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1.0	 INTRODUCTION

This report documents the hardware development and testing phase of

a hand-held radar for the ranging and tracking for Shuttle proximity opera-

tions. The radar is shown in Figure 1.1. A trade-off study and system design
of the radar was performed under Phasaa=l of Contract No. NAS 9-15666, as docu-

mented in Axiomatix Report No. R7901-5, dated January 30, 1979. A picture of

the completed radar is given in Figure I.I.

The detailed circuit design and fabrication of the radar was per-

formed by Kustom Electronics under subcontract to Axiomatix This arrangement

provided the maximum radar capability at the lowest possible cost due to Kus-

tom's background and ex0erience with velocity-only police radars. Throughout

the hardware development, Axiomatix worked closely with Kustom, especially in

the areas of hardware decisions which affected the overall radar performance.

The effectiveness of this arrangement is substantiated by the close degree to

which the radar meets the original performance goals.

To put things into perspective, it is helpful to briefly compare the

radar's performance goals with some of.the field test'results.' The radar is

to measure range to a 3a-accuracy of 1 m (3.28 ft) to a maximum range of 1850 m

(6000 ft). It is also to measure velocity to a 3a-accuracy of 0.03 m/s (0.1.,

ft/s). Furthermore, the radar was to be of a size and weight similar to.hand

held radars frequently seen in use by motorcycle police officers. It must be

stressed that these goals were to be met for a target in free space, i.e., no

clutter or multiple target returns. This latter condition was very difficult
to obtain in the testing program; however, as a general indication of the ra-

dar's performance, at a range of approximately 700 m, the 3a-range error was

found to be 0.96 m. It is felt that much of this error is due to clutter in
the test environment. As an example of the velocity accuracy, at a range of

450 m, a 3c-velocity Error of 0.02 m/s was measured.

In Section 2 of this report, the principles of the radar are given.

I	 Also, a description of the radar design is given as well as design changes made

since the CDR. A description of the field tests of the radar as well as the
actual performance obtained is given in Section 3. Finally, in Section 4, rec-

ommended changes to the radar design are given.

Appendix B contains some of the analyses performed by Axiomatix in

support of the design process, Appendix B contains the actual circuit diagrams,

and the software listing is given in Appendix C.

I
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2.0	 RADAR DESCRIPTION

This section provides a general description of the proximity radar.

The radar is an FM-CW solid-state K-band (24 GHz) radar which utilizes its

microprocessor computer to extract highly accurate range and velocity measure-

meats. It is of the same general size, shape and weight (4 lbs) of a police

hand-held radar and it operates from the same type of 12-volt battery pack.

Table 2 . 1 gives a summary of the radar ' s overall physical characteristics.

Based on limited testing, it is believed that the radar meets or nearly meets

most of these goals. The degree to which these goals are met will be estab -

lished by means of comprehensive testing performed by NASA Johnson Space Cen-

ter (JSC) utilizing the superior JSC technical facilities. The following sec -

tion given the details of the radar's principles,of operation. 	 '

Table 2.1. Summary of Proximity Radar ' s Characteristics

Size	 Approx. 10420.5” (same approx. size

as the hand-held police speed radar)

Weight	 4 lbs

Power requirements
	

12 V (normally supplied by battery pack)

Frequency of operation
	

24 GHz (nominal)

Antenna beamwidth
	

9° (3 dB')

Antenna Gain	 26 dB

Maximum design range	 6000 ft

Design goal range accuracy a = 0.33 m

Design goal velocity accuracy c =-0.1 m/s

I
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2.1	 Principles of Operation

A top-level functional block diagrami of the radar system is given in

Figure 2.1.	 The tunable K-band transmitter is based on a variable-Gunn oscil-

lator whose frequency is ramped up and down according to a sawtooth pattern.

The received signal also ramps up and down but, because of range delay, the

frequency of the received signal at any instant of time differs from the trans-

mitted signal.	 This diffeeene or beat note is proportional to the range and

is extracted by means of the receiver mixer. 	 This process, and the radar func-

tional block diagram, is explained in greater detail in the following

paragraphs.
C:

Figure 2.2 shoiqs a functional block diagram of the proposed radar

sensor system.	 The system is an FM-CW solid-state K=band (24 GHz) radar which

extracts both the range and velocity information from the baseband signals

i.e., 0 IF	 receiver.	 Generationp f all the timing 	 as well as process-

performed b	

a Motosignals,

ing of the raw received data, is	 rota MC68701 microprocessor

which forms the System Controller and Data-Processing (SCDP) unit.

The transmitter portion of the radar sensor system is comprised of a

modulation waveform generator, two Gunn K-band oscillators, a microwave mixer,

and a counter.	 The modulation waveform generator provides the waveform needed

for varying the frequency of the radar transmitter and contains a modulation-

linearizer circuit.	 The waveform is a triangular function whose frequency is

selected according to the mode of the radar operation. 	 This waveform is applied

to the frequency control terminal of a K-band voltage-controlled oscillator

NCO), thus resulting in a frequency modulation of the oscillators' output.

The frequency-modulated K-band C"a rier is ttian applied via a turn-

stile diplexer to the radar antenna. 	 The nominal (unmodulated) RF frequency

of the K-band transmitter is 24 GHz and the nominal output power is 200 W.

In order to provide for accurate control of the transmitter frequency

deviation of (nominal nF =100 MHz), the RF output of the transmitter , VCO is sam-

pled and mixed with an RF signal developed by a stable, high-Q, Gunn-type phase-

locked local oscillator (LO).	 The frequency of the LO is such that the lower

difference frequency between it and the frequency-modulated VCO varies between

500 and 600 MHz, approximately.	 The difference frequency is applied to , a 16-

bit counter which determines the lower and upper extremes of the:frgquency

excursion of the transmitted signal.	 The frequency counts corresponding-to the

t
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lower and upper extremes are performed upon the "frequency high" and "frequency

low" commands developed by the modulation waveform, generator. 	 These commands

are delivered to the system, controller which, in turn, commands the modulator

to continue the frequency sweep in the opposite direction.

The exact time duratll,,O' measurement of'iboth'the frequency-up and

frequency-down swings is provid4d by counting the number of pulses developed

by a time-base generator during the frequency sweep interval. 	 This number is

measured by time-sharing a single 16-bit counter between the RF frequency and

the time-reference pulse counts.	 The purpose of the precise time interval mea-

surement is to obtain to accurate value of ntm which, combined with an accu-

rately measured value of AF, can provide the data processor with all the infor-

mation required to calculate the frequency sweep slope S in MHz/s, the latter
being defined as AF/atm .	 Because the slope plays an important role in deter-

mining the accuracy of the proposed system, such "dynamic" determination of the

slope eliminates the major bias inaccuracies associated with component value

t
changes in the FM-CW transmitter circuitry.

The receiver of the proposed radar sensor system is a homodyne re-

ceiver, also 'known as a 110 IF" receiver.	 As shown in the block diagram of

Figure 2.2, the receiver consists of a mixer followed by a preamplifier. 	 The

preamplifier also includes the required filtering an an Automatic Gain Control

(AGC) function.

As shown in Figure 2.2, the receiver mixer has only one RF input.

This is because the second signal, i.e., the LO, is an attenuated fraction of

the transmitted signal itself. 	 The controlled degree of the transmitted signal

attenuation is provided by the turnstile diplexer unit. 	 This unit delivers the

VCO output to the antenna and couples only a small fraction of the transmitted

signal to the receiver mixer; there this t0 is mixed with the signal received

from the target, thus resulting in the baseband tones which are applied to the

receiver amplifier and filter.

The receiver has three measurement modes corresponding to short,

medium and long ranges. 	 The ranges for these modes are defined in Table 2.2.

In the short-range mode, the frequency of the received baseband range tone

(or tones, for the case of a moving target) is determined by direct frequency

counting by the microprocessor frequency counter.	 However, in the riedium- and
It

long-range modes, the tone(s) are first tracked by the frequency tracker so as

to improve the tone signal-to-noise ratio prior to frequency measurement. 	 In

1L
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Table 22 Radar Mndes

Mode Range
start

Range
Stop

Time to
Search

Tracker
RL

Short-Range 2.7 m 120 M V- 2 s -

Medium-Range 40	 m 600 M 0- 7 s 200 Hz

Long-Range 300	 m 2500 M 0 -16 's 50 Hz

actuality, one frequency tracker is time multiplexed between the two tones for

the case of a moving target.

Figure 2.3 shown the frequency/time pattern which the radar uses.

Part (a) shows the relationship between the transmitter and the received sig-

nals.	 because of the hofo dyne configuration of the proposed system, the trans-

mitted and LO signals are the same (except for the power level); therefore,- he

time/frequency relationships shown in part (a) also applies to the LO signal/

received signal pattern.

As a result of the mixer action, a beat note appears at the baseband

output of the mixer. 	 For the case of a stationary target such as than illus-

trated in Figure 2.3, the frequency of this beat note is proportional to the

slope of the transmitter frequency modulation waveform and the round--trip time

to the target.	 Expressed quantitatively, this relationship is

4Rf ^F
f	

AF	 2R	 m.	
(la)r a _ (c^ _ c

_

a	 STd	 (1b)

where

f	 a frequency of the baseband beat note proportional to the
r	 target range, henceforth referred to as "range frequency"

"rangeor	 tone"

fm - modulation waveform 'repetition frequency
R - target range in met es (m)

C = 3x108 meters/second (m/s)

' Ta - target, round -trip delay time

AF a peak-to -peak frequency deviation, Hz

S = l i near FM modulation slope, Hz/S t



Radio Frequency

s

9
i^

Transmitted Sianal

I

I

a

0. 105 s Short.. and Medium-Range !Mode
R 0.355 s Long-Range Mode

(a) Transmitted and Received RF Signals

t
(a) Baseband Beat Frequency Pattern

Figure 2.3. Frequency/Time Pattern of the Proximity Radar
for a Stationary Target

ORIGINAL PAGE IS

OF POOR QUALITY



C,

i

ORIGINAL PAGE 1i1	 !i

OF POOR QUALITY	 10

When the target is moving and its motion has a radial component 0,onq

the directior. towards; the radar, the reflected signal will be shifted in fre-

quency by the amount quantitatively defined by the following expression:

2V 2Vf o
fd n X + c

where fd is the apparent shift in target velocity, V is the target velocity in

m/s (along a radial to the radar), and f0 is the transmitter frequency. The

frequency shift fd is commcnly referred to as the "doppler shift" and, depend-

ing on the direction of the velocity, this shift can cause either an apparent

increase or a decrease in the received signal.

When the target is approaching the radar, the frequency of the re-

ceived signal is higher than the transmitted frequency. Therefore, the output

of the mixer, which is the difference frequency between the transmitted and

received signals, contains a component proportional to the doppler shift.

Thus, for an approachin g target and during the positive-slope portion of the
angle, the output of the mixer is

2Yf "	 2Vf
fU 0 St . SCt -T + c0 a STd - c 0 for V and S positive

f 	
fd
	(3)

The absolute brackets are used to indicate that, with a zero IF receiver, all

the RF shifts appear only as positive frequencies at the baseband.

During the negative-slope portion of the cycle, the beat note,fra

r	 quency for an approaching target is

f a -St 
[SCt 

-T+
+ 2 cf0	 -s d - 2Vc 0 forV 	 positive and S negative

U	 d

2Vfd= sTd + c a rr + fd	 (4)

The situation defined by (3) and (4) is shown in Figure 2.4. Part (b) of this

figure is particularly indicative of this time/frequency relationship at base

band, as shown there, the frequencies fu and fL 
refer to the upper and lower

frequencies observed for a particular target situation.

(2)
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For a receding target, the frequency/time relationship at baseband

is the reverse of that for an approaching target. Specifically, the higher

beat note will be developed during the positive-slope portion of the cycle,

and the loweix beat note will appear at the output of the mixer during the neg-

ative slope. This "role reversal" relationship between f U , fL
 and the positive

and negative slopes of the modulation cycle provides the information required

to determine the direction of the target motion.

The range and doppier frequencies are extracted from fu and fL in the

`following manner;

fr	 U
f
---	 {5a}

and

fd	 f̂ - 2 L

	
(5b)

The above evaluations form the basis of the computations performed

by the radar's microprocessor computer to extract range and velocity. The ac-

tual equations for range and velocity solved by the microprocessor computer are

c 
AT  

ATb

R = Cf U + f 0 Zed ATa +A Tb

oTa - ATb

V	 4f f
U 

- fL + (fU _
f0 oTa + AT)

0

where Al a is the time interval during the sweep up and eTb is the time inter-

val during the sweep down (both measured by the microprocessor).

2.2	 Design Changes Since the CDR

The radar design is essentially the same as that which existed at the

CDR, with one main exception: the addition of a linearizer circuit to the modu-

lation waveform control. The purpose of this circuit is to make the frequency

-variation of the varactor-tuned transmitter Gunn oscillator a very linear func-

tion of tuning voltage. This is necessary in order to eliminate frequency chirp

on the baseband tones which would prevent the frequency tracker from acquiring

in medium- and long-range modes. The chirp does not affect the radar accuracy,'

9

t

j ^,
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however, as shown analytically by Axiomatix and verified during the breadboard

test made at the CDR. The linearizer approach was suggested by Sergei Udalov

of Axiomatix and successfully implemented by-John Aker. A functional block

diagram of the linearizer is given in Figure 2.5.

This linearizes system effectively phase locks the tuned Gunn to the

voltage-to-frequency converter (VFC) which is highly linear; however, the pen-

alty paid is that any phase jitter on the VFC appears on the Gunn oscillator

output but multiplied by the divider ratio. Axiomatix's analysis, given in Ap-

pendix A. verified this problem and led to the selection of a low-noise VFC.

Another hardware change made since 'he CDR was the substitution of a

different fixed-Gunn oscillator. The,original Gunn was relatively stableswith 	 r

temperature, while the tuned-Gunn drifted with temperature. Thus, while test- s

ing on the frozen wasteland of the Kansas winter prairie, it was found that 	 7

the offset between the two oscillators changed so much in cold weather that the

difference frequency was outside the lock range of the linearizer. This was

remedied by substituting a Gunn oscillator that more closely tracked the tunable

Gunn as a function of temperature.

4	 2.3	 Hardware Description	 a

The radar hardware consists of five printed-circuit boards, a liquid

crystal display and a microwave assembly that includes the horn antenna. These

subassemblies are mounted in an aluminum case which is a modified Kustom HR4

'	 police radar case. A top-view drawing of these subassemblies is shown in Fig

i	 ure 2.6, and an exploded-view drawing is'given in Figure 2.7. These drawings

indicate.the mounting relationship among all the subassemblies. The mother

board serves to electrically connect all the boards. The schematics for'each

i PCB as well as the interconnect diagram and PCM assembly drawings are given in

Appendix B.

2.4	 Software 'Description

The radar microprocessor software performs the entire control of the

radar, including calibration, mode selection, hardware control arid ,data process-

ing. This software consists of approximately 1000 lines of machine code and

completely fills the 2-kbyte ROM on the MC68701 processor chip. A software

flowchart was presented at the CDR; however, since the software was revised,

this, flowchart is no longer applicable. In lieu of an updated flowchart, a

complete listing of the software which is carefully commented on is given in

Appendix C.
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3.0	 RADAR TEST

This section describes the field tests performed by Axiomatix and

Kustom, with NASA present, to verify the radar performance. Also presented in

this section is the test data and comparisons of measured radar performance

with performance goals.

3.1	 Test Description

Field tests were conducted to determine how well the radar design

meets the performance goals. The scope and credibility of the tests were lim-

ited by the problem of obtaining ,a simple radar target in free space, i.e., no

clutter or backscatter, at long;lranges within the cost limitation of a low-cost

development program. Furthernyire, the overall development plan for the radar

called for the detailed radar testing to be done as another phase, probably at

NASA facilities. However, the field tests were conducted using a water tower

that is 110 feet high and 22 feet in diameter (if we assume a 50% aperture

efficiency, the water tower is approximately a 20-m 2 targets, For many ranges

up to a maximum of 700 m, this target was relatively clutter ft ree. For some

ranges, however, particularly those closer than the maximum, it was obvious

that clutter presented a serious interference problem. This is reflected in

the large variance in the range measurement values at those ranges.

Figure 3.1 shows the basic test setup for range measurements and

Figure 3.2 shows two Axiomatix engineers conducting a range test. The water

tower target is shown in Figure 3.3, which shows the radar being aimed at one

tower. The test setup for low-speed velocity measurements is shown in Figure

3.4. This setup utilized a variable-speed winch to pull the radar mounted on

a movable platform along a calibrated track. A stop watch was used to deter-

mine the exact speed and the water tower was the target. Figure 3.5 shows a

low-speed velocity test in progress.

In addition to the low-speed tests, Kustom conducted several medium-

speed tests from an automobile using a corner reflector as a target and a mod-

ified HR4 police radar as a calibration device, as documented in Appendix E.

3.2	 Performance

The reduced range data is given in Figure 3.6. This figure presents

`	 the standard deviation of la-range error as a function of range. The scatter

of the data points is thought to be caused by multiple-target reflections and

M
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•	 Figure 3.1. Range Measurement Test Setup
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Figure 3.5. Low-Speed 'Velocity Test In Progress
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clutter. It is also-felt that internal jitter in the modulation slope

measurement processing may be contributing some scatter. This Jitter can be

remedied, and is discussed in Section 4.

Two range-error trends exist because the radar could be in either''

medium-range mode or long-range mode since these modes overlap in the 300 to

600 m range. The ratio of tracker bandwidths in the twe:'n. des is 200 Hz/50 Hz

or 4. which means that the expected ratio of lo-errors should be 3T - 2, which

(is almost exactly the ratio between the two trend lines. Comparisons between

the long-range mode line and the performance goal line show that the actual

to-error is approximately twice the performance goal. This is considered to

be an excellent agreement considering the test environment.

The lo-velocity error data is shown in Figure 3.7i Since relatively

few measurements were made due to the difficulty in settiwg up the test appar-

atus, no trend is indicated. Again. it is felt that the scatter in data points

is due to the reasons discussed for the range data scatter.
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4,0	 RECOMMENDED CHANGES TO RADAR DESIGN

The following hardware and software modifications are recommended in

order to improve the radar's performance::

(1) Redesign of power supply to provide greater voltage margin

(2) Use of a more broadband mixer diode assembly

(3) Addition of an analog signal strength meter to aid in aiming

(4) Average the ramp slope measurements to provide steadier readings

(5).; Loosen up the short-range signal quality criteria

(6) Redesign the°data-smoothing algorithm.

The final item, redesign of the data-smoothing algorithm, is an area

where Axiomatix feels that greatly enhanced performance can be obtained at very

little additional recurring cost. The need for this improvement is obvious

from the scatter in the raw data. The present smoothing algorithm is a simple
averages which does not take advantage of all the available information. It is

suggested that a Kalman filter could vastly improve the performance. Changing

the 68701 CPU to the updated Motorola version would provide an additional 2K

of EPROM for such purposes as better smoothing,
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5.0	 PRECAUTIONS

}
Geometry and targets that can reflect more than 100 mW back into the

radar should be avoided since this may burn out the.mixer diodes. Also, this

radar has not been mechanically designed to withstand any great amount of phys-

ical abuse. Thus, it should be treated as carefully as any other complex

electronic equipment.
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^i Axioma fix
9841 Airport Boulevard a Suite 912 • Los Angeles, California 90045 • Phone (213) 641.8600

TECHNICAL MEMORANDUM NO. M8204-1 	 DATE:	 April 19, 1982

TO:	 P. Nilsen	 COPIES: NAS9-15666 file

FROM:	 J, K. Holmes

SUBJECT: Effect of VCO Phase Noise on Hand -Held Radar
-- - - - -	 --	 - - - - - - - -	 --	 --

1.0	 SUMMARY

Phase noise functional contributions of the Kustom Electronics

hand-held radar gun are obtained for the voltage- to -frequency converter, the

varactor Gunn oscillator and the reference Gunn oscillator. Based on the old

voltage-to-frequency converter phase noise level, it appears that phase lock

of the linearizing loop is very poor.

In addition to the closed-loop response of the linearizing loop, the

delay effect on the phase noise single-sideband spectral density is considered.

It was not possible to state definitively whether or not the improved

oscillator (voltage-to -frequency converter) would operate successfully since

the existing theory on cycle slipping does not meaningfully apply to phase noise.

It also appears that the loop bandwidth and the three -pole Butterworth filter

are too close in bandwidth.

2.0	 INTRODUCTION

The purpose of this memorandum is to document the findings obtained

regarding phase noise for the hand -hald radar gun.

A varactor Gunn oscillator is driven by a sawtooth sweep ,voltage and,

in addition, is locked to a very linear voltage-to -frequency converter which is

also controlled by the sawtooth sweep voltage. The system i s illustrated in

Figure 1. The single -sided phase noise spectral density for the linear VCO is

sketched in figure 2.

From Figure '2, we deduce that the phase noise spectral density is,

given by

,e(f)	 10-3-8140 13	 0 f < 100t^^	 (1)
,A!f8 (f) = 10

-c,	
f >. 100

C



2

t

i

CE

t
4

Figure 1. Radar Oscillator Model
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Figure 2. Phase Noise Spectral Density Model for Curve fitting
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3.0	 OUTPUT PHASE NOISE CONTRIBUTIONS FROM EACH OSCILLATOR

In this section, we determined the transfer function of the phase",

noise contributions from the voltage-to-frequency converter (VC01), the Gunn

oscillator and the reference oscillator. The model used for analysis is illus-

tratl!d in Figure 3. In this figure, e 1 (t) is the phase noise of VC01 with zero

input, 83 (t) is the phase noise of VCO2 with zero input, 64(t) is the phase

noise due to the reference oscillator, and e2 (t) is due to the VCO modulating

voltage.

The error control signal e(t) is given by

W -W	 a ♦ $ e
e(t) = A 1A2A3 sin w1 - 2 3 t + e1 - 2 3 4	 (2)

M	 M

When the loop is locked we must have (M -40961

w2 w3
WZ (3)

9	 or

W2 = MW 1 + W3
	

(3)

so that the loop m^iltiplies the VC0 1 frequency by a factor M(4096). When the

system is locked, we then have

e(t) _ A 1A2A3 sin e
(1 --Fl  M + M	

(4)

Linearizing, we have that the input to the Gunn oscillator is given by (seo

Figure 3)	 /fr

e l (t) = A A A F(s) e - 
62 

.6
3 * 

e4	 ^)
123	 1	 M	 M	 M

where F(s) is the loop filter transfer function expressed in the Laplace trans-

form variable s.
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c
N

UCO1

3Z A2 cosCw2 t+ 62 (t) + 03(t))
A sinCw l t+ e l M)

e t
F(s)^M	

QSC

A	
Cwt - w3)t a +0 - 8	 2A3 cosCw3t+ 04(t)a

.F LA2 "3 cos	
M 

_	 3
M 

4

3 ` A2A3 cos ICW2 - w 3)t + 0 2 + 
03 - 04

16	 z 256

M 4096

9

4
Figure 3. Model for Phase Noise Analysis
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Now the phase process out of VCO2 due to the input signal C l (t) is
given by

le M M M

or

e2(t)	 HT(s) IM01(t)  - e3(t) + e4 (t)	 (7)

where

K2F(s V(Ms )
HT(s)	

1 + K2F(s)/(Ms)

is the closed-loop response of the linearizing loop. It follows that the phase
noise present at the output of the Gunn oscillator is given by

62 (t) + e 3(t) - HT(s) [Me i (t)  - e3 (t) + e4 (t
' 

+ e 3 (t)	 (9)

or

62 (t) + e 3(t) - HT(s) IM0 1 (t) + 04 (t)] 	 L	 HT( s )] 8 3(t)	 (10)

Thus, at the output of the varactor Gunn, we see that the phase of

VC01 is multiplied up by the divide ratio (Mm4096) and passed through a closed-
loop response HT(s) which, of course, is a lowpass function. Further, the ref-

erence Gunn oscillator also has its phase noise passed through the closed-loop

response HT(s). Finally, the contribution of the varactor Gunn oscillator

(VCO2) has its inherent (zero input) phase noise passed through 11 - HT (s)fl %
which is a highpass function. Thus, the phase noise contribution of the voltage-

to-frequency converter multiplied by 4096 (the phase noise spectral density is

multiplied by (4096) 2) and the phase noise of the reference oscillator are the

main contributors of the phase noise up to the loop natural frequency. Beyond

the natural frequency, the phase noise contribution comes primarily from the

varactor Gunn oscillator.

-.+ . i
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4.0	 LOOP FILTER PARAMETERS AND LOOP BANDWIDTH

In this section, we model the loop filter in order to obtain the

closed-loop bandwidth. The loop filter model shown in Figure 4 was provided by

John Aker of Kustom Electronics. The transfer function is given by

 4

a	 1
e )(s)	 cgs

ei OR" ^ cis

2s + 92 + RR 'L
1	 cis

After simplifying, we obtain

e0 (s)	 C1 + Ricisa

e i (s)	 C1 + R2C2s)0iCis + 1) + RlC21

Letting

Ti : Rici

T2 = 
R2C2

"12 = RiC2 	 (13)

we have	 .

e0(s)	 1 +'r is

ei (s)	 T isC1 +'r2s) + T 1 T2 s2 + T12s

As a first approximation, we can neglect the s 2 term, thus yielding

e© `s)	 1 + Tls
(15)

ei (s)	 1 + (T1 + T12, + T2)s }



3k

``e4
V2 F U l 1

ji .	 I	 . -d^	 ^ Tt

M8204-1
	

8

Ri R 10 k
s

t

Figure 4. Loop Filter for Linearizing Loop

iI

pgIGINAL SAGE IS

OF POOR QUALITY



0

ORIGINAL PAGE I3
M8204-1 OF POOR QUALITY 9

which is a classical passive-loop filter for a second-order phase-locked-loop

(PLL).	 For a second-order FLL, we have

Wn2	 AK (16)

(T2 
+ T12 + TI)

and
T1 + 1 (17)

'on 

where AK is the loop gain, C is the loop damping and wn is the loop natural
frequency.

Gr After evaluating, we find that

AK	 -	 K	 K	 K	 K
VCO	 FILT	 DIV

(18)

E so that

F

AK	 _	
(A47,5 1(30 x 10627r)(0.75)(L56 

x 16) = 4.94 x 104 	 (19)

T i	 =	 3.3 x 10-4

T2	 =	 1.8 x 10-4

T12	 0.001

w n	 =	 6.03 x 103

C	 a	 1.067 (20)

and

BL	 2	 + 44}
	

(21)

or

BL	 3,930 Hz
	

(22)
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Actually, the loop filter is followed by a three-pole Butterworth

filter which has its 3-dB cutoff at 5 kHz, which serves the function of pro -

viding additional filtering beyond 5 kHz. If the three-pole Butterworth fil-

ter is modeled as an ideal lowpass filter which cuts off at 5 kHz, then it can

be readily shown that the closed-loop transfer function is given by

HT'(f) - HT ( f ) FI(f)	 (23)

where F I (f) is an ideal lowpass filter with the characteristics

F I (f) = 1	 0 < jfj < 5000 Hz

(24)

F I (f)	 0	 jfj > 5000 Hz

This three-pole filter might be too close to the bandwidth of the

closed loop since the latter is only about 20% smaller.. Normally, it is not

possible to model the loop as a simple second-order loop when additional fil-

ters are not at least 10 times larger in bandwidth.

5.0	 EFFECTS OF DIFFERENCING ON PHASE NOISE

The basic range and range rate estimate is based on heterodyning the

(swept) transmitted signal with the received signal. A simplified model is

shown in Figure 5. From this figure, we see that the phase noise processed by

the system is given by the difference

	

ne(t) = e(t) - e(t -T)	 (25)

where T is the round-trip delay time in seconds. In order to see how much

low-frequency phase noise is subtracted out, we must obtain the spectral den-

sity of Ae(t). Let

Re8 (T) E[Ce(t) - e(t-T))Ce(t+T) - e(t+T-T))] (26)

Roe (T) =	 re (T) + R6 (T) - E[e(t-T)9(t+T)] - E[e(t)e(t+T -T)7 (27)
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or
r	 4

Ree(T)
	 2Re(T) - Re (z+T) - Re (T-T)	 (28)

;acing Fourier transforms. we obtain

,j (f - 2.	
to

rto Re(x) e2n
fx dx e12nfT _ r~

 R6 
(X)e2nfx dx e12wfT (29)

J

1
After simplifying, we obtain

'66 (f) - 2 ê (f)[1 -cos(2,rfT)1	 (30)

or, alternatively,

44A (f)	 4 ,je(f) sin 2 (nfT)	 (31.)

which is our desired result. Notice that, at low frequencies,-: the phase noise

spectral density is weighted by a function which goes to zero as f + 0. The

worst-case value of T is 12 us.

6.0	 PHASE ERROR VARIANCE AT THE RECEIVER LOOP

In this section, we evaluate the phase error due only to the phase

noise of oscillator VC0 1 , accounting for the transmitter transfer function, the

receiver transfer function and the range difference effect. It can be shown

that the phase error variance isgiven by

`
Q^2 = 2M2 f 

5000
 1HT (f )l2 11 - HR(f) 12 4,J, 

1 
(f) sin2 (,rfT)dt.	 (32)

0

where HT(f) is the transmitter (linearizer) closed-loop transfer function,

HR (f) is the receiver PLL closed-loop transfer function, Je l (f) is the voltage-

to-frequency converter phase noise spectral density and, finally, sin 2 (nfT) is

the effect of the round-trip delay on the phase noise error.

C
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The linearizer-phase noise spectral density can be modeled by

A IM n 10-3.8140)3	 0 K f< 1001	 ^
^

,e/e1 ^f) n 10-5 	f > i00	
(33)	

f 1^^;

For simplicity, we model the two transfer functions by

f 2 + 2f 2 f` 2
Rt(f) ,^ 2	 nT	

nT	
Vf	 (34)

fn + f	 r
T

rt

IH (f)l2	
f4	

Vf	 (35)
R	

f4̂ + fR̂

where
3

	

fn 	1200 rad/s
T

	

fn	 15 rad/s
R

M = 4096

T = 12 us	 (36)

Evaluating (32) produces

11

	

U02 "= 8(4096)2 72 T2	
100	

f6 10
-3.8(40)3 df

f+f 4 f3

12f2
2 2	 5000nnT2 f fnT 

f -5
I	 + 8(4096) n T^ f	 4 

+ f4
	 10 df	 (37)

100	
fnT 

s

i
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Evaluate I1;

I	 8(4096)2
,^	 2 _2 	

10-3.8 (40)
3

,^

100f3

4  
df (38)

 0	 f + fn

-R

or

F

I1	 3.57 rad 2 	(39)

{
Now consider I2:

4	 2 2 2
4	 f	 + 2f f	 f

I2 = 8(4096)2,r2T2 J 
5Cn0 nT	 4 nT	

10-' df
E	 0	 fn +f

T

1200	 5000
8(4096)2,r2T2 

J	
10-5	 f2 df +	 10-5(2)(1200)2df	 (40)

F	 100

	
f

and

I2	 2.49x104 rad2 	(41)

Hence,

Cr	 2491 x 104 rad2 (4, 3

or

158 rad (4.'

{

Based on classical PLL theory, this value of phase suggests that a

tracking problem could exist; however, it is not clear that a phase error at

frequency components well above the natural frequency of the loop are important.

In fact, it is rather difficult to understand how this can be important in losing

lock since the loop cannot respond to frequencies well above the loop natural

' frequency.
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In conclusion, it is believed that the voltage-to-frequency converter

VC01 should be selected with a lower phase noise spectral density which, in

fact, has already been done.

ki
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May l0, 1982

Mr. Peter Nilsen

Axiomatix
9841 Airport Boulevard
Suite 912
Los Angeles, CA 90045

Dear Peter;

I have listed below the part numbers for the non-standard components used
in the NASA Space Radar:

a. Mixer Diode Assembly
Kustom Part Number 200-0544-00, modified with a special
10-inch cable similar to 155-2045-00.

b. CPU Chip
Motorola MC68701L, with Kustom "RADARS3 0125821' program,

c. Low Power Gunn Oscillator
Kustom Part Number 015-0045-00.

d, Varactor-tuned Gunn Oscillator
Varian Model No, VSK9014AT
Order From: Varian Solid State Microwave Division

3251 Olcott Street
Santa Clara, CA 95050

The first three parts can be obtained directly from Kustom; please use me
as your contact in the event you wish to order any of these.

I am looming forward to hearing from you on the results of the NASA.tests.

Sincerely,

e
K^asek

ior Engineering Manager

JK/dd

i
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April 20, 1982

Mr. Peter Nilsen
Axiomatix
9841 Airport Boulevard
Suite 912
Los Angeles, CA 90045

Dear Peter:

The following sheets are the results of the tests we have performed with the
A-41omati'x Radar during the last week. Data was obtained using two different

targets and using two different approaches to verifying velocity depending
upon the range and velocities involved. Data taken from the range of 100
meters and less was obtained using the corner reflector as the target. The
Corner reflector was situated where we would get a minimum amount of inter-
ference from background objects, At distances greater, than 400 meters we
used the water tower as the target.

Range rate measurements of approximately 3/10 of a meter per second and above
were obtained by aiming the radar at the target from a moving vehicle. Vehicle
speed was verified by the use of a Kustom HR-4 Police Radar which had been
modified to readout in 10ths of meters per second. As the vehicle passed
through the indicated range, readings were simultaneously taken from the
Axiomatix Radar and from the HR-4 Unit. This procedure was conducted in
both the approaching and receding modes. 	 '

Lower. speed measurf;mments were conducted by mounting the radar in a toy wagon.
The wagon was pulliod by a variable speed winch over a wooden track about 3
meters long. Once the speed of the wagon had stablized the elapsed tine taken
by the wagon to gravel over a measured 1 meter distance was measured with a
stopwatch. From this we calculated the speed of the wagon in meters per
second. This was used as the standard of comparison for the Axiomatix Radar
Unit Readings. This test was also, conducted in both the approaching and
receding modes,

I
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Peter Nilsen	 -2-	 April 20, 1962
Axiomatix

Please give #6 a call if you have any questions after you have had a chance
to review these findings + We are looking forward to seeing you on the 4th.

k
In the meantime, we still plan on sending up the weather balloon and getting
some longer range measurements . if the weather will cooperate. i will keep
you advised on this.

Sincerely.

C^UU^WL.-
John Kusek
Senior Engineering Manager

JK/dd

Enclosures

r

k

I

0

it
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NASA RADAR TEST

Radar Test	 ^1 f r. e

Following data taken using lung range search
Readings taken over

1 Meter

0

t

DISTANCE SEC	 FOR I METER
CALCULATED
SPEED M SEC
 E	 G

READING
C

READING M SEC
CORRECTED 
READING M SEC

438 M 5.7 + .175 +	 15 - .02 + .17

438 M 4.6 -	 .217 - .27 - .02 -	 .25

438 M 6.3 + .159 + .14 - .02 + .16

38 M 11.0 - .091 -	 .11 -	 .02 - .09

438 M R.4 - .119 -	 .17 - .02 -	 .15

438 M 11.2 + .089 + .08 - .02 + .10

438 M 7.4 + .135 + .12 - .02 + .14

438 M 4.1 - .244 - .29 - .02 - .27



DISTANCE
(METERS)

AXIOMATIX
M/SEC

HR-4
M/SEC

A - APPROACHING (-)
R = RECEEDING (t)

1.	 500 -	 1.17 1.1 A

2.	 500 + 1.00 1.0 R

3.	 500 -	 1.67 1.6 A

4.	 500 . 1.67 1.6 R

S.	 500 - 4.30 4.4 A

6.	 500 + 4.59 4.5 R

7.	 500 - 7.00 6.7 A

8.	 500 + 0.63 0.6 R

9.	 500 - 0.50 0.4 A

10.	 500 + 0.35 0.3 R

0

0

f

0

I
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NASA RADAR TEST

LONG RANGE RATE TEST



DISTANCE SEC	 FOR 1 METER
CALCULATED
SPEED M SEC READING

STATIC
READING M SEC

CORRECTED
READING M SEC

100 M 8.6 + .116 + .09 - .03 + .12

100 M 5.9 -	 .169 - .24 - .05 -	 .19

100 M 5.5 -.;182 - .29 - .05 - .24

100 M 9.6 + .104 + .04 -	 .05 + .09

100 M 6.9 + .144 +	 .12, -	 .03 + .15

JO M 5.4 + .185 + .17 - .02 + .19

50 M 4.2 t .238 + .31 + .03 + .28

50 M 3.9 + .256 ± ,32 + .04 + .28

50 M 7.8 - .128 -	 .12 + .01 - .13

50 M 16.5 - .060 - .18 -	 .01 - .07

50 M 11.8 + .085 + .09 -	 .01 + .10

5M

Readings Taken Over 4.66 Meters

44.7	 - .104 -.09 + .01 -	 .10

5M 38.1 + .122 + .13 + .02 + .11

is

("I

f,

z

.`yy^	 • 1 ..+ . ^ ^ a ; 	 iii.. ^

r
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NASA RADAR TEST

Range Rate

,f a
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NASA Radar Test

Aguisition Time

t I

Date	 4-20-82

Short Range Medium Range

TEST 10 _ Meters 1 40 Meters

1 1.2 sec 5.5 sec

2 1.5 sec 6.0 sec

3 1.5 sec 6.0 sec

4 1.5 sec 5.5 sec

5 1.5 sec 6.0 sec

I
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9841 Airport Boulevard

= Axiomafix • Suite 912 • Los Angeles, California 90045 + Phone (213) 641.8600

TECHNICAL MEMORANDUM NO. M8103-1

To:	 Bill Goodson, Kustom Electronics 	 Date:	 March 4, 1981

From:	 Peter Nilsen	 Copies: G. Huth
Sergei Udalov	 A. Pajak, NASA

Subject: CDR Radar Test Results 	 Contract: RAS 9-15666

The test data for the range measurement experiment which we

performed at the CDR is given in Table 1. This data represents raw.,

unsmoothed data. In order to get some appreciation of how simple pro-

cessing, such as a simple averager, might improve the accuracy, the

following "processing" was applied to the raw data. The 50 measurements

were grouped into five groups of 10 measurements,, Each group of 10 was

averaged

10- .21 Ri

R-	 j=1 to 5
10

such that 1j represents an averaged range measurement that the radar

could easily calculate. The standard deviation of the five vixwas

calculated to be 6 cm, or 0.04% of the measured range. The standard

deviation of 20 nonaveraged measurement values was calculated and found

to be 19 cm. Thus, it appears that the simple technique of averaging a

relatively small number of measurements and displaying the averaged Value

can , provide accuracy improvement by a factor of three. At this point,

it should be stressed that we are not claiming that this averaging is

optimum or that the factor of three improvement is always guaranteed to

be achievable. However, we do think that relatively simple techniques

can be used to improve the radar performance. It should also be stressed

that such an averaging technique in no way reduces errors due to biases

in the system (if they exist)

4

,..

i
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Table 1. CDR Test Data

M40

M 49

M *

9

Raw Raw
Measurements Mean and a of Measurements Mean and a of

(meters) Group of 10 (meters) Group of 10

'1. 137.2 31. A36.8

2. 137.2 32. 137.2

3. 137.2 33. 136.9

4. 136.9 -136.91 34. 137.0 V4 136.92

S. 136.9 35. 136.9

6. 136.8 0.22 36. 136.8 a4 0. 15

7. 136.8 37. 137.0

8. 136.6 38. 136.8

9. 136.7 39q 136.8

10. 136.8 40. 136.8

11. 136.9 41. 136.9

12. 137.1 42. 136.8

13. 137.1 43. 137.0

14. 137.1 X2 = 136.96 44. 137.0
K5 =

136.87

15. 137.1 45. 136.8

16. 136.8 a2 = 0.15 46. 137.0 = 0.19

17. 136.8 47. 137.1

18. 136.7 48. 136.8

19. 137.0 49. 136.8

20. 137.0 50. 136.9

21. 136.7

22. 136.7

23. 136.7

24. 136.7 R3 = 136.81

25. 136.8
ORIGINAL PAGE ig

26. 136.8 03 = 0.13 OF POOR QUALITY

27. 136.9

28. 136.6

29. 137.0

30. 137.0

k) E
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A few comments about the experiment are in order, as follows;

1. The test environment, i.e., the parking lot, was far from
ideal. There was undoubtedly a large amount of multipath
and clutter.

t

2. Considering this environment and that the radar had been
"lashed together" only a few hours earlier, it is impres-
sive that a standard deviation of 0.04% was achieved.

Peter W. Nilsen

/1p
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