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BURGERS APPROXT14ATION FOR TWO-DIHENS ZONAL
FLOW PAST AN ELLIPSE

By

J. M. Dorrepaal*

S UMMARY

This paper examines a linearization of the Navier-Stokes equation due

to Burgers in which vorticity is transported by the velocity field corre-

sponding to continuous potential flow. The governing equations are solved

exactly for the two dimensional steady flow past an ellipse of arbitrary

aspect ratio. The requirement of no slip along the surface of the ellipse

results in an infinite algebraic system of linear equations for coefficients

appearing in the solution. The system is truncated at a point which gives

reliable results for Reynolds numbers R in the range 0 < R < 5.

Predictions of the Burgers approximation regarding separation, drag and

boundary layer behavior are investigated. In particular, Burgers lineariza-

tion gives drag coefficients which are closer to observed experimental

values than those obtained from Oseen's approximation. In the special case

of flow past a circular cylinder, Burgers approximation predicts a boundary

layer whose thickness is roughly proportional to R7112. This is in agree-

ment with the nonlinear theory despite the fact that the Burgers calcula-

tions are carried out using only moderate values of the Reynolds number. In

the matter of separation, it is shown that standing eddies form on the down-

stream side of a circular cylinder at R - 1.12. Interestingly enough, this

is the same value predicted by Skinner (1975) using singular perturbation

techniques on the full nonlinear problem (see Van Dyke, 1975).

The linearizations due to Oseen and Burgers both give spatially uniform

approximations to the flow pasta finite obstacle. The main difference is

that vorticity is transported around the obstacle in Burgers flow rather

than through it. The results of this paper verify the superiority of

Burgers approximation in modelling the flow near the obstacle at low to

moderate Reynolds numbers.

*Associate Professor, Department of Mathematical Sciences, Old Dominion
University, Norfolk, Virginia 23508.
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LIST OF SX11BOLS

a length scale

A coefficient of J sin n in asymptotic expansion of
y (4 ,n)

^k

An,Bn real coefficients

A the fluid domain in the x-y plane i

Bkn) (q) coefficient in the expansion of a normalized Mathieu function

B boundary of an arbitrary finite obstacle

it
cn coefficient in asymptotic expansion of Gekn (z,q)

Gnk coefficient in infinite linear system of equations
it

CD drag coefficient

Dkn) (q) power series in	 q

D(*) differential operator dependent upon n
ii

B	 ),En() function of	 9	 resulting from separation of variables

f(z) an entire function of	 z
is

fo(x,y) function related to vorticity m

f(x,y) function related to vorticity

g(^),h(n) arbitrary functions
r

Gekn {,q) modified Mathieu function 1

G(^ ,n 14 ' ,n') Green's function

H(n) function-.of	 Ti	 resulting from separation of variables
is

In(x) modified Bessel funcation of the first kind
`f

k,m,n positive integers

k unit vector perpendicular to the x-y plane

K(x) modified Bessel function of the second kind

p pressure

2

r
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fi

P rear stagnation point on the circular cylinder

q modulus of Mathieu function 3

q(x,,y),q (^71) magnitude of potential flow velocity vector

(r,8) polar coordinates

R Reynolds number €

Re critical Reynolds number

sen(n,q) Mathieu function
:E

Snk(e) coefficient in eigenfunction expansion

S point of separation on circular boundary
it

S n) coefficient in the expansion of sen n,	 A21t2^

T point of minimum pressure on circular boundary

V fluid velocity

4Q
' 0 convective velocity

w(e),w(n) function related to the asymptotic behavior of the vorticity

Wn vorticity coefficients

(x,y) Cartesian coordinates

Yn(e,q) Mathieu function before normalization

Yn(z) solution of the modified MathUeu equation

a (	 ,n ),a (4 on

a(uon) metric coefficients for respective coordinate systems

Onk coefficient in eigenvalue expansion

Y Reynolds number exponent in least squares fit

r a large positive number

6k1 Kroneckar delta

6 W delta function

En a function which is 1 if n is odd
and 2 if n is even

(4,n) modified elliptic coordinates
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f

(a ,n )	 elliptic coordinates

ao	 particular value of A

A (e )	 coefficient in least squares fit

(u,n)	 modified elliptic coordinates

(9,n )	 curvilinear coordinates

g o	 particular value of 4

R (9 ,n )	 the product a (9 ,n ) • q(9 ,n )

(Y)an	 separation eigenvalue

$ (g ,n ), , (z ,n ) harmonic conjugate of To

O n	 coefficient in asymptotic expansion of stream function

x(r,6)	 exponentially small part of stream function expansion

^(x,y)	 stream function

^ o	 potential flow stream function

w (x, y),W (; ,n ) magnitude of vorticity vector

9^	
normal derivative of

Bn

G	 gradient operator

D2	 Laplacian operator

1. INTRODUCTION

Owing to the formidable nature of the Navier-Stokes equation, the

history of fluid mechanics research is filled with simplifying approxima-

tions to this nonlinear problem. Included among these is a class of approx-

imations which replaces the nonlinear inertial term (v • 0)v by a linear

one (vo • V)v where v  is given. Of pa_ *._icular interest are the Stokes

and Oseen approximations where v  is constant. These have contributed

significantly to the understanding of basic fluid dynamics behavior, espe-

cially in the low Reynolds number regime where they are related asymptot-

ically to the Navi^,r-Stokes solution.
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A linearization which has received considerably less attention is

Burger's approximation (1928) in which v 	 is taken to be the continuous

potential flow around the body, As noted by Dryden et al. (1956), the

vorticity equation in this cafe is identical to the temperature equation

used by Boussinesq in his study of the conduction of heat from a hot body

placed in an irrotational fluid. In Burgers approximation the convective

velocity field3
0
 follows the surface of the body in its immediate

,i
neighborhood and approaches the velocity of a uniform stream at a great

distance from the body. Burgers flow is asymptotically equivalent to Oseen

flow far from the body, but in its immediate neighborhood Burgers flow

models the exact flow more accurately. Of course Burgers approximation

suffers from the defect that the convective velocity vector c 
does not

tend to 6 as one approaches the surface of the obstacle. Furthermore
at moderate values of the Reynolds number R, separation occurs on the down-

stream side of a bluff obstacle and the resultant velocity field v no

longer resemblesfro . This limits the suitability of Burgers approximation

to small values of R. Nevertheless Burgers linearization provides a

spatially uniform approximation to the solution of the Navier-Stokes equa-

tion and it is the purpose of this paper to investigate the extent to which

it improves upon the Oseen approximation. Attention is restricted to two

dimensional steady flows past circles, ellipses and flat plates.

2. MATHEMATICAL FORMULATION

The nondimensional Navier-Stokes equation has the form

R(v ^)v -^p + V2 v
	

(2.1)

where R, v, p are Reynolds number, fluid velocity and pressure,

respectively. The velocity must also satisfy the continuity equation

V v a 0
	

(2.2)

which is guaranteed by the introduction of a stream function *(x, y)

defined by

5



v - curl (*k)	 (2.3)

The problem for the stream function corresponding to (2.1) is given by

[V2 + RD(^)]w - 0	 (2.4)

V2* - -W	 (2.5)

where w(x,y) is the magnitude of the vorticity vector and

D(^) _	
a _ a a

ax ay	 ay ax

Consider a finite obstacle whose boundary is denoted by B. Let ']'o

be the stream function for the continuous potential flow around B which

approaches a uniform stream at infinity. The boundary value problem for

V'o(x,y) is given by

V2 ^0	 0	 (2.6)	
M

a

*0 I
B
	0,	 *0	 y as x2 + y2 + °°	 (2.7)

	
r

Burgers linearization is defined in the following way:

[V2 + RD(*0)]W - 0	 (2.3)

V2* - -w	 (2.9)

SIB	
an 

IB- 0,	 ^^ y as x2 + y2 t	 (2.10)

Equation ( 2.8) is called the vorticity equation and (2 . 9) is Poisson's equa-

tion. The Oseen linearization is obtained by substituting *o(x,y) - y in

(2.8).

6
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3. SOLUTION OF THE VORTICtTY EQUATION

The exponential decay of the vorticity in Oseen flow suggests that we

attempt a solution of (2.8) of ';he form

m (x , y ) - F(x,y) exp [f 0 (x, y )a	 (3.1)

The substitution of (3.1) into (2.8) gives a second order partial differen-

tial equation for F(x,y) with non-constant coefficients involving deriva-

tives of * ° and fo. If we set the coefficients of IF and IF to zero, we
obtain the following:	

ax	 By

a f4 0 	a f	 a^= 1R	 ,o	 1R °	 (3.2)
ax	 2 ay	 ay	 2 ax

These are the Cauchy-Riemann equations. They suggest that we choose

fo (x,y) to be 1 R times the velocity potential of the irrotational flow
2

past B. The resulting equation for F(x,y) is given by

02 F - 1 R2 q. ( x , y )2 F - 0	 (3.3)
4

a* 21/2 2   

inhere q(x,y) _	 ° +	 °	 is the magnitude of the potential flow
[(ax	 (By

velocity. In Oseen flow we have q(x,y) = 1.

Consider a curvilinear coordinate system (9,n) defined by

x + iy = f(9 + in	 (3.4)

where f is an entire function. The metric coefficient a(g,n) for 'this

transformation is defined by

aL \a^/2 + n)2 6(an)2 +(an)2
	 (3.5)

7



The vorticity in (^,n) coordinates is expressible in the form

w (g )n) .. F (g on ) exp [ 1 F4 (g in )]	 (3.6)
2

where $ is the harmonic conjugate of * 0 . From (3,,3) the equation for

F(9 )n ) is given by

2	 2a F + a F - 1 R2 p (9 on )2 F= 0	 (3.7)
D92 	 3nz 	 4

a	 z	 a* z 

	

where p (9 )n) _	 °	 +	 .°	 .. a ( ,n) q(9 ,n ). Equation (3. 7) is
a	 n

separable provided P 2 is eynressible in the form

p ( 
^ n )2 - g(^ ) + h(ft)	 (3'8)

where g and h are arbitrary functions. Under this assumption we have

F(9 ,n)	 E(9 ) H(n)	 (3.9)

where

E'.	
[o + 1 R2 g(9 )] E _ 0	 (3.10)

4

H" + [a - 1 1;^ h(n )] H = 0	 (3.11)
4

and o is the separation eigenvalue.

There are three geometries in which the vorticity equation can be

solved exactly. Consider first the case of a circular cylinder of unit

radius. The appropriate function in (3.4) is

f(z) = ez	 (3.12)

8



which implies that x e g cos n, y . eg sin n. The connection with

polar coordinates t:i r . e g , 0 - n and the unit circle is given by 9 R 0.

The potential flow boundary value problem is given by:

a 2 ^► 	 az*
D2	 a	 ° +	 °	 0	 (3,13)

°	 a^ 2 	 ant

*o(O,tt) - 0 0 *0 (90)	 ec sin n as 9 + -.

The solution is

*o(,n) a 2 sinh 9 sin n

^(,n)	 2 cosh 9 cos n	 (3.14)

from which we obtain

P(g,n)2 : 2 cosh U	 2 cos 2n	 (3.15)

Thus the separability condition ( 3.8) is satisfied and the corresponding

separated equations are, from (3.10) and (3.11),

E ll — [a + 1 R2 cosh 291 E - 0	 (3.16)

2

H" + [a +-! R2 cos 211] H - 0	 (3.17)

2

These are respectively the modified and the conventional Mathieu equations.

A brief discussiorA of their solutions is included in Appendix I.

In a streaming two dimensional flow past a symmetric body, the vortici-

ty must be odd in n and periodic with period 2'R. It must decay exponen-

tially as 9 + -, except possibly in the wake n . 0. The periodicity condi -

tion determines the eigenvalues an in (3.17). The corresponding odd

eigenfunctions are denoted by sen (n, —.1 R2 ). In (3.16) the eigenfunctions
4

+F

9
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which decay exponentially are denoted by Gekn( , - 1 R2) . 'Bros from (3. 6),
4

(3.9) and (3.14) the vorticity function has the form

0
exp [R cash 9 cos n J 

1 1 
tin Gekn(g , ' k 

R2
n 

	 )

• se (n -	 R2 )	 (3.18)

where the minus sign is included for convenience and the coefficients Wn

are constants to be determined. The asymptotic behavior of the vorticity

is, from Appendix Z,

w C ,n) N w(n ) exp [ - 19	
1 

R eg^ (1 .- cos n )]
2	 2

w(9 ) r-1/2 exp [ - 1 Rr (1 - cos A )]	 (3.19)
n

where w(0)	 0, w'(0) 0 0 and w(8) has period 2n. For purposes of compari-

son we have solved the vorticity equation for Oseen flow past a circle in

Appendix Iz and it is observed that the Oseen vorticity has the same

asymptotic behavior.

Consider next the flow past an ellipse where the major axis of the

ellipse is parallel to the flow at infinity. The appropriate coordinate

system (g ,n) is defined by

x + iy - a cosh (9 + in) m a cosh 9 cos n + i a Binh 4 sin n (3.20)

The curve g - g o is an ellipse with major axis of length 2a cosh g o and

minor axis 2a sinh go. In order that the unit of length be the semi-major

axis, we choose

a . sech 90	 (3.21)

It is convenient to make the transformation

(3.22)

10



Thus from (3.20), the coordinate system (4,n) is defined by

x + iy = a cosh (4 + g0 + in)	 ( 3.23)

and the ellipse is given by 	 0. The metric coefficient for this trans-

formation is a(4,n) where

a2 _	
\2 + ( ay

)2 = 1 a2 (cosh 2(4 + 90 ) - cos 2 n]	 (3.24)ra4	 2
The potential flow stream function * 0(4,n) satisfies the boundary value

problem

V2 * = a 2 a2*0 + 
82*0	

0	 (3.25)
942	 ant

	

1	 90+ 4
*0(0,n) M 0, *0(4,n) ~	 a e	 Lin n = A e^ sin n as z + 00

where A 9 1 a e 0 . The solution is
2

*0 (C,n)	 2A sinh C sin n

	

2A cosh ^ cos n	 (3 „26)

Because of the similarity between ( 3.14) and ( 3.26), the solution of

the worticity equation ?in the elliptical case follows the method already

outlined. Thus the vorticity function has the form

W

exp [AR cosh 4 cos n] X W	 n
Gek (4, 1 A2R2)

n=1 
n	

4

• sen (n, - 1 A2R2 )	 (3.27)
4

The Reynolds number R is based on semi-major axis as length unit. The

circular cylinder result in (3.18) is recovered by letting ^ o + - and

observing that

1.1
s

P



AMleosech g0+12
(3. 2 8)

tf the ellipse is oriented so that its major axis is perpendicular to

the flow at infinity, we use the coordinate system (X,n) defined by

x+ iy o a s inh (N +  i n)
	

(3.29)

The ellipse is given by A w ao . As before we define a modified coordinate

system 0,n) by letting u - a - ao. The metric coefficient is a(u ► n)
where

a2 •'	 a 2 (coati 2(U + X0 ) + cos 2n]
2

(3.30)

The potential flow stream function ^0(p,n) satisfies a boundary value

problem identical to that given in (3.25) and so the solution of the

vorticity equation proceeds exactly as before. The vorticity for this case

is obtained from (3.27) by making the following adjustments:

^ + p

a
A _	 e o sech ab	(3.31)

2

4. SOLUTION OF POISSON'S EQUATION

Poisson ' s equation (2.9) can be solved using a Green's function

approach. Equation (3,27) gives the form of the vorticity function for the

three geometries considered in section 3 and so the problem reduces to the

following:

►

(4.1)
aC2	 ant

*(O,n) - 0, *(C,n) - A ec sin n as	 +

12



The appropriate Green's function is defined by

V2 G(4 ,n14 1 ,n') - —(a(4,n))-2 6(; — 4') 6(n

G ( O ,n I41,n ,)  	 Oy G(-,n 14'n' ) - 0(1)	 (4.2)

The solution of (4. 2) is given by

1 k n rcosh (4	 4 ' ) - cos (n - n' )	 (4- 3)
4n	 Lcosh (4 + 4 1 ) - cos (n - n' )

Proceeding in the usual way, we have

f  [ GV2 ' - *V2 G] a2 d4dn + f  WW2 dsdn	 (4.4)
A	 A

where A is the fluid region between the obstacle 4	 0 and the curve 4 = r

with r being large.

Green's Identity transforms the first integral in (4.4) into contour

integrals around the boundary curves. The integral around ^ - 0 vanishes

because of the boundary conditions on G and *. Thus we have

f f [GO2 - X02 0] a2 d4 do - f r 
G 3* - 3G\	 do	 (4.5)

A	 -ff	 94	 a 4 _ r

Asymptotic expressions for G,* and their derivatives are given below:

* - A e sin n + 0(1) 	 (4.6)

DT 	 A e sin Ti + 0(e ^)	 (4- 7)
34

G 1 4 ' + 1 sink ' e^ cos(n - n ') + 0(e-2C )
	

(4.8)
2ir	 Tr

a G	 _ 1 sinh 4 ' e-1; cos (n - n ') + 0(e-2C )
	

(4-9)
a ^ 	n

13
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Substituting these into (4.5), we obtain the following result;

lim fr G
any -	 aG	 do- 2A sinh 4' sin n' - *0 ( ',n') (4.10)

r+- - r 	 (T4 	 94 - r

Thus in (4.4) we have

V4 1 ,n')	 *0(4',n') + f I a2 (4,n) W(4,n) G(4,nj4',n 1 )d^dn (4.11)
it o

5. DETERMINATION OF VORTICITY COEFFICIENTS

The only boundary condition from (2.10) which remains to be satisfied

is the no-slip condition. Its invocation yields unique values for the

vorticity coefficients {Wn}. Thus in (4,11) we require

a	
(O ' n') = 0	 (5.1)

24'

which implies that	 i

0 = 2A sin n' + 1 1r	
r' a2  sinh C

dCdn (5.2)
2r - r o cosh	 - cos ( n -	 n')

i^

k

From Gradshteyn and Ryzhik (1965),	 we have f
Y^
It

sinh - 1 + 2 E	 e 
k4 

cos k(n -	 n') (5.3) j
cosh g - cos (n - n' ) k-1

I!
a

But a2 (--,n) W(4,n) is odd in	 n	 and so the even part of (5.3) makes no

contribution to (5.2). After substituting (5.3) into (5.2)	 and equating

coefficients of sin kn'	 to zero (k - 1,2,3,	 ...), we have

fr r a2 W e k^ sin kn d4dn = -2An6kl k = 1,2,3,... (5.4)
-r	 o

14
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The substitution of (3.27) into (5. 4) yields the following infinite linear

system for the unknowns {W,)

W

E W  Cnk - An6 kl	k - 1,2,3,...	 (5.5)
n-1

where

C n 
k = f f exp [--kg + AR cosh 4 cos n ) a (4 ,n )2

0 0

• Gek 	 , - 1 A2 R?) se 
n 

(71 , - 1 A2 R2 ) sin kn d4 dr1	 (5. 6)
n	 4	 4

To obtain an approximate solution to (5.5), we truncated at n = k - S.

This necessitated the calculation of 64 integrals of the form (5.6) which is

the chief drawback of this procedure. Nevertheless we were able to obtain

good results in the range 0 < R < 5. in calculating the coefficients

Cnk it is convenient to choose a modulus q for which the eigenvalues

a n in Mathieu's equation are tabulated. The corresponding Reynolds

number can be found from the relation

R = 2A-1 Iq11/2
	 (5.7)

We examined five geometries: the circle, the ellipse with aspect ratio 3:1

oriented parallel and perpendicular to the flow and the flat plate oriented

parallel and perpendicular to the flow. The first eight vorticity coef-

ficients for a sampling of geometries and Reynolds numbers are given in

Tables 1-5.

The rapid decay of the coefficients Wn does not mean that the

vorticity series (3.27) converges rapidly in all regions of the flow. When

q = -1, for example, Gek6 (0,-1) = 0(106 ) and Gek (0 ,-1) = 0(1010 ) and

the decay of the Wn t s is offset by the growth of the function values

Gek, (0,-l). The vorticity series may converge rather slowly therefore in

the vicinity of the obstacle and indeed this is observed in the elliptical

c ases. The rate of convergence appears to be a maximum in the case of the

circle and we therefore investigated separation phenomena for this geometry

only.

15
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Table 1. Circle.

R - 2.0 R - 4.0

W 1 13.250 773.03

W2 -2.2884 -617.12
W3 0. 37690 x 10-1 11.281

W4 -0.24210 x 10-3 -0.71475
145 0.62517 x 10-6 0.12619 x 10-1
146 -0.78300 x 10--' -0.11800 x 10-3
W7 0.53897 x 10-1 2 0. 60380 x 10-6
148 -0.21073 x 10-15 -0.15441 x 10-8

Table 2. Ellipse (aspect ratio 3:1) parallel to flow (E o 2 P n 2) .

R = 2.12 R = 4.24

W1 5.1649 103.41
iJ2 -0.41325 -46.711
W3 0.62398 x 10-2 1.8916
^;+ -0.46197 x 10'j* -0.64596 x 10-1
W5 0.20407 x 104 0.11379 x 10-2
W6 -0.56252 x 10 -9 -0.12250 x 10-4
W7 0.1.0014 x 10-11 0. 78668 x 10-7
Wa -0.10497 x 10-14 -0.25930 x 10-9

16



Table 3. Ellipse (aspect ratio 3:1) perpendicular to flow ( 1 0 - a Rn 2).

R - 2.12 R - 4.24

W1 5.8811 82.188

W2 -0.33473 -30.625

143 -0.10127 x 10-2 0.13610

W4 0.25251 x 10-4 0.15274 x 10-1

145 0.27597 x 10-7 -0.11094 x 10-3

W6 -0.30245 x 10-9 -0.23548 x 10-5

W7 -0.13758 x 10-12 0.14100 x 10-7

W8 0.83636 x 10-15 0.22353 x 10-10

Table 4. Flat plate parallel to flow Qo - 0)

R = 2.83 R - 4.0

W1 6.7127 25.215

w2 -0.58416 -5.2619

;13 0.11229 x 10-1 0.17616

144 -0.10123 x 10-'3 -0.32847 x 10-2

W5 0. 55440 x 10-6 0.34490 x 10-4

1 6 -0.17737 x 10-8 -0.22002 x 10-6

W7 0. 35771 x 10-11 0. 82930 x 10-9

1;8 -0.41796 x 10'14 -0.17796 x 10-11
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Table 5. Flat plate perpendicular to flow (X o 0)

R	 2.83 R	 4.0 s

W1 9.0389 27.223
s.
k:

tk -0.40074 -3.0988

W3 -0.73015 x 10-2 -0.74847 x 10-1

W4 0.62359 x 10-4 0.15255 x 10-2
u

W5 0.34806 x 10-6 0.13029 >4 10-4

146 -0.13098 x 10-a -0.12114 x 10-6	 k'

147 -0.25803 x 10-11 -0-37198 x 10-9	 t

W8 0.62502 x 10-14 0.21338 x 10-11

6. SEPARATION

Separation occurs ,on the downstream side of the circular cylinder

provided the Reynolda number exceeds a critical value Rc defined as the

value of R for which
i
or

2w (0,0) - 0,	 (G.1)
an

For Burgers flow we find Rc - 1.12 which is a new result. Yamada (1954)
has shown that Rc s 1.51 for Oseen flow and Underwood (1969) has obtained

Rc a 2.88 from a numerical solution of the full nonlinear equation.

The Burgers result should be less than the numerical value. The con-

vective velocity field in Burgers flow is potential flow past the cylinder

and this violates the no-slip condition at the cylinder's surface. The

velocity field which solves the full Navier-Stokes equation satisfies this

condition. Thus convection effects near the cylinder are more dominant in

Burgers flow than in Navier-Stokes flow and any phenomena related to convec-

tion, such as separation, should occur aL lower Reynolds numbers in Burgers

flow.



.

The fact that the Burgers result is less than the Oseen value also can

be explained. Separation begins rat the rear stagnation point P of the

cylinder where locally the flow appears as in Figure 1. At the onset of
separation two eddies of circulating fluid form about P. (We refer to this
pair of eddies as a separation vortex). The direction of motion along the

axis of symmetry inside the vortex is opposed to that outsile (figure 2).

In Oseen flow the convective velocity field is constant in magnitude and

perpendicular to the cylinder boundary in the vicinity of P as shown in

Figure 3. Oseen convection therefore deters the establishment of reverse

flow at P because it directly opposes the direction of fluid motion along
the axis of symmetry inside the vortex. to contrast the convective velocity
field in Burgers flow vanishes at the point P and is small in magnitude
near P (Figure 4). Burgers convection does not oppoe the establishment

of a vortex about P to the same degree that Oseen convection does and

separation therefore initiates in Burgers flow at a lower ILeynolds number.

As R increases beyond R. - 1.12 in Burgers flow, the separation

vortex grows in size. When R = 2.0 the flow appears as in Figure 5. The

length of the vortex is PQ = 0.53 where OP is the unit of length, and <SOP

= 34.8°. Point T, whose 8-coordinate is 83°, marks the location where the

fluid pressure along the boundary is a minimum. The flow from T to S is

against an adverse pressure gradient.

7. CALCULATION OF DRAG COEFFICIENTS

Several authors (Imai, 1951; Kawaguti, 1953; Dennis and Dunwoody, 1966)

have shown that an obstacle's drag coefficient can be obtained from the term

of 0(1) in the asymptotic expansion of the stream function. This obviates

the calculation of stress components which often are difficult to obtain

accurately. The task therefore is to find the leading terms in the asymp-

totic expansion of (4.11).

We first obtain a series representation for the Green's function in

(4.3). From Magnus et al. (1966), we have

r
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OD

1 e-kt cos kx	 1 t -	 tin (2 cosh t - 2 cos x)	 t > 0 (7.1)
k= 1 k 2	 2

Manipulation of (7.1)	 yields the following results:

G(^ on I 4 '

00

in')	 i	 4 + 1	 x	 _1 e kV
2rr	 Tr	 kin 1 k

•	 sinh k4 cos k(n - n')	 < 5' (7.2)

= 1 	4R+ 1 	 1ek4
27t	 n k=1 k

•	 sinh 9 1	 cos k(n - n')	 4 >	 4' (7.3)

Substituting these into (4.11) and simplifying, we obtain

*(4',n')

W

^' o (4',n') +	 1	 1 e kz	 sin kn'
n k=1 k

•	 f r f	 a2 w s inh k^ s in kn dC do + 1
00

1	 1 s inh K s in kn'
-7r	 o	 7r k=1 k

• f 7 f	 a2 W e K sin kn d;do (7.4)— 7T	 r R

An expression for the second integral can be obtained from	 (5.4):

f' f	 a2 w e ' ^ s in kn d4 do = - 2A7r6
-n	 41 kl

- fl f4' a2 w e7 K s in kn d4 do
(7' S)- Tr	 o

Thus a series representation for the stream function is,	 from (7.4),

(	 ' ,n ')

001	 1	 1 e k 
t 

s in kn ' f r f 4 ! a2 w ek4 s in kn d^ do
T k= 1 k	 o	 0

00

_ 1	 1	 1 ek' '	 s in kn' f 
n 

f	 a2 w e-k; sin kn d^dn (7.6)
n k=l k	 o	 0
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This expression can be written in the form

fl fV a2 W e7 4 sin n d 4d n+ nA

A e^ sin n' - 1 s in n' °	 °

f't f	 ' a2 w e7k4 sin knad4dn u

- 
1

ro

1 sin kn' ° ° u
v k  k e k4'

n ^' k4 I f
a2 W e	 sin kn d4dn

+ 1	
sin kn' ° ° (7.7)

n k-1 k ek4'

It can be, seen from ( 5.4) that the first two bracketed expressions in
(7.7) are indeterminate forms 	 as 4' + -. The third expression is of

0
the form ^^

1
 in the limit. By invoking R'Hopital ' s rule we obtain con-

tributions from each expression to the 0(1) term in the asymptotic expan

sion of *. The result is

Co r

(^',n') N A eV sin T1' + 2 1 1 sin kn'
7 k=1 k2

• {lim fn a2 w sin kn d,J + 0(
	

(7.8)
^+m o

The limit can be computed and the series summed. The details are included

in Appendix III. The expansion has the form

A e sin n' 
1 

CD (±l - n + 0(e- )	 (7.9)
2	 it

where, in the second term, the plus sign is chosen when 0 < n' < n and the

minus sign when -tr < n' < 0. This term is analytic along n' _ rt, but suf-

fers a finite jump discontinuity along n' a 0 which coincides with the wake.

Dennis and Dunwoody (1966) comment that this term must be present in order,

21



to give nom-zero drag. Kawaguti (1953) shows that the constant CD is the
drag coefficient for the obstacle in the flow.

Table 6 contains drag coefficients for the circular cylinder in Ossen
flow. In table 7 the Burgers flow results are given.

Ta ble 6. Circular cylinder in Os een flow.

R	 1.0	 1.51	 2.0	 3.0	 4.0	 5.0

C D 	8.08*	 6.62	 5.85	 4.98	 4.50	 4.18

*From Tomotika and Aoi (1951).

Table 7. Circular cylinder in Burgers flow.

NAW

R	 1.0	 1.12	 1.25	 1.50	 2.0	 2.83	 3.46	 4.0

C D	7.76	 7.30	 6.86	 6.22	 5.34	 4.47	 4.04	 3.75

Figure 6 is a plot of the results contained in Tables 6 and 7 along

with some of Tritton's (1959) experimental values. The graph indicates that

Burgers approximation is an improvement over the Oseen approximation in

modeling the flow past a circular cylinder.

In Tables 8-11, a sampling of Burgers drag coefficients is given for
elliptic geometries. The results are plotted in figure 7•

Table 8. Ellipse (aspect ratio 3:1) parallel to flow.

	

R	 2.12	 3.0	 4.24	 5.20

	C D	 3.93	 3.22	 2.65	 2.36
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Table 9.	 Ellipse (aspect ratio 3:1)	 perpendicular to flow,	 r'
i

R

{

4.24	 5.202,12 3.0

CD
5.35 4.56 3.91	 3.58

Table 10. Flat plate parallel to flow.

	

R	 2.83	 4.0	 5.66	 6.93

	

CD 	2.42	 1.94	 1.56	 1.34

Table 11. Flat plate perpendicular to flow.

	

R	 2.83	 4.0	 5.66	 6.93

	

C D	 4.54	 3.98	 3.54	 3.31	 a

8. BOUNDARY LAYER THICKNESS

The procedure outlined in section 7 can be extended to obtain higher

order terms in the expansion of *. When expressed in polar coordinates

(r,8) , this expansion has the form

	^ r sin 9 — 1 C 	(±1	 8^ + 1 0 r n sin n6 + X(r,8)	 (8.1)

	

2 D	 r	 n=1 n

where the (D n (n = 1, 2,3 ) ... ) are constants and X (r,6) is exponentially
small in r.

23



Except along the line 0 - 0 0 the algebraic part of the expansion is harmonic

and constitutes the potential flow far from the obstacle.

Because of the tedious nature of the calculation, the expansions were

computed for the circular case only, Both Oseen and Burgers expansions were

calculated for purposes of comparison. The results are presented in Tables

12 and 13.

Table 12. Oseen flow.

R 1.51 M r sin e	 13118	 1
(i-

sin 0
0.5995	 + 

0 1sin 20

r r

R 2.0 2. 9247 0.5777

R 3.0 2.4888 0.5485

R 4. 0 2-2481 O. 5302

R - 5. 0 2.0918 0.5171

Table 13. Burgers flow.

R - 1.12	 r sin 6 - 3.6509 ±1 - 2 ) - 1.1251 
sin I + 0/sin--20

IT	 r	 r2

R - 2.0	 2.6709	 1.1396

R - 2.83	 2.2327	 1.1439

R 146 2.0213 1.1486

R 4.0 1.8763 1.1467
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Since both Oseen and Burgers flows are spatially uniform approximations

to the exact solution of the Navier-Stokes equation, they predict a boundary

layer surrounding the obstacle.	 The outer edge of the boundary layer is [

defined to be the curve along which the algebraic part of the asymptotic

expansion of	 ^	 vanishes.	 The curve so defined determines the displacement ^i

body which the potential flow far from the cylinder "sees,,"	 The displace-

ment body includes the cylinder, its separation vortex and the surrounding

boundary layer.

By setting the expansions giverl in Tables 12 and 13 equal to zero, we
7

obtain approximations to the displacement bodies for the various flows. 	 A

typical example is given in Figure 8.	 The displacement body is semi-infi-

nite with its width at infinity numerically equal to the drag coefficient. a

Since the boundary of the circular cylinder is given by r - 1, the thickness

of the boundary layer is easily calculated. 	 Tables 14 and 15 compile these

results for a variety of Reynolds numbers and locations along the cylinder

boundary.

Table 14.	 Boundary layer thickness for Oseen flow.

12 6 /n	 R, = 2.0	 R = 3.0	 R = 4.0	 R = 5.0	 A (6 ) /RY

12	 0.357	 0.236	 0.169	 0.125	 0.798/R1•134

11	 0.365	 0.243	 0.175	 0.131	 0.804/R1.113
x

10	 0.390	 0.264	 0.194	 0.148	 0.823/R1.054 "rw
9	 0.436	 0.301	 0.227	 0.178	 0.865/R0.972 g

r
8	 0.509	 0.361	 0.280	 0.227	 0.941/RO.880.

7	 0.619	 0.451	 0.360	 0.300	 1.071/RO.788

6	 0.786	 0.589	 0.482	 0.412	 1.280/RO.704 j
^E

5	 1.048	 0.807	 0.674	 0.589	 1.618/RO.630

4	 1.484	 1.169	 0.996	 0.885	 2.188/RO.565

3	 2.278	 1.833	 1.589	 1.431	 1226/R0.508

2	 3.990	 3.276	 2.883	 2.629	 5. ,#49/RO.457

'r	 s.
1	 9.414	 7.876	 7.028	 6.478	 12,., 438/RO. 409
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Table 15. Boundary layer thickness for Burgers flow.

12 9/V R - 2.0 R - 2.83 R . 3.46 R = 4.0 A(8) /RY

12 0.574 0.482 0.441 0.410 0.800/RO°482

11 0.581 0.488 0.445 0.415 0.811/RO.404

10 0.602 0.505 0.460 0.428 0.843/RO.481

9 0.639 0.535 0.487 0.453 0.900/RO.496

8 0.699 0.582 0.529 0.491, 0.991/R0.507

7	 0.789 0.654 0.593 0.549 1.130/Ro.520

6	 0.927 0.765 0.690 0.638 1.342/RO.837

5	 1.144 0.938 0.844 0.778 1.679/RO.555

4 1.510 1.231 1.102 1.014 2.244/R,0.573

3 2.190 1.780 1.588 1.457 3.285/Ro:587

2 3.694 3.007 2.681 2.459 5.541/RO.586

1 8.579 7.050 6.316 5.814 12.639/Ro•560

In both cases the thickness of the boundary layer increases as one

moves around the cylinder from the forward stagnation point (6 = n).

Increasing the Reynolds number serves to compress the boundary layer. The

last column in each table is a least-squares fit of the data given in each

row to an expression of the form A(9)/Rl . The function A(8) is similar

in both flows. The value of y depends on 6 in the case of Oseen flow,

but appears to hover about the constant 1 in Burgers flow in the range
2

< 8 < w. This suggests that boundary layer thickness in Burgers flow is
2
roughly proportional to K'1/2.

Analytic studies of the boundary layer on a semi-infinite flat plate

using the full nonlinear equations show that the thickness is proportional

to K-1/2. Our work, although not conclusive, suggests a similar result for

a circular cylinder using a linear model. The apparent agreement between

26
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ly

this prediction of Burgers flow and that of nonlinear analysis verifies 	 ^^

ag%i*U its superiority over Oseen, flow in describing fluid behavior near the

cylinder.
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APPENDIX I

The standard form of Mathieu's equation is, from McLachlan (1964),

y° + (a — 2q cos 28 ) y d 0	 (1-1)

where q is termed the modulus and a is the eigenvalue. In this

discussion we are only interested in solutions of (I.1) which are odd in A..

In many applications the eigenvalue is determined from the condition that

y(8) be periodic with period 2R. "thus if q .. 0, the eigenvalue must be

the square of an integer (a n = n2 ) and the corresponding odd

eigenfunction is

y (8 ) = sin n8	 (1-2)
n

If Jqj is small but nonzero, the eigenvalue and eigenfunction can be

expanded in series of the form

0*a n = n2 +Snkgk	 (I. 3)
k 

00

Yn (8 , q) = sin n8 + X Snk (8 ) qk	 (1-4)
k=1

The coefficients s nk and Snk(8) are determined by substituting these

expansions into (I.1), equating like powers of q, and requiring that

SA (6 ) 
be odd in 8 and periodic with period 27T. The expression for

y n(8 ) can be rewritten in the form

0

yn (6 ^ q )	 'D (n) (q ) sin k8	 {I. 5)
k=1

where each Dk n) (q) is a power series in q. A normalized Ha thieu function

is defined as follows:
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sen (9 ^ q )	 yn (e , q )/[ X ID kn) ( q)}2]1/2
k=1

Co

X Bk n) ( q ) sin W	 (1.6)
k=1

where
k^

1 [ B (n) (q)] 2 	1.

The standard form of the modified Mathieu equation is

Yn(z) - [a - 2q cosh 2z) Y n (z) - 0	 (1.7)

When q < 0, the eigenfunctions which decay exponentially as z + are

denoted by

Yn (z) = Gekn ( z . q )	 (I.$)

From McLachlan (1964), we have

Gekn( z , q ) - c  n( Iq11/2 ez)

- c rl 
r11/2 W-1/4 exp [- 1 z	 1gj1/2 ez ]	 (1.9)

	

n 2 J	 2

where q < 0.
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APPENDIX II

The vorticity equation for Oseen flow past a circular cylinder can be

solved using the method outlined in section 3. The appropriate coordinate

system	 (9,n)	 is defined by

x = e g cos n,	 y = e g sin n (II.1)

and the metric coefficient is

a(g,n) = e g (I1.2)

The vorticity is given by

(	 ,n) = F(^,n) exp	 [1 R e g cos n] (II.3)
2

where	 F(9,n)	 satisfies the equation

8 2 F + 32F - 1 R2 e 2 g F = 0 (II.4)
2g 2 	 ant	 4

Solutions to this equation are of the form

Fn(9,n) = E n M sin nn (II.5)

where	 En(9)	 satisfies the equation

En -(n 2 + 1 R2 e2^) En = 0 (II.6)
4

From Gradshteyn and Ryzhik (1965), we have

En () = A1(1 R eg ) + Bn Kn (1
n n R e g ) (II.7)

2 	 2
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Since the vorticity must decay exponentially as 4 + -, the coefficients

An are all zero and the vorticity is given by

00

-exp C R e^ cos n] G n K 1 R e^) sin nr► 	 (II. 8)
2	

nil n n 2

In terms of polar coordinates (r,9), the asymptotic behavior of the Oseen

vorticity is

w (r,g) N w(6 ) r-112 eXp	 1 Rr (1 - cos 8 )J	 (11.9)
2

where w(0) = 0, w' (0) # 0 and w(6 ) has period 27r.
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APPENDIX III

The expansion of	 in ( 7.8) contains the expression

lim jr a2	 w	 n ) sin kn do	 (II I. l)
4-►M o

which can be computed once the asymptotic behavior of a 2 and w is known.
From ( 11. 2), (3 . 24) and (3.30), we have

a2 (4 ,n ) ~ A2 e24	 (111. 2)

We also know that

00

w	 exp [AR cosh 4 r_os n J G W	
n

Gek (4 , - 1 A2 R2)
n=1 

n	
4

• se (n , -	 A2 R2 )	 (111. 3)

4

O

From (I.9) the asymptotic form of the vorticity is given by

n 1/2	 1	 1
w (^ ,n)

AR)	
exp t - 2 - 2 AR e (1 - cos n )^

G	
1

1 
cnWn Senn s - A2 R2

n	
)

sl

Thus the integral in (III.1) simplifies to

3 1/2
f a2 w sin kn do N 

(IR
A	 exp 1- 1 (AR e4 - 3^ )

o 	 2

•	 c W f r exp ( 1 AR e^ cos n] sin kn
n=1 nn o	2

• se n  (n , - 1 A2 R2 ) do
4

(111. 4)

(111. 5)
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From McLachlan (1964), we have

se^n,n - 1 A2R2) _	 S(n) sin (2m + e )n (I11.6) {4	 m=0	 m	 n

i^

where e	 = 1 if n is odd,n
= 2 if n is even.

I. {

Therefore, we have
1

se	 (n,

00

(n)- 1 A2R2 ) sin kn	 1	 S	 [cos (2m + e	 - k)n
{

n 4	 2 m=0	
m	 n

- cos (2m + e n + k)nl (1II.7)

The substitution of (III . 7)	 into ( 1IL.5) yields integrals of the form

f	 exp [u cos e]	 cos n8 d8 n(u) (III. B)
0

where	 In is the modified Bessel function of the first kind. After

evaluating the integral in (III.5) and replacing the Bessel functions by

their asymptotic forms, we have

7 a
2j

00	 Go
2^r	

mn)w sin k do	 k	 c W
n	 — -	 I	 (2m + e	 S	 +

2	 n n	
n) 0(e4)	 (111.9)

o R	 n=1	 m=0

Taking the limit	 in (III.1) and substituting back into (7.8), we obtain

00

A e 	 sin n' -	 CD	 1 sin kn' + 0(e 4' ) (111.10)
Tr	 k=1 k

where

C= 4n

00	 Co
 I c W	 G (2m + C) S (n)	 (III.11)

D R2 n=l n n m=0	
n m
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But

00

I 1 sinkn' ^1 (+IT - n')
	 (11x.12)

k-1 k	 2

where the plus sign is chosen when 0 < n' < it and the minus sign when

.n < n' < 0. Thus the asymptotic form of the stream function for Burgers

flow past an elliptical aylinder is given by (7.9).

This work was supported by the National Aeronautics and Space Adminis-

tration under contract no. NAG1-197.
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Figure 1. Streamlines at the rear stagnation point P of the cylinder prior
to separation.
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Figure 2. Streamlines after separation.
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Figure 3. Convective velocity field at the rear stagnation point of the

cylinder in oseen flow.
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Figure 4. Convective velocity field in Burgers flow.
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Figure 5. Burgers flow past a circular cylinder at R = 2.0.
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Figure 6. Drag coefficient vs. Reynolds number for flow past a circular
cylinder. - - - - -- Oseen flow; 	 Burgers flow;

experiment (Tritton).
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v 4.0
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0.0	 1.0	 2.0	 3.0	 4.0	 5.0	 6,0	 70

R

Figure 7. Drag coefficient vs. Reynolds number for Burgers flow past a
variety of geometries.	 , flat plate perpendicular to
flow; - - - -, ellipse (aspect ratio 3:1) perpendicular to
flow;	 _ .-.— _, circle;	 - —	 ---, ellipse (aspect
ratio 3:1) parallel to flow;	 --	 --	 , flat plate
parallel to flow; ® , numerical solution (Dennis and
Dunwoody) of the full nonlinear equation for flow past a flat
plate.
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Figure 8. Displacement body for Burgers flow past a circular cylinder at
R = 2.0.
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