TO: NST-44/Scientific and Technical Information Division  
   Attn: Shirley Peigare  
FROM: GP-4/Office of Assistant General Counsel  
   for Patent Matters  
SUBJECT: Announcement of NASA-Owned U.S. Patents in STAR

In accordance with the procedures agreed upon by Code GP-4 and Code NST-44, the attached NASA-owned U.S. Patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:

U.S. Patent No. : 3,442,674  
Government or Contractor Employee: Borden, Inc.  
Columbus, OH  
NASA Case No. : XGS-05,584 w/07,375-1 w/07,397-1

NOTE - If this patent covers an invention made by a contractor employee under a NASA contract, the following is applicable:

YES /□/ NO /□/

Pursuant to Section 305(a) of the National Aeronautics and Space Act, the name of the Administrator of NASA appears on the first page of the patent; however, the name of the actual inventor (author) appears at the heading of Column No. 1 of the specification, following the words "...with respect to an invention of...."
The invention described herein was made in the performance of work under a NASA contract and is subject to the provisions of section 305 of the National Aeronautics and Space Act of 1958, Public Law 85-508 (72 Stat. 435; 42 U.S.C. 2457).

Generally, in electric storage batteries of this type, one electrode is silver oxide, the other is zinc or cadmium, and the medium providing the bath between the electrodes is an aqueous solution of potassium hydroxide. There may be used for some purposes other alkali metal hydroxides, the medium providing the bath between the electrodes is an aqueous solution of potassium hydroxide. There may be used for some purposes other alkali metal hydroxides, e.g., sodium or lithium hydroxide. The zinc or cadmium may be replaced by other metals that have a valence of at least 2 and are above cadmium in the electromotive series of the chemical elements, examples being aluminum, manganese and chromium. In such batteries it is necessary to have low electrical resistance of the membrane. It is a problem in batteries of this type, particularly when used for space exploration, to obtain membranes of adequate strength and stability when in contact with the alkali and silver oxide without the membrane being excessive in weight.

In our co-pending application, Ser. No. 396,716, filed Sept. 15, 1964, now abandoned, we have therein disclosed a battery separator membrane comprising a film which is a combination or solid solution of a cellulose ether such as methyl cellulose together with a resin which is either a polymer with dependent carboxyl groups such as sodium carboxy methyl cellulose or a polymer or copolymer of an alpha-unsaturated aliphatic acid. We have found that, although the membrane of the co-pending application has excellent conductivity and its tensile strength is superior to that of cellophane membranes which have previously been used in alkaline batteries, a separator membrane is required having still further improved tensile strengths. This property of higher tensile strength is especially needed to prevent solutions of membranes made with said resin from destroying the alkali concentration in the cell, which is lowered to and below the threshold concentration at which the resin used to make the membrane is soluble. A membrane should be capable of being wrapped around the electrodes without suffering physical damage. The present invention provides a membrane that absorbs sufficient alkali solution to make sufficiently low the electrical resistance but is of very high tensile strength, even after immersion in and long contact with 25%-45% potassium hydroxide solution, said solution having silver oxide dispersed and dissolved therein. This is the corrosion-resistant environment to which the membrane is exposed when the battery is in operation.

Briefly stated, the invention provides a membrane which may also be referred to as a film or sheet, wherein said membrane comprises a resin that is a cellulose ether polymer with dependent hydroxyalkyl groups. The resin may be further combined with insolubilizing agents in order to prevent solutions of membranes made with said resin from destroying the metal oxide used as one electrode of the cell. The silver oxide used as one electrode is of grade and form that is conventional in the commercial alkaline batteries, there being some uncertainty as to whether the compound that is active in the battery function is silver oxide (Ag₂O) or silver peroxide (AgO₂). AgO₂ is used throughout as representative of the oxide.

As to the proportions, when an insolubilizing agent is used, the ratio of the agent to the resin is dependent upon the concentration of alkali in the battery cell. Insolubilizing agents of the lower alkyl cellulose ether type and resins of the lower alkyl hydroxy cellulose type are separately soluble in water. Further, lower alkyl hydroxy cellulose resins are soluble in alkali solutions in concentrations up to about 40%. It has therefore been found necessary to add increasing proportions of insolubilizing agents to the resin composition as the alkali concentration of the cell is lowered below 40%. If insufficient quantities of said agent were to be used in the membrane composition for a specific alkali solution strength, the membrane would dissolve and therefore be useless for its intended purpose. Generally, up to 100% resin can be used at alkali concentrations of 40% and greater, and proportionately less resin as the concentration is reduced.

The following table shows proportions of ingredients at various alkali solution concentrations. The proportions are shown as illustrative of the proper range for best results. It is understood that the ranges given in the

| Alkali Solution Concentration | Insolubilizing Agent | Resin
|-----------------------------|----------------------|------|
| 10%                         | 0%                   | 100%
| 20%                         | 10%                  | 90%
| 30%                         | 20%                  | 80%
| 40%                         | 30%                  | 70%
| 50%                         | 40%                  | 60%
| 60%                         | 50%                  | 50%
| 70%                         | 60%                  | 40%
| 80%                         | 70%                  | 30%
| 90%                         | 80%                  | 20%
| 100%                        | 90%                  | 10% |
Table are by way of example and not by way of limitation, the only limitation upon the proportions being the minimum quantity of insolubilizing agent that will keep the lower alkyl hydroxy cellulose membrane from dissolving into the alkaline battery solution at the particular alkali concentration. Proportions here and elsewhere herein are expressed as parts by weight on a dry basis unless specifically stated to the contrary.

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Over 40</td>
</tr>
<tr>
<td>35-40</td>
</tr>
<tr>
<td>30-35</td>
</tr>
<tr>
<td>Up to 30</td>
</tr>
</tbody>
</table>

By way of example of the deterioration that occurs if insufficient insolubilizing agent is used, a membrane of proportion of 50 parts hydroxyethyl cellulose and 50 parts of methyl cellulose was prepared and immersed in 30% potassium hydroxide. After 72 hours there was a significant falling off in strength of the membrane, indicating partial solubility in the alkaline solution.

If no resin is used in the membrane composition, the conductance as well as the strength falls off appreciably. In one example of such a system the objections of resistance of a methyl cellulose membrane, after the 72 hours in an alkali solution, was objectionably high, actually 21 ohms in 30% KOH and 507 ohms in 40% KOH.

Alkaline storage batteries in which the membranes of this invention have utility generally operate with an alkali solution concentration in the range of between about 28%-42%. Concentrations outside this range are permissible, however, the efficiency of the battery falls off. The usually preferred alkali concentration is between about 30%-35%.

Table 2 tabulates the results obtained with films of this invention, in comparison with each other, with a cellophane (control) membrane of the prior art and with membranes made separately from each constituent component.

### Table 2

<table>
<thead>
<tr>
<th>Proportions of hydroxyethyl cellulose for 100 parts membrane</th>
<th>Tensile strength at 50% R. H. and 73° F.</th>
<th>Flex test MIT&quot; at 50% R. H. and 73° F.</th>
<th>Cellophane control</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>5,250</td>
<td>8,340</td>
<td>10,000</td>
</tr>
<tr>
<td>10</td>
<td>6,340</td>
<td>9,270</td>
<td>11,120</td>
</tr>
<tr>
<td>20</td>
<td>10,000</td>
<td>11,200</td>
<td>12,860</td>
</tr>
<tr>
<td>30</td>
<td>15,220</td>
<td>13,000</td>
<td>17,320</td>
</tr>
</tbody>
</table>

The membranes of columns "0" and "Cellophane Control" are not a part of the present invention.

The results show generally, the superiority of our membrane over the control membrane and methyl cellulose membrane, particularly in tensile strength and resistance measurements. Not tabulated is the fact that the silver oxide-KOH solution, having substantial oxidizing power, rendered the cellophane membrane opaque by a heavy coating of silver oxide, whereas the films of this invention, while discolored, retained their transparency. Also is the fact that, surprisingly, our membranes are generally as strong as the methyl cellulose membranes. A reinforcement action is observed when note is taken of the membranes of the prior art and with membranes made separately from each constituent component.

Although life tests on test storage cells are incomplete at this date, available results indicate that in one test the cells employing the membranes of column "30" and "35" in Table 2 underwent 32 and 30 cycles respectively.
of charging and discharging before termination whereas control cells using battery grade cellophane failed after 15 to 21 cycles.

Example 2
The procedure and composition of Example 1 are used but with replacement of the hydroxyethyl cellulose by hydroxyiso- and n-propyl, and hydroxybutyl cellulose used separately and in turn in the various proportions of hydroxyalkyl cellulose to the total membrane combination as shown in Table 1. The films cast and dried are likewise clear and homogeneous. The test results are similar to those tabulated in Table 2.

Example 3
The procedure and compositions of Example 1 are followed in making membranes except that ethyl cellulose replaces methyl cellulose as the insolubilizing agent. The properties of the resulting membranes, with proportions varying as in Table 1, are similar to those tabulated in Table 2. The ethyl cellulose is water soluble.

The films of this invention may also be prepared from an organic solvent in place of the aqueous solvent. The organic solvent is a solvent for the resin and agent, such as butyl and higher alkyl alcohols.

It will be understood that it is intended to cover all changes and modifications of the examples of the invention herein chosen for the purpose of illustration which do not constitute departures from the spirit and scope of the invention.

We claim:
1. A membrane of high tensile strength being insoluble in aqueous alkali metal hydroxide medium, comprising a resin which is a water-soluble C_{2-4} hydroxyalkyl cellulose ether polymer having between about 0.8 and 1.5 hydroxyalkyl groups per glucose unit in said cellulose polymer, and a water-soluble lower alkyl cellulose ether having from about 1 to about 2 alkyl groups per glucose unit in said lower alkyl cellulose ether, said water-soluble lower alkyl cellulose ether being present in an amount sufficient to keep the membrane from dissolving into the aqueous alkali metal hydroxide medium.

2. The membrane of claim 1, wherein said alkyl groups of said resin is selected from the groups consisting of ethyl, iso- and n-propyl and butyl.

3. The membrane of claim 1 wherein said resin is hydroxyethyl cellulose.

4. A separator membrane of high tensile strength being insoluble in aqueous alkali metal hydroxide medium, wherein said medium comprises alkali metal hydroxide in proportion up to about 45% by weight, comprising up to 100% by weight of resin which is a water-soluble C_{2-4} hydroxyalkyl cellulose ether polymer having between about 0.8 and 1.5 hydroxyalkyl groups per glucose unit in said cellulose polymer, the difference from said 100% of said resin being an insolubilizing agent which is a water-soluble lower alkyl cellulose ether having from about 1 to about 2 alkyl groups per glucose unit in said lower alkyl cellulose ether, the proportion of said agent being increased as the concentration of said metal hydroxide is decreased in said medium.

5. The membrane of claim 4 wherein said alkyl group of said resin is selected from the group consisting of ethyl, iso- and n-propyl and butyl, and said agent is selected from the group consisting of methyl and ethyl cellulose.

6. A membrane of high tensile strength being insoluble in aqueous alkali metal hydroxide medium, said medium comprising between about 28% and 42% by weight of said alkali metal hydroxide, consisting essentially of hydroxyethyl cellulose having between about 0.8 and 1.5 hydroxyethyl groups per glucose unit in said hydroxyethyl cellulose and methyl cellulose having from about 1 to about 2 methyl groups per glucose unit in said methyl cellulose, in proportion between about 1 and 10 parts of hydroxyethyl cellulose for 10 parts of total membrane, the proportion of said hydroxyethyl cellulose being decreased as the concentration of said metal hydroxide is decreased in said medium.

References Cited

UNITED STATES PATENTS

2,763,030 9/1956 Erickson 106—197
2,810,659 10/1957 Greminger et al. 106—197
2,988,455 6/1961 Rosenberg et al. 106—197
3,057,942 10/1960 Smith et al. 136—179
3,091,542 5/1963 Anderson 106—197

ALLAN LIEBERMAN, Primary Examiner.

U.S. Cl. X.R.