General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



(NASA-CR-162048) THEORETICAL ANALYSES OF

t, 1 hug.
LINIC FLOWS Quarterly Report, ]
?gggcf 31 May 1982 (Tennessee Univ. Space

40C F A01
inst., Tullahoma.) 91 p 4C AO5/M CSCL 20D G3/34

University of Tennessee
Space Institute

Tullahoma, Tennessee 37388
May 24, 1982

"Theoretical Analyses of Baroclinic Flows"

Reporting Period
August 1, 1981 - May 31, 1982

. Quarterly Reports Nos. 5-7
Contract NAS8-33386

Dr. Basil Antar, Principal Investigator

Prepared for George C. Marsha]l‘Space Flight Center
Marshall Space Flight Center, Alabama 35872

E 4

N82-29560

Unclas
30231

e sty e e e s A R A S

I

§
3
f
+
14




Y

Ryring the present reporting period work was finished on extending
the Hadley Cell model to investigate the symmetric baroclinic instability
of the model. This work was written in the form of a paper which will
appear in the June 1982 issue of The Journal of The Atmospheric Sciences.
A copy of the preprint of this paper is enclosed as Appendix. At the
present work is being continued to investigate the baroclinic instability
of an inclined wave for the same HadlgyVQell model .

.Also during the reporting period work has begun on the coding of a
program to solve the nonlinear baroclinic instability of an Eady model.
The basic expression technique have been éstablished and all the theoretical
background for this work has been completed. It is anticipated the trail
runs of the program should begin in the‘coming months. Initially we will
investigate the nonlinear evolution of a wave of a single zonal wave number
and the influence of its hdrmonics. The nonlinear interaction of more

than one zonal wave will be investigated subsequently.
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Abstract

A stability analysis of a thin horizontal rotating f£luid
layer which is subjected to arbitrary horizontal and vertical
temperature gradients is presented. The basic state is a non-
linear Hadley cell which contains pboth Ekman and thermal boundary
layers; it is given in closed form. The stabiiity analysis is
based on the linearized Navier-Stokes equations, and zonally
symmetric perturbations in the form of waves propagating in the
meridional direction are considered. Numerical methods were used
for the stability,problem. The objective of this investigation
was to extend previous work on symmetric baroclinic instability
with & more realistic model. Hence, the.study deals with flows
fér wh;ch the Richar@son number.(bgséd on ‘temperature. angd flow
giadients at mid-depth) is of order unity and less, The com=-
puﬁations cover ranges of Prandtl number 0.2 < o < 5, Rossby

4 1

number]if% < e <10 2 and Ekman number 10° . It was foung, in

<E< 107
agreement with previous work, that the instability sets in when
~the'Richardson number is close to unity,and that the critiéal
Richardson number is a non-monotonic function of the Prandtl
number. Further, it was found that the critical Richardson number
decreases with increasing Ekman number. until a critical value

of the Ekman number is reached be?ond which the fluid is stable.
The principal of exchange of stability was not assumed and growth.
. rates were calculated. A waveleﬁéth of maximum growth rate was

found. For our model overstability was not found. Some com-

putations were performed for Richardson numbers less than zero.
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No discontinuities in growth rates are noticeable when the

Richardson number changes sign. This result indicates a

smooth transition from symmetric baroclinic instability to a

convective instability.
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l. Introduction

It is well known that statically stable baroclinic flow
can be destablished by two different mechanisms. The first
occurs in what is usually known as ordinary baroclinic in-
stability in which the perturbations of maximum growth rate
have a wavelength in the zonal direction and the gravest
possible structure in the meridional direction. (Charney,
1947; Eady, 1949). This iﬁé%ability is well understcod and
has been observed experimentally (Hide and Mason, 1975). The
second occurs in what is known as symmetric baroclinic in-
stability. In this case, the instability mecharism is such

that the perturbations of maximum growth rate have meridional

structure but no zonal structure. This study is concerned with

the latter form of instability.

Two of the earliest analyses of symmetric baroclinic instability
are those of Solberg (1936) and Kuo (1956). However, the first

definitive work is that of Stone. In a sequence of papers,

A e e AR AR 3

Stone (1966, 1970, 1971) examined the stability of a parallel i
baroclinic flow with respect to infinitesimal, three-dimensional

perturbations. Constant vertical shear and constant temperature

gradients were assumed and thermal and viscous diffusion effects
were neglected. Stone found that when the Richardson number,

Ri, is between 0.95 and 0.25, waves whose axes are in the zconal

. direction have the maximum growth rates. Stone et al. (1969)
and Hadlock et al. (1972) attempted to observe symmgtric biroclinic

inétability in the laboratory, and some evidence of the predicted
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meridional structure was seen but a comprehensive experimental
study of this instability has yet to be performed.

McIntyre (1979) performed an analysis of symmetric
baroclinic instability which included both vertical and
horizontal shears and alloﬁed for the Prandtl number, ¢. The
model considered was infinite in both the horizontal and vertical
directions. McIntyre found, in E&gﬁabsence of horizontal shear,
that the maximum value of Ri at which symmetric instability sets
in (the critical Richardson number, Ri ) is a function of o and
can be larger than 0.95. McIntyre also found that the most un;
stable wavelength is infinite and that both monotonic and
oscillatory instability can occur.. In a related analysis,
Walton (1975) considered only vertical shear in a finite depth
flﬁid.‘ When weak'viscous'effécts are included, Walﬁon found -
that Ric is lower for both the monotonic and oscillatory in-
stabilities. He also found that the most rapidly growing modes
display a weak functional dependence on the diffusion coefficients
when those are asymptotically small.

Recently, Emanuel (1979) presented & detailed study of
the linear stability of symmetric'éérturbations in a ba}oclinic
flow with both horizontal and vertical shears. Retaining both
thé viscous and thermgl diffusivities for a vertically bounded
flow, Emanuel studied: 1i) hydrostatic disturbances and ii) non-

hydrostatic disturbances in a neutrally stratified fluid. He

'founé that for both cases the critical Richardson number depended

on both the thermal and the viscous diffusivities. He also
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established the fact that the most unstable normal mode is
determined primarily by the depth of the unstable domain and
the slope of the isentropic surfaces rather than by the
diffusive properties of the fluid. Weber (1980) in a some- '
what similar analysis, examined the symmetric instability of
a basic state with a constant vertical shear in the presence ?
of horizontal boundaries while taking full account of the ' h
viscous effects for arbitrary'vertical (stable) stratification. :
Although, he made the simplifying assumption of replacing the
vertical viscous and diffusive terms in the perturbation
equations by a wave mode,.his results compare favorably with §
those of Emanuel. It should be noted that in both of the above _§
studies the »analys'es were restrictive; Emanuei 'inves_t,igated only ’ ;
neutral modes By invoking the principal of exchange of stability @
and Weber used an approximate solution to the perturbation 3
equations. Emanuel's paper contains an excellent survey of
previous work on this problem.
| Previous workers have pogtulated*symmetric baroclinic :
instability as the cause of certa?n physical phenomena. Stone 5
(1967) conjectured that the banded structure of Jupiter's . i%
’atmosphere is due to, this instability. Bennets and Hoskins ' ﬁi
(1979) attributed the origin of rain bands and squall lines to i %
this instability. Weber (1980) suggested that the generation of

roll vortices in the oceans and the atmbsphere is due to symmetrig

baroclinic instability.

o
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In all of the theoretical studies cited above, the basic
state whose stability was investigated was a postulated state
in which both the shears and the temperature gradients in the
vertical and the horizontal direcfions were taken to be constants
thryoughout the fluid. 1In an experimental apparatus whose upper
and lower boundaries are stationary, such a basic state is a
good approximation in the interior of the fluid oﬂiy; it is not
a good approximation near the boundafiés,especially when the
Ekman rumber is not vanishinglyigﬁéii In the study, presentedf
in this paper, a fluid contained between two horizontal plates
of infinite extent is considered and the influence of the Ekman
ané the thermal layers on symmetric baroclinic instability is
investigated. The analysis uses a realistic basic state which is
obtained through the solptiqn of the governing nonlinear_equatioqs'of
motion for abitra;ylexternal forcings, e.g. the Ekm:n number,
the vertical stratification, etc. This basic state was used
in a fecent paper by the aythors in an investigation of ordinary
béroclinic instability (see Antar and Fowlis, 1951).

It is obvious that if a d;rect énalog of a laboratory ex~
periment is required, then this mcdel is not sufficient since it
éoes not allow for the side walls and the side layers. 1In a
recent ‘study Quon (1980, 1981) simulated laboratory conditions
for the onset of symmetric baroclinic instability through the
numerical solution of t@e full Navier?Stokes, energy equations
for .the flow in a cylindrical differeﬁtially heated, rotating

annulus. Although such an analysis is of great value in.modeling
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the true experimental conditions, the amount of gomputer time

required for the calculation of each case precludes a thorough
probing of the parameter space for the criteria for the onset

of the instability. It is our opinion that the present study

fills a needed gap between the constant shear, constant tem-

perature gradients analyses discussed earlier and that of the

exact solution of Quon. s

The basic state model is reviewed in Section 2. The
perturbation equations for the symmetric instability and their
method of solution are presented in Section 3. In Section 4
we discuss the results cf thé present analysis and
how they compare with the previous work. Our conclusions

are presented in Section 5.

e

sty




2. The Basic State

The basic state used in the present stability analysis
is identical to that used in the work of Antar and Fowlis (1981)
(hereinafter referred to as I). This model is described only
briefly here; for further details and justifications, the
reader is referred to I. We consider a Boussinesq fluid confined
between two horizontal plates which are set a distance, 4, apart,
The coordinate system used ia’rgqgggéular Cartesian with axes
(x,y,2) correéponding to the eastward, northward and veﬁtical-'
directions, respectively, and with the origin midway between the
plates. A sketch of the model is shown in Fig. 1. The plates
are assumed to extend to infinity in the x-direction and to
large distances in the y-direction. The plates and the fluid
are taken to rotate as a whole about the vertical axis with a

constant angular velocity, . A temperature gradient in which

the temperature decreases linearly in the y-directcion is main-

tained on both plates. To assure that the vertical stratification,

and hence the Richardson number, is arbitrary and externally -

fixed, the temperatures of the. upper and lower plates are set to

. differ uniformly by a constant amount’ AT for all (x,y).

The velocity and temperature fields are governed by the
Naviér—Stokes, energy aﬂd mass conservation equations. Under the
conditions assumed here for the basic, two-dimensional, steady
state, these equations, in a rotatihg reference frame, reduce‘to

the following set:
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-2V = E3%U/9z?, (1)
2U = E3%v/%z® - 3p/dy, (2)
vaT/sy = (E/oe) 827/dz%, : (3)

T = 3p/dz, _ (4)

where ¥ is the velocity vector (U,V), p is the pressure, T is
the remperature and

e = agy/e?

E = v/Qd?,

g = V,/K.[
are a thermal Rossby number, the Ekman number and the Prandtl
number, respectively. In Egs. (1)-(4), length, time, velocity
and temperature have been made dim@hsionless using d,197l,
» gd y/Q, and yd, where a is tlie coefficient of thermal expansion,
v i5 the imposed horizontal temperature gradient and g is gravity.

v

The main assumptions used in arriving at Egs. (l)-(4) are that

.the vertical velocity compeonent, W, is negligible and that

9T/3y ==y throughout ths region of interest, (see I).
The solution of the system (1)-(4) which is consistent
with the no slip and perfectly conducting conditions at the solid
bg¢undaries, i.e., '
U=V=0, T=+A4T/2-y @z =+ 1/2, (5)
is given by

-0 (2) = - f(z)/a + z2/2 , " (6)

i 2
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v(z) = g(z)/8, (7)
T{y.,z) = -y + ZAT + eo0[2z - £(2)])/8, (8)
where

f(z) = [coshR(z+l/2)cosR(z-1/2) -~ coshR(z~1/2)cosR(z+1/2)1/h(R),

g(z) = [siphR(z+1/2)sinR(z-1/2) - sinhR(z-l/Z)sinR(z+l/2)]/h(R),

h(R) = sinh®‘R/2) + sin?(R/2),

R = E"Y/2,

The velocity and temperature profiles given by (6)-(8) are
shown in Fig. 2 for different values E, €, o, and AT. The

limits of applicability of this model are discussed in I.

B




o« AR

ORIGINAL PAGE IS
OF POOR QUALITY

3. Thé Ferturbation Equations

The instability proixlem is tackled by imposing perturba-
tions on the basic state presented above. Since we are concerned
with symmetric perturbations, the perturbation functionswill be

proportional to exp {i2 (y - ct)] which represents a wave with

meridional wavenumber £ propagating in the meridional direction with

speed ¢. Introducing the perturbations into the Navier-Stokes,
energy and mass conservation ‘equations and upon linearizing the
perturbation equations we obtain the following equations for the

perturbation functions.

E(D’-iz)zw + i%[(c-eV) (D?*-2%)w + ewD?V]-2iDu-2%g = 0, (9)
E(szzz) u+ if (c-FV)'u-;wDU - %} bw = 0, ‘ ' (10)
E(D2-2%) & + ifo (;:-eV)' 6 - %“.Ecrow'- eowDT = 0, . (11)
ifu'+ Dw = 0, (12)
where

D = d/d4z.

in the above the verturbation velocity is X = (u,v,w) and é
is.the perturbation temperatufe. Note that the perturbation
equaiions are not hydrdétatic.

To complete the specification of the problem, the following

boundary conditions are imposed on the perturbation functions.

U=w=Dw=06=0@z=+1/2, (13)

T
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The perturbation probliem as posel constitutes an eigen-
value problem. We take & to be real and ¢ = ¢, + ici
to be complex, where . denotes the propagation speed andvci,
the growth rate. Monotonic instability occurs for ci > 0 while
c, = 0, whereas overstability occurs for c; = 0 while c, ¥ 0.

It is tempting at this séage to invoke the principle of exchange

of stability and to set c,. = ¢

i = 0 and hence look for neutral

modes alone and reduce the number of parameters involved. Emanuel
(1979) adopted this procedure. However, since McIntyre (1970)

had established that for his model (see Section 1) oscillatory
instability exists, ﬁt was decided to leave c, and c; as eigen-
values of the problem. Using this method the analysis will allow

us to compute growth rates and to determine if overstability

.exists,

The solution to the problem (9) - (13) is obtained through
numerical integration of the full eighth-~order differential
system. This procedure was necessary because the coefficients
in the equations (i.e., the basic state) are functions of the:
height, z. If we wish to account fully for the Ekman and thermal
layers, the solutioii cannot be opEained in a closed form. Note,
that if the basic state profiles h;d been taken to be linear in z,
as was done in most of the previous wérk'on the symmetric baroclinic
instability problem, then the set of governing equations would
reduce to a differential system with constant coefficients whosé

solution could.be determined in a closed form.

10
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The numerical solution was obtained using the shooting
technique. The code was identical to the one used in I, and
more details of the numerical work are given in I« Briefly, the
shooting technique was enhanced with the orthonormalization

method, allowing the stability analysis to .be performed even

when the Ekman number is very small. A Newton-Raphson method

was implemented for convergence on the eigenvalues, and an eighth-

order Runge-Kutta method was used for the integration of the

initial value problem.

11
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4. Results and Discussiqn

The results which follow constitute the solution of the
eigenvalue problem posed by equations (9) = (11) with the
boundary conditions (13) for prescribed values of the
parameters. The parameters of the problem which appear ex-~
plicitly in the equations are, €, the therﬁal Rossby number
E, the Ekman number, o, the Prandtl number, AT, the imposed
vertical temperature difference, and & and ¢, the wavenumber
and wave speed, respectively. Note that the first four
parameters appear in the basic state as well as the perturbation
equation;, but the last two belong to the stability problem

alone.

As was discussed in Section 1, the ﬁichardson number plays

a significant role in the symmetric baroclinic instability problem.

While this number does not appear explicitly in our formulation
of the basic state, it may be defined using the parameters which

do appear explicitly. The Richardson number is defined by

S |
where 3T*/3z* and 3U*/3z* are the dimensional basic state tem-
perature and zonal flow gradients, respectively. It is obvious
from this definition and from expre;sions (6) - (8) that for the
present model Ri is not a constant but is a function of z. We:*
may define a "bulk" Richardson number by the value of Ri at

mid-depth between the horizontal plates, viz,

NG
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1 Rip = &9 (50%/5z%) 2|z = 0 .
In all of the subsequent éiscussion,Rib will be used instead
of Ri and the subscript b will be dropped. We shall see that

+  this definition is not only convenient, but it has dynamical sig=-

nificance in this problem. Substituting the temperature and
velocity gradients for the basic state, expressions (6) and

(8) , respectively, into the above definition we obtain,

ma
S
3
+
Q
m

Ri = T) (15) i

which is a constant and defined exclusively by the basic state.

The above definition shows that Ri is a function o6f the ?
explic;t parameters ofythq.problem. This relationshipjwas used
when choosiné values of e, AT and o for each eigenvalue search
in order to be sure that .we were within the correct range of Ri
for instability. Stone (1970) and McIntyre (1970) showed that
symmetric baroclinic instability occurs for Ri close to unity
(see Section 1l). The above dgfinition indicates that for a

given value of o, there is a range of ¢ and of AT for which .the

critical value of Ri is achieved.

’

For =1, expression (l5) specifies that AT must be less

than zero to obtain the desired range of values of Ri for in-
stability regardless of the value of €. However, setting AT< 0

arbitrarily could lead to an unstable vertical stratification

S
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in the interior and hence a negative value of Ri. Instabilities
occuring under the above conditions with negative Ri are not

classed as symmetric baroclinic instabilities and are outside

the range of interest of this paper. Such instabilities

have been discussed by Hathaﬁayet al.(1979,1980). To obtain symmetuic
baroclinic instability for o=1, AT must be set negative with the
additional constraint of |4 AaT/e] <_1. Clearly, there exists '
a range of values AT which satisfies theée two criteria. We decided
to proceed with AT = -0.2 for o = 1, Fig. 3 shows that this

value'bf AT keeps the interior vertical stratification stable.

The above arguments reveal that the correct choice of AT for
symmetric instability is a delicate.m;tte; and depends strongly

on 0. Expression (l15) should be of great value in guiding ex-
perimental searches for symmetric baroclinic inséability'in the

laboratory.

Fig. 4 shows the growth rates for different values of the

meridional wavenumber, &, zs a function of ¢ for E = 10-3, AT =
-0.,2 and 0 = 1. Note the existence of unstable modes over a

finite range of ¢. This feature resembles the growth rate

" properties of ordinary baroclinic ihsiability. The unstable

regiop in ¢ is bounded by two stable regions, one in which Ri is
close to unity and the other in which Ri is small or negative
(Ri = 1 - 0.8/€).

Fig. 4 also shows that as ¢ varies, the growth rate has a
maﬁimu& value for a specific value of the wavenumber. Fig. 5,

which -is for the same values of the parameters as the results in

14
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Fig. 4, is a plot of the maximum growth rate for eacly wavenumber

versus wavenumber., The greatest growth rate occurs for about

% = 10. This result is at variance with the findings of Stone

(1970) , wvho found that the maximum growth rate is'achieved as

|
{
£ + =, and McIntyre (1970), who found that it is achieved as §

2 + 0. However, since both of these previous studies are for
essentially inviscid flow, it is concluded that including the i
viscous effects determines the wavelength of maximum growth rate !

for the symmetric baroclinic instability problem. ;

Figure 6, which is for the same values of the parameters as
the results in Figé. 4 and 5, shows neutral stakility curves in
the (E - €) number plane for three different wavenumbers. A sig-
nificant feature of these curves is the éxistence af the maximum
(eritical) value.of E above.which' all modes are étableli Another
feature is the existence of {wo stable regions, or two branches of
the neutral stability.curves, for all values of E smaller than the

mode critical values. Note that these curves are loci of points

for which c; 0. For all the modes shown in this figure -‘and

those in the previous and subsequent figﬁres, the value of the wave

speed, c,., was always found to be zero, indicating that these are

monotenic instability modes and &ha; the principle of exchangé of
stability holds for this problem. .éhréughout this work we did :
not find any oscillatory unstable modes. Thus, it is doubtful if
overstability exists for the present problem. .
. The curves in the upper portion'of Fig. 6 indicate that

e +«as E +~ 0 for all of the wavenumbers shown. To observe this

15
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criterion in terms of Ri, the neutral curves of Fig. 6 are plotted
again in the (E-Ri) plane in Fig. 7. Fig. 7 shows that as E + 0,
the upper branches of the curves approach Ri = 1 for all wave~-
lengths and that the region of instability increases with in=
creasing wavenumber. Weber (1980), in his model for symmetric
baroclinic instability (see Section 1), found the critical value
of Ri, Ric, to be a monotonically decreasing function of E as the
latter increases from zero. The results in Fig. 7 show that this
fundament:il dependence is corr%gzmhb to the value of E_, but above
that value there is a region of absolute stability regardless of
the value ovai. We believe that the existence of Ec is due to
the accurate inclusion of the viscous-and thermal diffusive effects
in our model. None of the previous work included é@th of

these effects properly. ' ‘

' To investigate tﬁe effects of the Prandtl number on the
stabiiity criteria discussed above, we proceeded to find solutions
for 0 = 5. As was discussed earlier, changing the value of ¢
necessitates a search for the appropriate value of the vertical

temperature difference, AT, such that Ri is in the proper range

for symmetric baroclinic instability. . The value chosen for ¢ = 5

was AT = -4.5, which allows Ri to be in the vicinity of unity
(RL = 5 - 18/e). Fig. B8 'shows the growth rates as a function of

€ for the above values of o and AT and for E = 10-3. Again, it
is seen that the unstable modes separate two stables regions

in € (oxr Ri). Fig. 8 shows that the maximum growth rate increases

with ihcreasing wavenumber, £. In fact, the total range of

16

s

e 22




ORIGINAL PARE (S
OF POOR QUALITY
instability increases with 2. Note that the upper bound of
instability in e first increases with increasing wave numbers
up to £ = 4 and then decreases, reaching an asymptotic value of
€ = 4,55 for ¢ 2 6 which corresponds to Ri = 1 for the parameters
used. Another feature, which is different from the ¢ = 1 case,
is that the maximum growth rates occur for approximately the same
value of ¢ for all the wavenumbers shown. For this case this
value of € translates to a value of Ri = 4! . .
Fig. 9, which is for the same values of the parameters as

the results in Fig. 8, shows the variation of the maximum growth

rates as a function of the wavenumber, 2. This figure. reveals

that there is still a wavenumber of greatest growth rate which

occurs about £ = 13.5. However, the decrease in the érowth

_rate is much smaller for wavenumbers above the maximum value

than it is for the o = 1 results (see Fig. 5).

The neutral stability curves in the (E - Ri) plnnc.are

shown in Fig. 10 for %2 = 1 and 4. 1In this figure only the positive

part. of the Ri range is shown. Note that there are two values of

Ric as E + 0, each corresponding to one wavenumber, and that the

range of instability is much larger for £ = 4 than that for % = 1.

To appreciate more fully the influence of the Prandtl

number on the symmetric instabiity criteria, Fig. 11 which shows

the neutral stability curves for & = 4 in the (E - Ri) plane for

=1 (AT =~0.2), 0 =2 (AT = =1.5) and 0 = 5 (AT = -4.5) was

]
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prepared. Except for ¢ = 1, only the upper branches of the '
curves appear for Ri > 0. All the curves shown tend to specific
asymptotic values of Ric as E+ 0, For o = 1, the asymptotic
value of Ric is close to 1, while for ¢ = 2 and 5, the asymptotic
values are close to 1.075 and 1.695 respectively. The latter
two values are significantly greater than l'. Thus, the trend
for the asymptotic value cof Ric is to increase with increasing

o for 0 > 1. This fundamental dependence is in agreement with
work of McIntyre (1970), although his model is somewhat different
from the model being considered here (See Section 1). McIntyre

found that the asymptotic value of Ric is given by

Ri_ = —‘-1—{—5-‘112. . " (16)
For 0 =1, 2, and 5? this’relationship yields values of‘Ric cf.lﬁ
1.125 and 1.8, respectively. These valﬁes are close to the values
found from Fig. 11.

Fig. 11 also shows that as ¢ increases, the wiple region
of instability is markedly increased. The value of E, increases
dfastically as o is increased but there is no observdﬂ&zdifferencé
in the values of E, for ¢ = 2 and 5.

Néxt, we present results foi o < 1. Again, the values for
AT were chosen such that the range gf Ri includes unityand values

less thanunity. Expression (15) indicates that when o < 1 and

AT < 0, the maximum possible value for Ri is o and thus the range -

does not include unity. However, when ¢ < 1 and AT > 0, values of
Ri can be obtained which are both greater and less than unity. We

proceeded with AT > 0.
18 "
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Fig. 12 shows the neutral stability curves in the (E - Ri)
plane for o = 0.5 (AT = 0.2) and 0 = 0.2 (AT = 0,5). The curves
are for % = 12, the value which yielded the maximum value for
Ri, when all the other parameters were held fixed. Again, the
values for Ric are seen to increase to specific asymptotic values
as E + 0. Note that the tendency toan asymptote is not as evident
for 0 = 0.5 as it is for o = 0.2.-- The main features of Fig. 12
are the decrease in the valué'bf"Ric and the decrease in thejtotal
instability area as ¢ increases to unity. The results also in-
dicate an increase in E, wi@h increasing o.

4

Fig. 12 gives the values of Ri_ at E = 107" for ¢ = 0.5

and 0.2 as 0.946 and 1.21, respectively. Fig. 13 is a comparison

| ad

of all our results for t?e largest asymptotic (E = 10f4) values
of Ric Qith Mcintyfe's results as a function of o. The.dots'are
our results and the continuous curve is a plot of expression (16).
Note that McIntyre's criterion yields a symmetric dependence of

¥

Ric as a function of o about ¢ = 1. The results of the present

- study agree well with McIntyre for o > 1 but give lower values

for Ric for o< 1.

-
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5. Conclusions

The stability of a nonlinear rotating Hadley cell has
been examined with respect to symmetric perturbations. This
Hadley cell was derived previously (see I) and contains both
Ekman and thermal boundary layers. The stability analysis is
based on the Navier-Stokes equations and considexrs infinitesimal
waves with vertical and meridional structure'bgt no zonal structure.
The stability analysis was performed numerically. For examini. g
: the parametri¢ behavior of symmetric baroclinic instability, the
work is an improvement over all previous work since a realistic
basic state is used and since the stability analysis includes
‘both viscous and thermal diffusion effects. '

The computations cover the following ranges of the non=

2 ~1

, dimensional parameters 0.2 < o <5, 10 ' < 1o+,
~4.5 < AT £ 0.5, and~100 < Ri < 2. It was found that the instability
sets in when Ri is close to unity and that the critical Richardson
number, Ric' is a strong function of both ¢ and E for the cases

considered. We extrapolsted from these cases to obtain valugs of

4

Rfe for the inviscid limit, E +- 0, and found that Ric has a maximum
value close to unity for o = 1. The general trend of these results
is in agreement with McIntyre (1970) and for © > 1 the agreement is
very good but foroc < 1 it is not so good. We should not be suprised
to find differences between the pre;ent and previous work because

of the differences in the basic states and other aspects of the-

models.

20



We also found for fixed ¢ that Ri, decreases with in-
creasing E until a critical value of E is reached beyond which
tlie fluid is stable. The principle of exchange of gtability was
not assumed and growth rates were calculated. A wavelength of
maximum growth rate occurring for small wavelengths was found.
For our moéel overstability was not found. Some computations were
performed for Ri < 0. 1In particular, for o = 5 the growth rate
maximum occurs at about Ri = -4, No discontinuities in the growth
rates are noticeable when Ri changes sig*. This result indicates
& smooth transition from symmetric baroclinic instability to a con~

vective instability.
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, Figure Legend

{ Figure 1.
Figure 2a,

Figure 2b.

Figure 26.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

v BN

A sketch of the geometry of the model and the
coordinate system.

The zonal velocity component of the basic state,
U, as a function of z, for three values of E.
The meridional component of the basic state, V,
as a function of 2z, for the same values of E as
the presults shown iﬁwPagure 2a.

Basic state te@?ér&éure profiles, T at y = 0 for
the same values of E as the results shown in

Fig . 2a and for 0 = 1, .= 1 and AT = 0.

Basic state temperature profiles, T, at y = 0 for

three values of AT and for ¢ =1, ¢ = 1, and

E=5x 1072,

Growth rates, zci, as a function of ¢ for different

values of 4 and for ¢ = 1, AT = -0.2 and E = 10

-3

The upper abscissa shows the values of Ri corresponding i

to €.

The maximum growth rates as a function of the

meridional wave number. &, for the same conditions

as Fig. 4.

Neutral stability curves, ci = 0, as functions of

E and ¢ for different values of £ and for ¢ = 1 and i

AT = =0.2.

The neutral stability curves of Fig. 6 as functions

of E and Ri.
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Figure

Figure

Fibure

Figure

Figure

10.

1.

12.

13.

Growth rates, zci, as a function of e for different

values of & and for ¢ = 5, AT = -4.5 and E = 10'3.

The upper abscissa shows the values of Ri corresponding

to €. , '

The maximum growth rates as a function of 2 for the
same conditions as Fig. 8.

Neutral stability curves as functions of E and Ri

for different values of 2 and for 6 = 5 and AT = -4.5.
Neutral stability curves as functions of E and Ri for
different values of ¢ (> 1) and for & = 4. The
dashed lines are McIntyre's results.

Neutral stability curves as functions of E and Ri for
different values of ¢ (< 1) and for & = 12. The
dashed line is'Mthtyre's result.

A comparisén between the critical value of thé
Richardsog number, Ric,'as calculated from Eé. (16)
(=) and the rgsults presented in this paper

as a function of o for E =‘10-4(C)L
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During the present reporting period work was finished on extending
the Hadley Cell model to investigate the symmetric baroclinic instability
of the model. This work was written in the form of a paper which will
appear in the June 1982 issue of The Journal of The Atmospheric Sciences.
A copy of the preprint of this paper is enclosed as Appendix. At the
present work is being continued to investigate the baroclinic instability
of an inclined wave for the same Hadley Cell model.

.Also during the reporting period work has begun on the coding of a
program to solve the nonlinear baroclinic instability of an Eady model.
Thé basic expression technique have been established and all the theoretical
background for this work has been completed. It is anticipated the trail
runs of the program should begin in the‘ccming months. , Initially we will
investigate the nonlinear evolution of a wave of a single zonal wave number
and the influence of its hormonics. The-nonlinear interaction of more

than one zonal wave will be investigated subsequently.’
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. Abstract

A stability analysis of a thin horizontal votating fluid
layer which is subjected to arbitrary horizontal and vertical
temperature gradients is presented. The basic state is a non-
linear Hadley cell which contains both Ekman and thermal boundary
layers; it is given in closed form. The stabiiity analysis is
based on the linearized Navier-Stokes equations, and zonally
symmetric perturbations in the form of waves propagating in the
meridional direction are considered. Numerical methods were used
for the stability problem. The objective of this investigation
was to extend previous work on symmetric baroclinic instgbility
with a more realistic model. Hence, the study deals with flows
fbr which the Richar@son number (based on temperature. and flow
gradients at mid~depth) is of order unity and less. The com-
putations cover ranges of Prandtl number 0.2 g_oﬁi 5, Rossby
number 10-2‘ < £ <10 2 and Ekman number 107% <E< 107t. It was found, in
agreement with previous work, that the instability sets in when
'theﬁRichardson number is close to unity,and that the critiéal
Richardson number is a non-monatonic function of the Prandtl
number. Further, it was found that the critical Richardson number
decreases with increasing Ekman number. until a critical value
of the Ekman number is reached befond which the fluid is stable.

The principal of exchange of stability was not assumed and growth,

. rates were calculated. A wavelength of maximum growth rate was

found. For dur model overstability was not found. Some com-

putations were performed for Richardson numbers less than zero.
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No discontinuities in growth rates are noticeable when the
Richardson number changes sign. This result indicates a

smooth transition from symmetric baroclinic instability to a

convective instability.
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1. Introduction

It is well known that statically stable baroclinic flow
can be destablished by two different mechanisms. The first
occurs in what is usually known as ordinary baroclinic in-
stability in which the perturbations of maximum growth rate

ﬁ have a wavelength in the zonal direction and the gravest

T

possible structure in the meridional direction. (Charney,
1947; Eady, 1949). This instability is well understood and’
has been observed experimentally (Hide and Mason, 1975). The
second occurs in what is known as symmetric baroclinic in-
stability. In this case, the instability mechanism is 'such
that the perturbations of maximum growth rate'ﬁave.meridiOnal
structure but no zonal structure. This study is concerned with’
the 1étter'f6rm of instability. |

Two of the earliest analyses of symmetric baroclinic instability
are those of Solberg (1936) and Kuo (1956). However, the first
definitive work is th;t of Stone. In & sequence of papers,
Stone (1966, 1970, 1971) examined the stability of a parallel
baroclinic flow with respect to infinitegimal, three-dimensional :
perturbations. Constant vertical shear and constant temperature
gradients were assumed and thermal and viscous diffusion effects
were neglected. Stone found that when the Richardson number,
ﬁi Ri, is between 0. 95 and 0.25, waves whose axes are in the zonal
. direction have the maxlmum growth rates. Stone et al. (1969)

and Hadlock et al. (1972) attempted to observe symmgtric baroclinic

i inétability in the laboratory, and some evidence of the predicted




=

meridional structure was seen but a comprehensive experimental
study of this instability has yet to be performed.

McIntyre (1970) performed an analysis of symmetric
baroclinic instability which included both vertical and
horizontal shears and allowed for the Prandtl number, &. The
model considered was infinite in both the horizontal and vertical
directions. MclIntyzre found, in the absence of horizontal shear,
that the maximum value of Ri at which symmetric instability sets

in (the critical Richardson number, Ric) is a function of g and

can be larger than 0.95. McIntyre also found that the most un-~

. stable wavelength is infinite and that both monotonic and

oscillatory instability can occur. 1In a related analysis,

Walton (1975) considered only vertical shear in a finite depth
fluid.’ When weak viscous effects ére inéluaed, Walton found

that Ric is lower for both the monotonic and oscillatory in-
stabilities. He also found that the most rapidly growing modes
display a weak functional dependence on the diffusion coefficients
when those are asymptotically small.

Recently, Emanuel (1979) presented a detailed study of
the li :ar stability of symmetricvbérturbations in a ba}oclinic
flow with both horizontal and vertical shears. Retaining both
thé viscous and thermal diffusivities for a vertically bounded
flow, Emanuel studied: i) hydrostatic disturbances and ii) non-

hydrostatic disturbances in a neutrally stratified fluid. He

found that for both cases the critical Richardson number depended

on both the thermal and the viscous diffusivities. He also

2
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established the fact that the most unstable noxmal mode is
determined primarily by the depth of the unstable domain and
the slope of the isentropic surfaces rather than by the
diffusive properties of the fluid. Weber (1980) in a some~
what similar =nalysis, examined the symmetric instability of
a basic state with a constant vertical shear in the presence
of horizontal boundaries while taking full account of the
viscous effects for arbitrary‘vertical (stable) stratification.
Although, he made the simplifying assumption nf replacing the
vertical viscous and diffusive tarms in the perturbation
equations by a wave mode, his results compare favorably with
those ©f Emanuel. It should be noted that in both of the above
studies the analyses were restrictive; Emanuei investigated only
neﬁtral modes by invoking the principal of'e¥change of stability
and Weber used an approximate solution to the perturbaéion
equations. Emanuel's paper contains an excellent survey of
previous work on this problem.

Previous workers have pogtulated'symmetric baroclinic
instability as the cause of certa?n physical phenomena. Stone

(1967) conjectured that the banded structure of Jupiter's

~atmosphere is due to, ¢his instability. Bennets and Hoskins

(1979) attributed the origin of rain bands and squall lines to
this instability. Weber (1980) suggested that the generation of

roll vortices in the oceans and the atmbsphere is due to symmetric

baroclinic instability.
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In all of the theoretical studies cited above, the basic
state whos: stability was investigated was a postulated state
in which both the shears and the temperature gradients in the
vertical and the horizontal directions were taken to be constants
throughout the fluid. In an experimental apparatus whose upper
and lower boundaries are stationary, such a basic state is a
good approximation in the interior of the fluid oﬂly; it is not
a good approximation nwar the boundafiés,especially when the
Ekman numbér is not vanishinglyr;ﬁéli In the study, presentedﬁ
in this paper, a fluid contained between two horizontal plates
of infinite extent is considered and the influence of the Ekman
ané the.thermal layers on symmetric baroclinic instabil;ty is
investigated. The analysis uses a realistic basic gtate which is
obtained through the solution of the governing nonlinear equations of
motion for abitra&y external forcings, e.g. the Ekman number,
the vertical stratification, etc. This basic state was used
in a fecent paper by the apthors in an investigation of ordinary
baroclinic instability (see Antar and Fowlis, 19él).

It is obvious that if a direct énalog of a laboratory ex-
periment is required, then this model .is not sufficient since it
éoes not allow for the side walls and the side layers. 1In a
recent 'study Quon (1980, 1981) simulated laboratory conditions
for the onset of symmetric baroclinic instability through the
numerical solution of the full Navier-Stokes, energy equations
for .the flow in a cylindrical &iffereﬁtially‘heated, rotating

annulus. Although such an analysis is of great value in.modeling



the true experimental conditions, the amount of computer time
required for the calculation of each case precludes a thorough
probing of the parameter space for the criteria for the onset
of the instability. It is our opinion that the present study
fills a needed gap between the constant shear, constant tem-
perature gradients analyses discussed earlier and that of the
exact solution of Quon. —

The basic state medel is reviewéd in Section 2. The
perturbation equations for the symmetric instability and their
method of solution are presented in Sectiop 3. 1In Section 4
we discuss the results of thé present analysis and

how they compare with the previous work. Our conclusions

are presented in Section 5.
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2. The Basic State

The basic state used in the present stability analysis
is identical to that used in the work of Arntar and Fowlis (1981)
(hereinafter referred to as I). This model is described only
briefly here; for further details and justifications, the

reader is referred to I. We consider a Boussinesq fluid confined

between two horizontal plates which are set & distance, d, apart. .

PRUPRSE b

The coordinate system used is'ggqpqngular Cartesian with axes
(x,y,2) correéponding to the eastward, northward and vertical-.
directions, respectively, and with the origin midway between the
plates. A sketch of the model is shown in Fig. 1. The plates
are assumed to extend to infinity in the x-direction and to
large distances in the y-direction. The plates and the fluid
.are taken to rotate as a ‘whole ‘about’ the vertical axis with a
constant angul;r velocity, 1. A temperature gradient in which

the temperature décreasesAlinearly in the y-direction is main-

tained on both plates. To assure that the vertical stratification,

and hence the Richardson number, ig arbitrary and externally
fixed, the temperatures of the upper and lower plates are set to
. differ uniformly by a constant amount AT for all (x,y).

The velocity and temperature fields are governed by the
Naviér-Stokes, enerqgy aﬂd mass conservation equations. Under the
conditions assumed here for the basic, two-dimensional, steady
state, these equations, in a rotatiﬁg reference frame, reduce'to

the following set:
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-2V = E32U/3z2%, (1)
2U = E3%?v/3z% - 3p/dy, (2)
VaT/3y = (E/oe) 32T/38z%, : (3)

T = 3p/dz, ‘ (4)

where ¥V is the velocity vector (U,V), p is the pressure, T is

the temperature and

e = agy/9?
E = v/Q4%,
g = v/K,

are a thermal Rossby number, the Ekman number and the Prandtl
number, respectively. In Egs. (1)-(4), iength, t@me, velocity
andvéemperature.have'been-madetdimensionless using d,‘ﬁ-l,'

¢ gd v/, and yd, where a is the coefficient of thermal expansion,
Y is the imposed hori;ontal temperature gradient and g is gravity.

The main assumption’s used in arriving at Egs. (l)-(4) are that

the vertical velocity component, W, is negligible and that

8T/9y ==y throughout the region of intérest, (see I).
The solution of the system (1)-(4) which is consistent
with the no slip and perfectly conducting conditions at the solid

boundaries, i.e.,

U=V=0, T=+AT/2-y @ 2= +1/2, ' (5)
is given by
~U (z) = - £(2)/8 + 2/2 , " (6)
7
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v(z) = g(z)/8, (7)

T(y,z) = -y + zAT + eco[2z - £(2)]}/8, (8)
where

f(z) = [coshR(z+l1/2)cosR(z~1/2) - coshR(z=1/2)cosR(z+1/2)])/h(R),
g(z) = [sinhR(z+1/2)sinR(z-}1/2) = sinhR(z-1/2)sinR(2+1/2)]1/h(R),

h(R) = sinh*(R/2) + sin?(R/2),
R = E1/2,

The velocity and temperature profiles given by (6)-(8) are
shown in FPig. 2 for different values E, €, ¢, and AT. The

limits of applicability of this model are discussed in I.
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3. Thé Perturbation Equations

The instability problem is tackled by imposing perturba-
tions on the basic state presented above. Since we are concerned
with symmetric perturbations, the perturbation functionswill be

proportional to exﬁ [it(y = ct)] which represents a wave with

meridional wavenumber £ propagating in the meridional direction with

speed c¢. Introducing the perturbations into the Navier-Stokes,
energy and mass conservation ‘equations and upon linearizing the

perturbation equations we obtain the following eguations for the

perturbation functions.

E(Dz-éz)zw + i%[(c-eV) (DZ;zz)w + ewaV]-zizbu—zzg = 0, (9)
E(Dz-zz) u + if (c=€V) u-ewbU = %% Dw = 0, | | (10)
E(D?-iz) 0 + ifo (c=eV) 8- %?UDW - eowDT = 0, o (11)
ifu'+ Dw = 0, (12)
where

D = d/dz.

in the above the perturbation yelocity is Y= (u,v,w) and é
is.-the perturbation temperature. Note that the perturbation
equafions are not hydroﬁtatic.

To complete the specification of the problem, the following

boundary conditions are imposed on the perturbation functions.

u=w=Dw=6=02@z=+1/2. (13)
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The perturbation problem as posei constitutes an eigen-

value problem. We take £ to be real and ¢ = c, * ici

to be complex, where c, denotes the propagation speed and Cyv

the growth rate. Monotonic instability occurs for c; > 0 while
c, = 0, whereas overstability occurs for c,; = 0 while c. ¥ 0.

It is tempting at this séage to invoke the principle of exchange
of stability and to set c.=cy = 0 and hence look for neutral
modes alone and reducé the number of parameters involved. Emanuel
(1979) adopted this procedure. However, since McIntyre (1970)
had established that for his model (see Section 1) oscillatory
instability exists, it was decided to leave c, and c; as eigen~-
values of the problem. Using this method the analysis will allow
us to compute growth rates and to.determiné if overstability
exists. ”

The solution to the problem (9) - (13) is obtained through
numerical integration of the full eighth-order differential
system. This procedure was necessary because the coefficients
in the equations (i.e., the basic state) are functions of the:

height, 2. If we wish to account fully for the Ekman and thermal

layers, the solution cannot be obtained in a closed form. Note,

that if the basic state profiles had been taken to be linear in z,

as was done in most 9f the previous work on the symmetric baroclinic
instability problem, then the set of governing equations would
reduce to a differential system with constant coefficients whose

solution could.be determined in a closed form.

10
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The numerical solution was obtained using the shooting
technique. The code was identical to the one used in I, and
more details of the numerical work are given in I. Briefly, the
shooting technique was enhanced with the o;thonormalization
method, allowing the stability analysis to .be performed even
when the Ekman number is very small. A Newton-Raphson method
was implemented for convergence on the eigen&alues,and an eighth-

order Runge-Kutta method was used for the integration of the

initial value problem.

11
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4. Results and Discussion

The results which follow constitute the solution of the
eigenvalue problem posed by equations (9) = (11) with the
boundary conditions (13) for prescribed values of the
parameters. The parameters of the problem which appear ex~
plicitly in the equations are, €, the therﬁal Rossby number
E, the Ekman number, o, the Prandtl number, AT, the imposed
vertical temperature difference, and ¢ and ¢, the wavenumber
and wave speed, respectively. Note that the first four
parameters appear in the basic state as well as the perturbation
equationé, but the last two belong to the stabi}ity problem
alone.

As was discussed in Section 1, the Richardson number plays
a significant iole in the symmetric béroélinic instability problem.
While this number does not appear explicitly in our formulation
of the basic state, it may be defined using the parameters which

do appear explicitly. The Richardson number is defined by

i = Og 3T*/3z* ' '
R1 (30%/3z%) 7 (14)

where aT*/aé* and 3U*/3z* are the dimensional basic state tem-
perature and zonal flow gradients, respectively. It is obvious
from this definition and from expreésions (6) - (8) that for the
present model Ri is not a constant but is a function of z. We:"
may define a "bulk" Richardson number by the value of Ri at

mid-depth between the horizontal plates, viz,

T
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Rip = ag (%)zz=o-

In all of the subsequent discussion,Rib will be used instead

of Ri and the subscript b will be dropped. We shall see that
this definition is not only convenient, but it has dynamical sig-
nificance in this problem. Substituting the temperature and
velocity gradients for the basic state, expressions (6) and

(8) , respectively, into the above definition we obtain,

T ' (15)

which is a constant and defined exclusively by the hasic state.

The above definition shows that Ri is a function of the

explicit parameters of:the problém: This relationship 'was used

when chddsing values of ¢, AT and ¢ for each eigenvalue search
in order to be sure that .we were within the correct range of Ri
for instability. Stone (1970) and McIntyre (1970) showed that
symmetric baroclinic inséability occurs for Ri close to unity
(see Section l). The above dqfinition indicates that for a

given value of o, there is a range of ¢ and of AT for which .the

critical value of Ri is achieved.

For o=l, expression (15) specifies that AT must be less
than zero to obtain the desired range of values of Ri for in-
stability regardless of the value of . However, setting AT< 0

arbitrarily could lead to an unstable vertical stratification

123
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in the interior and hence a negative value of Ri. Instabilities
occuring under the above conditions with negative Ri are not
classed as symmetric baroclinic instabilities and are outside
the range of interest of this paper. Such instabilities .
have been discussed by HathaQayet al.(1979,1980). To obtain symmetwio
baroclinic wnstability for o=1, AT must be set negative with the
additional constraint of |4 AT/e| <_1l. Clearly, there exists
2 range of values AT which satisfies these two criteria. We decided
to proceed with AT = -0.2 for o = 1, Fig. 3 shows that this
value 6f AT keeps the interior vertical stratification stable.
The above arguments reveal that the correct choice of AT for
symmetric instability is a delicate m;tter and depends strongly
on o. Expression (15) should be of great value in guiding ex-
perimental -searches for symmetric baroclinic’instability'in'the‘
laboratory.

Fig. 4 showg the grgwth rates for different values of the
meridional wavenumber, %, as a function of ¢ for E = 10-3, AT =

-0.2 and ¢ = 1. Note the existencé of unstable modes over a

finite range of ¢. This feature resembles the growth rate

" properties of ordinary baroclinic iﬁstability. The unstable

regiop in ¢ is bounded by two stable regions, one in which Ri is
close to unity and the other in which Ri is small or negative
(Ri =1 - 0.8/¢).

Fig. 4 also shows that as ¢ varies, the growth rate has a
nm&imuﬁ value for a specific value of the wavenumber. .Fig. 5,

which ‘is for the same values of the parameters as the results in

14



Fig. 4, is a plot of the maximum growth rate for eac!s wavenumber
versus wavenumber. The greatest growth rate occurs for about
2 = 10. This result is at variance with the findings of Stone

(1970) , who found that the maximum growth rate is.achieved as

o T A T

% + =, and McIntyre (1970), who found thaF it is achieved as 3
2 + 0. However, since both of these previous studies are for
essentially inviscid flow, it is concluded that including the
viscous effects determines the wavelength of maximum growth rate
for the symmetric baroclinic instability problem.

Figure 6, which is for the same values of the parameters as
the results in Figs. 4 and 5, shows neutral stability curves in

the (E - e¢) number plane for three different wavenumbers. A sig-

nificant feature of these curves is the éxistence of the maximum
(critical) value of E above which ail moaes are étabie. Another
feature is the existence of two stable regiens, or two branches of
the neutral stability'curves, for all values of E smaller than the
mode critical values. Note that these curves are loci of points
foF which c; = 0. For all the modes shown in this figure -and
£hose in the previous and subsequent figures, the value of the wave

speed, c_, was always found to Ee zero, indicating that these are

r
monotonic instability modes and Ehat the principle of exchange of
stability holds for this problem. ,fhréughout this work we did
not find any oscillatory unstable modes. Thus, it is doubtful if
overstability exists for the present problem. '
The curves in the upper portion of Fig. 6 indicate that

e + o as E + 0 for all of the wavenumbers shown. To observe this

15
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criterion in terms of Ri, the neutral curves of Fig. 6 are plotted
again in the (E-Ri) plane in Fig. 7. Fig. 7 shows that as E + 0,
the upper pranches of the curves approach Ri = 1 for all wave-~
lengths and that the region of instability increases with in=- i
creasinq wavenumber. Weber (1980), in his model for symmetric
baroclinic instability (see Section 1), found the critical value i
of Ri, Ric, to be a monotonically decreasing function of E as the
latter increases from zero. The results in Fig. 7 show that this
fundamental dependence is corrézamub to the value of E./ but above i
that value there is a region of absolute stability regardless of i
the value of Ri. We believe that the existence of E. is due to f
the accurate inclusion of the viscous-and thermal daffusive effects ;
in our model. None of the previous work included Soth of
these effects properly.

To investigate the effects of the Prandtl number on the
stability criteria discussed above, we proceeded to find solutions
for 0 = 5. As was discussed earlier, changing the value of ¢
necessitates a search for the appropriate value of the vertical
temperature difference, AT, sucﬁ tha£ Ri is in the proper range

for symmetric baroclinic instability. . The value chosen for ¢ = 5

was AT = -4.5, which allows Ri to be in the vicinity of unity

(RL =5 - 18/€). Fig. 8 'shows the growth rates as a function of

€ for the above values of ¢ and AT and for E = 10-3. Again, it

is seen that the unstable modes separate two stables regions

in € (or Ri). Fig. 8 ;hows that the‘maximum growth rate increases =

with ihcreasing wavenumber, &. In fact, the total irange of

16
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instability increases with %. Note that the upper bound of

instability in e first increases with increasing wave numbers
up to & = 4 and then decreases, reaching an asymptotic value of
e = 4,55 for & 2 6 which corresponds to Ri = 1 for the parameters

used. Another feature, which is different from the o = 1 case,

is that the maximum ¢- +th rates occur for approximately the same

value of ¢ for 7 .. cne wavenumbers shown. For this case this

value of ¢ +translates to a value of Ri = 4!

Fig. 9, which is for the same values of the parameters as

the results in Fig. 8, shows the variation of the maximum growth

rates as a function of the wavenumber, £. This figure;reveals

that there is still a wavenumber of greatest growth rate which

occurs about £ = 13.5. However, the decrease in the érowth

rate is much smaller for wavenumbers above the maximum value

than it is for the ¢ = 1 results (see Fig. 5).

The neutral stability curves in the (E - Ri) plane are

shown in Fig. 10 for & = 1 and 4. 1In this figure only the positive

part of the Ri range is shown. Note that there are two values of
Ric as E + 0, each corresponding to one wavenumber, and that the

range of instability is much larger for £ = 4 than “hat for % = 1.

To appreciate more fully the influence of the Prandtl
number on the symmetric instabiity criteria, Fig. 1l which shows

the neutral stability curves for § = 4 in the (E - Ri) plane for

o=1 (AT =~0.2), 0 =2 (AT = -1.5) and 0 = 5 (AT = -4.5) was

17
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prepared. Except for ¢ = 1, only the upper branches of the
curves appear for Ri > 0. All the curves shown tend to specific
asyriptotic values of Ric as E+ 0. For o = 1, the asymptotic
value of Ric is close to 1, while for ¢ = 2 and 5, the asymptotic
values are close to 1.075 and 1.695 respectively. The latter
two values are significantly greater than 1. Thus, the trend
for the asymptotic value of Ric is v» increase with increasing

o for 0 > 1. This fundamental depernwnce is in agreement with
work of McIntyre (1970), although his model is somewhat different
from the model being considered here (See Section 1). McIntyre

found that the asymptotic value of Ric is given by

2 .
Ri_ = o)’ ‘ (16)

+For o =1, 2, and 5, this relationship yields values of Ri_ of 1,°

1.125 and llS,raspectively. These values are c¢lose to the values
found from Fig. 1l1l.

Fig. 11 also shows that as o increases, the whole region
of instability is markedly increased. The'vélue of Ec increases
diastically as o is increased but there is no observableciifferencé
in the values of E, for ¢ = 2 and 5. .

Next, we pﬁesent resalts fot o < 1. Again, the values for
AT were chosen such that the range of Ri includes unityand values
less thanunity. Expression (15) indicates that when o< 1 and
AT < 0, the maximum possible value for Ri is ¢ and thuy she range -
does riot include unity. However, when o < 1 and AT > 0, va}ues Gf
Ri can’'be obtaired which are both greater and less than unity. We

proceeded with AT > 0.
18




Fig. 12 shows the neutral stability curves in the (E = Ri)
plane for 0 = 0.5 (AT = 0.2) and 0 = 0.2 (AT = 0.5). The éurves
are for % = 12, the value which yielded the maximum value for
Ri¢ witen all the other parameters were held fixed. Again, the
values for Ric are seen to increase to specific asymptotic values
as E + 0. Note that the tendency toan asymptote is not as evident
for 0 = 0.5 as it is for o = 0.2.-- The main features of Fig. 12
are theidecrease in the value bf‘Ric and the decrease in the ‘total
instabilit& area as ¢ increases to unity. The results also in-
dicate an increase in E, wi;h increasing o.

‘ Fig. 12 gives the values of Ri_ at E = 1074 for ¢ = 0.5
and 0.2 as 0.946 and 1.21, respectively. Fig. 13 is a comparison
of all our results for t@e largest asymptotic éE = 1of4y values
of Ric with McIntyre's results'as a function of o. The.dotsére
our results‘and the continuous curve is a plot of expression (16).
Note that McIntyre's criterion yields a symmetric dependence of

Ric as a function of o about ¢ = 1. The results of the present

" study agree well with McIntyre for o > 1 but give lower values

for Ric for o < 1.
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5. Conclusions
The stability of a nonlinear rotating k«:ley cell has
been examined with respect to symmetric perturbations. This
Hadley cell was derived previously (see I) and contains both
Ekman and thermal boundary layers. The stability analysis is
based on the Navier-Stokes equations and considers infinitesimal
waves with vertical and meridional structure'bgt no zonal structure.

The stability analysis was performed numerically. For examining

- the parametric behavior of symmetric baroclinic instability, the

work is an improvement over all previous work since a realistic

basic state is used and since the stability analysis includes

‘both viscous and thermal diffusion effects.

The computations cover the following ranges of the non~

2 4

, 1074 1

dimensional parameters: 0.2 < o <5, 10° <. ¢ i'lb

-4.5 ¢ AT £ 0.5, and~100 < Ri < 2. It was found that the instability

~sets in when R, is close to unity and that the critical Richardson

number, Ric’ is a strong function of both ¢ and E for the cases
considered. We extrarolated from these cases to obtain values of

Ric for the inviscid limit, E =+ 0, and found that Ric has a maximum
value close to unity for o = 1. The general trend of these results
is in agreemert with McIntyre (1970) and for © > 1 the agreement is
very good brit foro < 1 it is not so good. We should not ke suprised
to find di{ferences between the pregent and previous work because

of the differences in the basic states and other aspects of the:

models’.
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We also found for fixed ¢ that Ric decreases with in-
creaging E until a critical value of E is reached beyond which
the fluid is stable. The principle of exchange of gtability was
not assumed and growth rates were calculated. A wavelength of
maximum growth rate occuring for small wavelengths was found.
For our moéel overstability was not found. Some computations were
performed for Ri < 0., 1In particular, for o = 5 the growth rate
maximum occurs at about Ri = -4. No discontinuities in the growth
rates are noticeable when Ri changes sign. This result indicates
a smooth transition from symmetric baroclinic instability to a con-

vective instability.
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Legend

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1.

2a,

A sketch of the geometry of the model and the
coordinate system.

The zonal velocity component of the basic state,
U, as a function of z, for three values of E.

The meridional component of the basic state, V,
as a function of z, for the same values of E as
the results shown iﬂ”F&gure 2a.

Basic state teﬁéérhtﬁre profiles, T at y = 0 for
the same values of E as the results shown in
Fig . 2a and for 0 = 1, € = 1 and AT = 0.

Basic state temperature profiles, T, at y = 0 for
three values of AT and for ¢ = l,'e = 1, and
E=5x.10 2, |
érowth rates, c;, as a function of ¢ fér different
values of i and for ¢ = 1, AT = =0.2 and E = 10" °.

The upper abscissa shows the values of Ri corresponding
to €.

The maximum growth rétes as a function of the
meridional wave number. £, for the same conditions

as Fig. 4.

Neutral stability curves, c, = 0, as functions of

E and ¢ for different values of & and for ¢ = 1 and

AT = -0.2. ‘

The neutral stability curves of Fig. 6 as functions;

of E and Ri.
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Figure

Fiéure

Figure

Figure

Figure

10.

1l1.

12,

13.

different values of ¢ (< 1) and for

Growth rates, ic,, as a function of ¢ for different
values of % and for 0 = 5, AT = -4.5 and E = 1073,

The upper abscissa shows the values of Ri corresponding
to €. '

The maximum growth rates as a function of % for the
same conditions as Fig. 8.

Neutral stability curves as functions of E and Ri

1

for different values of £ and for ¢ 5 and AT = =4.5,
Neutral stability curves as functions of E and Ri for
different values of o (> 1) and for & = 4. The
dashed lines are McIntyre's results.

Neutral stability curves as functions of E and Ri for

= 12. The

b =g

dashed line is McIntyre's result.

A comparisén between the critical value of the
Richardson number, Ric,'as calculated from Eﬁ. (16)

(—-) and the results presented in this paper

as a function of ¢ for E =,10_4(C)L

25

R~

R



s S e

gt 13
. AL PAGE 2
( OBl 00R QUALTY

\ 4
L

UL T B A

z
4

X

2

L |
]

L T T

FIGURE 1

H

ii

i

i

; t

£

Lot

¢ & >
.

26

ey SRS



-003

ORIGINAL PAGE S
OF POOR QUALITY

—002 -;0'1

FIGURE 2a

27

s



e

_0005

FIGURE 2b

28

g B T S T L



ORIGINAL PAGE IS
OF POOR QUALITY

—.02
| 4

FIGURE 2c¢

29

-



05

OF POOR GUALITY

-0.5

FIGURE 3

30

0.2




s = 1S
|GINAL PAGE
OB 00R QUALITY

Ri
"7.0 ""1 to 0.0 0-5 ' 0.‘9 0099
0‘3 I ¥ ' ¥ . L) ¥
=12 8
02} 6 -
ey
4
0.1 =
’ o
o d
10-? 1 10 102
€
FIGURE 4

31




‘ -
if ‘
s
LS
)«‘5‘:..\, o s
't l.i",, - .‘5:
- A 4" ed w, ¢
~ 3
; 3

L L )

ORGGINAL PACE IS
OF POOR QUALITY,

-(Qci)max 0.2

0.1~

32

20

CE TR

S



OIIGINAL PACGE i3
OF POOR QUALITY

102

10 -

STABLE

0.1
1

02

g-1

FIGURE

33

103.

6

104

e L

AT S L

N amapare



Ri,

1.0

OHICIVAL PAGE I8
OF POCR QUALITY,

05

STABLE

T e

g-1

FIGURE 7

34

e T R

s



. BAY

| A -&a*‘;,*;; -
i T T L g
{ . et

Cr pooR QuAKTY

Ri

_1000 —500 —200 —100 —50 —10-5

2.0 ' L) i T Y T T T

R'ci 1.0

i FIGURE B

35 °




2.0

S A
I %4 o] ¥ .
CRICINAL Pran ¢

OF POOR QUALIT

o
e}
¥

o .\
- “1
{ge;) 1.0p .
max
F e
.0 TR ‘
5 10 20

FPIGURE 9

o e T R



Ri

1,0

ORIGINAL PAGH [3
OF POOR QUALITY

STABLE

=4

g1

FIGURE 10

37

104

A T s ey




2.0

Ri 1.0

ORIGINAL D 15
OF POOR QUALITY,

D G b S eun s @e o9 as %

oub

2 ¢ e o om v v - -

.EJ

FIGURE 11l

38

s s e e s

T e RREIESE I A



ORIGINAL PRGE 19
OF POOR QUALITY

15 l

Ri 1.0}

0.5
102

FIGURE 12

39



20

ORIGINAL PAGE 19
OF POOR QUALITY

Ric 1.0

1.0

FIGURE 13

40

10

NASA—~MEFC

B



	GeneralDisclaimer.pdf
	1982021684.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0001E13.pdf
	0001E14.pdf
	0001F01.pdf
	0001F02.pdf
	0001F03.pdf
	0001F04.pdf
	0001F05.pdf
	0001F06.pdf
	0001F07.pdf
	0001F08.pdf
	0001F09.pdf
	0001F10.pdf
	0001F11.pdf
	0001F12.pdf
	0001F13.pdf
	0001F14.pdf
	0001G01.pdf
	0001G02.pdf
	0001G03.pdf
	0001G04.pdf
	0001G05.pdf
	0001G06.pdf
	0001G07.pdf
	0001G08.pdf
	0001G09.pdf


