q, t, and n  are referenced to a local Cartesian coordinate

system (x',y',z'), where 'again x_' is coincident with the x-axis, y' is

in the radial direction along the meridian which subtends the angle 8

with the (x,y)-plane, and z' is normal to the (x',y`)-plane. The rela-

tions between the components of a vector in the (x,y,z)-system and in
f a

the (x',y',z')-system are given by equations (E.31) to (E.36).. As in

the bow shock wave point unit process, the tangential unit vector t lies
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in the meridional plane [ (x',y')-plane] and subtends the angle 	 with

'the x -axis.	 Hence, z

c

t = cosh i, + siYO j'	 (E.60)

R

Unlike the bow shock wave point unit process, however, the tangential

k
unit vector k does not, in general, lie in the transverse plane

^

Uy',z')-plane], but rather it may have a nonzero x'-component.	 This 1

tangential vector along space curve (A) may be represented by

d 	 dy' 	 ,,^	 dz'	 ..^
Q =	

+	 j	 +	
k	 (E.61)

ds	 ds	 ds

where ds is the differential arc length given by
ry

(ds)- =	
(dx')2 + (dy , ) 2 

+ (dz') 2	(E.62)

The derivatives in equation (E.61) are obtained by analytically

differentiating the expressions

I
x' (0) _ al + a26 + a3a 2 	(E.63)

y'(e) _ b l + b2e + b3e 2	(E.64)

z'(e) = c
1
 + cZe + c3e 2	(E.65)

In equations (E.63) to (E.65), the coefficients a i , bi , and ci
Y

(i=1,2,3) are obtained by fitting the respective expressions to three
h

points on space curve (A) as described in Appendix C.	 For the cowl lip

shock wave points, space curve (A) is defined by the cowl lip itself

since the shock wave is assumed to be attached to the cowl lip. 	 In

this case, the x'-component in equation (E.61)'is identically zero,

226
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and, as a consequence, Q lies in the transverse plane ..	 Furthermore, if

the cowl is axisymmetric, the y'-component is also identically zero.

Alternatively, for computing the downstream properties at a reflected

internal shock wave, space curve (A) is defined by the intersection

of the incident shock wave with the solid boundary.	 Except for an axi-

symmetric flow field, or for a point on a plane of flow symmetry in

three-dimensional flow, the x'-component in equation (E.61) is nonzero.

With the tangential unit vectors determined, the shock wave normal unit

vector ns is obtained from equation (E.39).

The solid body-shock wave point unit process is initiated by

i

^

determining the body normal unit vector n 	 and the tangential unit
Y

vector . at point (P), expressing both of these vectors in the

(x',y',z')-system.	 Then, an initial estimate is made for the value of

rt in equation (E.60), ,and, by use of equation (E.39), the shock wave

normal unit vector is obtained.	 In exactly the same manner as was done

in the bow shock wave point unit process, the downstream flow properties

at point (P) are computed by use of equations (E.45) to (E.53). 	 At

this stage, the velocity normal to the body 
Vnb 

at point (P) is computed j

' from the equation x

(E.66)V
nb	 udnbx' + vdn

by
 	 + wdnbz'

x

where_ud , v, and wa are the downstream velocity components at point

(P), and n bx ,, nby ,,
 

and 
nbz, 

are the components of the body normal unit

vector, both vectors being expressed in terms of the (x',y',z')

coordinates.	 The body normal velocity V 	 is reduced to within anb

tolerance of a specified constant by varying the angle 0-using a one-

dimensional secant iteration procedure.	 Two initial estimates of 	 are
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a

required for starting the iterative procedure. Once convergence has

been obtained, the downstream velocity components are transformed back

into the (x,y,z) -coordinates using equations (E.34) to (E.36).

In the course of the program development, an alternative algorithm

to the one just presented was devised to compute the solid body-shock

wave points. That algorithm determined the shock normal vector (and

thereby the downstream properties) by employing the shock wave rela-

tions which link the flow turning angle and the shock wave angle, both

these angles being measured from the approach streamline direction in

a plane defined by the approach velocity vector and the shock wave

normal vector. _Since the shock wave normal vector is required to de-

fine this plane, an iterative procedure for determining that vector is

required in this method. This method was tested and produced results

identical to the method described earlier. However, due to the greater

complexity of the alternate method, it was not selected for use in the

final algorithm.

8. SHOCK-MODIFIED INTERIOR POINT UNIT PROCESSES

In some situations during the computation of the internal flow,

the interior point unit process must be applied in a modified form.

One such application is illustrated in Figure E.6. In this situation,

the Mach cone, with apex at the solution point,_ intersects not only the

initial-value plane but also a solid boundary and an internal shock

wave. The point notation used in Figure E6 is the same as that used

in the computational network of the basic interior point scheme, which

is illustrated in Figure E.l. The solution point, denoted by point (6)
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.	 in Figure E.6,lies on the current solution plane. 	 Point (5` represents

the streamline  base point on the initial-value plane. 	 As in the basic

interior point unit process, points (1) to (4) represent the bichar-

acteristic base points.	 Point (1), in this case, lies on the surface

r	 of the internal shock wave, and point (3) lies on the solid boundary.

x	 Points (2) and (4) lie on the initial -value plane.

The axial distance between the initial-value plane and the solu-

tion plane is determined by either the CFL 	 tability criterion or by

'	 the special constraints which apply when an internal shock wave inter-

sects a solid boundary.	 Those procedures are discussed in Appendix K.
f

In either case, the axial step is determined prior to the application

of the unit processes.

In the overall algorithm for the computation of the internal flow,

the order of integration is selected so that the shock wave solution
a

points and the body solution points are determined before any attempt

is made to obtain the solution at any of the interior field points

which lie in the flow field sector that is downstream of the shock wave.

As a consequence, the flow property fields on the downstream side of

the shock wave and on the stream surface formed by the solid boundary

are determined before the solution at an interior point, such as .x

point (6) in Figure E.6, is attempted.

The procedure used to obtain the solution at point (6) in Figure

E.6 is almost identical to the basic interior point unit process, which

f	 is presented in Section 4 of this appendix. The major difference be-

tween the two algorithms is that, in the present case, the bicharacter

istic intersection points on the shock wave Epoint (1)] and on the

f
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solid boundary [point (3)] must be determined in addition to those bi

y characteristic intersection points [points (2) and (4)1 on the initial-
`	 value plane. Along with the location of these points, flow property

values and first partial derivatives of the flow properties at these

points must also be obtained.

As in the basic interior point unit process, flow property 'values
k

' 	 at points (2) and (4) on the initial -value plane are obtained using

the bivariate interpolation polynomial given by equation (E.11'). The

{

	

	 coefficients in this equation are determined by a least squares fit of

nine data points in the initial-value plane as discussed in Appendix C.

Flow property values at point (1) on the shock wave surface or at

point (3) on the solid boundary surface are obtained using the tri-

variate interpolation polynomial
a

f(x,y , z ) = a1 + a,2y + agz + a4yz + a5y2 + a6 z2	a
a

e
+ a7xy + a8xz	 (E.67)

The coefficients a i (i =l to 8) in equation (E.67) are determined by a
i

least squares fit of fourteen data points on either the downstream side

of the shock wave for interpolation on that surface, or on the solid

boundary for interpolation on that surface. The detailed implementa-

tion of equation (E.67) is presented in Appendix C.

An outline of the unit process used to determine the solution at

point (6) in Figure E.6 is now presented. The computation is initiated
i

by determining the location of the solution point, point (6), using

equation (E.12) in a manner identical to the procedure employed in the
s

basic interior point unit process. After the position of the solution

a	 231



point has been obtained for a. given outer iteration, the four bi-

characteristics, corresponding to the values of the parametric angle

A = 0, 7T/2, 7r, and 37r/2 in equation (E.13), are extended rearward from

the solution point to the initial -value plane. From the bicharacteris-

tic-initial-value plane intersection point „coordinates, denoted by
	 f

y*(k) and z*(k) (k=1 to 4), the radius r*(k)	 Ey*(k) 2 + z*(k) 2]1/2 and

the polar angle a*(k) = tan - 1[z*(k)/y*(k)] of each intersection point

are computed. The radius r*(k) is then compared to the shock wave

radius r  and the body radius rb in the meridional plane defined by the

polar angle a*(k). The shock wave radius is determined from the uni-

variate interpolation polynomial

rs (0) = a1 + a 2 0 + a 36 2 	(E.68)

where the coefficients a i (i=1,2,3) are determined by fitting this ex-
a

fi

pression to three shock wave solution points in the initial-value plane

as described in Appendix C.	 The solid body radius r 	 is obtained by

employing the formulations presented in Appendix D.	 For the orientation

shown in Figure E.6, if rs < r*(k) < rb , the bicharacteristic inter-

sects the initial-value plane and the analysis proceeds as in the basic a

interior point unit process.	 If r*(k) < rs , the bicharacteristic-

intersects the internal shock wave. 	 In this case, the bicharacteristic
s	 -

base point location on the surface of the shock wave is found by

employing the bicharacteristic-surface intersection scheme presented in

Appendix D.	 For a shock wave intersection, that scheme requiresthat

equation (E.68) also be fitted to three shock wave solution points in

the current solution plane.	 If r*(k) > rthe bicharacteristic
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` l

intersects the solid boundary. The bicharacteristic base point loca-

tion on the solid boundary is also obtained by using the iterative

scheme presented in Appendix D. As in the basic interior point unit

process, an inner iteration is performed for locating points (1) to (4).

Interpolated values of the flow properties at the respective points

are obtained by us'ng either equation (E.11) or equation (E.67),

f	 whichever is applicable.

After the 'bicharacteristic base points, points (1) to (4), have
i

been located, the first partial derivatives of the flow properties

with respect to y and z at these points are obtained by analytically	 j

^j
differentiating the appropriate interpolation polynomial. In a like 	 a

manner, these derivatives are also obtained at the streamline base

point, point (5). Then, using the governing partial differential
i

equations, the x-partial derivatives of the flow properties are found

at points (1) to (5). for any bicharacteristic which intersects the

shock wave or the solid boundary, the time parameter [t(6) 	 t(k)] is

found using equation (E.13) applied for i=1 (i.e., the x-coordinate	 i

direction) while employing the appropriate intersection coordinates.

At this stage, the system of compatibility equations may be solved

for the flow properties at point (6) in a manner identical to that

employed in the basic interior point scheme.
4

The situation illustrated in Figure E.'6 is quite general. In some

instances, there are no bicharacteristic intersections with the solid

boundary. Alternatively, there may be no intersections of the bi

characteristics with the internal shock wave. There may be two bichar

acteristics intersecting with the shock wave, etc.
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Another situation in which the interior point unit process must

be applied in a modified form is illustrated in Figure E.7. In this

figure, the Mach cone, with apex at the solution point, intersects

both the initial-value plane and the internal shock wave;. The point

notation used in Figure E.7 is the same as that used in Figure E.6.

However, in this case, the streamline base point, point '5), does not

lie on the initial-value plane, but rather lies on the surface of

the internal shock wave.

The location of the streamline base point is obtained by extending

the streamline from the initial-value plane to the surface of the shock

wave. The point of intersection of the streamline with the shock wave

is determined by employing the iterative scheme which is presented in

Appendix D for finding a streamline-surface intersection point. That

procedure requires that equation (E.68) be applied to three known

shock wave solution points in the initial-value plane and three shock

wave solution points in the current solution plane. Furthermore,

interpolated values of the velocity components are required on the up-

stream side of the shock wave at the point where the streamline inter-

sects the shock wave. For this purpose, the following linear tri

variate interpolation polynomial is employed.

f (x,y , z )	 al + a2   + a3  + a4 	 (E.69)

;x

The coefficients a i 0 = 1 to 4) in equation (E.69) are determined
w,

by fitting this expression to four data points on the upstream side

of the shock wave, as discussed in Appendix C.

After the streamline-shock wave intersection point has been de-

termined, the following fraction is formed
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e = CxS
	

x ( 5 )]/(xS - x I )	 (E.70)

where x  and x^ alp the axi,a,l positions of the initial-value plane

and the solution plane, respectively. If a is greater than a specified

minimum value,. an interior point unit process i s performed onthe

downstream side of the shock wave. This unit process is almost iden-

tical to that used for determining the solution at point (6) in

Figure E.6. In this case, however, the streamline formula given by

equation (E.12) is applied between the streamline-shock wave inter-
3

section point and the solution plane. Interpolated flow property 	 s
i
i

values at point (5) are determined by applying equation (E.67) to four-

teen data points on the downstream side of the shock wave.

.If, on the other hand, a is less than the specified minimum value,

an interior point unit process on the downstream side of the shock wave

is not performed. Instead, the streamline from point (5) is, projected

onto the solution plane, and the flow properties at the solution point
N

are determined by interpolation in the solution plane. The streamline 	 *t

integration from point (5) to point (6) employs equation (E.12). The

flow property values at point (5) are obtained from equation (E.67)
W

applied to fourteen data points on the downstream side of the shock

wave. Flow property values at the streamline-solution plane inter-

section point are determined from the linear bivariate polynomial

x
}	

f(y,z) = a1 + 
a2y + a

3z	 (E.71)

is

;f	 The coefficients a (i=1,2,3) In equation (E.71) are determined by
}

fitting this expression to three data points in the current solution
x

plane, as described in Appendix C. The order of integration for
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determining the internal flow field is specified so that the downstream

shock wave points and outer interior points in the downstream flow

field sector are determined first. The location of the solution point,

in this case, is determined by an iterative loop which is terminated

when the y and z coordinates of the projected solution point have

converged.

9. SHOCK-MODIFIED SOLID BOUNDARY POINT UNIT PROCESSES

In some situations, the solid boundary point unit process must

be applied in a modified form. One such application is illustrated in

figure E.8. In this situation, a portion of the Mach cone, with apex

at the solid body solution point, intersects both the initial-value
F

L	 plane and the internal shock wave. The point notation used in Figure

E.8 is identical to that used in Figure E.2, which depicts the computa-

tional network for the standard body point unit process. The unit
f

process employed in the present case is almost identical to the standard

body point unit process. In the present case, however, the bichar

acteristic-shock wave intersection is handled in a manner identical to

that Employed in the shock -modified interior point unit process pre-

sented in the previous section.

In some situations, the entire Mach cone intersects the shock wave,

as illustrated in Figure E.9. This situation occurs at a body point

on the solution plane that is immediately downstream of a solid body-

shock wave reflection, or at a body point on the solution plane that is

immediately behind the shock wave emanating from the cowl lip. In the

a

former case, the shock wave-solid body intersection is a space curve

in three-dimensions, whereas, i n the latter case, the shock wave-solid
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body intersection is a curve in a plane of constant x. The appropriate
u

intersection algorithm is used as presented in Appendix D, and for the

most part, procedures identical to those employed in the shock-

modified interior point unit process are employed in this case.

10. INTERNAL FLOW FIELD-SHOCK WAVE POINT UNIT PROCESSES

Figure E.10 illustrates the overall computational network used in

determining the solution for a typical shock wave point in the internal

flow field. To determine the solution at the shock wave point, an

interior point unit process must be performed to obtain the upstream

flow properties at the location of the shock wave solution point.

Figure E.10 illustrates both the computational network for the interior

point unit process (denoted by primed numbers), and the computational

network for the standard shock wave point unit process (denoted by

unprimed numbers). The point notations employed in these computational

networks are identical to those used in the corresponding standard

unit processes.

t	 The computational procedure employed fordetermining the solution

for an internal flow field-Shock wave point is almost identical to the i

bow shock wave point unit process. The major difference between the	 E

two procedures is that for an internal flow shock wave point, the up-

stream flow properties at the solution point are obtained from an
g

interior point computation, rather than using free-stream data as in	 j

the bow shock wave point unit process. The required interior point

unit process is essentially the same as the basic interior point unit

process presented in Section 4 of this appendix. In the present case,

t	 however, the strea6line is not extended from a field point in the
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^t

^i
initial-value plane to the solution plane, but rather it is extended

C1

!a

from the shock wave solution point back to the initial-value plane.

The position of the shock wave solution point is determined by the

shock wave point unit process. To initiate the interior point computa-

tion in the present case, flow property values are used from an

adjacent field point in the flow field sector that is upstream of the

shock wave in the solution plane. This modified interior point unit

process requires searching the flow field sector upstream of the shock

wave in the initial-value plane for the field point that is closest

to the streamline-initial-value plane intersection point. This point

is then used as the base point for the stencil of initial-value plane

u
field points that are used in formulating the bivariate interpolation

polynomial given by equation (E.11) (sets Appendix C). E

r

For the first solution plane inside the inlet, the downstream 	 .

bicharacteristic base point, point (1) in Figure E.11, does not lie
`^ J

? r
on the initial-value plane, but rather is located on the stream sur-

face formed by the cowl boundary. To compute the pressure at point (2)
r

from the wave surface compatibility relation, equation (E.59), the

flow property values must be available at point (1), which requires

that the flow property field must be known on the cowl surface. The 	 #h

body points on the cowl surface at the first internal flow solution

plane ., however, must be obtained from the unit process described in

Section 9 of this appendix. That unit process requires that the

flow property field on the downstream side of the shock wave be known.

Hence, a simultaneous solid body point-shock wave point algorithm must

be employed. This procedure was not developed in the present

R
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4

investigation. Rather, the shock wave points on the first internal

flow solution plane are computed using a value of 0 in equation (E.37)

equal to the value of 0 at the shock wave point in the initial-value

plane which lies in the same meridional plane as the solution point.

This provides a solution at each shock wave point on the first solu-

tion plane without employing the compatibility relation along the

bicharacteristic. The body points on the cowl are then computed in the

manner outlined in Section 9. On ensuing solution planes, except for

the one immediately after a solid body-shock wave intersection, the

bicharacteristic base point is located and the angle $ is iterated

to convergence.

When the internal shock wave intersects a solid boundary, as illus-

trated in Figure E.12, a modification is required to the shock wave

point unit process. In this case, instead of performing an interior

point unit process to obtain the upstream flow properties at the solution

point, a modified solid boundary point unit process must be employed.

Moreover, the shock wave solution point, in this case, does not lie

on the solution plane, but rather its position must be obtained by

computing the intersection of the incident shock wave with the solid

boundary.

Finally, it should be noted that in order to achieve strict
1

second-:order accuracy in the internal flow shock wave point solution,

global correction must be performed [this involves evaluating the

cross derivatives at the solution point and using updated values of a	 4

in equation (E.38)]. Time constraints in the present investigation

did not permit the development of the global correction capability for 	 e

t	
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the internal flow shock wave points. Hence, only local iteration can

be performed for those points.	 '.
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APPENDIX F t
w

CALCULATION OF THE TRANSPORT TERMS

1. INTRODUCTION
3

The numerical procedure developed in this investigation has the

capability to include the influence of molecular transport on the

solution by treating the viscous and thermal diffusion terms in the

governing equations as forcing functions, or correction terms, in the

method of characteristics scheme. At present, the computer program

has the capability to include the influence cif viscous and thermal

diffusion in the computation of the external flow field about the

forebody, and in the computation of the internal flow field in which

shock waves are not discretely traced. The program option which per-

forms discrete fitting of the internal shock wave system does not have

the capability to include the influence of molecular transport in the

computation, but rather assumes the flow to be inviscid and adiabatic.

r	 2. EXPRESSIONS FOR THE TRANSPORT TERMS

The expressions for the transport forcing functions are derived in

Appendix A, and are summarized below.

F = u 	 u - 2 (v 
+ 'w
 ) + u (u + v) + u (u + w )

f	 x x[±3  x 3 y	 z	 y y	 x	 z z	 x
0.	

a	
s

+4 u +u + u + 3 v +w.
_•	 u 3 xx	 yy	 zz	 3 ( xy	 xz^'	 ( F1 )

{

f	 24:7
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Fy =uy 3 
vy 

3 (ux 
+ wz ) + ux{vx + y_

+u 3 V + vxx +vzz+3 (uyx+wyz)

Z_ Z	 y-

(F . 2 )

r,

,^	

I

Fz = uz 3 wz - 3 (ux+ 	 vy) + ux (wx + uz ) + uy (wy + vz)

+ u 3 wzz + wxx + wyy + 3 
(uzX + vzy )	 (F.3)

where

Fe E { K(Txx + Tyy + Tzz )
 + K 

x 
T 
x + KyTy + KzTz

+u[2(u2 +v2 + w2 +uv +uw + v w )+v2+w2
x y z yx zx z  x x

	

+uy + wy+ uz +vz - 3 ( ux + vy + wz )	 (F.4)

pT (aas D
	

(F. 5)

In equations (F.1) to 	 (F,5), u, v, and w denote the velocity components

in the x, y, and z coordinate directions, respectively, P is the pres-

sure, p denotes the density, T is the absolute temperature, s denotes

' the entropy per unit mass, u represents the dynamic viscosity, and K is

the thermal conductivity. 	 The subscriptsx, y, and z on the right-hand

sides of equations (F.1) to (F.4) denote partial differentiation in the

corresponding coordinate direction, whereas F X , Fy , and Fz on the left- 

' hand sides denote the transport forcing functions in the x, y, and

z component momentum equations, respectively.	 Fe is the transport

forcing function in the energy equation.

PP
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3. COMPUTATION OF THE TRANSPORT FORCING FUNCTIONS

During the course of the program development, a number of methods

were devised in an effort to obtain a good approximation to the trans-

port forcing functions. One such method was based on employing a

quadratic trivariatc-= interpolation polynomial whose coefficients were

determined by a least squares fitting of a number of known field points

on the initial-value plane and the previous solution planes. This

polynomial was employed to determine the five dependent properties u,

v, w, P, and p. The spatial derivatives of the velocity components ap-

pearing in equations ( F-1)  to (F.4) were then obtained by analytically

differentiating the respective interpolation polynomials. Spatial

gradients of pressure and density were obtained in a similar manner.

Then, by differentiation of the thermal equation state, temperature

derivatives were expressed in terms of the pressure and density deriva-

tives. The molecular transport properties and their spatial gradients

K	 were obtained using the procedures presented in Appendix A.
F

This method of calculating the transport forcing terms was con-

sidered to have good accuracy. The computer execution time required by

this method, however, was felt to be unacceptable. This prohibitive

'Jx	 execution time was primarily due to the least squares curve fitting of

the trivariate interpolation polynomials. Consequently, a more

efficient method with acceptable accuracy was sought for approximating

the transport terms. The method which was selected is presented below.

For the interior point and solid boundary point units	
J

*	 processes, the transport terms must be computed at all points in the 1

computational network (see Figures E.1 and E.2). For the bow shock
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wave point unit process, the transport terms must be computed at the

solution point and at the intersection point of the bicharacteristic

with the initial-value plane (see Figure E.3). For each of these

unit processes, partial derivatives of the dependent properties with

respect to y and z in the initial-value plane are obtained by analyti-

cally differentiating the quadratic bivariate interpolation polynomial

f(y,z) ` al + a2y 
+ a 3 + a4yz + a5y2 + a 6 

z 
2
	 (F.6)

The coefficients a  (i =1 to 6) in equation (F.6) are determined by a

least squares fit of nine data points in the initial-value plane as

discussed in Appendix C. Equation (F.6) is applied for the five

dependent flow properties u, v, w, P, and p. Spatial derivatives of

pressure and density are required [even though they do not appear

explicitly in equations (F.1) to (F.4)] because spatial derivatives

of temperature are expressed in terms of pressure and density deriva-

tives through differentiation of the thermal equation of state as

discussed in Appendix A.

In the solution plane, partial derivatives of the dependent

a

r

$'	 properties with respect to y and z are equated to the corresponding r

derivatives in the initial--value plane. For the interior point and
1

boundary point schemes, the derivatives at the solution point are set

equal to those at the streamline base point. For the bow shock wave

point scheme, the solution point derivatives are equated to those at

the bicharacteristic base point. The evaluation of 'Chese derivatives	 It
3

in the solution plane would require that a global iteration algorithm

be employed. In this algorithm, the property field on the solution

*f
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plane would first be determined by a predictor application of the

appropriate unit process at each point in the computed sector. Then,

by fitting equation (F.6) to solution plane field points the appropriate

partial derivatives could be obtained. In a similar manner, ensuing

corrector applications would be performed until overall convergence was

achieved. The attendant increase in algorithm complexity and computer

execution time using this global iteration procedure, however, was felt

to be unwarranted since the transport terms are assumed to be of

secondary importance in determining the solution.

Partial derivatives with respect to x in equations (F.1) to

( F.4) are obtained from the following quadratic univariate-interpolation

polynomial

f(x) = a l + a 
2 
x + a 3x2 	(F.7)

The coefficients a  (i=1,2,3) in equation (F.7) are determined by fitting

this expression to three data points. The first data point is located
	

4

on the solution plane that is immediately upstream of the current

initial-value plane, the second data point is on the initial-value

plane, and the third data point is the solution point itself. for the

interior point and boundary point unit processes., the fit points are

k
located on the streamline which passes through the solution point. for

the bow shock wave point unit process, the fit points are the shock 	
i

wave solution points corresponding to the circumferential index of the

solution point. Special logic in the computer program takes account

of point deletion and addition in the forebody flow field computation

and thereby insures that the appropriate fit points are selected. Of

course, for a predictor application of either the interior point or

251
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h

N

boundary point unit processes, property values at the solution point

are equated to those at the streamline base point in the initial-value

plane.

Equation (F.7) is applied for the five dependent flow properties

u, v, w, P, and p Analytical differentiation of equation (F.7) yields

approximations to the x-partial derivatives. Differentiation of the

thermal equation of state allows the spatial derivatives of temperature

in the x-coordinate direction to be expressed in terms of the correspond -

ing pressure and density derivatives. This formulation yields an x

partial derivative which is constant in a given x-plane.

Since equation (F.7) uses data on a previous solution plane,

derivatives cannot be evaluted using this representation until at least

one previous solution plane is available. Furthermore,.the derivatives

obtained using this formulation are only approximations to the x-partial

derivatives since the y and z coordinates of each of the three fit

points are not, in general, identical. Considering that the effects of

molecular diffusion are assumed to be small, this approximation is

acceptable.

s
The molecular transport properties and their spatial gradients

i

are obtained usi ng the procedurespresented in Appendix A.

i
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APPENDIX G

GOVERNING EQUATIONS FOR THE BOUNDARY LAYER FLOW

1. INTRODUCTIOf

The major assumptions constituting the fluid dynamic model for

the boundary layer flow are:

1. steady flow,

2. negligible body forces,

3. thermodynamic equilibrium(i.e., mechanical, thermal, and

chemical equilibrium),

4. negligible radiative heat transfer and no internal heat

generation other than viscous dissipation, and

5. negligible pressure variation in the boundary layer normal

direction
I

The governing equations for the assumed flow model are written in an

orthogonal body-fitted curvilinear coordinate system. They consist

of the continuity equation, the component momentum equations, the

U	 energy equation, the thermal and caloric equations of state, and

expressions for the molecular transport properties and turbulentk

eddy diffusities. These relations are presented in this appendix.

s

F

2. DIFFERENTIAL EQUATIONS OF MOTION

4	
The governing equations for the three-dimensional boundary layer

f
flow have been derived by Vagl i o-Laurin (10) in orthogonal curvilinear

#4
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coordinates.	 For the present investigation,	 a body-fitted curvilinear

coordinate system has been selected, which is comprised of geodesics ii

and geodesic parallels.	 The coordinate system is illustrated in

`	 Figure G.1, and consists of the coordinates x, y, and z, where x is

coincident with the body surface and lies in a given meridional plane,
c

s	 yis locally orthogonal to the body surface, and z is orthogonal to
1

both x and y.	 3

When employing the coordinate system of Figure G.1, the continuity

j4

equation may be written as

z

a
(ph2u) + â (phl w) + a	 (h1h2pv) = 0	 (G.1)

^x ^ 	 2y
{

In equation (G.1), u, v, and w denote the mean velocity components in
f

the x , y-, and z-coordinate directions, respectively, and p denotes the

mean density.	 The overbar (	 ) denotes a time averaged product with	 3

C 

f

pv 
_ pv + pv 	 (G.2)

Y

where the primed quantities denote the respective time fluctuation	 3

components.	 In equation (G.1), the parameters h l and h2 are metric

coefficients which are generally dependent on x and-, only.	 The metric

coefficients for axisymmetric geometries are given by the simple
^i

expressions	 y'
li

h l 	1	 (G.3)	
;}

h2 = r = r(x)	 (G.4),

f	 where r is the body radius at the position x.
x

^,	
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The component momentum equations in the x and z directions are
j4

termed the streamwise and cross flow momentum equations, respectively.

Those equations are given by, respectively,

P 
^u	 au + p h au +

2 az

pv au - puwK2 + pw2K1
1 ax aY

_ - i âP + a (u au - pu'v^	 (G.5)
h l ax	 ay ay

P h
a w 

+ ph 
aw + pv aw - p-- + pu2K2

1 ax	 2 az	 ay

-- 1	 ap +a
I
uau p (G.6)

h2 az	 ay  ay
I

where P denotes the mean static pressure, ji denotes the molecular

viscosity, and K1 and K2 are geometric parameters known as the geodesic

curvatures of the curves x = constant and z = constant, respectively.

Both K1 and K2 are generally functions of x and i, only, and are given

by
}

ah
K1 =

- h 
h	 N2

(G.7)
1 2 ax

1	
ahl

K2 = - h
1 h 2 az

(G.8)

Y

For axisymmetric geometries, the geodesic curvature terms are given by

}

Kl = - — 
f

(G.9)

r f2 + 1
i
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wi th

dr _ dr x
f - dx	 dx

(G.11)

SIM
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K2 = 0	 (G.10)

where r is the body radius, and x is the position measured along the

longitudinal axis of the body.	 b

The third momentum equation, which is the Ii-or normal momentum

equation, is given by the classical expression

aP 
= 0	 (G.12)

L ay

The energy equation is given by

d
i	 u @H 4- w aH^ 

v 
aH i

P— ^ P — 	A
h l ax	 h2 8i	 ay	 >

j

= a	 _ 8H
+
 u 1 - 1 

a (u2 + 
-2 	 (G.13)

a^ [r aV	 `	 PrJ	 1	 2 J,i	 y	 ay

where H denotes the mean total enthalpy per unit mass, H' denotes its

f time fluctuation component, and Pr is the molecular or laminar Prandtl

number. The total enthalpy H is given by	 j

^	 22

i?	 H	 h+ 
u 

Z 
w	

(G.14)

ii
where h is the mean static enthalpy per unit mass. It is assumed in

C
equation (G.14) that

i

34	
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(G.17)
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(u2 + W2 ) >>> w2

^i
i

(G.15)

and thereby v can be neglected in defining the total enthalpy. 	

ev

The boundary layer equations of motion are subject to the follow-

ing boundary conditions:

y 0: u 0,	 w = 0,	 v	 vw(x,z)

H Hw(x,z) or	 I dĤ 	 HW(x,z)
lay

y = ^• u = u e (x,z),	 w = we(x,z)

H = He(x,z)

a

3
where 6 denotes the boundary thickness which is dependent upon x and z,

the subscript w denotes wall conditions, and the subscript a denotes

boundary layer edge conditions. Note that equation (G.16) allows for

3#

distributed mass transpi ration or bleed at the wall.

At the boundary layer edge, the x-and z component momentum equa-

tions reduce to the following expressions:

f
i ue au e 	we Du

p —	 +p —	
e

e hl	 e h2 - uwK	 + pw	 Kp	 2

e e e	 1
_	 1	 aP
----	 (G.18),haX	 8z ax

3y
f

P
	 u e awe + P
	

We 
awe

e hlx	 a h2 az
_ 

p u w K
	 + 

peu 2 K2 =e e e 1	 a
_	 1	 aP	

(G.19)h2 az
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3. BOUNDARY LAYER ATTACHMENT LINE EQUATIONS

a—^

	

(ph 2u) + phlwz	
ay

+ a— (h lh2pv) 0
ax	 _ 

{

(G.20)

	 a

y

On a plane of flow symmetry, the cross flow velocity (w) is

identically zero, as is the cross flow pressure gradient (V/az).

The flow on this plane is referred to as attachment line flow. The

attachment line is a streamline on the body on which both w and 8P/8i

are identically zero. The cross flow momentum equation will be

singular on a flow symmetry plane since both w and K 2 vanish there.

As suggested by Moore (11), a nonsingular equation may be obtained

by first differentiating the cross flow momentum equation and then

substituting into it the appropriate symmetry conditions. Performing
L

the proper opera) ons yields the following system of equations for the

attachment line flow:
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where wz = aw/az.	 Equations ( G.20) to (G.23) represent the continuity,

streamwise momentum, cross flow momentum, and energy equations,

respectively.

Boundary conditions for the attachment ?ine ,^,; Uations are given

by

Y = 0:	 u _ 0,	 wz	 0,	 v = vW(x,i) IT
c	 i

7

(G.24)

H	 Hw(x:z)	 or
(aH

= Hw(x'z) } -j1a^1Y

N	 N

y = 6:	 u= ue (x,z),	 wz = wZe(x,z)

(G-25)

H = He(x,z)

-. At the boundary Layer outer edge, equation (G.21) reduces to
j

aue	 aP
peue	 - - -	 (G.26) 1

which is of the form of two-dimensional flow.
-^

Note that the attachment line flow is quasi-two-dimensional in

that the velocity vector lies in a plane. 	 However, the solution is

influenced by flow off that plane.
r

o,

4.	 THERMODYNAMIC MODEL AND MOLECULAR TRANSPORT PROPERTIES

^G	
U
I The thermodynamic model and molecular transport property repre-

sentations are identical for the boundary flow and the supersonic

cone flow.	 As a consequence, the relations given in Sections- 3 and 4

E t? of Appendix A are a ppl icable for the boundary layer flow.pP	 pp	 Y	 Y
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5. THREE-DIMENSIONAL TURBULENCE MODEL

The computation of turbulent boundary layer flows requires that

assumptions be made for the Reynolds stress terms in the governing

equations of motion. Mathematical closure is achieved in the present

study by using an eddy viscosity formulation along with mixing length.

and velocity defect concepts.

The computer program developed in the present investigation is

written in a modular fashion and allows for the rapid substitution of

alternate turbulence models. Either algebraic or transport-equation

models may be incorporated into the program along with improved transi-

tion modeling functions.

The present turbulence model is algebraic and is based on the
a

Boussinesq eddy viscosity concept.	 The Reynolds stresses in equations

F (G.5),	 (G.6), and (G.13) can be written under this assumption as	 3

^

-	 u 	 p^	 auP (G.27)
-	 x ay

_ P w^^ 	 = PEZ aw

•
(G.28)

ay

- p 1v	 _ PE:	
a:H

(G.,29)	
r

A
x

.ay
^_t

i

where ex and sZ are the turbulent eddy viscosities in the rand z-

Fcoordinate directions, respectively, and ee is the turbulent eddy

thermal conductivity.	 Isotropic turbulence has been assumed in the

present study, thereby

ex = eZ (G.30)
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t

- The present turbulence model is a two-layer representation (20)

where

ex = EZ = Ei . (0 < y < yt )	 (G.31)

ex = EZ , = ED	 (Yt S y	 s)	 (G.32)

In equations (G.31) and (G.32), ei and eo represent the inner and outer

region eddy viscosities, respectively, and y t is the value of the

normal coordinate determined by continuity of the eddy viscosity, that

is, where Ei = Eo.

A mixing length representation is employed for the inner layer 4

eddy viscosity t

2	
1/2

Ei	
StrL2112aiY-1

	 + (aWl	 (G.33)tYl
u

q where L is the mixing length, and 6 is a function accounting for thetr

transition from laminar to turbulent flow. 	 The mixing length L i

r given by

L =, Ky[1 = exp(-y/A)] 	 _ (G.34)

where K is the von Kaman constant gi ven by

r

f^

K = 0.40	 (G.35)

t

and A is :defined by
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(G.36)

of

O!

+ v X

P
A = A N 	 uT

In equation (G.36), v denotes the kinematic viscosity, the subscript

w denotes wall conditions, A+ is the van Driest damping factor which

is given by
a

A+ = 26.0 (G.37)

and uT is given by

T	 1/2

uT	 tpwsJ	 (G..38)
W

where Tws is the shear stress at the wall. Equation (G.36) Is valid
for cases with and without distributed wall mass transfer. For 	

1

impermeable walls, the parameter N in equation (G.36) is given by

U P 2	 1/2
N _ 1 - 11.8 IpWJ P (G.39)

f lie
3

^.	 where

v u	 eus =P+
_' V3	

^s
(G.40)

uT	 as
E

whereus is the velocity in the external streamline direction s.	 For
t ,

cases of wall transpiration or bleed, N is given by

L -e
2	

+
P u	 uw l	 ( 11.8	 w

11.8	 v +
1/2'

N IPW)	 v + 1- exp u	 w + exp i	 W)
w

f

s (G_.41)`
r s:

`
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where v 	 is a mass transfer parameter given by

V

vW =	
w.	

(G.42)
U	 Z

T
a

The outer region eddy viscosity is given by the velocity defect	
f

a

expression	 )

r
2	 2	

1/2	
rr^2	 ^2l 1/

rue 	+ we +	 -	 + u	 + w 
1	

dy	 (G.43)60	 8tra
f0 l J 11

s!

In equation (G.43), the parameter a is taken to be a constant at the

value

a = 0.0168	 (G.44)

a 3!

The turbulent eddy thermal conductivity is expressed in terms of

the turbulent eddy viscosity as	 G
u

i

a
ce = Fr	

(G.45)
t

{

with

1/2	 s
e = (EX + ez I	 = 37 ex	 (G.46)	

lJ
r^

where Prt is the turbulent Prandtl number which is assumed to be a

constant in the analysis.

The parameter G tr in equations (G.33) and ( G.43) is an inter-	 n
r

mittency factor which can account for the progressive transition from

f'
k laminar to turbulent flow.	 The transition parameter G tr takes on the

` following values:
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s

a
tr = 0: (laminar flow)

atr = 1: (turbulent flow)	 (G.47)

0 < d
tr < 1: (transitional flow)

A number of transition models have been incorporated into the

computes program. One model requires specification of the axial

position where transition occurs, and the flow is assumed to

instantaneously transition from laminar to turbulent using this model.

An alternative model requires that two Reynolds numbers be specified:

the first denoting the onset of transition, and the second denoting

the onset of fully turbulent flow. Analytical functions are then used

to model the parameter S tr in the transition region. A full descrip-

tion of the available transition models may be found in the user's

t	 manual.

a

s
3

>1

1	
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APPENDIX H

'TRANSFORMATION OF THE BOUNDARY LAYER EQUATIONS

1. INTRODUCTION

The boundary layer equations may be solved numerically in terms of

the physical variables presented in Appendix G. Alternatively, the

boundary layer equations may be first transformed using a normal

coordinate stretching function and then numerically solved. An advan-

tage of using the transformed variable formulation is that larger

step sizes may be taken in the streamwise and cross flow coordinate

directions, thereby improving computational efficiency. Use of the

transformed variables removes much of the boundary layer property

profile and thickness variation, especially for laminar flows. These

'	 same advantages exist for turbulent flows but to a lesser degree. The

boundary layer equation transformation used in the present investigation

is presented in this appendix.

2. TRANSFORMED BOUNDARY LAYER EQUATIONS'

The boundary layer transformation used in the present investigation

has been suggested by Moore (11). Following Moore, a two-component
r=

vector potential is defined such that x	 j

ph2u =	 ( H.1)
8y

5
	 u

i	
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phlw =

	

	 (H.2)
8y

h lh2pv = -	 + 8q) + h
1

h2 (Pv)w	(H.3)
ax az

In equations (H.1), (H.2), and (H.3), u, v, and w denote the mean

velocity components in the if, ;r and z curvilinear coordinate direc-

tions, respectively, p denotes the mean density, the overbar denotes

a time averaged product, h l and h2 represent metric coefficient param
p

eters defined in Appendix G, and denote the component potential

functions, and the subscript w denotes wail conditions. The last term
s

in equation (H.3) accounts for wall mass transfer and is identically

zero for impermeable walls 	 Substituting equations (H.1), (H.2) and
^	 Y

(H.3) into the continuity equation, given by equation (G.1), identi-

cally satisfies that equation.
s

The governing equations of motion are now reformulated according

to the transformation



< sI

F

!t

rl

^f

J

where n is the stretched normal coordinate, u is the dynamic viscosity,

and the subscript a denotes boundary layer edge conditions. Under this

transformation, the functions ^ and ^ take the forms

_ (Pe-Peuex) Z h2 f(x, n, Z )	 (H.8)

$	 (PeueueX ) 2 hl we 9(x ^ n^ Z)	 (H•9)
ue

where the functions f and g are to be determined numerically in the

analysis.

As noted earlier, the continuity equation given by equation (G.1)

is identically satisfied by equations (H.1), (H.2), and (H.3). Substi-

tuting equations (H.1) to (H.9) into equations (G.5), (G.6), and

(G.13) results in the following system of equations:

[^e

IC +
EX )f ^^ 	 2	 3+ P f f^^ + P9fJ1 + h 	_ (f , )2

	

 1 	 J

1
k

I
bi

's
3̂ r
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C(1 + E^ ) g^^ + P2fg ° + P3g9" + P^ pe - 
(f

)2C	 ^
+ we P Pe _ (9 ,) 2 + P 

g f' _ pe _ Tg ^

a  h
2 p	 7	 p

x f .	 _ 9
u of + we 

x 9' 
	 - g" a	

(H.11)
h	 ox	 ax	

ue 
h2	 ai	 az

^2	 2
fC [,  + + Pr e' + e	 1 _ 1 f I f"+ we 9 1 9
 Prt, Pr He f	 PT)	

u 2
1	 e

+ P2fe , + P3ge' - Te'

x 
f' 

a6 - e' of + we x [g. a8	
e^
	

(H.12)
hl	

ax	 ax	 ue h2	 az	 az

where the primes denote differentiation with respect to n, H denotes

the mean total enthalpy per unit mass, and Pr and Pr+ denote the

.,	 laminar and turbulent Prandtl numbers, respectively. Equat i ons (H.10),

(H.11), and (H.12) represent the streamwise momentum, cross flow

momentum, and energy equations, respectively. The following parameter
y

definitions are used in equations (H.10), (H.11), and (H.12)..

f' = u/ue	(H.13)

g'w/we	 (H.14)

e = H/He

	

	

g

(H.15)
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Rx ' uex/ve (N. 16) r

M

_ x	 aue
—

(H.17)

i^

r

u	 ax
e

}
nx

N
x	 Sue

(H. 18)
ue az

aw
P

e
(H.19) ^E

w	 Sz
e

Q - X
	

awe

(H. 20)we ax`

s -
	

X11

	 a_`	
(peue)

pee ax

(H.21)

R

X	
a

- p u	 (peue) (H.22)
ee 8z

P2 = (1 + M + S - 2K 1h 1x)/2h1 (H.23)
9

P3 = "e 
21	

(2P - N + R - 2K h x)
2	 22 (H.24)

u e

w	 2

ep4 K1X (N.25)
u e

r
5

PS =
"'e	 1

- — h	 (-K2 h2x + N) (H.26)

?s
a

ue	 2
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j
(H.27)

r

u
P6 = -e K2 

we

P7 = (Kl h lx - 
Q)/hl

+ ex
ex = V

+ _ Ez
ez	 v

(H.28)

x

t

(H.29)
{

(H.30)

+ ee

[(E:+
x	

2
e
^)2+ (eZ

)^

Prt = c+/6e	 (H.33)	 i
d

3

^a

C = _FL	 (H.34)
Peue

(Pv)
T =	 W RX	 (H.35)

Peue
i
i

In equations (H.13) to (H.35), v denotes the kinematic viscosity,

Ex, eZ, and ee are the x and z eddy viscosities and thermal conduc-

tivity, respectively, and K l and K2 are geodesic curvature parameters

which are defined in Appendix G.
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Boundary conditions for equations (H.10), (H.11), and (H

given by

n=0:	 f0, g	 0, f' = 0, g' =0
(H.36)

	

I
6 = ew or e' = eW

Ti = n 6 	 f'	 1,	 g ,	 = 1,	 6	 1 } (H.37)

The boundary conditions for f and g in equation (H.36) follow from

the transformed equation for P  which is given by V

pv = - ( peueue/x)
Z
 (P 2f	 P39)

- {peueuex)
z n of +	 we	 + (pv)w (H.38)

r
x

2 !ae 82
JJJ

^ It should be noted. that the above.: equations assume that He is

effectively constant.

a

r 3.	 TRANSFORMED ATTACHMENT LINE EQUATIONS

As for the three-dimensional boundary layer equations, the

' attachment line equations can be transformed by defining a two-

component vector potential given by

ph2u = a (H.39)

r
ay

_ph w
1 

(H.40)
L	 ^'

z	 ay

3
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h 1h 2Pv = -	 +	 + h lh2 (P^)w 	(H.41)
ax

The transformation relations given by equations (.4) to (H.7) are

also employed for the attachment line flow. Moreover, the vector

potential given by equation (H.8) is again used. The vector potential

however, is now defined by

w

$ = (PePeuex	
hl u lx,n^z)	 (H.42)

e

Substituting equations (H.39), (H.40), and (H.41) into the

continuity equation given by equation (G_.20) identically satisfies

that equation. Substituting the above equations into equations (G.21),

(G.22), and (G.23) yields the following system of equations;

+	 it '	 f 11	
P 

1	 11	 M	 pe 	 1 2	 II4
^`

(1+ExC f
L

) + P2f + h gf + h
2	 1

i- (f	 ^p
-Tf

_ x-
h1

f• af'	 _	 f ..
ax

_af
ax

(H.43)

IC
++
 Z

)gT + P fg^^
 2

+ P1 99 + P	 f ^ 9 ^ _ Pe
h2	 8	 P^

a
+ P

r e
p -	 (9, )

2 + P 9 	-	 (f' ) 2	 - Tg"g
P

h2

x
k	 hi

^f . g „
ax

of	 (H.44)
ax

l
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C (1 + e+ Pr t Pr + e 
I1 Pr^ff"

J

+ P2fe' + yhl 96' - To' = h f' 
ae _ e , of

c	 1	 ax	 ax

Equations (H.43), (H.44), and (H.45) represent the-streamwise momentum,

cross flow momentum, and energy equations, respectively. The following

new parameter definitions are employed in equations (H.43), (H.44), and

(H•4'W•

u/ue	 (H.46)

g' = wz/wze
	

(H.47)

e = H/He (H.48)

E
P1

awe.
^

x 
(H.49)

F u 	 az

P.
8

=	 K	 h	 x-	
x	

8wze	
Z

1	 1	
w	

ax	 h1
(H.50)

ze

xue aK2 ^f

P G (H.51)

wze a

p	 Boundary conditions for equations (H.43), (H.44), and	 (H.45) are

given by

c	 t

i
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n = 0; f = 0,	 g = 0,	 f' = 0,	 g'	 0

(H.52)
6	 6w ,	 or	 6' =;; 8 W

,e

n = ns: f' = 1,	 g' = 1,	 6	 1	 }	 (H.53)

The boundary conditions for f and g in equation (H.52) follow from the

transformed equation for pv, which is given by



APPENDIX I

SOLUTION "OF M̀E BOUNDARY LAYER EQUATIONS

1. INTRODUCTION

The transformed boundary layer equations presented in Appendix H

forma parabolic system of partial differential equations. Those equa-

tions are solved in the present investigation using a second-order

implicit finite difference algorithm in which marching is performed in

the streamwise direction. The numerical algorithm that is employed is

based on the Keller box scheme (12). Cebeci and Keller have success-

fully applied phis method to they computation of two-dimensional

boundary layer flows (13).	 Recently, Cebeci, Khattab 	 and Stewartson

(14) have suggested an extension of this scheme for three-dimension,:al

flows.	 The analysis given in Reference (14) accounts for the wave-like

properties of the three-dimensional boundary layer flow in planes

parallel to the body surface, and as such is capable of computing both
x

`	 positive and negative cross flows.

`	 The numerical solution technique used for the boundary layer}

computation is presented in this appendix.	 Three differencing schemes

are employed in the boundary layer computation; the choice of which

scheme depending upon whether the cross-flow velocity is positive,

negative, or identically zero (attachment line flow). 	 Each different-

ing scheme is discussed fully below. 	 See Appendix H for the nomenclature

employed in this appendix.
f
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(I.2)

(I.3)

(I.4)

(I.5)

u ' = v = f "

g 1 = w

w' =t=g1l
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a

2. FINITE DIFFERENCE ALGORITHM FOR THE ATTACHMENT LINE FLOW 	 I

The numerical solution algorithm that is employed for the boundary

layer computation is based upon solving a system of first-order partial

differential equations. The transformed streamwise momentum, cross-

flow momentum, and energy equations for the attachment line flow, given

by equations (H.43), (H.44), and (H.45), respectively, can be written

as a first-order system of equations by defining the following variables:

f'	 u	 (I.1)

r

where the primes denote differentiation with respect to the stretched

normal coordinate n (see Appendix H for definition of the flow vari-
1

ables).	 Introducing equations (I._1) to (L.5)	 into equations	 (H.43),

k
(H.44), and (H.45) yields the following system of first-order equations:

f

bv' + (b' + P2f + P lg/h 2 - T)v + h
	

(a -u2)
1

_ x uau_
v

af (16)
t

hi ax	 ax,

r

j

1
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ct' + (c' + P 
2 
f + P 1g/h2 )t + P8 (uw 	 hl (l - w2)

2

+ P9(a u) T  = h to aw - t 
of	

(I.7)

1 I ax	 aX j

da' + (d' + P 
2 
f + P I9/h2 - T)A + e'fv + e(f'v + fv')

= x u 3E)
	
A 

of	
(I.8)

h 1	 ax	 ax

In equations (I.6), (I.7), and (I.8), the following parameter defini-

tions are used:

b	 C(1 +eX)	 (I..9)

s

C = C(1 + eZ)	 (I.10)

s	 d	 C 1+ E+ 
Fr 

/Pr	 i I. l l)

t	 ^

's	 _U 2

e = C He (1 - 1/Pr)	 (1.12)

e

a _ pe/p	 (I.13)

5

The computational network used in solving equations (I.1) to (I.8).

I,	 is illustrated in Figure I.1. In this figure, the computational cell 	 'q
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step sizes are given by
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h 
t	 q, =0

	

20	1	 j-1
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nj - nj-1 + hi -1
	

(I.14)

xn	xn-1 + kn-1
	

(1.15)

where hi-1 and kn-1 denote the mesh lengths in the n-and x-coordinate

directions, respectively. Both h  and k  are varied in the computation

as deemed necessary. In particular, the n mesh is determined by

h 	
K 
hi-1	

(1.16)

j-1	 j-1
n. =	 h. =	 K^-1 h	 (1.17)
^	 =1 ^	 i=1	 1

where K is the ratio of consecutive cell mesh lengths (assumed

constant), and h 1 is the n mesh length of the first cell.

The finite difference expressions used to approximate equations

(I.1) to (L.8) are now written using the computational network illus-

trated in Figure I.I. Equations (I.1) to (I.5) are approximated by

using second-order accurate centered difference and averaging expres-
	 Ps

sions taken about point (1) in Figure	 (I.1). Point (1) is the midpoint x

of the cell segment connecting points{xn , nj ) and (xn , n).	 -Per-

forming the differencing yields the following system of equations:
a

n _ fn	 h
_	 j-1	 r,,n 4_ 	 t	 =	 n (T i.0



ORIGINAL PAGE IS
OF POOR QUALITY

9j _ 9n_
	 h_ 2 (wj + wj_ _ 0

wj Wn	

h

- 

2 1 

(tj + 
t
j-1 ) = 0

h.
e - 6^-1 2 - (Ai + Aj_1) 0

(I.20)

(1.21)

(I.22)

The finite difference approximations to equations (I.6), (L.7), and

(1.8) are obtained using second-order accurate centered difference and

averaging expressions taken about point (2) in Figure I.1. Point (2)

^	 is the midpoint of the computational cell. .Performing the differencing
C

	yields the following system of equations:	 fi

v - v 1	 b -

F bj* j h 	 + jh	
1 + 

(P2 )fj* + hl 
9j*	 (T) Vi*

J-1	 J-1	 2

_	 t

r̂h_jj

x ^a	
un	 un -1 	

v . fn
	

fn- 1 ^ 	 I.23(	 )
hl	 J*	 kn-1_	

J*	
kn-1'

y

c-* tJh 
tJ -1 + ^^ cJ 1 + (P2)f * + P 1 9 * t

J	 _	 h•	 J	 h	 J	 J
. j - 1	 J-1	 2

+ ( P8 ) ( uj
*Wj* - aj*) + r!h  

^^* (wj)2

4

	

_ x U wn - w
n
-1 __t
	

f
n	fn-1	

(I.24)	
1

9 rXj	 i I -

hl J*	
kn-1	 J*	 kn-1
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* Qjh- Oj_1 + djh- dj-1 + (P2 )f . + hl g.* - (T) A.*
J-1	 J-1	 J	 2 J	 J

-1 — 	 w. v._1
+	 h	 fj*v^* + ej* v^* h	 + 

fJ
* h

j - 1	 j -1	 j -1

h
6nu 	k- en-1

 - e fnk- fn-1 	
(I.25)

1 J*	 n-1	 ^*	 _n-1

In equations (I.23), (I.24), and (1.25), the following averaging

notations are employed:

(a)	 2 (an	a
n-1 )	

(I.26)

aJ	
2 

(aJ + a;--1)	
(I.27)

an	 2
= l (an

j 
+ a

J )
	 (1.28)

-1

« = 4 (an + an 1 + an-1 + a
n
-1 )	

(I.29)
j *	 j	 J-	 j	 j

where a denotes a general function. Equation (I.26) is used solely
i

for variables which are dependent upon x_and z only.

Equations (1.18) to (1.25) form a system of 8(N - 1) equations

R	
when written for N points along the solution normal. An additional

eight relations can be obtained from the boundary conditions given :

f'
below:	 c

it
282-
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n=n l =0:	 f = 0,	 g = 0,	 u0,	 w=0

(I.30)

F	
e _ ew	 or	 o=ow

n = T1	 u = 1,	 w = 1,	 8 = 1	 }	 (I.31)

z

This yields a total of 8N, relations for the 8N unknowns along the

attachment line solution normal provided that the flow properties at

the streamwise station xn_ 1 are known.

In order to accelerate convergence, the system of difference

equations i s solved using Newton's method. 	 Newton's method expresses

any dependent variable at the (k + 1)th iteration as the sum of 'that

variable at the (k)th iteration and a perturbation. 	 Thus, s

r^n 
( k+ 1 )	 n (k)	

n (k)

rf^ 	 + ^Sf^	 (L.32)
a

where fn denotes any dependent variable at point (xn , nj ), the

superscript in parentheses ( ) denotes the iteration number, and j

n	 n	 -
6f  denotes the perturbation or difference in f 	 between successive

iterations.

The final forms of the finite difference equations are obtained

by substituting expressions like equation (I.32) for each of the eight

dependent-variables into equations (I.18) to (I.25), expanding allG

products of the dependent variables in terms of the perturbation

quantities, and then neglecting all quadratic or higher-order terms.

Performing this operation for equations (1.18) to (I.22) yields the
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following results (note that the iteration superscript is omitted)':

n
Sfi - nSf

i-1
J-1
2

(Sun 
+

i

Sun	
)

J-1
= R

1
(1.33)

dun -
J

Sun
-1

.

- 
hJ-1
2

(Sv n +
i

Svn	 )
J-1

= R
2

(I.34)

Sgi - 6gi-1

h.	 1

_ _ 2- (Sw^ + SWi
= R3 (1.35)

6w  -
Swn

-1J
h^ (Stn + Stn

-1 )J = R4
(I.36)

J j

66n - nd6
-1J

-	 1
2

(,Qn + c5^n_1 )
J

= R5 (I.37)

where

R	 = fn	 - fn	
h

+ 1 (un + U 	 )	 (I.38)
1	 J-1	 j	 2	 j	 J - 1

n	 _	 n	 n	 n
R2 	u j-1	 uj + 

h1
2 - (vj + vj-1)	 (I.39)

Y

-	 3	 J-1	 j	 2	 i	 j-1

h
R	 - g n 	g n + -^=1 (wn + wn 	)	 (I.40)

j

n	 h

( j	 J_R4 = wj-I	 wj + 2	 to + to 1 )	 0.41)

h	 n 
j-Y

5	
J-1	

j	 2	 J	 J'1

R 	 e n	
_ en +
	 (^	

} ^n	
)	

(I.42)

r
P	 Incorporating Newton's method into equation (I.23) yields
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11/tl

+̂
4^`wi i 	br t

^

^	 If
n
L

7

5
^y

i
^

.
g^

M
 ^wy

IF O	 POOR Qi. AL ^1 Il,

S dfn1 + S dfn	 + S dun + S dun	 + S svr + S dvn
2-1	 3	 ,7	 4	 J-1	 5	 J	 6	 a-1

+ S7Bgj f SBdg.-7 + S
9dwj + SlOaWj-1	

Y 1 (I.43)

where

(p4)X4 kn21 X4
+ (I.44)

r
S	 =

1 4

S 2 =

p
( 2 ) 4 + x

k-I	 X
,n-1	 4
2 (I.45)

4 h1
P

1

d

#	 1

S	

=-
X6	 x
2 -

k-1 (X7 _ un-1) + X6
4	 2

(I.46)

1

9
3 hl h 1 n-1

,
^

f!F[`kF

	

l

^'.
S	 - -	

M	 X6	 _	 x	
k -1 ( 7 	un-1 ) 	 + X6

4	 2
(i.47)

4 hl	 2	 lhl	 n-1

k

S	 =

-1	 -1

b * hj-1 + X 5 +	 x	 kn-1 (X 	 f	 )
4	 4 8	 n-1

(1.48)

W

5 2 hl

S	 = _ 
bj* hj-1 + X5 +	 x	 kn-1 (X	 _	 ) (I.49)

6 2 4	 h 1	 4	 8	 n-1

S_
7 r-hillX4

(I.50)
 4

f

`
_

S8 -
P1	 X4

(I.51)
-

h 2 4 x
r
tz

t
S

9
0 (I.52)

S	 -
10

0 (I.53)
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r 2
Y1 -X1 X4X5 + 
	

(X6 - aJ*)

x -1	
_

+ hl kn-1 [6 (X7 - un-1)	 X4 (X8 fn-1]

Incorporating Newton's method into equation (1.24) yields

T 16f^ + T 2df^_ 1 + T 36Ui + T4buj-
1 + T56gj + T669j-1

+ T76w + T8dw^_ I + T 9ut .+ T106t -1 + T11&v

+ T 6v n _ Y212j-1 

(I.54)

}
tt

1

G

(I.55)

where

T = (2,)
4

X10 + x
hli

-1

kn-1 X10 (I.56)1 2

T
2
= (P2) X10 + x kn-1 X10

(I.57)
4 h1 2

`

1 T

3
(p8 )

4
X12 - ( p 9 ) X6 -

 rTjj
n11{X

	 w	 ) 4	 13	 n-1 (1.58)

n	 ;

-2

T4
_	 (P 8)

4
X 12 _ (P 9 )

2
X6 _	 x

h
kn-1	 _ -
4	 (X13	

wn_1) (I.59)
1

1

I

T5
r—h

X

4
(I.60)
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p 1 X10T 6 _
h2 4

T 7 ; (
P8) X64 P 1 	 X 12 _h2J x

_1

kn-1 X62 h1 2

T8
(p8) X6

4 --- -
r—h

	X4,2
x

1
kn-1 X6

hl 2

T^ ,c,7 * 2h^- 1 +X41
N

+	 x kn-1 (X 
8 h l 4 n 1

T10
- c j* hj 1 1

2	 *
X 11	 x
4	 hl

kri l l	 _ —

4	 (X8	 ?n -1)

T1 .1 =	 0.0
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(1.62)
(1.63)

{I.6'4)

(1.65)

(1.66)

	

T12	
0.0	 (1.67)	 i

	

Y 2	 - X 9 - x 10X 1]	 (~Pg) (X6X12	 a^*)

P
+ h	 ( X12 -^*)	 (p9)(X2 - a *)	 u	 a

2

+ n 
k n 1 1 [^6 (X13 

- wn_1) ` 
X10 (X8 - fn-	 (I.68)

1

x.

4M

Incorporating Newton's method into equation (1.26) yields
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n
U lBf + U26f -1 + U

3 6u+ U4auj-1 + u 569^ + u66gj-1

+ u7awj
n 
+ u8 Wi_ + u9 6t + U 10 

i 1 
+ u 118v

+ u 126v -1 + u136Ai + u 146Aj -1 + u1566j

+ u16c^j -1 _ Y3	
(L,69)

where
-1

_ ^ P2 ) X15 + 6X4 + e. ĥ  1X4 + X18 + x kn-1 X15
U 1	 4	 4	 ^*	 2	 4	 hl	 2

(I.70)

._ k-1 X
	

j

`	 (P) X	 SX	 _h_l X	
X

	

2 15	 4-1 4 + 18 + x	 n-1 15

u2 _
	 4	 + 4 + ej*	 2	 4	 hl	 2	 M

s
(1.71)

	

K	 f

{F

k-1

x	 n 1 	 —	 (1.72)
`	

u	
hl	 4	 (X19	 en-1)

	

4	 hl	 4	 X19

	

P_1 X 15	 (I..74)

	

u5	 h2 , 4

s

	

r—h121

 X 1
.
5	 _##

(I.75)
U6 - 	 4

f	 `

F
288r	 tq	 j
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#	 U7 	 0	 (1.76)

	

Ug - 0	 (I.77)

	

0 9 = 0	 (L.78)

	

U10 = 0	 (I.79)

	

_ ax 	 e^* X17 e * X2 h 
1

1
G

	

1111	 4 +	 4	 +	 2	 (1.80)

= SX2 
e
J* X17	 a X2 h-11

	

0 12	 4 +	 4	 -	 2 (I.81)
-1

k	
d	 h 1
	 X16

0	
x	 kn '1 14 {	 -	 * 

	

13	
2 

J	 + 4 + hl	 4	 (X8 	 fn_1)	
(I.82)

o

	_1 	
_1

0 	 -dj* hj-1 + X16 + x kn-1	 _
	14	 2	 4	 h1	 4 (X8 	 fn-1^	

(I.83)

v 1 kn-1 Xrl	
`
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In equations (I.43) to ( 1.86), the following parameter definitions

have been employed:

X 1 = b
	 hj-1 (vn + vn-1 - v

n 	-
2	 i	 3-1

vn-1 )
j-1

(1.87)
j

4

X2 = 1 (fn + fn	 ) + f*4	 3	 J-1	 j*
(I.88)

X3
n

= 4 (9^ 	 + 9^_ 1 ) + 9j* (I.89)

X4
1 

- 4 (Vj
n 
+ vn

j-1 ) + V* (I.90)

E_

X5 = hj ll (b^ - bj_1) + (P2) X2 +
P'

hl 	X3
2

(1.91)

r,	 _

a

'
X6 = 4 (un + uj_1) + u** (L.92)

J	 Jz

X7
- 2 (uj + uj-i) (1.93)

X8 2 (fj + fj _ 1 ) (I.94)

X
9
= oj* hj -1 (t" + to-1 _ to	 -

2_ J	 j-1
to 1 )

-1
(1.95)

J Es

X 10 *4 (tn + to	 )
-1	

+ t
j*

(I.96) rf

}a

X11
hj 1 1 1c^ - T. 	 + (P2) X2 + hl

X3 (T) (I.97)
€ 2

P i

>t
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n	 n
X12	 4 ("'j + wj-1 ) + wj*

X13 2 

(

Wj + wj-1)
(I.99)

X
14

-1

= ^* hj-1 (Qn + fin-
2

1 _ Qn	 _
-1

Qn-1)
J-1

(I.100)
J

X
15

= 1 (pn + pn	 ) + A*
4	 J	 J-1	 j*

(I.101}

X16

-1	 — _ —

- hj-1 (d
j	dj _1 )

-
+ (P2 ) X 2 +

P1
X3

—
-	 (T)	 (1,102)h

2

Y

X
17

_ IJ-1 (fn + f
n-1

2
_ fn

J-1

- fn-1)

-1
(I.103)

r

r

r X18

-1

= - -1 (vn + v nrl2	 jj
- v n- 

1
- vn 1 )J- 1 (1.104)

X19 = 2 (9n + ej-1^
(I.105)

J
a

_ h-1	
(e	 - e	 )-1

(I.106)
j-1

}

r T

(pv)

_ --w R (1.107)
peue	 x i

r

In equations (1.33)	 to	 (1.107), the following averaging notations are

E: used:

r-
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Y

(a) - 2 
(an + a-1)	

(I.108)

ti

ctJ
* = 4
	

n(aJ } aJ-1	
an-1 + a-1)
	

(1.109)
j

a* 	= 1 
(an-1 + an-1)	

(I.110)
j*	 4	 j	 J -1 -

'-j= Z 
(an 

+ an
-1 )	

(1.111)
J	 J

n
an = 2 (an + a^ - 1)	 (1.112)

jr

where a denotes a general function.	 Equation (1.108) is used solely

for variables which are dependent upon x and z, only.

The above finite difference equations for the perturbation quanti-
1

ties are solved using an efficient block tridiagonal matrix factoriza-

tion procedure presented later in this appendix. 4`

3.	 FINITE DIFFERENCE ALGORITHM FOR POSITIVE CROSS FLOW

The transformed streamwise momentum, cross-flow momentum, and
t

energy equations for three-dimensional boundary layer flow, given by

equations (H.10), (H.11), and (H.12), respectively, can be written as

_ a system of first-order equations by employing equations (I.1) to (I.5).

Introducing those parameter definitions into equations (H.10), (H.11),

n	 .1

and (H.12), yields the following first-order system of equations:
A

1

i

j'	 292
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 + (b' + PZf + P3g T)v + h (a - u 2 ) + P4(a - w2)
1

+ P5 (uw a)

W X
x u au _ v of +

 r

ae2au- v	 (I.113)

ax :	 az	 az

w
ct' + (c' + P2  + P39 - T)t + P6 (X - u 2 ) + _e h ( - w2)ue 2

+ P (uw -)

(w" X

=h u aw_ t af + 	 Waw - tom..	 (1..114)R
l	 ax	 a"x	 ueh2	 a	 az

w 2
dA' + (d' + P 

2 
f + P39 - T)6 + e'uv + 

e wt

[ae,

w 2
+ e(uv' + u'v) + e e (wt' + w't)

ue
,.a

a
i

w x
= x u 

ae 
- o af +	 e	 w ae - v	 (I.115)	

"

h i	 3x	 ax	 ueh2	 az _ _az

a
y

I'n equations (I.113), (1.114), and (1.115) the parameters b, c, d,

e, and a are again defined by equations (I.9) to (1.13).

r	 Equations (I.1) to (I.5) and equations (1.113) to (I.115) are

solved for positive cross-flow velocities (w > 0) using the computa-

tional network illustrated in Figure I.2. The cell step sizes are

cF	
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(1<i<M)

770

x (n)
n	 j

kn-1	 I
do

2
i

i
i

i (i)

t	 i- 1 	 i

V



fn' i - fn,i - hj=1 ( un ' i + u n ' i ) = 0
i	 i-1	 2	 i	 j-1

h
un,i

- un'?
_ Lj-1 (

v n '
i
+ vn ' I ) = 0

j j -1 2 i j- 1

g n,i _ gn^i _ h,-1

2

( Wnpi + wn,i ) = 0

1 i-1 J j-1

(I.117)
	

n

(1.118)
3

K

(I.119)
Y

y
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again given by equations (1.14) and (I.15), and by

Z = Zi-1 + ri-1
(1.116)

where ri _ 1 is the cell mesh length in the z-coordinate direction.

The finite difference equations used to approximate equations

(I.1) to (I.5) are obtained by using second-order accurate centered

difference and averaging expressions taken about point (1) in Figure

I.2. Point (1) is the midpoint of the cell segment connecting points

(xn, nj , z i ) and (xn3 nj _ 1 9 z i ). The differencing procedure yields

the following system of equations:

J

wn,1 - W.

	

- h 2 1 ( tn ' i + t^'1) 0	 (1.120)
j	 J

9n'^ - 8n' j - -1

	

(A	 +A+ ^n'^) = 0	 (I.121)
J	 J-1	 2	 J-1

i

The finite difference approximations to equations (L.113), (I.114),

and (1.115) are obtained using second-order accurate centered

difference and averaging expressions taken about point (2) in Figure

1.2. Point (2) is the midpoint of the computational cell. Performing
a

the differencing yields the following system of equations:
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V - Vbj* +

^*	 hj-1

1

+ (F55) ( Uj* Wj* - aj*)

FFRI [uj* '%
	n-1.-fnfn-1^*

kn-1	

_ vJ* kn-1

--"sex 
w 

ui u i-1 _	 Li°i-1	 (I.122)
ueh 2 	^*	

r
i-1	 ^*	 ri-1

t - t	 ^	 C - C
^^* ^l h	-1 + jh j-1 + (P2) -* + (P39j*(T) tJ*

wP 

I Xj	
(wj*)l

ueh2 L

+ (P7)(ui WJ*	 J*)

x— Wn Wn-1 	
"k
 i

hl u^*	
kn-1	 t^*

wx+ e  
w 

wi - wieh2_1 _ t gi -_gi_1	
I.123

x

u	
J*	 ri-1
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d* ^I h 
J' 1 + jh• ' -1 + ( p2)fj* + (P3 )9j* - (T) pj*

	

J-1 ^	 J-1 

	

e -e	 w 2+ j	
j_1_l	

uj* vJ* 
+ ue WJ* ti*

	

hJ	
~e

	

v - v	 u - u

	

+ eJ* 
uJ*
	 + 

vJ*

	

hj-1	 hj-1

we 2 [

^ij

t _ t1W.

	

+ ej* e 	 +

	

* h	 ^* h

	

ue 	 j -1	 j -1

X -- 8n - en-1	 fn - fn-1

hl 
j* 

kn-1	 pJ* kn-1

+ W 	
w

eX	 ei	 ei-1 - 
p 

g i	 9i-1	
(I.124)

ueh2 j*	 ri-1	 J*	 ri-1

a

In equations (1.122),	 (I.123), and (I.124)	 the following averaging

notations are used:

— 1	 n,i n,i-1 n-1 n-1 i-1

ccJ = 4 (a^,i + aJ,i-1 + an-1,i + aJ-1,i-1) (1.126)

a
n

1	 ( an,i
-4 J

+ an,i-1 +
i

an-,i
j-1

+ anj- 1j -1 (I.127)

a
i

_ 1 (an,i
4	 J

+ an-L,i + an,i +

J-1

an-1,i^

j-1
(1,128)

F

J

1

i
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aj* .1
 (aj ' 1 + aj-1 + a^-1,i + aJll,i } J,i-1

+ 
an,i

-1 + an-1,i-1 + an-,i-T) 	
(I.129)

J-	 j-1 G

where a denotes a general function.	 Equation (I.125) is used solely s

for variables which are dependent upon x and z, only.

Boundary conditions for the above ,equations are given by

equations (I„30) and (1.31). 	 Taken with the boundary conditions,

equations (I.117) to (1.129) form a system of 8N equations for the

8N unknowns along the boundary layer normal located at x = xn and
^^	 i	 nz = z i .	 The solu

t
i on may be determined Z F t heshe flow propertie s, ^s ^t

W

stations (xn , z i _ 1 ),	 ( xn z i ), and (xn
-1' Zi-1	

are known.-?' i

7

Newton's method is again employed for obtaining the solution to

the difference equations.	 Relations of the form given by equation

F- (1.32) are again substituted for each dependent variable into the

appropriate difference equations.	 A linear system of equations is

obtained by neglecting quadratic and higher-order terms in the x

perturbation quantities.	 Incorporating Newton's method into equations

(I.18)	 to	 (1.22) yields

h
Sfn '^ - Sf_	 - 21	 (Su'i + 6u	 R= R 1	 (I.130)1

{

'i
J

nj	 n,i	 h	 1	 n,i	 n8u.	 - Su.	 -	 ^— (Sv	 + Sv .,i ) = R	 (I.131)
J-1	 2	 i	 -1	 2

1

1

;K Sgn '^ - sgnj _ ^-1 (Swn,l + Swn'^) = R	 {I.132)-1	 23jJ-1

?a

{{
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n,i
6wj

n,i	 hj-1	 n,i +	 n-1
- 6wj-	

2	
(atj	

6t-1)	
R4

-1
(1.133)

66n' i - 6e nj - 
	 (,,,n,, + apn'^) = R 5

j - 1	 2 J	 J-1
(I.134)

J

where

Y R	 = fn' s 	- fn' s +	
j-1	

(un' , + un' , ) (L.135)
1 J-1	 i	 2	 1	 j-1

R^ = un,I - un j + a7 ( vn ' i + vn '1) I.136(	 )
a

2 j-1	 J	 2	 j	 j-

E R	 =
3 an o - 9nj + hj-1 (wn,i +	 no)

..3 _1	 2	 -1 (1.137)^	 ^	 3

F R4 =
h•	 nnj _	 nj	 1	 n j	 ^,•., i

wj-1	 wj 	 + 2	 (tj 	 '4 j_1) (1.138)

R5
.g n j _ e nj +	 -1	 pnj -+ o n '^

(J-1	 j	 2	 j	 j-1)
(I.139)

1
a

Incorporating	 Newton's method i0to ,equation (1.122) yields

nj	 nj	 n,i	 n,i
S, 6fj 	+ S2 6fj-1 + S

3 auj
	+ S4 

au
j-1

nj
+ S 5 6vj

+ S	 6v 
nj 

+S7 69n'^ + S	 69n' i
6	 j-1	 J	 8	 j - 1

+ S	 6wn'i
9	 J

s

nj

+ S10 6wj-1 - 
Y1 (1.140)

a

Y
It
i'
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where

1

S =	
4 + h kn- 1 

X4	
(1.141)

1	
(P2)X

8 1	
:'

 1
_ (F2 )X4 + x kn-1 X4 (1.142)

"2	 8	 hl	 4

._ 1
M x6	 [ p̂,5)

S3=-h1+X8 	 4

6	 ;,
- x

k-
	 [11^ 

(X _ 
u	

) + 
X —
	 (1.143)

Ohl	 n-1 	 10	 n-1	 4

E
^	 X

M	 6	 P5)	
ari11

S4 =- h1 4 + X8 8	 4	 n

_	 X

r

F	 h k-1 [il̂  (X 10 	u n-1 ) + 4
_

(I.144)

1 

X	
k-1

f	 1-	 -1 +	 f5 + x	 n-1 X	 _	 )
S 5 	 4 b1 hj -1	 8	 h1	 8 ( 11	 n-1

i
} ar8_1 

(X 13 	 9i -1)	
(I.1'45)	 =

:t

w
_1

- 1	 -1 + X5 + z kn-1 X	 - f	 )
f'	 S6	 4 -* hj-1	 8	 h1	 8	 ( 11	 n-1

4i-1 ( 	 (I.146)^

	

+	

X

ar

8	13	 9i-1)
a

}
t
,	 ;	

a
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(1.147)	
1

(1.148)

ar-1
 

x(FP4 + J -1 4
7	 8	 4

ar-1
 

x

S	
(PP4 + J-1 4

8	 8	 4

'

S	
4-	 6	

;-
(^)X8 + .(T X 	 arS	

1 (X	
7	

(1.149)
9	 4	 8	 8	 12	 i-1)

( ^4 ) % + (P5)X6 ar i-1$

— (X	 (1.150)10	 4	 8	 8	 12	 -1)

=Y
1
	 -X 1	x 4x 	 x	 x5	 7	 9 +	 X6X8)

x-1 YXIO 7n-1 ) YX 11+ —h jj 'n-1

+ i-I [X8 (X12 -̂ j-l ) YX13

Incorporating Newton's method into equation (1.123) yields

n,i	 l'i	 nj	 Il 'i	 njT 61F	 + T 6f'.	 + T 6u	 + T 6U. - + T 6g2 J- 1 	 3 1	 4 1 1	 5 j

+ T 6gn$l	 I i + T dw nj 
+	 6t

ViT ^6	 + 6w
J-1	 7	 8 j- 1 T 9

+ T10 J6t3,,	 Y 2	 (1.152)
-1 
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k

where

(P^)X
2	 15

k-1	 X
x	 n-1	 15T

1 8
+

hl 4 (1.153)

(P2^ X 15
1

x	
k
n-1 X15

T2 - 8
+

h— 4
(I.154)

1

8	
l

ki

{ T3 64 6
+	

8 h l 8	 ( X19 - Wn-1)
(I.155)

(P6 )X 6 (P I )X8 x knll
T4

_ _
4 +	

_
8 h1 8	 (X 19	 wn-1)

(I.156)

(P 3 )X 15
ar

i-1 X15

€i

T5 =
8

+	
4

(1.157)

—

(P3 )X 15
-1

ar
i-1 X15

t

T	 =
6 8

+
4

(I.158)

6

T	 =

7

- wP X-8 + X
,_	 1

(P7 ) _ x In 
k

r^eeh 2
4	 68
 

-
1 ar_1

8-1
ar-1	

X
(X20 - wi_l } -	 1 4 1	 8

(L.159)
n

_ weP

_	
1

X8	 (P7) (--x-1 	 kn -1
a

T	
=

8
u 

h
e2

+ X
4	 6

_
8	 lhl]	 4

r ar.

8

_	 ar 
11 

X8

(X20 _ wi_1)` -
	

4
(T.160)

a
n

if
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sof hJ11+X16+ 

FT^n

 k 1 1	 __
T9	 4	 8 	 8 (X 11	 fn-1)

ar-1

+	 8	 (X .13- gi-1)	 (1.161)

+ X16 + x knll	 -
T10	 4	 8	 h1	 8 (X11	 fn-1)

-1

+ ar8-1 (X 13	 9i -1)	
(I.162)

Y	 -X -X X -x	 X +(P )Cx	 6-* =xXr-	 2	 14	 15	
-

	

16	 17	 18	 7	 J	 8	 x

1+ x	 w	 X	 f

	

k-1 
[X6( X19 	 }	 X (	 -

n-1  	 n-1	 15 11	 n-1]

a

+ ar- 1 	- w. ) - X (X	 g. )	 (I.163)
i-1 [8 (X20	 i-1	 15 13	 i-1^

Incorporating Newton's method into equation (I.124) yields

	

U 6fn'^ + U dfn'^ + U 6un'^ + U 6un' i + U 8gn' i 	41 i	 2-1	 3 i	 4 J-1	 5 J

r
+ U 6gn'^ + U 6wn'^ + U 6wn'

,
 + U 6tn',6 J-1	 7	 8 J-1	 9 J	

R

k

	

	
n,i	 n,i	 nj	 n,i

+ U106j-1 + 
U 116v^ + U126v^-1 

+ U13S°j

	

U 6^n'
i
 + U 68 n '

i
 + U 68

n, 
= Y	 (I.164)

t	 14 3-1	 15 3	 16 3-1	 3

x .}
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(P2)X22 x	 k 

1
n-1 X22

U l =
8	

+
h1	

4

(P 2 )X22
1

x	 kn - 1 X22
U2 - 8	 + h l	 4

U3 - 884 + ej*

X 

hjl l	 8	

X

4 + 4

x	

krill

-	 h l	 8 (X28	 en-1)

U

4
_ 

ox

—8 +^
8	

`1*
h
-1	 X24 _ X4
J-1	 8	

4

(1.165)
	

i

a

(1.166)

(I.167)
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where

1

x kn-1 (X	 _ e	 }	 (	 )

	

hl	 8	 28	 n-1	
1:168

4a

(P3)X22	 ar
il l X22

	

U 5	 $	 +	 4,	 (I.169)	 Y

r	
U = (P 3 )X22 + ari-1 X 22i

	

6	 8	 4
(1.170),

1

U
we 2 6X15 + yh-1 X26 

+X15 R	 a

	7_ u 
e	

8-1 8	 4
f 

l

ari-1
	 (1.171)'	 -	 8	 (X29 - 8'

- 1)

x

£{	 ^4

f

^	 psi	 a
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ar8

-1

 {X13	 9i- 1) 	 (1.177)

2
z	 1	 1

+ X23 + x kn-11 (
X	 _ f )

5	 14	 4	 8	 hl	 8	 11	 n-1

`^	

grill

g	 (X 13	 9i- 1^ 	
(I.178)

1	
1

U
	 kn-1 

X6 - art -1 X8	
(1.179)

15	
hl	

4	 _4

f
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U	 =
8

`— 2
we	 SX 15 	

h
-1	 X26 _ X"

Yue 8	 j-1	 8	 4

-1

- ar8
.
1

.
.(X29 	 ei-1)

0	 _

r

wel ' N 
+ Yh

-1	 X8 + X27

9 8	 1 8

0	 =
10

r^e 2 OX8 +Yh-1 	 X8 + X27
8	 J - 1	 4	 8

u=
11

8X6	 X6	 X256
8	 7* 

h-1
j-1	 4	 8

u
12

-	 3X6 + e * h -1	 _ X6	 X25
8-1	 4	 8

U

R	 1
dj* hj -1_ + X23 +	 x	 kn-1 (X	 - f	 )

13 4	 8 h1 8	 11	 n-1

_1

(I.172)

(I.173)

(1.174)

(1.175)

(1.176)
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x kn
-1 X6 arJ-1 X8

U16 = - h 1	 4	 -	 4 (1.180)

_	 w 2
y3	

dj* hj11 X21 - X22X23 ox4X6
e
eSX8X15

ej* hj-1 (X6X24 + X025 ) -
 y-

hj-1 (X8X26 + X15X27)

P

-1
T^,j''n-+ 	1 [6 (X28 ®n-1 ) 	X22(X11

+ ar.-1[X29(X - i8	 )	 X (X	 - g
i	

(1.181)1-1 8 	 -1	 22 13	 -1

In equations (1.140) to (1.181), the following parameter definitions

have been employed:

*	 *

X 1 = b
j* h i l l(̂ v3'

i 	 v 'i) + vj	 vj _,^	 (I.182)

X2 = ( PL) r8 fj'i + f ' 1 ) + f (I.183)

u

X3 = (P3 ) $( gn '
l
 } 9 n'i) + 9** (1.184)

X4

*
-8

	 vni 
) +vi * (1.185)

X 5 = hi
l
l1) + X2 + X3 - (T) (I.186)

_
X6

 
$ (u '' + u^'i) * u * (I.187)
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x
7

M^	 x 
2
6

0.188)

x
8

(w nti +	 +
J-1

W*
i

(1.189)

x 9
2

(F4 ) (Tj*	 X8
(1.190)

x
10

1 (u 
nj + U^

Ivi	
+4 J-1) un

(1.191)

x
ll

(f n,ii	 + f^),i	
+4	 i J-1) fn

(1.192)

x 
12

1	 n,i	 rij
(u	 + u	 1 ) +

4	 i	 j-
u i (1.193)

x
13

T (gn,, + gr
	
1) +

j-
g i (1.194)

x
14

c	 h	
(tn,l

i	 j -	 4
nj i 

+ ti	titj-,/	
_1 (1.195)

x
15

(tn,i	 n,i+ t	 +
8	 i	 j-1

t (1.196)

x 16
-1	 cc	 + x	 X	 (T)h 
i- i	i	 j-1	 2	 3

(1.197)

x
17

x 
2

(p6 )	 6
(1.198)

x
18

p^e	
(x	 x 

2

i	 8
eh2l

(1.199)
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X 19 - 4 (w' i + w^') + wn	(I.200)

_ 1X20 _ 4 n,1
(w^

n,i
+ wj _ 1 )

***
+ W 
	 (1.201)

X21 = 4
(,j. i

_ ^j'1) + ej - aj_ 1 	(I.202)

X	 = 1 (pn 'i + n' i
 + p*	 )

22	 8	 j	 j-1)	 j*	 (I.203

X	 h1 
( d , _ d• )+X +X -(T)	 (I 204)^-1	 j J-1 2 3 D

X	
_

24
1	 n,i	 -(^
4

n,iv.	 ) + * -v. (I.205)

9

X	 _
25

1	 (u	
-

4	 j
un'^ ) +

-1
u* - u*

-1 (I.206)

X26 =
4 (tn	

- t^'1) + ti - tj-1 (1.207)

X	 =27 1 (wn ' i	 -
4	 j wn' ) +

j -1
w* -
j

w* -1 (I.208)
J

' X	 =
28 1 (6 n ' i +4	 j

6 n '^ ) +
j -1

8
n

.(I209)
Y
1

3

X29 4 (6ji +
ej, l ) + e i * (I.210)

a =
wex

(I.211)
ueh2` . a

0 hj _ 1 (ej - ej_1 ) (I.212)
k	 i
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we 2

Y = e i

	

	 (I.213)
Ue

T (pv)w R Z
x	 (1.214)

%4

In equations (I.130) to (L.214), the following averaging notations are

employed:

(a) = - 
(an,i + an,i-i + 

an-1,i + an-l,i-1)
	

(1.215)

aJ* 1 (a. + a^
,i + aJ-1,i + an-1, + n, -1

8	 1	 J-1	 01i

+ aj,-1 + aJ-1i-1 + aJ-1'i-1)

*
aj* - 2 (aj + aj-1)

(I.216)

(L.217)

a*

j
= 1 (an,i -1

4	 j

+ an-1,i + an-l,i-1)j	 j (1.218)

M

a
_ 4 

(an,i +
J

an-1,i + an,i-1 + an - ,i- 1^
j (1.219)

J J	 J

a
r	

n
_ 1 (an,i +
4	 J

an,i + an,,.,,1 + an,i-1)
J-1	 J	 J-1

I	 220 1 	t(	 •	 )

f

E	 a** = 1 (an,i- 1 + an,i_1)
(I.22.1)n 4	 j J - 1

ai = 1	 ( n,ia
4	 j	 +

n,i	 n-1,i +	 n-1,a	
a	 )

j-1 +	 aj 1J ( 1.222)
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aF
a!

ly	 _ 4 (a 1 '^ + aj-1 '')	 (1•.223)

where a denotes a general function. Equation (I.215) is used solely,

for variables which are dependent upon x and z, only.

The above finite difference equations for the perturbation quanti-

ties are solved using an efficient block tridiagonal matrix factoriza-

tion procedure presented later in this appendix.

4. FINITE DIFFERENCE ALGORITHM FOR NEGATIVE CROSS FLOW

The previous section presented the finite difference algorithm

used for the computation of three-dimensional boundary layer flow

when the cross-flow velocity is positive. Due to numerical- stability

considerations, alterations to the above scheme must be made when

-attempting to compute boundary layer flows with a negative cross-flow

velocity component. The physical reasoning behind this and the

resulting algorithm are presented in this section.

Although the three-dimensional boundary layer equations are

formally parabolic, they do exhibit a hyperbolic or wave-like

character in planes parallel to the local body surface. This behavior

a	
was first noted by Raetz (21) who enumerated the general principles

to which any successful three-dimensional boundary layer numerical

solution procedure must conform. Because of the wave-like character

of the governing equations, it is possible to identify wedge-type-

zones of influence and dependence of any point in the three-dimensional

boundary layer flow. In two-dimensional boundary layer flow, these
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zones collapse into the plane of computation, and, consequently,

further consideration of this aspect need not be given.

Figure I.3 illustrates two possible streamline orientations for

three-dimensional boundary-layer flow, Both Figures I.3.(a) and

I.3.(b) represent streamline projections in a plane that is parallel

to the local body surface, and in both cases the streamline passes

through the body normal located at the station x = x n and z zi.

Figure I.3.(a) illustrates the case when the cross-flow velocity is

positive (w > 0), whereas Figure I.3.(b) illustrates the case when the

cross-flow velocity is negative (w < 0). In order to achieve numerical

stability, it is mandatory that the finite difference algorithm employ

field points at the initial-data station x = x n_ 1 which engulf the zone

of dependence of the solution point. The zone of dependence of the

solution point is delineated by the streamline passing through the

point. Consequently, for the situation occurring in Figure I.3.(a),

points from stations at zi _ 1 and zi should be used, whereas for the

situation occurring in Figure I.3.(b), points from the stations at

z  and zi+1 should be used. Examination of the finite difference.

algorithm presented in Section 3 of thi:5 appendix indicates that it

is applicable for the positive cross-flow velocity case provided that

the streamwise marching step is not so great as to have a streamline

intersec.on at station x = _X 
n-1 

such that z < z i-1 . The finite

difference algorithm that is employed for the negative cross-flow

velocity case is now presented.

The pertinent governing equations for reversed cross-flow cases

are again given by equations (I.1) to (I.5) and equations (I.113) to
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(1.115). Those equations are solved for negative cross-flow cases

using the computational network illustrated in Figure 1.4. The compu-

tational cell step sizes in the n-and x-coordinate directions are

again given by equationH (1.14) and (I.15), respectively. The compu-

tational cell now i s staggered in the z-coordinate direction with the

respective step sizes being given by

J

The finite difference equations used to approximate equations

(I.1) to (1.5) are obtained by using second-order accurate centered

difference and averaging expressions taken about point (1) in Figure

1.4. Point (1) is the point midway between points (x n , nj , z i ) and

(xn , nj _ 1 , z i ). Performing the differencing again yields equations

(1.117) to (1.121). The finite difference approximations to equations

(1.113), (1.114), and (I.115) are obtained by using second-order

accurate centered difference and averaging expressions taken about
t

points (2), (3), and (4) in Figure I.4. Points (2), (3), and (4)

are the midpoints of the three faces of the computational cell.

Performing the differencing yields the following system of equations:

zi	 z
i-1 } ri-1
	 (1.224)

z itl = z  + ri	 (1.225)
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n

h j-1	 k	 2n-I
00

I	 '**'

ole
Ile

j-1

	

	 z (i)n
r	 ri

H

FIGURE 1.4. THREE-DIMENSIONAL NEGATIVE

CROSS FLOW COMPUTATIONAL

NETWORK.

jy

N
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v vj^1

m Cxj* ( û  j 

+(p:) (u *wj * 
^J*)

x Fun - 
u
n-1	 n fn-1...	 _

n l 	 kn-1	 j	 kn-1

+ 
wax	

w
 2—u 

	 v _ag,	 4. (1 _	
w a u - v

"uh2. 	 az	 azj	 az	 air

(1.226)

y

C. - C. 1cj* 	 +	
j

- 1h	 - - (Fz) Tj*	 f	 9j*	 (T) j*	 9J
-1 

+
	

-	
WAR	 - .,	

^	 r

(^6^Ljr	 (uj*^	 L"i*	 (
«
wj^^M

ueh2^

^.	 w - W	
i

(^'7)(uj*Wj*	 aj*^	 l	
[j *	 n k	n-,1

1	 n-I

_ fn fn -1 1

j*	 kw 1

^y	

w
aw -

	

 ^'a	 + (1 -	w8wtauc'

ueh2	ax	 ax	 1az	 az 4]

(1.227)
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d	 - d
d * 	 h,^j"1	 +	 j h•	 j-1 + ( 2) fj* + (P 3 ) 9j* - (T ) Tj*

e 9

-^^ h . 
eJ"1

-1

w
u . *vj* +	

e	
wj*tj*

J	 ue

f

J

+ 
e
j*

V. - vj-1u

J* hj
'1

+ V

j
of

hj-1

3f

w	 - w

e * r̂e w * t+t.*
J 	 J	 hj-1	 J	 j - 1

Sx

-	 f	 - f_	 x	 _	 6 n	 6n,_Z	 —	 n	 n-1
u *	 -	 -A *

h 1	 j	 knkn-1-1 g

f+
wex

w ae - o + (1 _)w
ae - o

ri
E

ueh2
az	 az	 2	

az	 az 4 ^ r

(I.228)
a

In equations (I.226),	 (1.227), and (L.228), the following averaging

notations are employed;
r	 ,

r

'

`

(a) _	 (an,i + an-1,i ) (I.229)
a

f

aj 	 2 (oj + o-lj) (1.230)
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where t% denotes a general function. Equation (I.^

for variables which are dependent on x and z, only. The final terms

in equations (I.226), (I.227), and (1.228) are centered at points (2),

(3), and x'14). The mesh parameter ^ is given by

Zi+1

	

	
zi	

(I.233)w
Zi'+1
	 i -1

The above equations are again linearized using Newton's method.

This again results in the finite difference relations given by equa-

tions (I.130) to (1,139), which employ the parameter definition

equations given by equations (1.117) to (1.121-). Incorporati`ng

Newton's method into equation (I.226) yi elds

	

S, 6fn'^ + S	 n'^	
n,^	

n=i	 n'idf .	 + S 6u .	 + S du	 S 6v .	
i1	 3	 2	 J -1	 3	 4	 J-1	 5	 J

n,i	 n,	 n,i + S awn,i+ S6 5v J _ 1 + S7 ,Sgi	 + S8 
agJ-1	 9 J

+ S 10 6wJ-1 = Y1	 (1.234)	 1

u

s

k	
31'7'

1 non,
an - 2 (aJ	 aJ_1)

a3* = 4 (a^' i + a^'1-1'i+ a^	 + a_i' i )
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where
	 r

i

S _ " 
2) X4 + al knll X4

1	 4	 2	 (1.235)

S = (P2)X 4 + alknll 
X4

2	 4	 2	 (I.236)

M 
Xd	

(P 5 )X7	 1 X 8 	 61
2 S 3 = - h

3 2 +
	

4	 -
 CL k-n-1 4 + 2 - aa3 (1 0X14

r 
t

(1.237)	 n3+

X	 (P )X	 X	 X
S4 - M 6+ '7 - a k-1 8 6

--w a (1 -)Xh1 2	 4	 1 n-1 4	 2	 2 3	 14

(1.238)

	

b• * h_
1

	X	 a
5	

k_1 X
	 X

	

__ J j-1 + 5 + 1 n-1 9 +	 17	 (1.239)
5	 2	 4	 4	 a2a3(1 -) 4

1
S _ _ bJ* hJ-1 + 

X5 + al kn-1 
X9 + 

a a (1 -) X17	 (i.240)	 3{
6	 2	 4	 4	 2a3	 4

( P3)X4
S7	 4 + a2a3(1 - 0X15	 (I.241)

4

p :	 (p3)X4
j	 S8	 4	 + a2a3 (1 - ;) X 15	 (1.242)

S	 (P4)X7 + (P5 )X5	 X169 - -	 2	 4	 - a2a3 (1 -) 4	 (1.243)
t3	 ,
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S	
- (P2)X7 + (P54

X6 - a2a3 (1 - ) X46
	

(1.244)
10

Y1 = -b3* h 1 1X1 - X4X5 + rM (X^^*)+4tx7

_j

(P 5 )(a^ * - X 6X7 ) + a1 n-1 X6X8 - X4X9)
	

S

+ a2^ (X 10X 12	 X11X13)

a2 a3(1	 ^)(X14X16 - X15X17)	
(I.245)

	

Introducing Newton's method into equation (1.227) yields 	 rt	 j

T 6fn'
1
 + T 6fn'^ + T 6un'^ + T 6un'

i
	n+ T 6g'i1	 2	 J-1	 3	 4-1	 5	 J

+ T 6gn' + T 6w ' i + T 6wn no + T dtn'^
6 3-1	 7 J	 8	 3-1	 9 J

+ T
10 dta'i = Y2	 (I.246)

a

where

T = 
(P2)X19 

+ a k
-1 X19	 (I.247)

1	 4	 1 n-1 2

T = (P 2 )X 19 
+ a k-1	

X19	 (1.248)
2	 4	 1 n-1 2
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T = - (
P 6 ) X6 + ( P7 ) X7	 knllx2

3	 2	 4	 al	 4

T - - (P6)X6 + (P7 )X7 
_ a kn11X2

4	 2	 4	 1	 4

( P )X_	 3 19

T5 	 4	 + a2a3 ( l - 0X24

)X
193

T
	

^P 

4	 + a
2
a3(1 - 0X24 (1.252)

	

X^	 (P7)	
alknll	

X
T7 

= -a4 2 + 6 4	 2	 - a2a3 (1 - ) 45 
+X14

(I.253)

f-1

T = a X7 } 
X	

(P7) 	
al

kn-1	 X25_
8	 4 2	 6	 4	 2	 ' a2a3 (1) 4+ X 14

F

(1.254)

i

s

1T9 = cj hj-
1 }	

k-1 X
X20 + a

	

9 + a a (1 -) X17	 (I.255)	 a
4	 1 n 1 4	 2 3	 4

1

T 	 + X20 a k-1 X9 + a a (1 -) 
X17	

(I.256)	 s
1.0 =-
	

2	 4	 1 n-1 _4	 2 3	 4

u	
a	

J

^`	 dj

^s	
r^^,	 y

u'	
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^f

a1 n-1 (X6X21	 X9X19) + a2^ (X 10X23	 X22X13)

+ a2a3(1	 ^ )(X 14X25	 X17X24)	
(I..257)

Incorporating Newton's method into equation (I.228) yields

U16f. + ,U26fj- + U3au3,i 
+ U46uj-1 + U56gj'^

+ U 6g
n
'^ + U Swn'^ + U 6w^'

i
 + U 6t^'^	 n+ U 6t'^

6_ -1	 7	 8 J-1	 9 i	 10-1

+ U116yJ ,i + 
U126Vj -1 + ^i13 611- ^ + U146Aj -1

+ U156e^,^ + U 1668n, i = Y3	(I.258)

where
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U 3
&X4 

+ e. h-1& 
5	 j	 j-,

X1 
+ L4]4	 2 ak-1

l n-1
X"
4

(1.261) 

U
4

4 + — *h_ l 	 Ll
x

a	 e	 j	 4	 L2 j
5	 i	 j -

a l k- '
n

X31
 4

(1.262)

U5 4=	
+ a

2 a3 (l - Ox34
(1.263)

U6
- 4=	

+ a2
 a
3 ( 1
	 9)X34 (1.264)

u 7
'5

^oal

2 
x19 + a h-1 

Lj -	184	 6	 1	 4 X19-2 1 (12 ( 3 X3 5
(1	 4

(1.265)

e

U8

2
We 	 X 19 11	

18
ct
5 	4	

a
6 h

-
a_	 j - 1	 4
el

219^ _	 0'20'31 (1	 3 54
(1.266)

U99

2
X7
	

We	 +	 + a

7 [4-	 2	 6

x

h-1
	 30

j-1	 4
(1.267)

el

u
10

2
Fc(5	

we

x+ a67 [4
u el

h-1	
X30

j- 1 	 4
(1.268)

U1111
0'5X6	 _e *hl
4	 i	 j -1

6	 291
(1.269)

2	 4

U 1212

x6 	 l	 +	 2915	 e *h -
4	 i	 j -1	 2	 4

(1-.270)

U 13
+ X2828	

k-
1 	 9

2	 4	 0'1 n-1	 a 2a 3 (l

x 17
4

(1.271)
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1

	U - -dJ*h' -1 + X28 + a k-1 Xs + a a (1 - ) X17	 (1.272)
14	 2	 4	 1n-1 4	 23 	 4

-1 X6
U15 ! _a1 n-1 2 - a2a3 (1 - 0X14 (L.273)

U 16

Y
= -a k-1	 6 - a a (1 - E)X1 n-1 2	 2 3	 14 (1.274)

2

Y=3 .-d	 h^ X	 -X	 X	 -a
*	

.
-1 26	 27 28	 5

XX + e
4 6

w
XX
7 19u

e

r [ - e*h-1 (X X+ X X	 )- a h-1
j	

{X X	 + X	 X
j-1	 1 6	 4 29	 6 j-1	 7 18	 19 30

+ a
l kn l l NX31	

X 9X27 ) + a2 (X10X33	 X32X13)

1

+ a a(1 -)(X	 X	 X	 X)
2 3	 14 35	 17 34

(i.275)

In equations (I.234) to (I.275), the following parameter definitions

are employed:

 Y

X
1

_ 1	 Vn,i	 vn-1,	 _ v n '^	 ..	 vn 
1'^

2 ( J 	 +	 J	 J-1	 J-1	 )
(1.276)V

rL
X

2

1 (fn,i + fn,
	

+ fn-1i + fn-1,i)

4	 i	 J-1	 i	 j-1
(i.277)

Y

6

f
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F

X
3

= 1
(9n,i + 9n,i + 9n-1,i + 9n-1,i)

4	 j	 1	 j	 j-1
(1.278)

X4 = 4(vJ'i + v'1 + ,vJ-1,i + v n-1 i
(1.279)J-

u

X 5 = hi ll (bj	 bj _ 1 ) + ( P2) X2 + (p3) X3	 (T) (1.280)

X
6
= 1

(u n,i + un,i + un-1j + un-1,i)
4	 j

(I.281)j-1	 j	 j-1

X
7
= 1(wn,i + wn,i + Wn-1,i + wn- l $

4	 j	 J-1	 J	 J -1
(I.282)

9

Y

{

e

X
8

_ 1 unj + un,i	 —
2 ( j	 J-1)	 un-1

(I'.283)

X9
= 2(f^'l + f

n
') 1.284

X
10

_ 1	 n-1,i+1	 n-1,i+1	 n-1 i-	 (w	 + w.	 + w.	 +
4

n-1 iw.	 ,	 ) (1.285)

j

g'
j	 J-1	 J J-1

i

X11 _ 4(vn-1,i+1 + vn-1,i+1 + vn-1,i + ^n-10)
(1.286)

J J -1

X12 = a (un-1,i+1 + un-1,i+1 _ un-1,
7

_	 un--1,)
(1.287)J	 J-1	 J J-1

X13
n-1j+1	 n- ,i+1n-1,i

a7 (9J 	 + 9j-1	
_ 

9j
n-1,i

9j 	 ) (1.288) kf

X14
+ wnj + wn,i-1 +win i-1

` 4(wj	 J-1	 j
	 wi l l 	) (1.289)(I.289).

a
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X = 
1 (vn,i + Vn,l + vn,i -1 + oJ-1)

15	 4 J	 J - 1	 J	 J-1

X16 0" + 0" _ u ,i-1 _ un,1-1

X17 = 9J,i + 9J, _ 9J,i-1 s 9j'1-1

X	 = 1 (tn,i + to-1,i	 tn j - to l'i
18	 2 J	 J	 J-1	 J-1

X	
= 1 (tn, + tn,i + to-1,i + to-1,i)

19 4 J	 J-1	 J	 J-1

X20 _ hi-l(cJ _ cj-1) + 
(F2)X2 

+ (83)X3 _ ^)

_ 1 n,i + wn,i _
X21	 2 (wj	 J-1)	 wn-1

i

(1.296)

1 n-1,i+1	 n-1,i+1	 n-1,i	 ;-n-1,1)il
22	 4 J	 j-1	 J 	j - 1

	
(1.297)

	 r

X	
n-1,i+l

a7 (wj	 +
n-1 i+l

w .
n-1,i	 n-1.,i
-	 -	 .	 )- w	 w {1.298)23 J-1 J	 J-1

1	 n,i

X24	 4 (tj
n,i

+ tj-1
n,i-1

+ tj
n,i-1

+ tj-1	 )
(L.299) ^a

X 25 - wn
	 + wJ,i _ wJ,i-1 _ wJ,i-1 (1.300)

_ 1	 n,i n-1,i n,i n-1,i (I 301)
X26 - .2	 + °j	 °j-1 °j-1 )	 II

t

t 	 X	
1(^n.,i + Vin, + °n.-l.,i. + . °n-1, )	 (I.302)	 j

27	 4 J	 J-1	 J	 J-1
1
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X28 = hj l l (dj - dj_1 ) + (P2 )X2 + (P 3 )X3 - (T) (1.303)

a

X29 = 2(u j + u -1,i - 
u^-1	 uj-lei)'

(1.304)

ii

X	 =
30

1 (Wn,i + Wn-1,i _ Wn,i _ Wn-1,i)
2	 j	 j	 j- 1 	j - 1

(I.305) j

X31 2 (ej 	 + ej'1) - en- 1
(1.306)

r_
32

1	 n-1,i+1	 n-1 ,i+1	 n-1,i	 n-1,i

4	 3	 3-1	 J-1
7 ^`

_ X33 = CL -
7(en-1,i+l + e n- 1,i+l	 en-1,i	 en l,i)

-	 - .(I 308)
u

3	 j-1	 J-1

c	
1

X	 =
34

1 e J + ^n,i + ^n,i-1 + "
j-14 ( J	 j -1	 j-1	 )

i.30g( 1.309)
(	 )f 3

X
35

_ en,i + en,i _ en,i-1 _ e nj -1
j	 j -1	 j	 .	 1 ( I.310)

if b

t

al = (hl

l	 1J
(I.311) ^r	 3

a2

^W. x

=	 I
I 	 e (1,312)

l"eh2

a3 (Zi	 Zi-1)-1/2
(L.313)

4

w eP l

ueh2,
(1.314)
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,'	

&^y*a.
	 M*	 AYti

b
r-`1 	 x̂ A 3{ J.'1 }{ " i

'v'"
`^y

a	 = h-1 (e. - e.	 )	
;	

(I.315)
5	 J-1	 J	 J-1

We 

2

a6	 e * -,	 (1.316)
x	 ue

a7 _ (zi+1 - i i ) -1/2	 (I.317)
l}

_In equations (I.234) to (1.317), the following averaging notations are

employed :

x

(a) _ ^(an,i + an-1,i)	
(1.318)

t'r

d aj* = 4 (aJ,i + aJ,i + aj-1,i + a^_1' 1
)	 (i.319)

't

4

aJ = 2(aJ,i	 a^ -1, )	
(1.320)

g'

r> 

}

a	 = 1 (an ' i + an '')	 (L.321)k	 n	 2	 j	 j-1

where a denotes a general function.	 Equation (1.318) is used solely

for functions wwhich are dependent upon x and z, only.

The solution for points at which the cross-flow velocity is nega-

s	 ti^'ve is obtained by substituting the above equations into the algorithm

presented in Section 3 for those cells at which the average cross-flow

K	 vEIl oci ty is negative.

t
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5. SOLUTION OF THE DIFFERENCE EQUATIONS

The difference equations for the Newton iterates are solved using

an efficient direct matrix factorization procedure. The difference

equations can be ordered into a linear system of simultaneous equations

which has a coefficient matrix that is block tridiagonal in form.

Except for minor alterations, the matrix solution algorithms for Toth

the three-dimensional flow and the attachment line flow are identical.

The solution algorithm for three-dimensional flow is outlined below.

The boundary conditions for three-dimensional flow, given by

equations (I.30) and (1.31), are repeated below:

n=0: f	 0,	 g = 0,	 u = 0,	 w =0

(1.322)

6 ew or A Aw

n = TI N : u = 1,	 w = 1,	 8 = 1	 }	 (I.323)

Using Newton's method, any function f at the (k+l)th iteration is given

by

(k+1) _	 (k)	 (k)[f]	 [f]	 + [8f]	 (I.324)

where [f] (k) is the functional value at the (k)th iteration, and

[Sf] O is the Newton iterate at the (k)th iteration. Noting the wall

conditions by the subscript 1 and the edge conditions by the subscript v

N, the boundary conditions given by equations (I.322) and (L.323) can

be written as	
y
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f (k) = 9(k) = u(k) = 
w
(k) _ 0

(1.325)

e(k) = 6 A(k) 	 nw
aj:

uN k) = w k ^ =
 e(k)
	 1 (I.326) 7

This mandates that the Newtoniterates have the following values for

any iteration:

K

E
(k) _6f 1 	- G, (k)	 _	 (k)	 = 0,6g 1 	- ^ 	 6u1 6w(k) 

=1 0

(I.327)

6e( k) = 0 or	 6A (k) 	 0

( k)_6u N	- 0,
(k)	 _	 (k)6wN	0,	 66 N 	- 0

}
} (1.328)

d
a

The pertinent finite difference equations for the Newton iterates

for three-dimensional flow are given by equations (L.130) to	 (L.134)

+ and by equations (1.140),	 (I.152), and (I.164). Those equations,

z

i

plus the boundary conditions given by equations (I.327) and	 (I.328),

can be written for N points across the boundary layer in the following

matrix form;L

r
ro = q (I.329)

In equation	 (I.329), the solution vector p is defined by the column

vector
a

; f
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ai
a

62

3

p _ (i.330)

aN_ 1 i

d,
N

_ where Sj (1 < j < N,) denotes the jth vector subset which is defined by

the eight element column vector r

afj

aU
J

r

af{[tk

ag
Ja

aw
j (`I.331)

ae

av

` at w,
F

ao

In the above and subsequent equations, the iteration superscript will

not be noted._ The right-hand side vector Q in equation (1.329) is

ky

f given. by 3

sr

a 330



ql

q2

q3

4 =I

qN-1

E
xi

qN
F

c where q_. (1 < j < N) denotes the jth right-hand side vector subset

6 which is a column vector of dimension eight.	 The coefficient matrix

r in equation (I.329) is defined by the block-tridiagonal matrix

Al	 C1
0

0 0 }

B2	A2 C2 0
0

0	
B3 A3

C3

t	 a

BN-1	 AN-1	 CN-1 a
€

i - 0	
BN	

AN t	 A

(I.333)

F

;
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where AV, BP and C 
i 

( 1 < j < N) are square submatrices of dimension
eight by eight. The forms of Aj , Bj , C^, and qj (1 < j < N) are given

below.

For j = 1:

1	 0 0 0 0 0 0 0

` 0	 1 0 0 0 0 0 0

0	 0 1 0 0 0 0 0
;t

r A
1

0	 0 0 1 0 0 0 0 h

(1.334)
0	 0 0 0 1 0 0 0

S2	 S4
S8 S10

0
S6

0
0

T2	 T4 T6 T8 0 0 T10 0

U	 U

2	 4

U
6

U
8

U

16
U,̂

2

U

10

U

14

9

{1
a

E For (2 < j < N-1): ;>

1	 -h/2 0 0 0 0 0 0

0	 1 0 0 0 -h/2 0 0
9

0	 0 1 h/2 0 0 0 0

Aj =
0	 0 0 1 0 0 -h/2 0

(1.335)

p
0	 0 0 0 1 0 0 -h/2

S2	
S4 S8

S 10 0
S6 0 0

r
T2	 T4 T6 T8 0 0 T 10 0

U 2	 U4 U6 ll8 U 16 U 12 U10 U14

777 }
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For j = N:

1 -h/2 0 0 0 0 0 0
0 1 0 0 0 -h/2 0 0
0 0 1 -h/2 0 0 0 0
0 0 0 1 0 0 -h/2 0

A!J 0 0 0 0 1 0 0 - h/2

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0

(I.336)
	

M

For all j:

}

-1 -h/2 0 0 0 0 p p
j

r? 0 -1 0
0 -h/2 0

0

f	 r 0 0 -1 -h/2 0 0 0 p

0 0 0 -1 0 0 -h/2 0B.
(I.337)

.f 0 0 0 0 -1 0 0 -h/2

0 0 0 0 p 0 0 p

0 0 0 0 0 0 0 (,
0

u

0 0 0 0 0 0 0

t

a
k

^	
K

k	 tt
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For all j:

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

c^ _
0 0 0 0 0 0 0 0

(T.338)
0 0 0 0 0 0 0 0

S1 S3 S7 S9 0 S5 0 0

T1 T3 T5 T7
0 0 T9 0

Ol 03 05 07 015 011 09 013'

I
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For (2< j < N—

R1

R2 I

R3

R4

q	 _ (1.340)

R5

Y
1

,`{ 9
p

Y 2

i
F

y 3 r

'a

6

For j	 N:
"^

!

i

5

F

R1t

d R2

1

R3

s

R4 '

p
q N (1.341)

g
R5

0

r
0

`4

9

f
0

i

y9.

I
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The parameters Yk' 
R
V S

k , Tk' U
V
 andand h in equations (1.334) to P'+

(1.341) are applied between succes!ive normal 	 (n) stations (i.e.,
d

j'-1, j, j+1).	 The above equations are for the case when the wall

temperature is specified.	 If, instead, the normal temperature deriva-

tive at the wall is specified, then the submatrix Al takes the following

form:
r

1	 0	 0	 0	 0	 0	 0	 0

0	 1	 0	 0	 0	 0	 0	 0

0	 0	 1	 0	 0	 0	 0	 0,,
k

r	 0	 0	 0	 1	 0	 0	 0	 0
Al =	 (I.342)`

t	
0	 0	 0	 0	 0	 0	 0	 1 _

S2	 S4	 S8	 S10	
O	 56	0	 0

T2	 T4	 T6	 T8	0	 0	 T10	
0

n

U2	 U4	 U6	 U8	 U 16	 X12	 U10	 U14

A similar set of matrix definitions exists for the attachment

`r
dine flow.	 Only minor modifications must be made to the previously

defined submatrices Aj and Cj (1 < j < N).

The system of linear equations given by the matrix equation (1.329) f'f

is solved using a direst matrix factorization procedure (22).	 This

procedure assumes that the coefficient matrix T can be factored into

two matrices; one of which is upper triangular, the other 	 whichPP	 9 i

lower triangular.	 Denoting the upper and lower triangular matrices j
i

by U and L, respectively, then

r = LU	 (i.343)
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where

Xl	 p	 p

B2 	 a2	 p	 -

0	 B3	 a3 n	
.x

L =
(I.344)

B 	
aN

and

Il	 YI	 0	 p
=

0	 I2	 y2	 0
U = 0	 Q	 I 3 	 Y3

(I.345)

IN

I

In equations (L.344) and (L . 345), 
A  

and yj ( 1 < j < N) denote square
submatrices of order eight which are to be determined in the analysis,

`	 and Ij denotes the identity matrix of order eight. 	 Performing the

`	 matrix multiplication of L and U and equating like elements to those

F- 	 in r yields the following -recursion relations for determinin g X. and Y •^ '

r

Al	 (I.346)

Xj	 Aj	Bj Yj -1	 (I.347)

4
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yj = a 1 C^	 (1.348)	
y,

With the elements of U and L determined, an intermediate solution

vectors is obtained from

S = L
-1 Q
	 (I.349)

where

Ql

Cr2

G3

r
B (I.350)

ON-1

ON

The elements of	 are obtained from the recursion relations

Cr = Al l q l (I.351)

aJ
_ ail (qj - Bj 	 aj _ 1 ) (1.352)

With the elements of g determined, the solution vector 	 is found from

fi5 the backward recursion relations

rrig

14

-
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TN
 = =Q

N
	(i.353)

S^ _ q^ _ 
YJ 8^+1	

(I.354)

It should be noted that it is inefficient to compute matrix

inverses for use in the respective recursive formulae. Better effici-

ency can be realized if the linear systems are solved using direct

methods.

k
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APPENDIX J

SHOCK WAVE-BOUNDARY LAYER INTERACTION ANALYSIS

1. INTRODUCTION

The second-order inplicit finite difference algorithm, presented in

Appendix I, is used to compute all of the boundary layer flow except for

that in the shock wave-boundary layer interaction regions. The inter-

action region flow exhibits an elliptical character in that downstream

disturbances can propagate through the subsonic portion of the boundary

layer to affect the upstream flow. This phenomenon is evidenced by a

thickening of the boundary layer ahead of the shock wave reflection.

Because of this, it is not possible to adequately model the interaction

region flow by solving a parabolic system of governing partial differen-

tial equations which by their very character do not allow for downstream

influence. An accurate simulation of the interaction region flow requires

using a three-dimensional compressible. Navier-Stokes analysis with appro-

priate modeling of the outflow boundary conditions. Although such an

analysis is possible, the large attendant increase in computer execution

time makes this method undesirable.

Realizing this, an efficient three-dimensional integral analysis was

chosen for use in the present investigation. The analysis presented herein

solves integral forms of the continuity, streamwise momentum, and cross-flow

momentum equations. The energy_ equation is approximated by assuming that

flow 'in the interaction regionis isoenergetic.

The integral analysis is based on the following assumptions (most of

which are supported by experimental evidence):

1. The flow is quasi-two•-dimensional in a plane normal to the shock wave

340
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and,the wall, and the flow properties are approximately constant
par#1llel to the shock wave.

2. The static pressure is constant in the wall normal direction down-
stream of the interaction region.

3. The interaction region is sufficiently short so that mass entrainment
and viscous shear stress effects may be neglected.

4. Mass bleed occurs normal to the wall.

5. The flaw in the interaction region is isoenergetic.

6. The bouilldary layer velocity profiles may be represented by power laws.

7. The boundary layer thickness is small compared to the local body radius,
and thereby a local planar analysis is applicable.

The shock wave-boundary layer interaction region analysis is presented

in this appendix. This analysis presented herein represents an extension

of the methods reported in References (23) to (27),

2. INTEGRAL ANALYSIS FOR THE SHOCK WAVE-BOUNDARY LAYER INTERACTION REGION

The three-dimensional integral conservation equations are applied to

a series of control volumes where each control volume comprises a circum-

ferential segment of the three-dimensional shock wave-boundary layer inter-

action region, as illustrated in Figure J.1. A given control volume is
t

'	 bounded by the current boundary layer initial-value and solution surfaces

in the streamwvise direction, and by the wall and the boundary layer edge
x

surfaces in the normal direction.

i
Following the suggestion of Paynter (25), Feake(26) and Green (27),

2	 the conservation equations are applied in a plane which is orthogonal to

both the wall and to this space curve defined by the intersection of the
t,
f.

shock wave with the wall... This plane is:,shown in Figure J.2. passing

through the point (P), ar,(d can be defined bythe orthonormal triad of

vectors t, nb ,and 6. The unit vector t is tangent to the space curve at

_l

{	
.i

`i

1

D	 1

G

341



a4a	 L

ORIGINAL PAGE15
OF POOR QUAL17"

r

REFLECTEO

INCIDENT
	 SHOCK WAVE-\

SHOCK
WAVE--\

T
/^ I

I

/j

/

/ I	 ^

^^	 I
1s_^

G^-BOUNDARY
LAYER EDGE

yy
^' l	 SOLUTION SURFACE

i

INITIAL-	 WALL ^

VALUE`
SHOCK WAVE-WALLSURFACE INTERSECTION

yl

i
yt

FIGURE J.1. SHOCK WAVE-BOUNDARY LAYER x	 ,

_	 INTERACTION REGION

1 lz
342	 :.



SHOCK WAVE-WALL INTERSECTION
nrnnr i.k ar%%rr.



9

fi

point (P), the unit vector n	 is orthogonal to the solid boundary at point
b

(P), and the unit vector	 is orthogonal to both t and n b 
at point (P) and

€ is	 given by

Q = nb x £	 (J.1) 14

The tangential unit vector t can be determined from

t = (as)i + (a ) j +
 (dz	 (J.2)s )k

where ds is the differential arc length along the space curve and can be

expressed as

(ds) 2 =	 (dx ) ` + ( dy ) 2 + (dz) 2	(J.3) 3

where x, y, and z form the base coordinate system of Figure 1, and 	 ,

and k are the unit vectors in the x;;y-, and z-directions, respectively.

After determining the unit vector a, the angle a subtended by the
z

unit vectors a and a may by determined, where a is tangent to the body

and lies in the meridional plane of point (P).	 A coordinate rotation may

then be employed to obtain the upstream boundary layer velocity components

in the plane containing n b and a.	 The coordinate rotation formulae are a

given by yyyy

u	 = u Cosa + w sing	(J.4)
;,	 1

w	 = w Cosa - u sin g	(J.5)

u = u	 Cosa - w	 sina	 (J.6)

.	 w = u	 sins + w	 Cosa	 (J.7) 1

v = v*	 (J.8)`

where u, v, and w represent the velocity components in the curvilinear

coordinate directions x, y, and z, respectively, and u 	 v*, and w* repre-

sent the velocity components in the curvilinear coordinate directions x !

y, and z ,	 respectively (see Figure J.2). 	 The body tangent curvilinear

coordinates contained in and orthogonal to the plane of n b and a are r

344 =a
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denoted by 	 and z * , respectively (see Figure J.2).

After the velocity components at the initial-value surface have been

transformed into the* « «*(x , y, z )-coordinate system., the integral conserva-

tion equations are applied to determine the boundary layer property pro-

files on the downstream side of the interaction region. A cross-section

of the control surface used in the integral analysis is depicted in Figure

J.3, where the initial-value surface corresponds to station 1 and the solu-

tion surface corresponds to station 2. The respective boundary layer thick-

nesses are denoted by S 1 and d2.

The conservation equations consist of integral forms of the continuity

equation, the streamwise ( x*) momentum equation, and the cross-flow (z*)

momentum equation. The energy equation is approximated by the assumption

that the total enthalpy at station 2 is constant in the y-direction, and

is equal to the average total enthalpy at station 1. The integral conser-

vation equations take the form

a l	a2
*	 ..* «	

(J.9)
bleed

pu dy =	 pu dy +
0	 0

_
P l a t - P26 2 + P ( d2 - dl)	

6 2 
p(6*)2dy	 dl p(6 * ) 2dy	 (J.10)

a

d l 	 «*«*
pu w dy =

f

6 2	 *»*
pu w dy

f

(J.11) s	 `3

if 0	 0. ff

H1	
H2 (J12) ^a

a.

where equations(J.9) to 	 (J.12)	 represent. the continuity, streamwise momentum,

c	 , 345
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cross-flow momentum, and energy equations, respectively. In the above

equations, P1 and P2 represent the static pressure at stations 1 and 2,

respectively, and are assumed to be constant in the y-direction, and P
is an appropriately weighted average pressure acting on the upper surface

of the control volume and is determined from the supersonic core flow so-

lution. The mean density and total enthalpy are denoted by p and H,

respectively. It was assumed in writing the above expressions, that

negligible mass is entrained into the boundary layer between stations 1

and 2, that mass bleed occurs normal to the wall and is denoted by mbleed,,

and that viscous shear stress effects are of secondary importance.

Since the upstream flow properties have been determined by applica-

tion of the finite difference algorithm, the 'integrals appearing in

equations (J.9) to (J.11) that are evaluated at station l may be deter-

mined directly by numerical quadrature. To evaluate the integrals at

station 2 requires that representations for the downstream velocity pro-

files be chosen. In the present investigation, the following turbulent

power law profiles have been selected

U*	 uen^ l 	(J'.13)

W* = 
wen02	 (J.14)

n	 yjd	 (,J.15)

The exponents ^ j and 02 appearing in equations (J.13) and (J.14) are bounded

t	 in the range

0 < $1 < 1	 (J.16)

0 < 02 < 1	 (J.17)

r The mean total enthalpy H may be expressed in terms of the mean static

a	
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1	 * 2 2^	 ..* 2 2^2
H	 h+ 2 (ue) n 1 + (we ) n	 (J. 18)

* 2	 * 2
Since both 5 1 and s2 are bounded and, in -general, (we) < < < (ue)

equation (J.18) may be approximated as

j_ _* 2 2S
h	 H	

2 (u
e ) n i	 (J.19)

which serves to uncouple equation (J.11) from equations (J.9) and (J.10).

For a simple system in thermodynamic equilibrium, the following expression

-can be written

p = p(h,P)	 (J.20)

where for a thermally and calorically 'perfect gas

P 
= KIh	 (J.21)

with

K=	 P	 (J.22)

where y is the specific heat ratio.

Using the above relations allows the downstream integrals in equations

(J.9), (J.10), and (J.11) to be written for a thermally and calorically

perfect gas as

62	
1

T10 do	 (J.23)
p U*dy = K162ue2 j

°2(U@2)2n2a13
c

{
82 u

* 2d"	 K ` 	u* 
2 

1	
2^1d	

.24(	 p( ) y	 2 S 2( e )	 _	 n	 n	 {J	 )

0	

2	

[H2"2(ue2)2n2s1

2
g	

pu*w
*dy = K2s2ue2we2	

n do	 (J.25)

o	 o
1 -* 2 2a,

CH 2- 2(u e2 )' n
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To obtain the downstream property profiles, initial estimates are

made for the exponents 01 and 0 2 . Then equations (J.9), (J.10), and

(J.12) are solved simultaneously while incorporating equations (J.23)

and (J,24) for the downstream integrals. This produces a system of two

equations for the downstream unknown quantities 6 2 and $1. These equa-

tions are solved using a Newton-Raphson iteration scheme with Pi serving

as the perturbation quantity. After convergence has been obtained for

62 and 0 1 , equation (J,25) is incorporated into equation (J.11), with

the resulting expression being solved using a Newton-Raphson it erat on.

scheme employing 0 2 as the perturbation quantity.

Determining the downstream boundary later thickness 62 and the

power law exponents a1 and 02 completely defines the downstream property

field since H 2 was determined from equation (J.12). After the downstream

velocity components u2 and w2 have been calculated, the velocity components

6 2 and w2 can be determined by a coordinate rotation using equations (J.6)

and (J.7).

By applying the above analysis to a series of control volumes, the

flow properties downstream of the shock wave-boundary layer interaction

region may be determined for the entire computed sector. This solution

is then used as initial data for restarting the finite difference bound-

ary layer computation.

3
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APPENDIX K

OVERALL NUMERICAL ALGORITHM

1. INTRODUCTION

In this appendix, the control logic used in the numerical algorithm

is discussed. Regulation of the marching step size, generation of the

initial data, and considerations of flow symmetry are also discussed.

All of the characteristic unit processes referred to in this appendix

are discussed in Appendix E. The boundary layer subalgorithms referred

to this in this appendix are discussed in Appendices I and J.

2. GENERAL COMMENTS CONCERNING COMPUTATION OF THE SUPERSONIC CORE FLOW

The overall numerical algorithm for the supersonic flow consists of

the repetitive application of the various characteristic unit processes
t

to generate the global solution for given boundary conditions and a speci-

fied set of initial data.

The goemetric boundary conditions are represented by the formulations

presented in Appendix D. The initial data are specified on a space-like

plane of constant x (see Figure K.1). The x-coordinate axis is the longi-

tudinal axis of the forebody/centerbody and the cowl. Moreover, the mean

supersonic flow direction is assumed to be in the x-coordinate direction.

An inverse marching scheme is employed in the supersonic flow overall

numerical algorithm. The supersonic flow solution is obtained on space-

like planes of constant x. The solution points on each'plane represent
_a

the intersection points of continuous streamlines which are propagated

s	from the data points specified on the initial-value plane. In addition
l
4	

to the streamline solution points, are the solution points representing

350
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the intersection of either the external or the internal shock wave with

the solution plane. For the internal flow, the solution is also obtained

on the space curves which represent the intersection of the internal shock

wave with the solid boundaries. These space curves are defined by the

locus of shock wave solution points.

Except in the vicinity of a shock wave reflection with a solid bound-

ary, the axial (x) distance between successive solution planes is deter-

mined by the application of the Courant-Friedrichs-Lewy (CFL) stability

criterion. In the vicinity of a shock wave intersection with a solid

boundary, the axial step is controlled by special constraints which en-

sure that the entire shock wave-solid boundary intersection falls between

two adjacent solution planes-.

After each solution plane is computed, the mass flow rate across

that plane is calculated using trapezoidal rule integration. Constancy

of the overall mass flow rate in the internal flow field computation gives

an indication of the overall accuracy of the numerical integration if the

inlet walls are impermeable. The stagnation pressure and stagnation tem-

perature are calculated at each solution point. For the adiabatic flow

of a calorically perfect gas, the stagnation temperature should remain

constant.

In the numerical analysis, the flow field is divided into two regimes:

the internal flow regime and the external flow regime, as illustrated in

i

k ;i

ar

Figure K.1.. The supersonic flow field integration in each of these two

regimes is controlled by separate logic modules in the computer program. -

v	 The forebody supersonic flow field integration is performed first. Then,
sI	 ,

3

the internal supersonic flow field is computed. The computer program de
i

veloped in the present investigation has the capability to perform the

s
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internal supersonic flow field integration with or without the discrete

fitting of the internal shock wave system. The option in which shock

waves are not discretely fitted might be employed if the internal shock

waves are of relatively weak strength, and thereby an acceptable solution

could be obtained by smearing the internal discontinuities.

From a computation point of view, the internal supersonic flow field

in which shock waves are not discretely fitted is the easiest solution
i

to compute. For flow fields in which shock waves are discretely fitted,

the external supersonic flow about the forebody is less difficult to ob-

tain than the internal flow, since in the external flow the shock wave

represents a bound to the computational regime. Discrete fitting of the

shock wave throughout the computational regime, as is done in the internal

supersonic flow field integration, greatly complicates the numerical

algorithm.

3. COURANT-FRIEDRICHS-LEWY (CFL) STABILITY CRITERION

Except in the vicinity of an internal shock wave-solid boundary inter-
a

section, the ax'1al marching step between successive solution planes in the

supersonic flow solution is determined by the application of the Courant

Friedrichs-Levey (CFL) stability criterion (8). The CFL stability criterion

will be satisfied at each solution point if the convex hull of the finite
f,	 p	 ^
u

difference network contains the differential zone of dependence of the

solution point. The convex hull of the finite difference network, il-

lustrated in Figure K.2, is defined by the outer periphery of initial-

value plane field points used in determining the fit point stencil for
r

u	 the quadratic bivariate interpolation polynomial	 The differential zone

rt	
of dependence, also illustrated in Figure K.2 is the region defined by

fr

the intersection of the Mach cone (whose apex is at the solution point)

Ll
353.
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with the initial -value plane.

The maximum allowable march n' , step for each strew

x-step for which the Mach cone just touches the convex hull. That

step size is given by

ox = [u2/(cq )]C1 - ( c/q )( q2/ u2 - 1) 1/2]Rmin	 (K.1)

where ox is the maximum allowable axial step, u is the x-component of the

velocity, q is the velocity magnitude, and c is given by

C2	 a2g2/( q2 - a2 )
	

(K•2)

where a is the local sonic speed. In equation (K.1), Rmin is the distance

from the streamline base point in the initial-value plane to the nearest

field point on the convex hull of the finite difference network (see Figure

K.2)

e
Equation (K.1) is applied at every streamline solution point, the

actual marching step being selected as the ox Value at the most restric-

tive point. It should be noted that this expression is applied only to

streamline points, the shock wave points being excluded. Furthermore, in

the internal flow field integration, the shock wave points are ignored in

defining the convex hull of the finite difference network when application
i

of the stability criterion is made to a streamline point.

i{
4. SUPERSONIC FLOW INITIAL-VALUE PLANE

i

	

The supersonic flow initial data are specified on a plane of constant	 j

n	 x. The flow must be supersonic at every point on this plane. For unique-

ness and existence of a genuine solution, the values of the dependent

variables prescribed on this surface must have at least continuous first

partial derivatives.	 355
s



If the forebody flow field is to be determined, the initial-value

r

plane must be specified at an axial (x) station that is upstream of the

forebody computational flow regime (see Figure K.1). The solution is

then found along the streamlines that pass through the data points speci-

fied on the initial-value plane, although some streamline addition and

deletion are performed on the ensuing solution planes as described in

Section 6 of this appendix.

If only the internal flow field is to be determined, the supersonic

flow initial-value plane must be specified at the axial station which

corresponds to the x-position of the cowl lip (see Figure K.1). The

cowl lip is assumed to be contained ina plane of constant x. For the in-

tegration of the internal flow field, a point redistribution is performed

on the iniai-value plane. This point, redistribution is required in

order to have streamlines which lie in the strean, surface for.>^ied by the

cowl boundary. The solution is then found along the streamlines that

pass through the redistributed points on the plane at the cowl lip axial

station.

The supersonic flow initial-value plane may be specified by the user,

or if the forebody is conical up to the axial station where the initial-

value plane is located, the flow property field on the initial-value

plane can be generated internally in the computer program by one of two

"methods.

r

`l

r

s

{

~t!

9

One method of internally generating the supersonic flow initial-

value plane is by using an approximate technique which employs the Taylor -

4

f
E

Maccoll solution for the flow about a circular cone at zero incidence. A

superposition procedure is used to obtain an approximation to the flow

'	 s

t	 about a circular cone at nonzero angle of attack by neglecting the crossi.i{

356
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flow effects. This superposition procedure effectively amounts to com-

puting the flow turning angle in the meridional plane of the given solu-

tion point, and then obtaining the flow properties fit. , "hat point by

applying the Taylor-Maccoll solution for a cone half-angle equal to the

flow turning angle. The shock wave angle is then measured from the ori-

ginal streamline direction in the appropriate meridional plane. It must

be emphasized that this is only an approximate technique, giving the

well accepted Taylor-Maccoll solution at zero incidence, but becoming in-

creasingly less accurate as the angle of attack is increased.

An alternate method of generating the supersonic flow initial data

is to 4mploy the solution obtained by Jones (28) for the flow about a

circular cone at incidence. The Jones algorithm has been incorporated

into the computer program developed in the present investigation. Many

of the computed results presented in Section X were obtained using the

results of the Jones algorithm as initial data. For situations in which

the forebody is conical up to the axial station where the supersonic flow

initial-value plane is located, the Jones algorithm is the recommended

source for the initial data.

If the forebody is not conical ahead of the axial station of the

7
=a

initial-value plane, another source of initial data must be used. If	 5

available, experimental data may be employed.

5. SUPERS014IC FLOW SOLUTION PLANE POINT NETWORK AND FLOW SYMMETRY
.	 t

The supersonic flow computational point network is based on a series

of circumferential and radial stations. The point networks for the various

flow symmetry options are illustrated in Figure K.3. In this figure, the 	 P

index i corresponds to the i th circumferential station and the index j

corresponds to the j th radial station. In all cases, the streamlines on

357



ORIGINAL PAGE 1S
	

r'

OF POOR QUALITY

Y
o ^ o

w w w
F-

v E F-_
^ cn

O
I^^

<t
Q Z s
CL

Q

<CL w
O

o-a
wo

3 a5N

Y 3
v

OU j
H V0 tt 3^ ou

1

O,

X
Q 	 c m }„ LL
x F-

E ^
W

- LL
A	

^)
0

U)
jt

cn
z r4i
Q YI' if 4

N ^.. w

v LL

358



J
V LL

2

L VJ -

Q
`	

LL
N

Q a

G	 Cl)

i

r	 X ^ Q 1

u
W W

` i	 s
t

C -11
^-

.^

W • 3

Z
•

c
E	 J Y
11	 ^ ^;

359
7

_	 x



-- ,

the surface of the centerbody are denoted by j = 1. For the forebody
flow field, the bow shock wave solution points are denoted by j = n. for
the internal flow field, the streamlines on the surface of the cowl are

denoted by j = n. The computed sector, in general, is bounded by the cir-

cumferential stations corresponding to i = 1 and i = m. This point ar-

rangement produces a rectangular logic array in the computer program. ,

The points at any circumferential station in axisymmetri,c flow, or

on a plane of flow symmetry in three-dimensional flow, lie on a straight

line. Moreover, for axisymmetric flow, the radial stations correspond to

circular rings. In general, however, the solution points ar a given cir-

cumferential station do not lie on a ray, nor do the radial stations cor-

respond to circular rings:

For the internal flow option in which shock waves are discretely

fitted, the shock wave solution points are also represented in this point

arrangement. Special logic is used in the computer programm such that the

shock wave solution points float in the storage arrays as the shock wave

travels between the centerbody and cowl on successive solution planes. On

a given solution plane, the shock wave solution points at adjacent circum-

ferential stations do not, in general, have to lie at the same radial

station.

The computer program takes advantage of flow symmetry when it exists

aA
in the flow field. In these instances, the entire solution plane does	 k^

#I	 a

not have to be computed, but rather only an appropriate section of it. 	 E

The remaining sections of the solution plane may be obtained by reflection

of the points in the computed sector. This procedure yields a significant

reduction in computer execution time.

The four flow symmetry options thathave been incorporated into the

360
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analysis are depicted in Figure K.3. Figure K.3(a) illustrates the mo!

general case when no flow symmetry is present. Figure K.3(b) illustral

the case when one plane of flow symmetry is present. In this case the

computed sector is the half-plane bounded by the y-axis and containing

the +z-axis. The integration region in this case is bounded by the i

circumferential station on the +y-axis and by the i = m circumferentia'

station on the -y-axis. This case of flow symmetry is the one most lil

to arise in the class of problems being considered in this investigatic

Figure K.3(c) illustrates the case when two planes of flow symmetry ar(

present. This option would be used to compute the flow field about asym-

metric bodies at zero angle of attack. In this instance, the computed

sector is the quadrant bounded by the +y-axis and the +z-axis. The

circumferential station corresponding to i	 1 lies on the +y-axis and

the circumferential station corresponding to i = m lies on the +z-axis.

Finally, Figure K.3(d) illustrates the axisymmetric flow option where

the computed sector is limited to the single circumferential station

(ray) lying on the +y-axis. This option would be used to compute the

flow field about axisymmetric bodies at zero angle of attack.

r

The numeri cal algorithm does not apply special characteristic unit

processes when a solution point lies on a plane of symmetry. Rather, a

E
point reflection about the plane of symmetry is performed in the initial-

at

	

	 value plane, and the appropriate unit process is then applied in standard

form. This procedure yields satisfactory results and eliminates the need

for devising special unit processes.

6. SUPERSONIC EXTERNAL FLOW ABOUT THE FOREBODY
E

With the forebody geometry specified and the flow property field on

`	 the initial-value plane ` determined, the supersonic external flow about
t	 ^_

J
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I

the forebody can be calculated. 	 In the computation of this flow field,

the distance between successive solution planes is determined by the
a

a

application of the CFL stability criterion.- Ths last solution plane in
i

the forebody flow field computation is made to coincide with they-position

of the cowl lip. 

After the axial step between the current initial-value plane and the

current solution plane has been determined, the solid boundary point unit

process (see Appendix E) and the ihterior point unit process (see Appendix j

E) are applied.	 These unit processes achieve second-order accuracy with-

out the need for global iteration.	 Hence, these unit processes are applied

at the appropriate points until convergence is obtained without using in- a

formation -from neighboring points in the solution plane.

i
Once the solution at each solid boundary point and interior point f

has been determined, the bow shock wave point unit process (see Appendix

k

E) is applied at each shock wave solution point in the computed sector. r
x

Global correction is then applied for these points, if desired.	 The

position of each shock wave solution point is made to lie in the meridional

F plane defined by the outer-most interior field point which is on the same

circumferential station as the shock wave point. 	 As a consequence, in

' axisymmetric flow, the streamline and shock wave solution points on a`

given circumferential station lie in the same meridional plane on all

succeeding solution planes. 	 In three-dimensional flow, however, except
i

on a plane of flow symmetry, the solution points corresponding to a given F,
tj

circumferential station do not lie in the same meridional plane on suc-

cessive solution planes.

r
In the forebody flow field integration, periodic streamline additionx

and deletion are performed. 	 The streamline addition is required to retain

z

i,..
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a well-dispersed computational mesh, since at successive solution planes

more and more mass is captured. Moreover, convergence of the streamlines

towards the forebody occurs as the flow progresses downstream. Periodic

point deletion is required since the continued addition of streamlines

would produce an excessively large number of computational mesh points,

thereby unduly increasing computer execution time and machine storage

requirements. The streamline addition and deletion procedures are out-

lined in the fallowing. A depiction of a typical forebody flow stream-

line pattern is given in Figure K.4.

For the purposes of point addition, after the points on the solution

plane have been computed, the mass flow rate across that plane is calcu-

lated. If this mass flow rate is significantly larger than the mass flow

rate across the last solution plane where point redistribution was performed,

a new ring of solution points is added between the ring of shock wave so-

lution points (j = n) and the ring of outermost interior field solution

points (i =_n	 1). The coordinates of each of these inserted solution

points is obtained by forming the arithmetic average of the coordinates

„	 of the shock wave solution point and the outermost interior fi-eld point

corresponding to the circumferential station of the new point. The flow
x

properties at each of the inserted solution points are obtained by inter- 	
LL	 l

polation using the quadratic bivariate polynomial

f(y,z) = a l + a2y + a3z + a4yz + a5y2 + a6z2	 (K.3) i

where f(y,z) denotes a general function of the coordinates y and z. The

coefficients a i (i =l to 6) in equation (K.3) are obtained by a least squares

fit of nine data points in the solution plane, as described in Appendix C.

Point deletion occurs when the number of radial stations has reached 	 j
0	 j
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a specified limit. In point deletion, the body streamline points are

retained in storage, while selected interior streamline points are deleted

from storage. Refinement of this technique is provided by having two

limits to the number of allowable radial stations. The first limit is

employed when the mass flow rate at the given solution plane is less than

a specified fraction of the estimated flow rate at the cowl lip. The

second and larger limit is employed when that fraction has been exceeded.

7. SUPERSONIC INTERNAL FLOW IN WHICH SHOCK WAVES ARE NOT DISCRETELY FITTED

The program option in which the supersonic internal flow field is com-

puted without the discrete fitting of the internal shock wave system might

be employed in the cases where the internal shock waves are weak in
r

strength, and thereby an acceptable solution could be obtained by smear-

ing all internal discontinuities. This option requires that only two unit

processes be employed: the interior point unit process and the solid

boundary point unit process. The influence of molecular transport can be

included in the computation of this flow field.

The initial-value plane of the internal flow computation is consti-

tuted by the last solution plane of the forebody flow field integration.

Alternatively, the initial-value plane may be specified at the cowl lip

axial station without employing the forebody flow field integration option.

This technique is recommended if the forebody is conical up to the cowl

lip axial station.

r: The computer program developed in the present investigation assumes

i

7
1

that the bow shock wave falls outside of the cowl lip, > or, in the limit,

intersects the cowl lip exactly. The program does not have the capability 	
U

to compute the internal flow field when the bow shock wave has been in-

gested into the annulus.
365
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With the initial -value plane specified, a point redistribution on

this plane is performed to obtain a uniform point distribution and to

obtain streamlines which lie in the stream surface formed by the cowl

boundary. The redistributed points are arranged symmetrically in the

computed sector. These points lie on rays ` which have equal angular incre-

ments from one another, with the points on each ray being spaced at equal

radial increments. The radial station j 	 1 corresponds to the centerbody

streamline points, and j 	 n corresponds to the cowl streamline points.

The properties at these points are obtained by interpolation.

With the point redistribution performed, the internal flow field in-

tegration proceeds in a manner similar to the external flow field integra-

tion, except that only two unit processes are used: the interior point

unit process and the solid boundary point unit process. No point addition

or deletion is performed. The internal flowfield integration is termi-

nated either when a specified axial station is reached or when the flow 	
}

becomes subsonic.

8. SUPERSONIC INTERNAL FLOW IN WHICH SHOCK WAVES ARE DISCRETELY FITTED

A point redistribution is first pa rformed on the initial-value plane

at the axial station of the cowl lip as described in the previous section. 	 x

After the upstream flow properties have been determined at each of the

cowl lip solution points in the computed sector, the downstream flow

properties are obtained at each of these points by application of the

solid body-shock wave point unit process.

In the integration  of the internal flow field in which shock waves
{

are discretely fitted, the axial step is obtained by the application of

the CFL stability criterion, except in the vicinity of a shock wave re-

flection, where special constraints are employed. After the axial	 s
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station of the solution plane has been determined, the internal shock

wave is projected from the current initial-value plane to the current

^'.	 solution plane in the meridional plane passing through the x-axis and

the previous shock wave point on the initial-value plane as illustrated.

in Figure K,5. The location of the shock wave solution point is obtained

by applying the following equation.

drs/dx = tana l 	(K.4)

In equation (K.4), drs is the increment in radius between the projected

shock wave point and the previous shock wave point on the initial-value

plane, dx is the corresponding increment in axial distance, and a I is

the angle subtended by the shock wave and the x-axis at the initial-

value plane shock wave point and in ;rye meridional plane defined by the

initial-value plane shock wave point. Equation (K.4) is applied for

each shock wave point in the computed sector, thereby yielding the locus

of projected shock wave points in the solution plane. Interpolated values

of the shock wave radius in the solution plane are obtained by employing

the following equation.

rs (a) = a 1 + a2 6 + 
a3 

a2	 (K.5)
I!

f

In equation (K.5), rs (a) is the shock wave radius at the polar angle
p

8_= tan l (z/y), and the coefficients a (i=1,2,3) are obtained by fitting

this expression to three projected shock wave points, as described in

Appendix C. Equation (K.5) is applied at every circumferential station

in the computed sector. Hence, the shock wave location in the solution

plane is represented by a series of overlapi'ng one-dimensional curve fits.

F	 After the tentative position of the shock wave in the solution plane
r

i
a
a

x

f3

P
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has been determined, the streamlines that are in the flow field sector

that is upstream of the shock wave in the initial-value plane are pro-

jected from the initial-value plane to the solution plane, as illustrated

by streamlines 1 to 6 in Figure % K.5(a) and by streamlines 9 to 13 in

Figure K.5(b). This is accomplished by applying the equation of a stream-

line

dxi = u i dt	 (i=1,2,3)	 (K.6)

where xi (i =1,2,3) denotes the three carteMan coordinates x, y, and z,

respectively, u i (i =1,2,3) denotes the corresponding velocity components

U, v, and w, respectively, and t is the time of travel of a fluid particle

along the streamline. Equation (K.6) is first applied in the x direction.

Since the axial step dx is known from the application of the CFL stability

criterion, the time parameter dt may be determined. Then, application of

equation (K.6) for the y and z directions allows the y and z coordinates

of the projected streamline point to be computed. The radius r=(y2+z2)1/2

and polar angle e = tan - '(z/y) of each of the projected streamline points

arethen computed.

^	 r

The radius of the projected streamline point is then compared to the

radius of the shock wave, given by equation (K.5), in the meridional plane

defined by the projected streamline point. If the projected streamline

point is in the upstream flow field sector on the solution plane (i.e., 	 =^

the streamline does not intersect the shock wave), then a standard interior

point or solid boundary point unit process is applied to obtain the solu-

tion at this point. If the streamline appears to intersect the shock

wave, as illustrated by streamlines 5 and 6 in FigureK.5(a) and stream-

lines 9 and 10 in Figure K.5(b),-then the application of the unit process 	 A
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to determine the solution is deferred.

At this stage, the upstream and downstream shock wave solution points

are determined at each circumferential station in the solution plane com-

puted sector using the internal shock wave point unit process. This pro-

cedure defines the property field on both the upstream and downstream sides

of the internal shock wave.

Next, the body streamline solution points are computed at every cir-

cumferential station in the downstream flow field sector on the solution

plane. In some instances, computing the solution at these points may

entail using flow property information from the downstream side of the

internal shock wave if the Mach cone, with apex af'-- the solution point,

intersects the shock wave surface. Determining the solution at each of

these points thereby defines the flo yr property field on the boundary

stream surface in tvie downstream flow field sector.

At this stage, the solution on each of the streamlines which have not

yet been computed is determined. The streamlines that are in the downstream

flow field sector on the initial-value plane will remain in the downstream

flow field sector on the solution plane (see Figure K.5). The solution at

these points is determined by the application of the standard interior

point unit process, unless a portion of the Mach cone, with apex at the

solution point, intersects the internal shock wave or the solid boundary,

in which case the modified interior ,point unit process is applied 	 For

streamlines which penetrate the internal shock wave jstreamlines 5 and 6

in Figure K.5(a) and streamlines 9 and 10 in Figure K.5(b)], the appro%
IT

A:	 ...3

priate modified interior point unit process is applied. For the stream-

lines whose solution was deferred due to a possible shock wave penetration,
a
t

but which ul-timately did not intersect the shock wave, the standard interior 	
i
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point scheme is applied. The solution points are ordered in the storage

arrays in the order of increasing radius on a given circumferential station.

So a post computation interchange of the streamline solution points with

the shock wave solution points is performed for the streamlines which ini-

tially appeared to intersect the shock wave but ultimately did not.

The process just outlined is applied repetitively until the internal

shock wave intersects a solid boundary. Special logic is used in the

computer program for the computation of a shock wave reflection. The

overall scheme used in this case is now presented.

The initial step in the computation of the shock wave-solid boundary

reflection is to obtain an estimate of the axial location, at a discrete

number of points, where the incident shock wave intersects the solid

boundary. Except for the case of axisymmetric flow, the intersection of

the incident shock wave with the solid boundary defines a three-dimensional

j	 space curve, as illustrated in Figure K.6.	 In ax-Isymmetric flow, this a'

curve lies in a plane of constant x,.	 Points along the space curve are
4

}

e	 determined by obtaining the intersection of the shock wave and the solid

boundary, where both of these surfaces are represented as straight line

segments in the meridional planes passing through the shock wave points

in the initial-value plane. 	 For a given meridional plane, the shock wave

is represented by equation (K.4), where dr s is the increment in radius

between the shock wave-body intersection point and the shock wave pointr

in the initial-value plane, dx is the corresponding increment in axial

distance, and SI is the angle subtended by the shock wave and the x-axis

in the meridional plane defined by the appropriate shock wave solution

point in the initial-value plane.	 The local body surface is approximated
t

in the meria,ional plane by the equation
:^

IT

`	
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drb/dx m	 (K.7)

where drb is the change in the radius of the body between the shock wave-

body intersection point and the body point in the initial-value plane,

dx is the corresponding increment in axial distance, and m is the local

slope of the body in the given meridional plane. Equations (K.4) and

(K.7) are solved simultaneously to obtain the intersection point in the
G

given meridional 4 plane. The intersection point for every meridional

plane defined by the shock wave points on the initial-value plane is so

determined. The locus of these intersection points determines the space

curve illustrated in 'Figure K.6.

At this stage, the points on the space curve which are nearest to

and farthest away from the initial-value plane are determined. If the

axial distance between the nearest point and the initial-value plane is

greater than a specified fraction of the marching step allowed by the CFL

stability criterion, then another solution plane is computed, the location

of this plane being just slightly upstream of the shock wave-body inter-

section. The entire procedure outlined above is then repeated.- Alter-

natively, if the distance between the nearest shock wave-body intersection

point and the initial-value plane is less than this fraction of the allow-

able marching step, then the axial position of the next solution plane

is selected such that the space curve representing the incident shock`

{ wave-body intersection is entirely contained between the initial-value

plane and the solution plane. At high angles of attack, this procedure

;$

	

	 may require that the axial step between the initial-value plane and the

solution plane be greater than that allowed by the CFL stability criterion.
,;

This implies that the Courant number, which is the ratio of the axial step
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taken to the axial step allowed by the UL stability criterion, is greater

than unity. To maintain an effective Courant number less than unity, the

fit point stencils used in the univariate, bivariate, and trivariate inter-

polation polynomials are adjusted in accord with the Courant number of

the actual step taken. That is, if the Courant number is approximately

two, then every other point is used in the interpolation fit point seen-

cils instead of the immediate neighbors (which correspond to a unity

Courant number), etc. This ensures that the convex hull of the finite

difference network engulfs the differential domain of dependence, thereby

satisfying the CFL stability criterion.

After the axial position of the solution plane has been determined

and the Courant number computed, the internal shock wave point unit process

is applied at every circumferential station in the computed sector at the

intersection of the incident shock wave with the solid boundary. This

procedure defines the property field on both the upstream and downstream

sides of the incident shock wave.

At this stage, the initial-value plane upstream sector body stream-

lines are extended from the initial-value plane to the space curve defined

by the intersection of the incident shock wave with the solid boundary,

as illustrated in Figure K.6. The solution for both the upstream and

downstream shock wave properties has been obtained on the space curve by

the application of the internal shock wave point unit process. Hence,

both the upstream and downstream properties at the points where the body

streamlines intersect the space curve may be found by interpolation. For

r



where f(e) denotes a general function of the polar angle e. The coef-

ficients a i (i =1,2,3) in equation (K,8) are obtained by fitting this

expression to three data points on the space curve as described in Appen-

dix C. To determine the intersection point of the body streamline with

the space curve, an iterative technique is used. Moreover, after each

iteration, the projected streamline point is adjusted along the direction

of the body normal projection in the (y,z)-plane such that the streamline

point lies on the boundary surface. Equation (K.8) is applied for both

the upstream and downstream shock wave properties. Hence, the incident

shock wave downstream properties are known at the body streamline points.

At this stage, the solid body-shock wave point unit process is applied

at each of the body streamline points in the computed sector that are on

the space curve. This defines the reflected shock wave downstream pro-

perties at the body streamline points on the space curve.

Using a procedure similar to that used previously, the shock wave is

then projected from the space curve to the current solution plane. This

projection is performed in the meridional planes containing the body

streamline points on the space curve. This procedure yields the tentative

shock wave shape in the solution plane.

At this stage, the body streamline points in the solution plane that

are in the downstream flow field sect.^,r in the initial-value plane are

computed by use of the solid boundary point unit process (see Figure K.7).

This unit process is applied at every such point in the computed sector.

As a consequence, the flow property field on the stream surface formed

by the solid boundary is defined.

s	 Next, the remaining streamlines that are in the initial-value plane
x

downstream flow field sector are projected from the initial-value plane

r'	 376
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onto the solution plane. A test is then made to determine whether or

not each of these streamlines intersects the reflected shock wave (see

Figure K.7). Those streamlines which do not intersect the reflected

shock wave will lie in the upstream flow field sector on the solution

plane (points 7 to 13 in Figure K.7). The solution at these points is

determined using the standard interior point scheme, or if the Mach cone,

with apex at the solution point, intersects the incident shock wave or

solid boundary, the appropriate modified interior point unit process is

applied. Those streamlines which appear to intersect the reflected shock

wave have their computation deferred.

At this stage, the upstream and downstream shock wave points are

determined at every circumferential station in the solution plane com-

puted sector. This procedure defines the property field on both the up-

stream and downstream sides of the reflected internal shock wave.

Next, the solution is obtained at each body streamline point in the

downstream flow field sector on the solution plane (see Figure K.7). The

modified solid boundary point unit process is applied in this situation,

which requires using flow property information on the downstream side of

the reflected shock wave. After the application of the body point unit

process at each point in the computed sector, the property field on the

4
t

0

solid boundary is defined.

At this stage, the streamlines that are in the downstream flow field

sector in the initial-value plane and that intersect the reflected shock

wave are computed. These points require using the modified interior point	 _	 a

unit process and use flow property information on both the upstream and
}

E

downstream sides of the reflected internal shock wave (see Figure K.7).

F	 Finally, the streamlines that are in the upstream flow field sector

378	
a

F' R



G

in the initial-value plane are extended to the surface of the incid

shock wave and their respective intersection points with this surfa

determined (see Figures K.7 and K.8). These streamlines are then extended

from the downstream side of the shock wave to the current solution plane.

If the projected streamline does not intersect the reflected shock wave,

a modified interior point unit process is applied using flow property in-

formation on the downstream side of the incident shock wave. If the pro-

jected streamline intersects the reflected shock wave, the intersection

point is found with this surface. A modified interior point unit process

is then applied on the downstream side of the reflected shock wave.

After all of the points have been determined on the solution plane

that is immdiately downstream of the shock wave-solid body reflection,

control is returned to the driving algorithm until another shock wave-

solid body reflection is encountered.

Figures K.6 to K.8 illustrate the intersection of the shock wave with

the centerbody. Similar results hold when the shock wave intersects the

cowl.

The internal flow field integration is terminated when eithgr'a speci-

fied axial station is reached or when the flow becomes subsonic.

9. COMPUTATION OF THE BOUNDARY LAYER FLOW

The overall numerical algorithm for the boundary layer flow -computa-
k 

tion consists of the re petitive application of the attachment line flow,

three-dimensional fl-ow, and shock wave-boundary layer interaction region

flow subalgorithms to generate the global solution for given boundary

R	 conditions and a specified set of initial-data.

r.	 The boundary layer flow initial-data are specified on body normal

^r
rays of constant R. The x-coordinate axis is the streamwise curvilinear

£:	
379 .k
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coordinate coincident with the body and contained in a given meridional

plane (see Figure 9). The mean boundary flow direction is assumed to be

in the x-coordinate direction. Separate sets of initial data are required

to initiate the forebody/centerbody and cowl boundary layer computations.

The implicit finite difference algorithm is applied to compute all

of the boundary layer flow except for that in the shock wave-boundary

layer interaction regions where the integral analysis is employed. The

finite difference algorithm first applies the attachment line flow sub

algorithm to calculate the boundary layer flow on the windward and lee-

ward planes of symmetry. The three-dimensional flow subalgorithm is then

applied to compute the boundary layer flow between the planes of flow

symmetry starting at th e windward meridian and marching to the leeward

meridian for a given solution surface. The boundary layer solution is

obtained on an orthogonal curvilinear mesh conforming to the local surface

j

curvature. As opposed to the bi characteri sti c supersonic flow solution,

w
individual streamlines are not followed in the boundary layer computation.

The boundary layer external flow properties are determined by interpola-

tion of the supersonic flow solution.

When a shock wave-boundary layer interaction region has been en-

countered, the three-dimensional integral analysis is applied to compute
zp

the property profiles on the downstream side of the interaction region.

The boundary layer properties on the upstream side of the interaction

region are supplied by application of the implicit finite difference

algorithm. The external flow properties are obtained from the supersonic

core flow solution:

The streamwise step size used in the boundary layer computation is

selected to correspond to the axial marching step determined from the

381
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Courant-Friedrichs-Lewy stability criterion used in the supersonic flow

computation. As a consequence, the supersonic flow and boundary layer

flow solutions are determined at the same axial stations.

10. BOUNDARY LAYER FLOW INITIAL, DATA

The boundary layer flow initial data are specified at stations of

constant x (see Figure 9). Separate sets of initial data must be speci-

fied to initiate the forebody/centerbody and cowl boundary layer computa-

tions. For uniqueness and existence of a. genuine solution, the prescribed

initial data must have at least continuous first partial derivatives.

The forebody/centerbody boundary layer flow initial data must be speci-

Pied at the same axial station at -which t"e supersonic flow initial data

are specified. If the forebody is conical ahead of the axial station

where the computation is to be started, then the initial data may be gen-

erated using the implicit finite difference algorithm developed by Adams

(29), which is applicable to determining the boundary layer flow for a

circular cone at incidence. The Adams algorithm has been incorporated

3	 r1

f	 -,

into the computer program developed in the present investigation. Use

k	 of the Adams algorithm mandates specification of the wall temperature. 	 a

If the forebody is not conical ahead of the axial station where the

computation is to begin, then the initial data must be specified by the

user. Experimental data may be employed, if available.

The cowl boundary layer initial data must be specified at the axial

location of the first supersonic flow solution plane inside the annulus 	 j
t

since the boundary layer thickness at the cowl lip is identically zero. 	 i

The cowl boundary layer initial data may be internally generated in the

computer program using an approximate technique. Alternatively, arbi-

trary initial data may be specified by the user.	 '	 ^1

t	 t,
382
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The internally generated cowl boundary layer initial data are ob-

tained by an approximate analysis. The boundary layer thickness at

each circumferential station is approximated by formulae appropriate

for two-dimensional flow (4). For laminar flow, the boundary layer

thickness 6 is calculated from

^/z

ve x
S (x) = 5.0	 (K.9)

u
e

whereas for turbulent flow, the bounda °y layer thickness is given by

U X

s(x)	 0.37 x	
e
v	

(K.10)
e

In equations (K.9) and (K.10) , x denotes the streamwi se body-coincident

curvilinear coordinate contained in a given meridional plane and measured
y

from the cowl lip (see Figure K.9), u  is the x-velocity component measured
s

at the boundary layer edge, and v  is the kinematic viscosity at the

boundary layer edge. Although x is constant at each circumferential

station used in the initial data specification, the boundary layer edge

properties do vary, and thereby so does the boundary layer thickness.

With the local boundary layer thickness determined, the velocity pro-

files at each circumferential station are obtained by assuming profile

functional forms. For laminar flow, the following functional forms are
K

S

assumed

u/ue	
a^ + a 2n + a3n2	(K.11-)

w/we b + b 2 + b3n	 (K.12)

383 _
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r "	 In equations (K.11), (K.12), and (K.13), u and w denote the boundary layer
E

velocity components in the streamwise (x) and cross flow (z) directions,

respectively, ue and we are the respective velocity components at the

6	 boundary layer edge, y is the distance measured normal to the wall (see
F

F	 Figure K.9), and a, and b i (=1,2,3) are coefficients in the polynomial

expansions which ar'e ascertained by applying the following boundary con-

ditions:

y = 0 {n = 0): u = 0, w = 0	 (K.14)

y = S (n = 1) : u = ue, w =,- e 	(K..15)

y= s (n= 1) : au_0, aw =0	 (K.16)
ay	 ay

Applying equations (K.14), (K.15), and (K.16) yields the following final

forms for equations (K.11) and (K.12)

u
/
ue = 2n - n2	 (K.17) d

_
w/we 2n 

_ 
n	 (K.18)

E,
The velocity profiles for turbulent flow are assumed to be gi ven by

a	 t	 .
u/ue = Ti	 (K.19)

-	
(K.20)f	 ^	 w/we = ns

where the power law exponents a and s are user specified. In obtaining
F

r:	 385 a
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equation (K.10j the following exponent values were assumed

a = a	 1/7	 (K.21)

However, a and s generally can fall in the Reynolds number dependent

range

1 < a < 1
10 5

(K.22)

1 _< $ < 1	 (K. 23)
10	 T

The mean total enthalpy H distribution across the boundary layer is_.

assumed to be given by

H = c l + c2n + c3n 2	(K.24)

where the polynomial coefficients ci ( i =1,2,3) are obtai ned by application

of the appropriate boundary conditions. for the case of a specified wall

temperature, or equi val ently a specified total enthalpy at the wall HW

the following conditions apply

y=0 (n=0): H=Hw	 (K.25)

y = d (n = 1): H = He	 (K.26)

aH a
y = a (n = 1)y= 0	 (K27)

'where He is the total enthalpy at the boundary layer edge. Applying equa-

tions (K.25), (K.26), and (K.27) yields the following final form of equa-

tion (K.24)

H = HW + 2(He - Hw }  + ( Hw - He )n2	 (K.28),

386
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For the case of a specified normal temperature gradient at the wall, or

equivalently a specified total enthalpy gradient at the wall Hw, the 	 5

following conditions apply 	 4

y = 0 (n = 0)	
aH	

Hw	
(K.29)

ay

Y = S	
He	

(K.30)

y=a (n-1)	
aH =0
	 (K.31)

ay

Applying equations (K.29), (K.30), and (K.31) yields the following final

form of equation (K.24)

H_= (H 

e	
1 

Hw
* a) + H

w 
l,l - 1 Hww&n2	 (K. 32)

- 2	 2 _a

With the total enthalpy and velocity profiles determined for a given

circumferential station, the mean static enthalpy h profile is obtained
i

from
3

h = H 	 2 (u2 + w 2 ) (K. 33)
e

u Assuming a constant pressure along a given normal then allows the tempera-

ture and density to be computed by using the caloric and thermal' equations

of state, respectively. 5

11.	 BOUNDARY LAYER FLOW SOLUTION MESH AND FLOW SYMMETRY
N

The boundary layer flow is determined on a body-fitted computational

, s mesh.	 The solution points are located on body normal rays, the circumfer-

is 387
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ential distribution of the rays being the same on each solution surface.
r

Each solution surface corresponds to stations of constant x where x is

the curvilinear streamwise coordinate coincident with the body and con-

tained in a given meridional plane.

The point network on a given boundary layer solution surface is

illustrated in Fi gure K-10.	 In this figure, the index i corresponds to J

the i th	 circumferential station and the index j corresponds to the j th

radial	 (or normal) station.	 In all cases, the poi-nts on the body are

denoted by j = 1 and the points at the boundary layer edge are denoted

by j = n a or j = nb for the forebody/centerbody and cowl boundary Layers,
,s

respectively.	 The-computed sector, in general, is bounded by the circum-

ferential stations i = 1 and i = m for the forebody1centerbody and cowl

boundary layers.	 The spacing in the normal direction is specified by the 4

use of the formulations given in Appendix I.

One flow symmetry option has been incorporated into the boundary .

layer algorithm.	 This option is for the case of one plane of flow

symmetry as illustrated in Figure K.10.	 In this case the computed

sector is bounded by the i = 1 circumferential station on the -y-axis 1

and by the i = m circumferential station on the +y-axis.

12.	 TEMPERATURE AND MASS TRANSFER BOUNDARY CONDITIONS

The boundary layer computation requires specification of the tempera-

ture or of the normal temperature derivative at the wall-. 	 Constant temper-

ature or temperature derivative boundary conditions may be specified. 	 Al-

ternatively, an arbitrary wall temperature or temperature derivative dis-

tribution may be specified by tabular input. 	 Quadratic interpolation is
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employed to obtain the temperature boundary condition at the required
x
li

axial stations when the tabular input option is employed.

Mass transfer boundary conditions are specified by entering the
;r

axial locations of the boundary layer bleed zones and the mass flux with-

in each zone.
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APPENDIX L

NOMENCLATURE FOR

SELECTED VARIABLES

ENGLISH SYMBOLS

a

ai,bi,ci,di

A+

Bi

c

e

f

Fx , Fy, Fz , Fe

h

H

h.] ,h2

i lJ,k

i IJ ,k

KI'K2

Q	 (9,x13,^IyItz

sonic speed

general curve fit coefficients 	 I

van Driest damping factor

body force vector in index notation

velocity of divergence of Mach conoid surface

internal energy per unit mass

general interpolation polynomial function

forcing functions in the x, y, and z component

momentum equations and energy equation, respectively

mean static enthalpy per unit mass

mean total enthalpy per unit mass

metric coefficients

unit vectors in the x, y, and z directions, respectively

unit vectors in the x`, y', and z' directions,
t

respectively

geodesic curvature terms

unit vector along the space curve defined by the 	
a

intersection of the shock wave with either the



%leed
bleed mass flow rate

M Mach number

n = (nx ,ny ,nz ) unit vector normal to a wave surface

r i above unit vector in index notation

nb
	 (nbx' nb 'nbz)

unit vector normal to a solid boundary~
a

Y x

nbi
above unit vector in index notation

IR

ns=(nsxi,nsy,,nsz,)
unit vector normal to the shock wave surface

,R

i

a

[expressed in the (x',y',z')-system]

= to	 a streamvector normal	 either a wave surface orN	 (Nx ,Ny ,Nz )

4 surface

1

P pressure

Pr laminar Prandtl number a

Prt turbulent Prandtl number t 	 ;

q velocity magnitude
3

r	 radial position of a point

R	 gas constant

R
C
	cowl lip radius

i	
a

'min	
distance from streamline base point to nearest

point on convex hull	 x

s	 either entropy per unit mass, or arc length
a

S	 temperature base in Sutherland's formula

j;
S = (SX ,Sy ,SZ )	 vector in the wave surface and normal to the 	 i

F	 bicharacteristic direction
p	 ;:

t	 time or time-like parameter	 7
k

4
	 t	 unit vector along the space curve defined by theF

intersection of the shock wave with a meridional plane
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T	 absolute temperature, or mass transpiration term

u,v,w	 velocity components in fh-e x, y, and z directions,

respectively

u,v,w	 mean velocity components in the x, y, and i directions,

respectively

u 
	 velocity in index notatior.,-?

V	 velocity vector

x,y,z	 cartesian coordinates of base coordinate system

x,y,z	 orthogonal curvilinear coordinates for the boundary

layer computation

xi	base system coordinates in index notation

x',y',z'	 cartQsian-coordinates of local coordinate system

GREEK SYMBOLS

a	 either the angle of attack, the angle subtended by

the unit vector t and the z`-axis, or turbulence

model constant

unit vectors used in the parameterization of

the characteristic equations

Y	 specific heat ratio

s	 boundary l:*ayer thickness

aid	
Kronecker delta

t 6TR	
intermittency factor

E

`	 E	 turbulent eddy viscosity

e e	turbulent eddy thermal conductivity

p
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9

K

u

V

P

a

0

SUBSCRIPTS

e

i,j,k

TI

	
second coefficient of viscosity, or transformed

normal coordinate

either the angle used in the parameterization of

the characteristic equations, or the angle subtended

by a meridian and the (x,y)-plane 	 A	 J

thermal conductivity, or von Kaman parameter

term in the wave surface compatibility relation

dynamic viscosity

kinematic viscosity

thermodynamic parameter

density

term in the noncharacteristic relation

angle subtended by the unit vector t and the x'-axis,

or vector potential function

either the viscous dissipation function, or a term

in the wave surface compatibility relation

vector potential function

boundary layer edge conditions

rectangular cartesi an coordinate indices ranging

from 1 to 3
r

w	 wall conditions

x,y,z	 denotes either partial differentiation with respect to

x, y, and z, or the x, y, and z components of a vector

Go	 free-stream conditions

394	 ,y
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OPERATORS

0( )/Dt

unit vector

time- fluctuation component, or partial derivative

with respect to n

a xi
	 partial derivative with resepct to xi
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