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D!jring the present reporting period work was finished on extending

the Hadley Cell model to investigate the symmetric baroclinic instability

of the model. This work was written in the form of a paper which will

appear in the June 1982 issue of The Journal of The Atmospheric Sciences,

A copy of the preprint of this paper is enclosed as Appendix. At the

present work is being continued to investigate the baroclinic instability

of an inclined wave for the same Hadley ;Cell model.

.Also during the reporting period work has begun on the coding of a

program to solve the nonlinear baroclinic instability of an Eady model.

The basic expression technique have been established and all the theoretical

background for this work has been completed. It is anticipated the trail

runs of the program should begin in the coming months. .Initially we will

investigate the nonlinear evolution of a wave of a single zonal wave number

and the influence of its harmonics. The nonlinear interaction of more

than one zonal wave will be investigated subsequently.
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Abstract

A stability analysis of a thin horizontal rotating fluid

layer which is subjected to arbitrary horizontal and vertical
temperature gradients is presented. The basic state is a non-

linear Hadley cell which contains both Ekman and thermal boundary

layers; it is given in closed form. The, stability analysis is

based on the linearized Navier-Stokes equations, and zonally

symmetric perturbations in the form of waves propagating in the

meridional direction are considerced. Numerical methods were used

for the stability problem. The objective of this investigation

was to extend previous work on symmetric baroclinic instability

with a More realistic model. Hence, the-study deals with flows

for which the Richardson number. (based on' temperature. and flow

gradients at mid-depth) is of order unity and less. The com-

putations cover ranges of Prandtl number 0.2 < a < 5, Rossby

number 16,2 < e < 10 2 and Ekman number 10 -4 aE < 10 -1 . it was found, in

agreement with previous work, that the instability sets in when

-the Richardson number is close to unity,and that the critical

Richardson number is a non-monotonic function of the Prandtl

number. Further, it was found'that the critical Richardson number

decreases with increasing Ekman number-until a critical value

of the Ekman number is reached beyond which the fluid is stable.

The principal of exchange of stability was not assumed and growth.

rates were calculated. A wavelength of maximum growth rate was

found. For our model overstability was not found. Some Com-

putations were performed for Richardson numbers less than zero.
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No discontinuities in growth rates are noticeable when the

T !	 Richardson number changes sign. This result indicates a

smooth transition from symmetric baroclinic instability to a

i	 convective instability.
j
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W	 1. Introduction

it is well known that statically stable baroclinic flaw

can be destablished by two different mechanisms. The first

occurs in what is usually,known as ordinary 'baroclinic in-

stability in which the perturbations of maximum growth rate

have a wavelength in the zonal direction and the gravest

possible structure in the meridional direction. (Charney,

1947; Eady, 1949). This instability is well understood and

has been observed experimentally (Hide and Mason, 1975). The

second occurs in what is known as symmetric baroclinic in-

stability. In this case, the instability mechanism is such

that the perturbations of maximum growth rate have meridional

structure but no zonal structure. This study is concerned with

the latter form of instability.

Two of the earliest analyses of symmetric baroclinic instability

are those of Solberg (1936) and Kuo (1956). However, the first

definitive work is that of Stone. In a sequence of papers,

Stone (1966, 1970, 1971) examined the stability of a parallel

baroclinic flow with respect to infinitesimal, three-dimensional

perturbations. Constant vertical shear and conotant temperature
gradients were assumed and thermal and viscous diffusion effects

were neglected. Stone found that when the Richardson number,

Ri, is between 0.95 and 0.25, waves whose axes are in the zonal

direction have the maximum growth rates. Stone et al. (1969)

and Hadlock et al. (1972) attempted to observe symmetric baroclinic

instability in the laboratory, and some evidence of the predicted
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meridional structure was seen but a comprehensive experimental

study of this instability has yet to be performed.

McIntyre (1970) performed an analysis of symmetric

baroclinic instability which included both vertical and

horizontal shears and allowed for the Prandtl number, d. The

model considered was infinite in both the horizontal and vertical

directions. McIntyre found, in the absence of horizontal shear,

that the maximum value of R^ at, which symmetric instability sets

in (the critical Richardson number, Ra,c ) is a function of v•and

can be larger than 0.95. McIntyre also found that the most un-

stable wavelength is infinite and that both monotonic and

oscillatory instability can occur. In a related analysis,

Walton (1975) considered only vertical shear in a finite depth

fluid. When weak viscous effects are included, Walton found

that Ric is lower for both the monotonic and oscillatory'in-

stabilities. He also found that the most rapidly growing modes

display a weak functional dependence on the diffusion coefficients

when those are asymptotically small. 	
r
i

Recently, Emanuel (1979) presented a, detailed study of 	 r

the linear stability of symmetric perturbations in a baroclinic 	 ,I

flow with both horizontal and vertical shears. Retaining both

the viscous and thermal diffusivities for a vertically bounded 	 ?(

flow, Emanuel studied: i) hydrostatic disturbances and ii) non-

hydrostatic disturbances in a neutrally stratified fluid. He	 f

found that for both-cases the critical Richardson number depended

on both the thermal and the viscous diffusivities. He also

2
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established the fact that the most unstable normal mode is

determined primarily by the depth of the unstable domain and

the slope of the isentropic surfaces rather than by the

diffusive properties of the fluid. Weber (1980) in a some-

what similar analysis, examined the symmetric instability of

a basic state with a constant vertical shear in the presence

of horizontal boundaries while taking full account of the

viscous effects for arbitrary vertical (stable) stratification.

Although, he made the simplifying assumption of replacing the

vertical viscous and diffusive terms in the perturbation

equations by a wave mode, his results compare favorably with

those of Emanuel. it should be noted that in both of the above

studies the analyses were restrictive; Emanuel investigated only

neutral modes by invoking the principal of exchange of stability

and Weber used an approximate solution to the perturbation

equations. Emanuel's paper contains an excellent survey of

previous work on this problem.

Previous workers have postulated symmetric baroclinic

instability as the cause of certain physical phenomena. Stone

(1967) conjectured that the banded structure of Jupiter's

atmosphere is due to.this instability. Bennets and Hoskins
(1979) attributed the origin of rain bands andsquall lines to

this instability. Weber (1980) suggested that the generation of

roll vortices in the oceans and the atmosphere is due to symmetric

baroclinic instability.

3
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In all of the theoretical studies cited above, the basic

state whose stability was investigated was a postulated state

in which both the shears and the temperature gradients in the

vertical and the horizontal direc-Yions were taken to be constants

throughout the fluid. in an experimental apparatus whose upper

and lower boundaries are stationary, such a basic state is a

good approximation in the interior of the fluid only; it is not

a good approximation near the boundaries,especially when the

Ekman number is not vanishingly small. In the study, presented,

in this paper, a fluid contained between two horizontal plates

of infinite extent is considered and the influence of the Ekman

and the thermal layers on symmetric baroclinic instability is

investigated. The analysis uses a realistic basic state which is

obtained through the solution of the governing nonlinear equations of

motion for abitrary external forcings, e.g., the Ekm•.Z number.,

the vertical stratification, etc. This basic state was used

in a recent paper by the authors in an investigation of ordinary

baroclinic instability (see Antar and Fowlis, 1981).
.	 r

It is obvious that if a direct analog of a laboratory ex-

periment is required,then this model.is not sufficient since it

does not allow for the side walls and the side layers. In a

recent'study Quon (1980, 1981) simulated laboratory conditions

for the onset of symmetric baroclinic instability through the

numerical solution of the full Navier-Stokes, energy equations

for.the flow in a cylindrical differentially heated, rotating

annulus. Although such an analysis is of great value in.modeling

4



the true experimental conditions, the amount of computer time

required for the calculation of each case precludes a thorough

probing of the parameter space for the criteria for the onset

of the instability. it is our opinion that the present study

fills a needed gap between the constant shear, constant tem-

perature gradients analyses discussed earlier and that of the
is

exact solution of Quon.

The basic state model is reviewed in Section 2. The

perturbation equations for the symmetric instability and their

method of solution are presented in Section 3. In Section 4

s we discuss the results cI" the present analysis and

how they compare with the previous work. Our conclusions

are presented in Section 5.

,i
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2. The Basic State

The basic stag used in the present stability analysis

Is identical to that used in the work of Antar and Fowlis (1981)
t

(hereinafter referred to as 1). This model in described Only

briefly here; for further details and justifications, the

reader is referred to I. We consider a eoussinesq fluid confined 'F
?f

between two horizontal plates which are set a distance, d, apart.

The coordinate system used is rectangular Cartesian with axes

(x,y,z) corresponding to the eastward, northward and vertical- t{
'i

directions,respectvely, and with the origin midway between the
it

plates. A sketch of the model is shown in Fig. 1. The plates
!f

are assumed to extend to infinity in the x-direction and to
i t

large distances in the y-direction. The plates and the fluid
J

are taken to rotate as a whole about the vertical axis with a

constant angular velocity, Q. A temperature gradient in which

the temperature decreases • linearly in the y-direct-ion is main-

tained on both plates. To assure that the vertical stratification,

and hence the Richardson number, is arbitrary and externally

fixed, the temperatures of the-upper and lower plates are set to 	 4
i

differ uniformly by a constant amount' AT for all (x,y),
The velocity and temperature fields are governed by the

Navi.er-Stakes, ener^ and mass conservation equations. Under the

conditions assumed here for the basic, two-dimensional, steady

state, these equations, in a rotating reference frame, reduce to

the hollowing set:

6
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I'	 -2V - Ea 2 U/az 2 ,	 ( 1)

2U - Ea 2 V/az 2 	a p/ax,	 (2)

VaT/py = (Elie) a 2 T/aZ 2 ,	 (s)

T = ap/az,	 (4)

E	 where ti is the velocity vector (U,V), p is the pressure, T is

the emperature and
i

E agY/p 2

E = v/nd 2 ,

v	 y/K`,

are a thermal Rossby number, the Ekman number and the Prandtl

number, respectively. In Eqs. (l)-(4), length, time, velocity

and temperature have been made dimezisionless using d, S171,

wro: gd Y/S2, and yd, where a is the coefficient of thermal expansion,

-y is the imposed horizontal temperature gradient and g is gravity.

The main assumptions used in arriving at Eqs. (1)-(4) are that

.the vertical velocity component, W, is negligible and that

aT/ay =-y throughout the A:egion of interest, (see 1).

The solution of the system (l)-(4) which is consistent

with the no slip and perfectly conducting conditions at the solid
bpundaries, i . e . ,

U-V-0, T	 +QT/2-y@z=+1/'2,	 (5)

is given by

U (Z) = - f(z)/8  + z/2 ,	 (6)

7



V(z)	 g(z)/8,	 (7)

T(y,Z)	 -Y + ZAT + ca (2z	 f(z)3/8,	 (8)

where

f(z)	 (coshR(z+1/2)cosR(z-1/2)	 coshR(z-1/2)cosR(z+1/2)]/h(R),

g(z)	 [sin.hR(z+1/2)sinR(z-1/2) 	 sinhR(z-1/2)sinR(z+l/2))/h(R)#

h(R)	 sinha,R/2)	 + sin 2 (R/2),

R E-1/2

The velocity and temperature profiles givim by (6)-(8) are

shown in Fig. 2 for different values E, c, a t and 4T. The•

limits of applicability of this model are discussed -in I.

Il

is
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L, 3. The Perturbation Equations

The instability pro'zUem is tackled by imposing perturba-

tions on the basic state presented above. Since we are concerned

with symmetric perturbations., the perturbation functions will be

proportional to exp Cit(y - ct) j which represents a wave with

meridional wavenumber k propagating in the meridional direction with

speed c. Introducing the perturbations into the Navier -Stokes,

energy and mass conservation 'equations and upon linearizing the

perturbation equations we obtain the following equations for the

perturbation functions.

E (D 2 - . 2 ) 2 w + ik ((c-eV) ( D 2 -k 2 ) w + cwD 2 VI- 2x.Wu- t 2 e = .D ,	 (9)

E(D 2 - R 2') u + it (c-eV) u-cwDU - l̂ Dw = 0,	 (10)

E(D2„ k 2) e + iko (c -eV) 6-	 Ct Dw - ecwDT	 0,	 (11)
l

i
{	 iku'+ Dw	 0,	 (12)

where

D = d/dz.

In the above the Lerturbation velocity is ,Yti 	 (u,v',w) and 6

is-the perturbation 'temperature. Note that the perturbation

equations are not hydrostatic.

To complete the specification of the problem, the following

boundary conditions are imposed on the perturbation functions.

u=w=Dw = a =0 @ z=+1/2.	 (13)

9
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The perturbation problem as pose; constitutes an eigen-

value problem. We take R to be real and c = c  + ici
to be complex, where cr denotes the propagation speed and ci,

the growth rate. Monotonic instability occurs for c  > 0 while
c  - 0, whereas overstability occurs for c i = 0 while c  # 0.
It is tempting at this stage to invoke the principle of exchange

of stability and to set c  = c  = 0 and hence look for neutral
modes alone and reduce the number of parameters involved. Emanuel

(1979) adopted this procedure. However, since McIntyre (1970)

had established that for his model (see Section 1) oscillatory
instability exists, it was decided to leave c  and c i as eigen-

values of the problem. Using this method the analysis will sallow

us to compute growth rates and to determine if overstability

exists.

The solution to the problem (9) - (13) is obtained through
numerical integration of the full eighth-order differential

system. This procedure was necessary because the coefficients

in the equations (i.e.,the basic state) are functions of the-
he ight, z. If we wish to account fully for the Ekman and thermal

layeis, the solution cannot be obtained in a closed form. Note,

that if the basic state profiles had been taken to be linear in z,

as was done in most of the previous work on the symmetric baroclinic

instability problem, then the set of governing equations would

reduce to a differential system with constant coefficients whose

solution could-be determined in a closed form.

is
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The numerical solution was obtained using the shooting

technique. The code was identical to the one used in I, and

more details of the numerical work are given in Ir Briefly, the

shooting technique was enhanced with the orthonormalization

method,allowing the stability analysis to,be performed even

when the Ekman number is very small. A Newton-Raphson method

was implemented for conx //ergence on the eigenvalues, and an eighth-

order Runge-Kutta method was used for the integration of the

initial vaiue problem.
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4. Results any d Di scussion
The results which follow constitute the solution of the

eigenvalue problem posed by equations (9) - (11) with the

boundary conditions (13) for prescribed values of the

parameters. The parameters of the problem which appear ex-

plicitly in the equations are, E, the thermal Rossby number

E, the Ekman number, a, the Prandtl number, AT, the imposed

vertical temperature difference, and k and c, the wavenumber

and wave speed, respectively. Note that the first four

parameters appear in the basic state as well as the perturbation

equations, but the last two belong to the stability problem

alone.

As was discussed in Section 1, the Richardson number plays

a significant role in • the symmetric baroclinic instability problem..

While this number does not appear explicitly in our formulation

of the basic state,it may be defined using the parameters which

do appear explicitly. The Richardson number is defined by

Ri = a(av**az*)-3-	 (14)

where aT*/az* and all*/az* are the dimensional basic state tem-

perature and zonal flow gradients, respectively. it is obvious

from this definition and from expressions (b)	 (8) that for the

present model Ri is not a constant but is a function of z. We-

may define a "bulk" Richardson number by the value of Ri at

mid-depth between the horizontal plates, viz,

12 ,
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2T*/ez*Rib ag ( U	 Z*)2 Z a0.

In all of the subsequent i0 scussion,Ri b will be used instead

of Ri and the subscript b will be dropped. We shall see that

this definition is not only convenient, but it has dynamical sig-

nificance in this problem. Substituting the temperature and

velocity gradients for the basic state, expressions (6) and

(8), respectively, into the above definition we obtains

Ri = 4 ( AT + QE)
E	 4
	 (15)

which is a constant and defined exclusively by the basic state.

The above definition shows that Ri 4 S a function of the

explicit parameters of-the problem. This relationship-was used

when choosing values of E, AT and a for each eigenvalue search

in order to be sure that-we were within the correct range of R.

for instability. Stone (1970) and McIntyre (1970) showed that

symmetric baroclinic instability occurs for Ri close to unity

(see Section 1). The above definition indicates that for a

given value of a, there is a range pf. a and of AT fov whl ich .the

critical value of Ri is achieved.

For a=1, expression (15) specifies that AT must be less

than zero to obtain the desired range of values of Ri for in-

stability regardless of the value of e. However, setting AT< 0

arbitrarily could lead to an unstable vertical stratification

13



in the interior and hence a negative value of Ri. Instabilities

occuring under the above conditions with negative Ri are not

classed as symmetric baroclinic .instabilities and are outside

the range of interest of this paper. Suph instabilities

have been discussed by Hathaway et al. (1979,1980). To obtain symmr -iti

baroclinic instability for a=l, AT must be set negative with the
E

additional constraint of 14 AT/cl < y 1,, Clearly, there exists

C	 a range of values AT which satisfies these two criteria. We decided
a

to proceed with AT = -0.2 for a - 1. Fig. 3 shows that this
value of AT keeps the interior vertical stratification stable.

{ The above arguments reveal that the correct choice of AT for

symmetric instability io a delicate matter and depends strongly

on a. Expression (15) should be of great value in guiding ex-

perimental searches for symmetric baroclinic instability in the

laboratory.

Fig. 4 shows the growth rates for different values of the

meridional wavenumber, Z as a function of a for E = 10 -3 , AT

-0.2 and a = 1. Note the existence of unstable modes over a

finite range of c. This feature resembles the growth rate

properties of ordinary baroclinic instability. The unstable

region in a is bounded by two stable regions, one in which Ri is

close to unity and the other in which Ri is small or negati c

(Ri = 1 - 0.8/c).

Fig. 4 also shows that as c varies,the growth rate has a

maximum value for a specific value of the wavenumber. Fig. 5,

which -is for the same values of the parameters as the results in

14
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Fig. 4, is a plot of the maximum growth rate for each wavenumber

versus wavenumber. The greatest growth rate occurs for about

k = 10. This result is at variance with the findings of Stone

(1970), who found that the maximum growth rate is achieved as

k	 00, and McIntyre (1970), who found that it is achieved as

2 + 0. However, since both of these previous studies are for

essentially inviscid.flow, it is concluded that including the

viscous effects determines the wavelength of maximum growth rate

for the symmetric baroclinic instability problem.

F-4avre 6, which is for the same values of the parameters as

the results in Figs. 4 and 5, shows neutral stability curves in

the (E - e) number plane for three different wavenumbers: A sig-

nificant feature of these curves is the existence ;n.f the maximum

(critical) Value^.of E' above •which' all modes are stable: Another

feature is the existence of , ,wo stable regions, or two branches of

the neutral stability curves, for all values of E smaller than the

mode critical values. Note that these curves are loci of points

for which ci = 0. For all the modes shown in this figure -and

those in the previous and subsequent figures, the value of the wave

speed, c r , was always found to be zero,indicating that these are

monotonic instability modes and tha- the principle of exchange of

stability golds for this problem. Throughout this work we did

not find any oscillatory unstable modes. Thus, it is doubtful if

overstability exists for the present problem.

The curves in the upper portion of Fig. 6 indicate that

e + as E + 0 for all of the wavenumbers shown. To observe this

15
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criterion in terms of Ri, the neutral curves of Fig. 6 are plotted

again in the (E-Ri) plane in Fig. 7. Fig. 7 shows that as E + 0,

the upper branches of the curves approach Ri s 1 for all wave-

lengths and that the region of instability increases with in-

creasing wavenumber. Weber (1980), in his model for symmetric

baroclinic instability (see Section 1), found the critical value

of Ri, Ric , to be a monotonically decreasing function of E as the

latter increases from zero. The res-ults in Fig. 7 show that this

fundament,,il dependence is correct up to the value of Ec , but above

that value there is a region of absolute stability regardless of

the value of Ri. We believe that the existence of E  is due to

the accurate inclusion of the viscous-and thermal diffusive effects

in out-,model. None of the previous work included both of

these effects properly.

To investigate the effects of the Prandtl number on the

stability criteria discussed above, we proceeded to find solutions

for a = 5. As was discussed earlier, changing the value of a

necessitates a search for the appropriate value of the vertical

temperature difference, AT, such that Ri is in the proper range

for symmetric baroclinic instability.. .The value chosen for a = 5

was AT = -4.5, which allows Ri to be in the vicinity of unity

(Ri - 5 - 18/E). Fig. 8-shows the growth rates as a function of

E for the above values of c and AT and for E = 10 -3 . Again, it

is seen that the unstable modes separate two stables regions.

in a (or Ri). Fig. 8 shows that the maximum growth rate increases

with increasing wavenumber, R. In fact,the total range of

16



ORIGINAL PAC2 Mo
OF POOR QUALITY

instability increases with Z. Note that the upper bound of

instability in e first increases with increasing wave numbers

up to R = 4 and then decreases reaching an asymptotic value of

e = 4.55 for P. > 6 which corresponds to Ri - 1 for the parameters

used. Another feature, which is different from the a = 1 case,

is that the maximum growth rates occur for approximately the same

value of a for all the wavenumbers shown. For this case this

value of a translates to a value of Ri = 41

Fig. 9, which is for the same values of the parameters as

the results in Fig. 8, shows the variation of the maximum growth

rates as a function of the wavenumber, R. This figure.reveals

that there is still a wavenumber of greatest growth rate which

occurs about k 13.5. However, the decrease in the growth

rate is much smaller for wavenumbers above the maximum value

than it is for the a = 1 results (see Fig. 5).

The neutral stability curves in the (E - Ri) plane are

shown in Fig. 10 for k = 1 and 4. In this figure only the positive

part of the Ri range is shown. Note that there are two values of

Ric as E -} O,each corresponding to one wavenumber, and that the

range of instability is much larger for k 4 than that for k = 1.

To appreciate more fully the influence of the Prandtl

number on the symmetric instabiity criteria, Fig. 11 which shows

the neutral stability curves for R 4 in the (E - Ri) plane for
a	 1 ( AT = -0.2) , a = 2 (AT _ -1.5) and a 	 5 (AT = -4.5) was,

17
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prepared. Except for v 1 1 only the upper branches of the

curves appear for Ri > 0. All the curves shown tend to specific

asymptotic values of Ric as E + 0. For o - 1, the asymptotic

value of Ric is close to 1,while for a - 2 and 5, the asymptotic

values are close to 1.075 and 1.695 respectively. The latter

two values are significantly greater than 1•. Thus, the trend
F

for the asymptotic value of Ric is to increase with increasing
R

a for a > 1. This fundamental depenuence is in agreement with

work of McIntyre (19'70), although his model is somewhat different

from the model being considered here (see Section 1). McIntyre

found that the asymptotic value of Ric is given by

(1 + a) 2,	 (16)i	 Ric	 4a

For a = 1, 2, and 5., this relationship yields values of'-Ric of1,
1.125 and 1.8,respectively. These values are close to the values

found from Fig. 11.

Fig. 11 also shows that a;s a increases, the v4'.0le region

of instability is markedly increased. The value of E c increases

drastically as c is increased but there is no observable difference

in the values of E c for v = 2 and 5.

Next, we present results fok a < 1. Again,the values for

AT were chosen such that the range of Ri includes unity and values

less than unity. Expression (15) indicates that when a < 1 and

AT < 0, the maximum possible value for Ri is a and thus the range

does riot include unity. However, when a < 1 and AT > 0, values of

Ri can`be obtained which are both greater and less than unity; We

proceeded with AT > 0.
f
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Fig. 12 shows the neutral stability curves in the (E - Ri)

plane for a = 0.5 (AT = 0.2) and a = 0.2 (AT = 0«5). The curves

are for R = 12, the value which yielded the maximum value for

Ric when all the other parameters were held fixed. Again,the

values for Ric are seen to increase to specific asymptotic values

as E .+ 0. Note that the tendency to an asymptote is not as evident

for a = 0.5 as it is for a = 0.2.-° The main features of Fig. 12

are the decrease in the value of 'Ric and the decrease in the •total

instability area as a increases to unity. The results also in-

dicate an increase in Ec with increasing a.

Fig. 12 gives the values of Ri o at E = 10 -4 for a	 0.5

and 0.2 as 0.946 and 1.21, respectively. Flig. 1" is a comparison

of all our results for the largest asymptotic (E = 10 ^4 ) values

of Ric with McIntyre's results as a function of a. The dots are

our-results and. the continuous curve is a plot of expression (16) .

Note that McIntyre's criterion yields asymmetric dependence of

Ric as a function of a about o 1. The results of the present

study agree well with McIntyre foi a > 1 but give lower values

for Ric for a < 1.
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5. Conclusions

The stability of a nonlinear rotating Hadley cell has

been examined with respect to symmetric perturbations. This

Hadley cell was derived previously (see I) and contains both

Ekman and thermal boundary layers. The stability analysis is

based on the Navier-Stokes equations and considers infinitesimal

waves with vertical and meridional structure but no zonal structure.

The stability analysis was performed numerically. For examini.q

the parametric behavior of symmetric baroclinic instability, the

work is an improvement over all previous work since a reali.s',ic

basic state is used and since the stability analysis includes

-both viscous and thermal diffusion effects.

The computations covet- the following 'ranges of the non-

dimensional parameters;.0.2 <. a .. <5, 102 < e < 10 2 , 10_
4
 < E < 10-1,

-4.5 < AT < 0. 5, and -100 < Ri < 2. It was found that the instability

sets in when R  is close to unity and that the critical Richardson

number, Rio , is a strong function of both a and E for the cases

considered. We extrapolated from these cases to obtain values of

Ric for the inviscid Limit, E + 0, and found that Rig, has a maximum

value close to unity for a = l. ` The general trend ©f these results

is in agreement with McIntyre (100) and for a > 1 the agreement is

very good but fora < 1 it is not so good. We should not be supri.sed

to find differences between the present and previous work because

of the differences in the basic states and other aspects of the.

models'.

20



a

we also found for fixed c that Ric decreases with in-

creasing E until a critical value of E is reached beyond which

tale fluid is stable. The principle of exchange of stability was

not assumed and growth rates were calculated. A wavelength of

maximum growth rate occuzring for small wavelengths was found.

For our model overstability was not found. Some computations were

performed for Ri < Q. xn particular,for a = 5 the growth rate

maximum occurs at about Ri = -4. No discontinuities in the growth

rates are noticeable when Ri changes sig,. This result indicates

a smooth transiton , from symmetric baroclinic instability to a con-

vective instability.
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Figure Leaend

n e3^51s

r

Figure 1. A sketch of the ,geometry of the model and the

coordinate system.

Figure 2a. The zonal velocity component of the basic state,

U, as a function of z, for three values of E.

Figure 2b. The meridional component of the basic state, V,

as a function of z, for the same values of E as

the results shown in'Figure 2a.

Figure 2c. Basic state temperature profiles, T at y - 0 for

the same values of E	 as the results shown in
Fig . 2a and for a = 1, c. = 1 and AT - 0.

Figure 3. Basic state temperature profiles, T, at y = 0 for

three values of	 AT and for a = 1, a	 1, and

E - 5 x 10-3.

Figure 4. Growth rates, Rc i , as a function of . c for different

values of ,R	 and for a = 1, AT = -0.2 and E = 10-3.

The upper abscissa shows the values of Ri corresponding

to C.

Figure S. The maximum growth rates as a function of the

meridional wave number.k., for the same conditions

as Fig. 4.

Figure 6. Neutral stability curves, c i = 0, as functions of

E and a for different values of k and for a = band

AT = -0.2.

Figure 7. The neutral stability curves of Fig. 6 as functions.

of E and Ri.
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Figure 8. Growth rates, Rc i , as a function of a for different

values of k and for a = 5, AT = -4.5 and E = 10-3.

The upper abscissa shows the values of Ri corresponding

to C.

Figure 9. The maximum growth rates as a function of k for the

same conditions as Fig. S.

Figure 10. Neutral stability curves as functions of E and Ri

for different values of R and for a = 5 and AT _ -4.5.

Figure 11. Neutral stability curves as functions of E and Ri for

different values of a 	 (> 1)	 and for k	 4.	 The

dashed lines are McIntyre ' s results.

Figure 12. Neutral stability curves as functions of E and Ri for

different values of a (< 1) and for X	 12.	 The

dashed line	 is McIntyre ' s result.

Figure 13. A comparison between the critical value of the

Richardson number, Ri c , as calculated from Eq.	 (16)

(	 ) and -the results presented in this paper

as a function of a for E =.10 -4 (^),
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During the present reporting period work was finished on extending

the Hadley Cell model to investigate the symmetric baroclinic instability

of the model: This work was written in the form of a paper which will

appear in the June 1982 issue of The Journal of The Atmospheric Sciences.

A copy of the preprint of this paper is enclosed as Appendix. At the

present work is being continued to investigate the baroclinic instability

of an inclined wave for the same Hadley Cell model.

.Also during the reporting period work has begun on the coding of a

program to solve the nonlinear baroclinic instability of an Eady model.

The basic expression technique have been established and all the theoretical

background for this work has been completed. It is anticipated the trail

runs of the program should begin in the coming months. .Initially we will

investigate the nonlinear evolution.of a wave of a single zonal wave number

and the influence of its harmonics. The nonlinear interaction of more

than one zonal wave will be investigated subsequently.
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. Abstract

A stability analysis of a thin horizontal rotating fluid

layer which is subjected to arbitrary horizontal and vertical

temperature gradients is presented. The basic state is a non-

linear Hadley cell which contains both Ekman and thermal boundary

layers; it is given in closed form. The stability analysis is

based on the linearized Navier-Stokes equations, and zonally

symmetric perturbations in the form of haves propagating in the

msridional direction are considered. Numerical methods were used

for the stability,problem. The objective of this investigation

was to extend previous worst on symmetric baroclinic instability

with a more realistic model. Hence, the study deals with flows

for which the Richardson number (based on temperature. and flow

gradients at mid-depth) is of order unity and less. The com-

putations cover ranges of Prandtl number 0.2 < a r < 5, Rossby

number 10 2 < E <10 2 and Ekman number 10 -4 < E < 10 -1 . It was found, in

agreement with previous work, that the instability sets in when

-the Richardson number is close to unity,and that the critical

Richardson number is a non-monotonic fur.c:tion of the Prandtl

number. Further, it was found , that the critical Richardson number

decreases with increasing Ekman number.until a critical value

of the Ekman number is reached beyond which the fluid is stable.

The principal of exchange of stability was not assumed and growth,

rates were calculated. A wavelength of maximum growth rate was

found. For our model overstability was not found. Some comi-

putations were performed for Richardson numbers less than zero.
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No discontinuities in growth rates are noticeable when the

Richardson number changes sign. This result indicates a

smooth transaction from symmetric baroclinic instability to a

conVective instability.
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A 1. Introduction

It is well known that statically stable baroclinic flow

can be destabli,shed by two different mechanisms. The first

occurs in what is u.,ually known as ordinary baroclinic in-

stability in which the perturbations of maximum growth rate

have a wavelength in the zonal direction and the gravest

possible structure in the meridional direction. (Charney,

1947; Eady, 1949). This instability is well understood and

has been observed experimentally (Hide and Mason, 1975). The

second occurs in what is known as symmetric baroclinic in-

stability. In this case, the instability mechanism is such

that the perturbations of maximum growth rate have meridional

structure but no zonal structure. This study is concerned with'

the latter form of instability.

Two of the earliest analyses of symmetric baroclinic instability

are those of Solberg (1936) and Kuo (1956). However, the first

definitive work is that of Stone. In e, sequence of papers,

Stone (1966, 1970, 1971) examined the stability of a parallel

baroclinic flow with respect to infinitesimal, three-dimensional

perturbations. Constant vertical shear and constant temperature

gradients were assumed and thermal and viscous diffusion effects

were neglected. Stone found that when the Richardson number,

Ri, is between 0.95 and 0.25, waves whose axes are in the zonal

direction have the maximum growth rates. Stone et al. (1969)

and Hadlock et al. (1972) attempted to observe symmetric baroclinic

instability in the laboratory, and some evidence of the predicted

t
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meridonAl structure was seen but a comprehensive experimental

study of this instability has yet to be performed.

McIntyre (1970) performed an analysis of symmetric

baroclinic instability which included both vertical and

horizontal shears and allowed for the Prandtl number, ar. The

model considered was infinite in both the horizontal and vertical

directions. McIntyre found, in the ..absence of horizontal shear,

that the maximum value of Ri at, which symmetric instability sets

in (the critical Richardson number, Ric ) is a function of v and

can be larger than 0.9.5. McIntyre also found that the most un-

stable wavelength is infinite and that both monotonic and

oscillatory instability can occur. in a related analysis,

Walton (1975) considered only vertical shear in a finite depth

fluid. When weak viscous effects are included, Walton found

that Ric is lower, for both the monotonic and oscillatory'in-

stabilities. He also found that the most rapidly growing modes

display a weak functional dependence on the diffusion coefficients

when those are asymptotically small.

Decently, Emanuel (1979) presented a detailed study of

the li 1,ar stability of symmetric perturbations in a baroclinic

flow with both horizontal and vertical shears. Retaining both

the viscous and thermal diffusivities for a vertically bounded

flow, Emanuel studied: i) hydrostatic disturbances and ii) non-

hydrostatic disturbances in a neutrally stratified fluid. He

found that for both cases the critical Richardson number depended

on both the thermal and the viscous diffusivities. He also

2

77:

77j ^

,<t

t



t

established the fact that the most unstable normal mode is

determined primarily by the depth of the unstable domain and

the slope of the i.sentropic surfaces rather than by the

diffusive properties of the fluid. Weber (1980) in a some-

what similar ;7,Aalysis, examined the symmetric instability of

a basic state with a constant vertical shear in the presence

of horizontal boundaries while taking full account of the

viscous effects for arb.teary-vertical (stable) stratification.

Although, he made the simplifying assumption of replacing the

vertical viscous and diffusive tarms in the perturbation

equations by a wave mode, his results compare favorably with

those r.^f Emanuel. It should be noted that in both of the above

studies the analyses were restrictive; Emanuel investigated only

neutral modes by invoking the principal of exchange of stability

and Weber used an approximate solution to the perturbation

equations. Emanuel'-s paper contains an excellent survey of

previous work on this problem.

Previous workers have postulated-symmetric baroclinic

instability as the cause of certain physical phenomena. Stone

(1967) conjectured that the banded structure of Jupiter's

atmosphere is due to r :his instability. Bennets and Hoskins

(1979) attributed the origin of rain bands and squall lines to

this instability. Weber (1980) suggested that the generation of

roll vortices in the oceans and the atmosphere is due to symmetric

baroclinic instability.

3
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In all of the theoretical studies cited above, the basic

state whoso stability was investigated was a postulated state

in which both the shears and the temperature gradients in the

vertical and the horizontal directions were taken to be constants

throughout the fluid.. In an experimental apparatus whose upper

and lower boundaries are stationary, such a basic state is a

good approximation in the interior of the fluid only; it is not

a good approximation near the boundaries, especially when the

Ekman number is not vanishingly small. in the study, presented.

in this ' paper, a fluid contained between two horizontal plates

of infinite extent is considered and the influence of the Ekman

and the thermal layers on symmetric baroclinic instability is

investigated. The analysis uses a realistic basic . state which is

obtained through the solution of the governing nonlinear equations of

motion for abitrary external forcings, e.g., the Ekman number,

the vertical stratification, etc. This basic state was used

in a recent paper by the authors in an investigation of ordinary

baroclinic instability ( see Antar and Fowlis, 1981).

It is obvious that if a direct analog o ,f a laboratory ex-

periment is required,then this model .is not sufficient since it

does not allow for the side walls and the side layers. In a

recent'study Quon (1980, 1981) simulated labo ratory conditions

for the onset of symmetric baroclinic instability through the

numerical solution of the full Navier-Stokes, energy equations

for.the flow in a cylindrical differentially heated, rotating

annulus. Although such an -:analysis is of great value in.modeling

4
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the true experimental conditions, the amount of computer time

required for the calculation of each case precludes a thorough

probing of the parameter space for the criteria for the onset

of the instability. it is our opinion that the present study

fills a needed gap between the constant shear, constant tem-

perature gradients analyses discussed earlier and that of the

exact solution of Quon .

The basic state model is reviewed in Section 2. The

perturbation equations for the symmetric instability and their

method of solution are presented in Section 3. In Section 4

we discuss the results of the present analysis and

how they compare with the previous work. our conclusions

are presented in Section 5.
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2. The Basic State

The basic state used in the present stability analysis

is identical to that used in the work of Altar and Fowlis (1981)

(hereinafter referred to as I). This model is described only

briefly here; for further details and justifications, the

reader is referred to I. We,consider a Boussinesq fluid confined

between two horizontal plates which are set a distance, d, apart.

The coordinate system used is rectangular Cartesian with axes

(x,y,z) corresponding to the eastward, northward and vertical•

direct.ons,respectively, and with the ozigin midway between the

plates. A sketch of the model is shown in Fig. 1. The plates

are assumed to extend to infinity in the x-direction and to

large distances in the y-direction. The plates and the fluid

.are taken * tee rotate , as a whole 'about* the vertical axis with a
constant angular velocity, n. A temperature gradient in which

the temperature decreases linearly in they-direction is main-

tained on both plates. To assure that the vertical stratification,

and hence the Richardson number, is arbitrary and externally

fixed, the temperatures of the upper and lower places are set to

differ uniformly .by a constant amount' aT for all (x,y).

The velocity and temperature fields are governed by the

Navier-Stokes, energy and mass conservation equations. Under the

conditions assumed here for the basic,two-dimensional, steady

state, these equations, in a rotating reference frame, reduce to

the following set:

w
b
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R V

-2V = Ea 2 U/az 2 ,	 ( 1)

2U = Ea 2 v/az 2 - ap/ ay ,	 ( 2)

VaT/ay = (E/ae) a 2 T/az 2 ,	 ( 3)

T = ap/az,	 (4)

where Y is the velocity vector (U,V), p is the pressure, T is

the temperature and

e	 agy/Sts

E = v/Std2,

CT	 v /rc,

are a thermal Rossby number, the Ekman number and the Prandtl

number, respectively. In Eqs. (l)-(4), length, time, velocity

and, temperature have •been made dimensionless using d, St'l,

a gd Y/n, and yd, where a is the coefficient of thermal expansion,

y is the imposed horizontal temperature gradient and g is gravity.

The main assumptions used in arriving at Eqs. (1)-(4) are that

, the vertical velocity component, 'W, is negligible and that

aT/ay =''Y throughout the region of interest, (see I).

The solution of the system (l)-(4) which is consistent

with the no slip and perfectly conducting conditions at the solid

boundaries,i.e.,

U	 V= Q, T=±QT/2-y P. z =+1/2, 	 (5)

is given by

..0 (z) _ - f(z)/8  + z/2 ,	
(6)

7
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V(z)	 g ( z)/8,	 (7)	 .
^I

T(y.z) _ -y + zAT + ca 12z - f (z)) /8,	 (g)

where

f(z) _ (coshR(z+1/2)cosR(z-1/2) 	 coshR(z-1/2)cosR(a+1/2)1/h(R),

g(z) _ [sinhR(z+1/2)sinR(z- ,1,/2) - sinhR ( z-1/2)sinR ( z+1/2)1/h(R),

= sinh = ( R/2)	 + sin2 (R/2),

R E-1/2.

The velocity and temperature profiles given by (6)-(8) are

shown in Fig. 2 for different values B, c, a, and AT. The'

limits of applicability of this model are discussed In I.
.	 a
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3. The Perturbation Equations

The instability problem is tackled by imposing perturba-

tions on the basic state presented above. Since we are concerned

with symmetric perturbations, the perturbation functions will be

proportional to exp [ik(y ct)) which represents a wave with

meridional wavenumber t propagating in the meridional direction with

speed c. Introducing the perturbations into the Navier-Stokes,

energy and mass conservation"equati.ons and upon linearizing the

perturbation equations we obtain the following equations for the

perturbation functions.

E(D2_k2)zw + ik[(c-eV) (D2-k2)w + ewD2V)-2ikDu-k26	 0,	 (9)

E(D2 -k 2 ) u + it (c-cV") u-cwDU - l Dw = 0,	 (10)

E(D2 -k 2 ) e + ilia (c-eV) a	 aDw - cawDT = 0,	 (11)

iku'+ Dw = 0,	 (12)

where

D = d/dz.

In the above the perturbation _velocity is X = (u,v',w) and e

is-the perturbation temperature. Note that the perturbation

equations are not hydrostatic.

To complete the specification of the problem, the following

boundary conditions are imposed on the perturbation functions.

u = w = Dw = e = 0 @ z = + 1/2.	 (13)

9
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The perturbation problem as pose.: con s,,itutes an eigen-
t	

valueroblem. We take R to be real and c = c + ic iP	 r 

to be complex, where c  denotes the propagation speed and ci,

the growth rate. Monotonic instability occurs for c i > 0 while

c  = 0, whereas overstability occurs for c i 0 while c  # 0.

It is tempting at this stage to invoke the principle of exchange

of stability and to set c  = c i = 0 and hence look for neutral

modes alone and reduce the number of parameters involved. Emanuel

(1979) adoptled this procedure. However, since McIntyre (1970)

had established that for his model (see Section 1) oscillatory

instability exists, it was decided to leave c  and c i as eigen-

values of the problem. Using this method the analysis will allow

us to compute growth rater and to determine if overstability

exists.

The solution to the problem (9) - (13) is obtained through

numerical integration of the full eighth-order differential

system. This procedure was necessary because the coefficients

in the equations (i.e.,the basic state) are functions of the-

height, i. If we wish to account fully for the 9kman and thermal

layers, the solution cannot be obtained in a closed form.. Note,

that if the basic state profiles had been taken to be linear in z,

as was done in most .9f the previous work on the symmetric baroclinic

instability problem, then the set of governing equations would

reduce to a differential system with constant coefficients whose

solution could.'be determined in a closed form.

10
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The numerical solution was obtained using the shooting

technique. The code was identical to the one used in I t and

more details of the numerical work are given in I. Briefly, the

shooting technique was enhanced with the orthonormalization

method,allowing the stability analysis to.be  performed even	 f

when the Erman number is very small. A Newton-Raphson method

was implemented for convergence on the eigenvalues, and an eighth-

order Runge-Kutta method was used for the integration of the

initial value problem.

11 -
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4. Results and Discussion

The results which follow constitute the solution of the

eigenvalue problem posed by equations (9) - (11) with the

boundary conditions (13) for prescribed values of the

parameters. 'The parameters of the problem which appear ex-

plicitly in the equations are, e, the thermal Rossby number

E, the Ekman number, a, the Prandtl number, AT, the imposed

vertical temperature difference, and L and c, the wavenumber

and wave speed, respectively. Note that the first four

parameters appear in the basic state as well as the perturbation

equations, but the last two belong to the stability problem

alone.

As was discussed in Section 1, the Richardson number plays

a significant role in the symmetric barocl`nic instability problem.

While this number does not appear explicitly in our formulation

of the basic state,it may be defined using the parameters which

do appear explicitly. The Richardson number is defined by

Ri ^= a aT*
/az*

(au* az*)-z-	 (14)

where aT*/az* and 8U*/az* are the dimensional basic state tem-

perature and zonal flow gradients, respectively. It is obvious

from this definition and from expressions (6) - (8) that for the

present model Ri is not a ,constant but is a function of z. We-

may define a "bulk" Richardson number by the value of Ri at

mid-depth between the horizontal plates, viz,

12 .
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BT*/8z*Rib =ag (U* z*) 2 z=0

In all of the subsequent discussion,Rib will be used instead

of Ri and the subscript b will be dropped. We shall see that

this definition is not only convenient, but it has dynamical sig-

nificance in this problem. Substituting the temperature and

velocity gradients for the basic state, expressions (6) and

(8), respectively, into the above definition we obtain,

Ri = e ( 0T + 4 )	
(15)

which is a constant and defined exclusively by the kiasic state.

The above definition shows that Ri is a function of the

explicit parameters of-the prob.16.' This relationship , was used

when choosing values of e, AT and a for each eigenvalue search

in order to be sure that -we were within the correct range of Ri

for instability. Stone (1970) and McIntyre (1970) showed that

symmetric baroclinic instability occurs for Ri close to unity,

(see Section 1). The above definition indicates that for a

given value of a, there is a range Pf. a and of AT for which -the

critical value of Ri is achieved.

For 9=1, expression (15) specifies that AT must be less

than zero to obtain the desired range of values of Ri for in-

stability regardless of the value of E. However, setting ATE 0

arbitiarily could lead to an unstable vertical stratification

r
f
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in the interior and hence a negative value of Ri. Instabilities

occuring under the above conditions with negative Ri are not

classed as symmetric baroclinic instabilities and are outside

the range of interest of this paper. Such instab,..lities

have been discussed by Hathaway et al. (1979,1980). To obtain symmet"•a.

baroclinic *nstability for a=l, AT must be set negative with the

additional constraint of 14 AT/El <_l,, Clearly, there exists

a. range of values AT which satisfies these two criteria. We decided
to proceed with AT = -0.2 for a - 1. Fig. 3 shows that this

value of AT keeps the interior vertical stratification stable.

The above arguments reveal that the correct choice of AT for

symmetric instability is a delicate matter and depends strongly

on a. Expression (15) should be of great value in guiding ex-

perimental-searches for symmetric baroclinic instability in the

laboratory.

Fig. 4 shows the growth rates for different values of the

meridional wavenumber, k; as a function of a for E - 10 -3 , AT =

-0.2 and a = 1. Note the existence of unstable modes over a

finite range of e. This feature resembles the growth rate

properties of ordinary baroclinic instability. The unstable

region in E is bounded by two stable regions, one in which Ri is

close to unity and the other in which Ri is small or negative

(Ri = 1 - 0.80.

Fig. 4 also shows that as E varies,the growth rate has a

maximum value for a specific value of the wavenumber. Fig. 5,

which-is for the same values of the parameters as the results in

14



Fig. 4, is a plot of the maximum growth rate for eac.% wavenumber

versus wavenumber. The greatest growth rate occurs for about

X = 10.F This result is at variance with the findings of Stone

(1970) 0 who found that the maximum growth rate is achieved as

k + W , and McIntyre (1970), who found that it is achieved as

2 + 0. However, since both of these previous studies are for

essentially inviscid flow, it is concluded that including the

viscous effects determines the wavelength of maximum growth rate

for the symmetric baroclinic instability problem.

Figure 6, which is for the same values of the parameters as

the results in Figs. 4 and 5, shows neutral stability curves in

the (E - e) number plane for three different wavenumbers. A sia-

nificant feature of these curves is the existence of the maximum

(critical) value of E'above which all modes are stable. Another

feature is the existence of two stable regions, or two branches of

the neutral.. stability curves, for all values of E smaller than the

mode critical values. Note that these curves are loci of points

for which c. = 0. For all the modes shown in this figure -andi
those in the previous and subsequent figures, the value of the wave

speed, cr , was always found to be zero indicating that these are

monotonic instability modes and that the principle of exchange of

stability holds for this problem. ,Throughout this work we did

not find any oscillatory unstable modes. Thus, it is doubtful if

ov^rstability exists for 'the present problem.

The curves in the upper portion of Fig. 6 indicate -that

e -► m as E -+ 0 for all of the wavenumbers shown. To observe this

15



criterion in terms of Ri, the neutral curves of Fig. 6 are plotted

again in the (E-Ri) plane in Fig. 7. Fig. 7 shows that as E ,► 01

the upper branches of the curvem approach Ri - 1 for all wave-

lengths and that the region of instability increases with in-

creasing wavenumber. Weber (1980), in his model for symmetric

baroclini.c instability (see Section 1), found the critical value

of Ri, Ric , to be a monotonically decreasing function of E as the

latter increases from zero. The results in Fig. 7 show that this

/ fundamental dependence is correct up to the value of Ec , but above

that value there is a region of absolute stability regardless of

the value of Ri. We believe that the existence of E  is due to

the accurate inclusion of the viscous-and thermal diffusive effects

in our model. None of the previous work included both of

these effects properly.

To investigate the effects of the Prandtl number on the

stability criteria discussed above, we proceeded to find solutions

for a	 5. As was discussed earlier, -changing the value of a

necessitates a search for the appropriate value of the vertical

temperature difference, AT, such that Ri is in the proper range

for symmetric baroclinic instability,. The value chosen for c = 5

was AT _ -4.5, which allows Ri to be in the vicinity of unity

(Ri = 5 18/c). Fig. 8-shows the growth rates as a function of

e for the above values of a and AT and for E = 10 -3 . Again, it

is seen that the unstable modes separate two stables regions

in .e (or Ri). Fig. 8 shows that the maximum growth rate increases

with increasing wavenumber, 4. In fact, the total range of

16
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'	 instability increases with R. Note than the upper bound of

instability in a first increases With increasing wave numbers

up to Z = 4 and then decreases reaching an asymptotic value of

s - 4.55 for R y 6 which corresponds to Ri = 1 for the parameters

used. Another feature, which is d ifferent from the a = 1 case,

is that the maximum cr, ,th rates occur for approximately the same

value of a for r_- the wavenumbers shown. For this case this

value of s translates to a value of Ri - 41

Fig. 9, which is for the same values of the parameters as

the results in Fig. 8, shoots the variation of the maximum growth

rates as a function of the wavenumber, Z. This figure . reveals

that there is still a wavenumber of greatest growth rate which

occurs about k = 13.5. However, the decrease in the growth

rate is much smaller for wavenumbers above the maximum value

t
	

than it is for the a	 1 results (see Fig. 5).

The neutral stability curves in the (E - Ki) p'A.:,nc are

shown in Fig. 10 for k = 1 and 4. In this figure only the positive

part of the Ri range is shown. Note that there are two values of

Ric as E + O,each corresponding to one wavenumber, and that the

range of instability is much larger for k 4 than 'ghat for P, _ 1

To appreciate more fully the influence of the Prandtl

number on the symmetric instab.ity criteria, Fig. 11 which shows

the neutral stability curves for 4 = 4 in the (E - Ri) plane for

a	 1 ( AT	 -0.2), a = 2 (QT = -1.5) and a	 5 (QT	 -4.5) was

17

7a	
.



F	
Y

I

}
prepared. Except for a = 1, only the upper branches of the

curves appear for Ri > 0. All the curvets shown tend to specific

asymptotic values of Ri c as E -o-0. For a = it the asymptotic

value of Ric is close to l,while for a 2 and 5, the asymptotic

values are close to 1.075 and 1.695 respectively. The latter

two values are significantly greater than 1•. Thus, the trend

for the asymptotic value of Ri c is ,o increase with increasing

a for a > 1. This fundamental deper;.+,tt:.^nci, is in agreement with

work of McIntyre. ;1970), although his model is somewhat different

from the model being considered here (see Section 1). McIntyre

found that the asymptotic value of Ri c is given by

(1Ri	 + a)2 	
(16)c	 4a

For a = 1, 2, and 5, this relationship yields values of Ri c. of l,.'

1.125 and 1.8,respectively. These values are close to the values

found from Fig. 11.

Fig. 11 also shows that a;s a increases,the whole region

of instability is markedly increased. The value of E c increases

drastically as a is increased but there is no observat .le difference

in the values of E  for a = 2 and 5.

Next, we present resalts for a < 1. Again,the values for

AT were chosen such that the range of Ri includes unity and values

less than unity. Expression (15) indicates that when a < 1 and

AT < 0, the maximum possible value for Ri is a and thvGt she range

does riot include unity. However, when a < 1 and-AT > 0, values of

h

	 Ri can'be obtained which are both greater and less than unity.' We

proceeded with AT > 0.
18
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Fig. 12 shows the neutral stability curves in the (E - Ri)

plane for a = 0.5 (AT 	 0.2) and a = 0.2 (AT s 0.5). The curves

are for t = 12, the value which yielded the maximum value for

RiC ^1en all the other parameters were held fixed. Again,the

values for Ric are seen to increase to specific asymptotic values

as E + 0. Note that the tendency to an asymptote is not as evident

for a	 0.5 as it is For a = 0.2.---The main features of Fig. 12

are the * decrease in the value of Ri c and the decrease in the-total

instability area as a increases to unity. The results also in-

dicate an increase in Ec with increasing a.

Fig. 12 gives the values of Ri c at E = 10-4 for a	 0.5

and 0 . 2 as 0.946 and 1.21, respectively. pig. 13 is a comparison

of all our results for the largest asymptotic (E 10 -4 )• values

bf Ric with McIntyre's results as a function of a. The dots are

our results and the continuous curve is a plot of expression (16).

Note that McIntyre ' s criterion yields a symmetric dependence of

Ric as a function of a about a 1. The results of the present

study agree well with McIntyre for a > 1 but give lower values

for Ric for a < 1.

ri
ii

t

'd

19

{

t



OROr A	
} " r • ^c)

OF POOR QUALITY

5. Conclusions

The stability of a nonlinear rotating iQ:tey cell has

been examined with respect to symmetric perturbations. This

Hadley cell was derived previously (see I) and contains both

Ekman and thermal boundary layers. The stability analysis is

based on the Navier-Stokes equations and considers infinitesimal

waves with vertical;, and meridional structure but no zonal structure.

The stability analysis was performed numerically. For examining

the parametric behavior of symmetric baroclinic instability, the

work is an improvement over all previous work since a realistic

basic state is used and since the stability analysis includes

both viscous and thermal diffusion effects.

The computations cover the following ranges of the non-

dimensional parame.ters; •. 0.2 < Q <5, 102 <. e < 10 2 , 10 -4 < E < 10-1,

-4.5 < AT < 0. 5, and -100 < Ri < 2. It was found that the instability

sets in when R  is close to unity and that the critical Richardson

number, Ric , is a strong function of both a.and E for the cases

considered. We extrariolated from these cases to obtain values of

Ric for the invisc'd limit, E -+ 0, and found that Ri d has a maxim=

value close to '4nity for a = 1.' The general trend of these results

is in agreement with McIntyre (19?0) and for a > 1 the agreement is

very good bi4t fora < 1 it is not so good. we should not be suprised

to find diiferences between the present and previous work because

of the differences in the basic.states and rather aspects of the•

model s`.
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we also found for fixed a that Ric decreases with in-

creasing E until a critical value of E is reached beyond which

the fluid is stable. The principle of exchange of stability was

not assumed and growth rates were calculated. A wavelength of

maximum growth rate occurring for small wavelengths was found.

For our model overstability was not found. Some computations were

performed for Ri < 0. In particular,for o = 5 the growth rate

maximum occurs at about Ri = -4. No discontinuities in the growth

rates are noticeable when Ri changes sign. This result indicates

a smooth transition . from symmetric baroclinic instability to a con-

vective instability.
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Figure Legend

Figure 1. A sketch of the geometry of the model and the

coordinate system.

Figure 2a. The zonal velocity component of the basic state,

U, as a function of z, for three values of E.

Figure 2b. The meridional component of the basic state, V,

as a function of z, for the same values of E as

the results shown iri"Figure 2a.

Figure 2c. Basic state temperature profiles, T at y = 0 for

the same values of E	 as the results shown in

Fig . 2a and for a = 1, 	 e.= 1 and AT = 0.

Figure 3. Basic state temperature profiles, T, at y = 0 for

three values of	 AT and for c = 1, e = 1, and

E	 5 x.10-3.

Figure 4. Growth rates, ic i , as a function of c for different

values of •i	 and for a = 1, AT = -0.2 and E = 10-3.

The upper abscissa shows the values of Ri corresponding

to C.

Figure S. The maximum growth rates as a function of the

meridional wave number-k, for the same conditions

as Fig. 4.

Figure 6. Neutral stability curves, c i = 0, as functions of

E and c for different values of k and for a = 1 and

AT = -0.2.

Figure 7. The neutral stability curves of Fig. 6 as functions,

of E and Ri.
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Figure 8. 'Growth rates, kc i , as a function of a for different
,

values of k and for o - 5, AT = -4.5 and E = 10-3.

The upper abscissa shows the values of Ri corresponding

to e. u

Figure 9. The maximum growth rates as a function of k for the

same conditions as Fig. B.

Figure 10. Neutral stability curves as functions of E and Ri

for different values of k and for a = 5 and AT = -4.5.

Figure 11. Neutral stability curves as functions of E and Ri for

different values of a (> 1) and for k 4.	 The

dashed lines are McIntyre's results.

Figure 12. Neutral stability curves as functions of E and Ri for

different values of a (< 1) and for k = 12.	 The

dashed line	 is McIntyre's result.

Figure 13. A comparison between the critical value of the

Richardson number, Ri c , as calculated from Eq.	 (16)

{	 ') and the results presented in this paper

as a function o.f a for E =,10 -4 (^),
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