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LIST OF SYMBOLS

Do zero lift drag

Di lift induced drag in level flight

d distance of capture

e( ) unit vector in the direction of (+)

g acceleration of gravity

_C Hamiltonian functions

J cost function of the game

kI ... k# scalar parameters

n aerodynamic load factor

R distance of separation

r the smallest turning radius at a given speed

T maximum thrust force
max

t time

V velocity

W aircraft weight

X,Y Cartesian coordinates in figure i

E singular perturbation parameter

_R separation adjoint

%V velocity adjoint

throttle control parameter
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angular velocity

angular velocity limit
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f final value

P pursuer

o initial value

Superscripts
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i inner (boundary layer) solution

o outer solution (constant speed game)

r reduced order solution (variable speed game)

* optimal value

(') time derivative

(.) three-dimensional vector
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NONLINEAR ZERO-SUM DIFFERENTIAL GAME ANALYSIS BY SINGULAR

PERTURBATION METHODS

J. Shinar* and N. Farber%

Ames Research Center

SUMMARY

A certain class of nonlinear, zero-sum differential games, exhibiting time-scale

separation properties, is suitable for analysis by singular-perturbation techniques.

The merits of such an analysis, leading to an approximate game solution, as well as

the "well-posedness" of the formulation, are discussed. The singular-perturbation

approach is shown to be particularly attractive for investigating pursuit-evasion

problems; the original multidimensional differential game is decomposed to a "simple

pursuit" (free-stream) game and two independent (boundary-layer) optimal-control

problems. Using multiple time-scale boundary-layer models in such games results in a

pair of uniformly valid zero-order composite feedback strategies. Though a priori

perfect information is assumed, the suboptimal strategies depend only on relative

geometry and own-state measurements. This is demonstrated by a three-dimensional,

constant-speed example. For game analysis with realistic vehicle dynamics, the tech-

nique of forced singular perturbations and a variable modeling approach is proposed.

Accuracy of the zero-order singular-perturbation analysis is evaluated by comparison

with the exact (numerical) solution of a time-optimal, variable-speed "game of two

cars" in the horizontal plane.

I. INTRODUCTION

The notion of differential games, coined by Isaacs (ref. 1), was intended ini-

tially to describe a mathematical framework for investigating pursuit-evasion problems.

Today, the general theory of differential games has a much larger horizon, but

pursuit-evasion games still attract a particular interest. However, the progress in

solving nonlinear games, representing realistic problems, has been slow and frustrat-

ing. Although it has been proved (refs. 2 and 3) that pursuit-evasion games with

separable convex dynamics and properly defined terminal manifolds have a saddle-point

solution, only games with very simple structures have been solved (refs. 3-6).

The basic reason for this unsatisfactory progress is the complex nature of the

game solution. First, a nonlinear, two-point, boundary-valve problem of high dimen-

sion, describing the set of necessary conditions of optimality, has to be solved.
Such a solution, generating candidate extremals, is valid only if those trajectories

do not reach singular surfaces of the game. And the existence of such surfaces of

discontinuity (either in the cost function or in its gradient) is a well-known

phenomenon (refs. 7 and 8) in differential game theory. For this reason the numerical
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techniques (refs. 9-12), which can provide a solution of the two-point boundary-value

problem, are of limited value. They also require anexcessive amount of computation,

prohibitive for real-time implementations, and provide only little insight for a sys-

tematical analysis. For such purposes a reasonable analytical approximation may be
of great value.

In analysis of differential games, where fast and slow variables can be dis-

tinguished, the method of singular perturbation -- successfully used in optimal control

of multiple time-scale systems (refs. 13-17) -- can be applied. By this technique the

original differential game can be decoupled to a set of lower-dimensional, analyti-
cally solvable subgames, enabling the synthesis of an approximation to the exact
solution.

There are, however, some conceptual difficulties to be overcome. The first

attempts to investigate singularly perturbed linear differential games (refs. 18-21)
revealed that because of the differences in the information structure between an

open-loop and closed-loop solution, some singularly perturbed differential games may
not be "well-posed" (i.e., the solution of the "slow" game does not approximate the

solution of the original one, even if the perturbation parameter, characterizing the
time-scale separation, tends toward zero). "Well-posedness" was, however, demon-

strated (ref. 18) for zero-sum linear games and it was conjectured (ref. 20) for cases

in which the "fast" game has identical closed-loop and open-loop solutions.

Other studies (refs. 22 and 23) clarified the significance of an approximate game
solution. By defining the outcome of a singularly perturbed, two-person, zero-sum

differential game -- in which both players follow approximate (synthesized_ strategies--
as the "extended value," it was demonstrated that

i. The difference between the extended value and the exact saddle-point value
is bounded on both sides

2. The extended value satisfies by itself a weak saddle inequality

3. The extended value tends, as a limit, toward the exact value of the singu-

larly perturbed game, as the singular perturbation parameter g approaches zero

4. The accuracy of the extended value for a zero-order approximation is pre-
dicted to be of the order of _2.

A class of pursuit-evasion games, analyzed by the technique of singular perturba-
tions, can be characterized by the following properties:

I. There is a time-scale separation between the variables describing the slow

relative geometry and the fast variations of vehicle dynamics

2. The dynamics of the relative geometry are separately controlled by the
players

3. The dynamics of the fast variables are independent of the slow ones

4. The fast vehicle dynamics are independently controlled by the respective
players

5. The terminal surface is defined by the slow variables only.
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For this class, the original high-dimensional game can be decomposed to a slow
"simple pursuit game" and to two sets of fast, independent, optlmal-control problems
satisfying the conjecture of reference 20.

The objective of this paper is to summarize the results of slngular-perturbation

analysis for a set of pursuit-evaslon games of gradually increasing complexity. In

all of these games, capture is defined as the pursuer approaching the evader within a

predetermined distance and is assumed to be guaranteed. The cost to be optimized is

the "time of capture."

The scope of the paper is, however, limited to two recently completed investiga-

tions. In section II the three-dimensional, constant-speed pursuit-evasion game is

analyzed, and it is shown how the singular-perturbation solution (ref. 24) enlightens

the apparent controversy raised in previous works (refs. 25-27). The results of a

comparison (ref. 28) of the zero-order feedback approximation, obtained by singular-

perturbation analysis (ref. 29), and the open-loop optimal solution of variable-speed

horizontal pursuit-evasion game (ref. 30) are presented in section III. This compari-

son has validated the singular-perturbation approach for the analysis of complex

pursuit-evasion games for sufficiently large initial distances. In the concluding

section, the merits of such game analysis are summarized.

II. THREE-DIMENSIONAL "GAME OF TWO CARS"

Summary of Two-Dimensional Results

As a first example of a singularly perturbed pursuit-evasion game, the two-

dimensional, constant-speed game with constrained turning rates (Game of Two Cars) was

analyzed in reference 22, since its optimal solution (ref. 31) was available for com-

parison. This optimal solution, obtained for a sufficiently large initial distance,

requires that each player uses his maximum turning rate until the final line of sight

is reached. Then the game continues as a straight line pursuit.

The singular-perturbation parameters in this problem are the ratio of the turning

radii of the players to the initial distance of separation. The approximate strategy

pair for this game, obtained by using the singular-perturbation technique, is given
in a feedback form. It directs the players to align their velocity vectors with the

current line of sight. If both players can do it simultaneously, the approximate

strategies yield a result which is identical to the exact solution. Otherwise, the

extended value will shift in favor of the player who reaches the current line of

sight later than his opponent. Numerical comparison showed that the payoff accuracy

of the approximation is better than the predicted order of _2. This successful

demonstration of merits of the singular-perturbation approach encouraged investigation

of more complex pursuit-evasion game models, such as (i) three-dimensional, constant

speed; (2) two-dimensional, variable speed; and (3) three-dimensional, variable speed.

In the following subsection the first game model is formulated, _sing vector
notations.

Problem Formulation

The equations of motion of the constant-speed pursuit-evasion in a three-

dimensional space are



d-_ =VE - Vp ; _(t o) = Ro (i)

dVp . . .
dt = _P x Vp ; _p(to) = Vp (2)

0

_ d_E -
• dt = WE x VE ; E(to)= VE (3)

The angular velocity vectors .up,m E are perpendicular to the respective vectors of
linear velocity, that is,

: Up. Vp = wE" VE = 0 (4)

and they are constrained in magnitude,

" _pl _ _p (5)

]E 1 _ _E (6)

The game terminates at t = tf, when the two following conditions are satisfied for
the first time:

, -.I_(tf)l = d (7)

a__
IR(tf) l < 0 (8)dt

It was shown (ref. 32) that if l_pl > I_EI and _p > _m then a finite capture
time can be always guaranteed. In the sequel, it is assumed that these inequalities
are respected. It permits the definition of a game of degree (ref. i) in which the

cost to be optimized is the time of capture tf, defined as

= tf _ min arg IR(t)I = d (9)

t>t o l_ol>d

The controls of the players are mp and mE, respectively, and their optimal values
have to satisfy the necessary saddle-point conditions of

min max,_ = max min,_'= 0 (i0)

Up wE wE Up

where _ is a scalar function (the Hamiltonian of the game) given by

J{= 1 + _R" (VE - Vp) + XVp" (_p x Vp) + XVE- (wE × VE) (Ii)

. _v .The adjoint vectors XR, p,XVg are the components of the gradient of the cost func-

tion (assuming that such a gradient exists) and they have to satisfy



d%R -+

d-_-= _ = 0 _ XR = const (12)_R

,+

dXVp _ . . .

dt =- _= _R + (_P × _Vp) (13)

= )
dt _VE E

The transversality conditions, applied at the terminal surface defined by equa-
tion (7), lead to

R(tf) 11R(tf) (15)

.

_Vp(tf) = XVE(tf) = 0 (16)

.

It can be thus concluded from equations (12) and (15) that )tR(t ) is a constant vector
parallel to the final line of sight and that its magnitude can be determined from

equation (10) applied at the terminal manifold,

_. __ .
R" [Vp(tf) - VE(tf)] = i (17)

The optimal-control strategies are obtained from equation (i0), using also equa-

tions (5) and (6):

Vp × Vp

Up = _p (18)

I_Vp .
x VpI

VE × VE

WE = -_E (19)

I_VE .x VEI

These expressionsreflect the requiredperpendicularityexpressedin equation (4).

The set of necessaryconditionsof game optimalityand the equationsof motion
representa nonlinear,two-point,boundary-layerproblemwith 6 three-dimensional
vector variables. In the next subsection the optimal solution is approximated, using

the singular-perturbationtechnique.

Zero-Order Feedback Approximation

The first step in applying singular-perturbation analysis is the transformation

of the original problem to exhibit a singularly perturbed structure. The results of



the two-dimensional analysis (ref, 22) suggest that if the turning radius of the
players, defined by

: r (20)
r

is small relative to the initial'distance of separation I_o , there is a time-scale
separation between trajectory and vehicle dynamics which can be demonstrated by a

scaling transformation. Such a transformation can be avoided by using the technique

of "forced" singular perturbations, proposed first by Kelley (ref. 33) and used since

in many optimal-control problems (refs. 34-37). This method is based on the insertion

of a unit-value, "artificial" perturbation parameter as a multiplier of the respective

time derivatives of the fast variables. Judicious ordering of the state variables,

representing the actual hierarchy of the time-scale separations, is an essential pre-

requisite for a meaningful approximation. Recently it was formally demonstrated

(ref. 38) that the "forced" singular-perturbation approach and the properly scaled

transformation of the variables (using singular-perturbation parameters of physical

significance) yield identical zero-order feedback solutions. The example of the

constant-speed two-dimensional game solved by this method in reference 23 illustrated

this equivalence. By using this technique, equations (1)-(3) can be transformed to

dR . . . .

d-_ = (VE - Vp) ; R(t o) = Ro (21)

.

dVp . . . .

_ = (Wp x Vp) ; Vp(to) = Vpo (22)

2

dVE . . 2 .

d---t-= (WE × VE) ; VE(to) = VEo (23)

By setting E = 0 the reduced-order game is obtained (variables of this game are

denoted by the subscript o) yielding

dR° .o .o _o (to) .d--_-= (VE - Vp) ; = R° (24)

and the constraints

.0 2_ .o 2o

(Up x Vp) = (wE × VE) = 0 (25)

Combining equations (25) and (4) leads to

.o .o

Up = wE = 0 (26)

In this reduced game, the controls are _ and _, and they have to satisfy

min max'= max min,YC °= 0 (27)
20 20 .o 20

Vp VE VE Vp

where

.o .o .o

._o = i + XR. (VE - Vp) (28)



The adjoint vector _ satisfies an equation similar to equation (12), and conse-

quentl x it is a constant vector, parallel to the final llne of sight of the reduced

game R°(tf).

Optimization of the reduced-order Hamiltonian _° leads to

_o

V+_ = IVeleR(tf) (29)

4 o

_ = IVEIeR(tf) (30)

_o

where eR is a unit vector in the _o direction. We also obtain from equation (27)
that

+o

eR(t f)
(31)_o =

R Iv r-Iv l
The solution of the reduced game is therefore a straight-line pursuit. Substi-

tuting equations (29) and (30) into equation (21) indicates that the direction of the

line of sight does not change in this subgame, that is, _°(tf) is parallel to _o,
and consequently

.° . (32)
eR(tf) = eRo

Since equations (29) and (30) are generally incompatible with the prescribed

and VEo, a boundary-layer game has to be introduced, using ainitial conditions "_o

time-stretching transformation

t - t
o

: (33)
E

By substituting equation (33) into equations (21)-(23), the following set of equations

(variables are denoted by the superscript i) is obtained:

dRI_ S(VE+i i" ; _i
= - V_) (0) = _^ (34)

dV_ .i .i .

dT = ($_ × Vp) ; Vp(0) = VPo (35)

d_ .i .i .i (36)
d--_-=(WE × VE) ; VE(0) = _Eo

Setting € = 0 leads to

i(t) = const = Ro (37)
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The Hamiltonian of this boundary-layer game is similar to equation (ii). It is

obtained by expressing the adjoints of the singularly perturbed game equa-
tions (21)-(23) (denoted by the superscript E) as

_R = %R

Vp = _Xgp (38)

XVE =_XVE

.i ">i_ ">i .i .i .i .i .i .i

_i = 1 + _R" (VE Vp) + _Vp" (Wp x Vp) + _VE" (wE × VE) (39)

The adjointequationsof the boundary layer are

d_ 3_i .i
- -s - 0 = kR = const (40)

dT 3_i

d_Vp _i

dr 3Vp

dkVE sjli
. × (42)- -_R + WE

d_ 3_iE

The matching condition requires

">i ->0

%R = %R (43)

->0

where )_R is already determined by equations (31) and (32). The other adjoint vec-
tors have to satisfy

_ .

_-_olim_Vp(_) = XVp(tf) = 0 (44)

_-_olim_VE(_ ) = _VE(tf) = 0 (45)

The optimality conditions, similar to equation (i0), lead to

_i ->i

Vp x Vp
.i), = _p (46)(_P ">i .i

l Vp×vpl
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.i .i

AVE × VE.i
(_°E)*= -hE x (47)

It can be already seen that equations (35), (41), (44), and (46) are independent of

equations (36), (42), (45), and (47), and consequently each of the equation sets can

be solved separately.

Substituting equations (43) and (46) into equation (41) yields

d'_pi x Vp x
(48)

.o

dT = _R + _P .i

•
Using the triple vector product identity

(_ x _) x c = _(_. _) - _(_" _) (49)

we can rewrite equation (48) in a simplified form,

d_p .o .i .i

d---_ = XR + klXVp + k2V P (50)

where k I and k2 are scalar multipliers. Integrating equation (50) backwards from
.i
%Vp(tf) = 0, we observe that initially the derivative vector lies in the plane

.i .i
defined by _ and Vp. Consequently, the vector %Vp itself will grow (in the

retrograde sense) in this plane only and can be expressed by

_p(_) = k3(T)_._+ k4(_)V._ (51)

Substituting equation (51) into equation (46) reveals that

_o ×
R _ (52)

+i

(Up)* = _p .o .i
IXR x Vel

Similarly we obtain for the evader

(53).i

_o

Since by equations (31) and (32) %R is parallel to R0, we have the control strate-

gies in the form



. .i

Ro × Vp
(54)

.i

These boundary-layer strategies imply that each vehicle should turn in the plane

defined by the initial line-of-sight vector and its own velocity. A uniformly valid
composite zero-order feedback solution (denoted by the superscript c) is obtained if

the initial condition Ro is replaced in equations (54) and (55) by the current

value of the line-of-sight vector R (and the superscripts i omitted):

.

->c R x Vp
mp = _p (56)

.c R ×V E
mE = mE . (57)

×VEi
The accuracy of this approximation depends on the time-scale separation of the

variables, that is, on the smallness of the perturbation parameters

= rj/IRol j = P, Ecj
(58)

where r is defined in equation (20).

The Optimal Solution

To our knowledge, the complete optimal solution of the game has not been pub-

lished. Moreover, the results that are available have created some controversy. In
several investigations (e.g., refs. 26 and 27) it was indicated that the three-

dimensional game tends to take place in an inclined plane. In a recent paper

(ref. 28) it is shown, however, that the optimal strategies of this game, starting

with noncoplanar initial conditions, are essentially three dimensional. The singular-
perturbation analysis can resolve this apparent contradiction. As a matter of fact it

extends the original two-dimensional solution of Simakova (ref. 31) to a three -

dimensional space. Applying the same approach that was taken in the boundary-layer-
game equations (48)-(54) to the exact-game equations (i)-(19) shows that the optimal

maneuvers of the players take place in two fixed planes, determined by the final

(a priori unknown) direction of the line of sight and the respective velocity vectors.
This open-loop solution, expressed in a nonrotating coordinate system, embeds the

results of references 25-27, showing that they are complementary and do not contradict

each other. The optimal strategies obtained in reference 27 are expressed in a coor-

dinate system aligned with the line of sight and, therefore, the existence of the

fixed maneuver planes is not transparent. It also agrees with the observation that if

the game starts in (or reaches) a plane, the optimal trajectories are two dimensional.

i0



It is also obvious that if the ratios of the turning radii of the respective

players to the initial distance of separation (i.e., the singular-perturbatlon param-

eters of the game) are small, the rotation of the llne-of-sight vector is negligible,

and the current direction of this vector, used in the zero-order feedback strategies,

is a good approximation to its final orientation.

III. VARIABLE-SPEED HORIZONTAL PURSUIT-EVASION

Singular-Perturbatlon Analysis

In variable-speed pursuit-evasion games there exists also a tlme-scale separation

between the velocity and turning dynamics of the players. For such cases the method

of forced singular perturbations is particularly rewarding since it has the potential

to generate a multiple time-scale differential game. Such a singularly perturbed

game, consisting of several consecutively faster subgames, is solvable in a closed
form. An example of the variable-speed pursuit-evasion game in the horizontal plane

was analyzed first in reference 29. Only recently has it become possible to validate

this analysis (ref. 28) by comparing its solution with the open-loop optimal solution

of the same game (ref. 30).

Because of the limited scope of the present paper, only the main results of the

singular-perturbation analysis and the more important aspects of the comparison are
summarized in this section. For further details the reader is referred to the

original report (ref. 28).

For the forced slngular-perturbation analysis, the variable-speed pursuit-evasion

game between two airplanes in the horizontal plane is described by the following

multiple time-scale mathematical model (variables are defined in fig. i):

= VE cos(× E - _) - Vp cos(Xp - _) ; R(t o) = R° (59)

= [VE sin(xE - _) - Vp sin(Xp - _)]/R ; _(to) = _o (60)

£Vp = g[_p(Tmax) P - (Do)P - n_(Di)p]/W P ; Ve(to) = Vp (61)
o

£VE = g[_E(Tmax)E - (Do)E - nE(Di)E]/WE ; VE(to) = VE (62)
o

_2_e = g(n_ - I)I/2/Vp ; ×e(to) = _e (63)
o

_2XE = g(n_ - I)I/2/V E ; ×m(to ) = ×E (64)
o

In this model, the maximum thrust of the airplanes "Tmax," as well as their

zero-lift drag "Do" and the straight-flight-induced drag "Di," is a known function of
the velocity. Weight W is assumed to be constant. The control variables of the

players are the throttle setting

0 S _ S i (65)



and the aerodynamic load factor (or lift to weight ratio)

A
n = (L/W) (66)

This last control variable is subject to two different constraints; a structural limit

n _ nma x (67)

and an aerodynamic (speed-dependent) one:

n _ nL(V ) (68)

Singular perturbation analysis (refs. 28 and 29) leads to an approximation of the

optimal-control strategies in an explicit feedback form. These strategies are similar

for both players. They require full thrust

_c = I (69)

and a load factor given by the equation

V Tmax - (Do + Di)

(nC)2 = i + VVr-_ " D.I [i -cos(! - X)] (70)

but subject to the constraints of equations (67) and (68). In this expression, Vr

is the velocity in the reduced-order game, which is estimated to be the maximum

velocity of the aircraft.

As can be seen, equation (70) expresses the required load factor as an explicit

function of the state variables (i,×,V) and the performance parameters (thrust, drag)

of the airplanes. Note that no range measurements or estimation of the opponent's
parameters are required. Based on equation (70), a simple feedback chart, as shown

in figure 2, can be prepared for each airplane.

The very form of equation (70) provides an important insight into the nature of

the suboptimal maneuver, which can be summarized as follows:

i. The required load factor can be related to the highest constant speed (sus-

tained) turning performance since

tTmax - (Do + Di)i(, O) (71)
i

indicating the compromise between a fast turn and longitudinal acceleration, both

being necessary for a successful pursuit-evasion.

2. The function [I - cos(_ - X)] 1/2 is almost linear for I¢ - XI < 60°.

Therefore, the required turning rate can be considered, for small deviations from the

line of sight, as a proportional control with a speed-dependent gain.

3. A part of this gain, given by V/(V r - V), provides an additional insight.

It indicates that if the speed is near its predicted value in the reduced game (i.e.,

12



when there is a littleneed for acceleration), a faster turn can be made. However,

if (Vr - V) is large, it is better not to lose velocity by making a sharp turn, but
to use the excess thrust for acceleration.

4. The control strategies (eqs. (69)-(70)) predict that the trajectory of both

airplanes will asymptotically approach the line-of-slght vector and that the engage-

ment will end by an accelerating "tail chase."

Comparison with the Optimal Solution

The zero-order feedback approximation obtained by singular-perturbation analysis

was compared recently (ref. 28) with the open-loop optimal solution of the same game

(ref. 30). This solution is based on using the direction of the terminal line of

sight as a reference. In this particular coordinate system, the necessary conditions

of game optimality are decoupled into two one-sided optimization problems. Thus,
extremal trajectories can be generated by backward integration from the terminal sur-

face independently. A recent implementation of this approach (ref. 39) makes it pos-

sible to compare trajectories and time-histories of variables to suboptimal candi-

dates_ such as the zero-order feedback approximation. Initial conditions of an

example are depicted in figure 3. Those initial conditions were obtained by simul-
taneous backward integration of two different trajectories (one for the pursuer and

one for the evader) from different end conditions satisfying Vp(tf) > VE(tf), using
an identical aircraft model from the open literature (ref. 40). Note that the initial

separation in the x-direction can be adjusted by selecting different capture ranges

(Rf = d).

The time-histories of the control variables seem to be similar, even for a rela-

tively short initial range (only 4 times larger than the pursuer's turning radius),
as can be seen in figures 4 and 5. Inspection of turning time-histories in figures 6
and 7 reveals more differences between the optimal solution and the feedback approxi-

mation. The evader, using the suboptimal strategy, reaches the actual line of sight

very nearly at the same time as the open-loop optimal trajectory closely approaches
the final (reference) direction. His turning strategy can, therefore, be considered

as close to optimal. One cannot say the same about the pursuer. Since the initial

conditions of the pursuer are more favorable than those of the evader, the pursuer

can reach the llne of sight in a shorter time. Because the evader has not yet com-

pleted his turn, the line of sight continues to rotate. Consequently, the pursuer,

using a suboptimal strategy, has made an unnecessary turn (an overshoot) which has to
be corrected later. As a result, it can be expected that the capture time of the

suboptimal game will be longer than the optimal one. Indeed, for this example, the

time of capture predicted by the feedback approximation is about 6.5% higher than the

optimal value of 97.1 sec.

The major reason for this level of inaccuracy is the relatively large value of

the singular-perturbation parameter (_p = rp/R o = 0.25) in the example. By changing

the capture range Rf, and accordingly the initial distance of separation Ro, a large
set of pursuit-evaslon games is generated and the suboptimal outcomes of the games

are compared with the optimal time of capture. The results of this comparison, pre-

sented in figure 8, demonstrate a very satisfactory accuracy for small Values

(gp < 0.125) of the perturbation parameter. Since in this example the turning
requirement of the pursuer is less than that of the evader, the suboptimal strategy

of the pursuer deviates more from the optimal than that of the evader. Consequently

the actual time of capture obtained when both players are using zero-order feedback

strategies is longer than the optimal value.
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In summary, the zero-order, singular-perturbation strategies preserve all of the

essential elements of the optimal solution and provide a good payoff accuracy for
sufficiently large initial distances.

CONCLUSIONS

It has been shown that singular-perturbation methods are useful mathematical

tools for analyzing a class of interesting nonlinear pursuit-evasion games. The

explicit analytical form of the zero-order control strategies indicates the simplicity

of an eventual implementation. This point is emphasized by the fact that in spite of

the assumption of perfect information made in the game formulation, the suboptimal

strategies depend only on the relative geometry and on own-state measurements.

The analytical approximation generates an insight, which hardly can be obtained

from an open-loop optimal solution. This point has been clearly illustrated in both

examples discussed here. The payoff accuracy of the zero-order, singular-perturbation

approximation was demonstrated for a variable-speed pursuit-evasion game in the hori-

zontal plane.

Variable-speed pursuit-evasions in the vertical plane and in three-dimensional

space were also analyzed recently by using a variable-modeling forced singular-

perturbation technique. This last investigation is reported in a contemporary

paper (ref. 41).
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