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A study of the problems of a compact magnetograph has been carried out.

On the basis of the study, an optimal compact magnetugraph has been constructed

and the ability to detect magnetic fields, verified. The problem of the coup-

ling of magnetic, velocity, and thermal affects has been a primary driver fur

the design. To this end, a novel split Fabry-Perot etalon was specially

fabricated as the primary wavelength selector.



fc)MPMM MAGNF.T0(.RAPl1 VFRIFICArION PRO(;kA.M

I.	 Introduction

'rhe purpose of this study was to verity the ooneoi)t of a oompaet magnetograph

system based on solid Fabry-Perot interteromet;ers as the spectral isolation

eloments. The tirst step in Clio verifio ation process was it detailed study of

Clio theory of operation of several Fabry-Perot systems, the suitability of

various magnoLic lines, signal levels; expected for dili.erc^nr mottos of (,pora-

Lion, and the optimal deteetor systems. The study was carried out by tar.

James Mosher and is the appendix ox this report.

The Mosher study was quite complete and highly influenced the direction of the

experimental phases of the program. 'Isi particular, it emphasized Clio severe

requirements that the lack, of a polarization modulator placed upon the oloe-

tronic signal chain. The original concept for the magnetograph did not

include a modulator because of the reliability and high voltage problems.

However, because of the study, a number of approaches for modulation were

investigated experimentally. As a result the PUT modulator was chosen as a

satisfactory component with both high reliability and relatively low voltage

requirements. Another major problem that was focussed by the Mosher report

was the coupled issues ,f thermal control, line centering, and line offset

because of solar rotation and spacecraft velocity. To a large extent the

thermal, line centering, and velocity offset problems were solved by * a novel

F.hry-Perot configuration that was not considered in the original reporc, but

was suggested privately by Mosher in the form of a sketen of the "ideal mag-

netograph."

Section two of this report discusses the magnetograph configuration decided

F
	

upon for test. Match of the justification for the work described in section

two is contained in the appendix, which is the Mosher report.
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.'.	 (A)mpaot magnetograph rest Design

".I	 Optical System

Shown ill Figure. 1 is the optical layout ol, the compact magnetograph test

system. Figure 2 shows a photograph of the system on the Lockheed echelle

spectrograph optical bench. The magnetograph was fed by a 20-cL:ntimete:r

diameter heliostat which normally is used to feed a 2-meter echelle spectro-

photometer. The entrance slit cf the spectrograph is visible at the right-

hand edge of the photograph. The location of the magnetograph on the sped-

trometer optical. bench allowed easy verification of spectral alignment and

operation of the magnetugraph system.

In the order that the light strik, g them, the components of the magnetograph

and their functions are:

1. Objective. The 127 cm focal length objective serves to form a solar

image of convenient size in the plane of the field ;top. The image

scale in the focal plane is 6.16 microns per aresecond.

2. Field Stop. The field stop serves to define the magnetograph sample:

region. Apertures in the size range from 25 to 250 microns were

tested. This corresponds to solar regions Crom 4 to 40 areseconds in

diameter.

3. Collimating Field Dens. The 2ield lens is positioned its focal length

from the field stop. The center line of the optical system passes

through both the center of the hole in the stop and the field lens.

The angle the aperture subtends at the field stop determines the spread

of the beam from the stop. The size of the field lens must be suffi-

cient to gather all the light that passes through the aperture, that

is, the diameter of the field lens, U£, muse be

U
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where Do is the diameter of the objective, f f and f. are the focal

lengths of field lens and objective, and A is the size of the aperture
bole.

;Modulator. The modulator is an electrically driven waveplate which can

be driven *X/4 at 6302 (0-200 volts). Together with the polarizing;

prism the modulator provides switching between analysis for right and

left circularly polarized light. It also allows analysis for linear

polarization when off or at V2.

5. Blocking Filter. The blocking .filter is ,)lates the magnetic sensitive

line X6302 and has a FWHM of 1.3 A. The FWHM is sufficiently narrow to

isolate a single passband pair of the Fabry-Perot. The blocking filter

is operated in a temperature controlled oven. The control is to *.l o C

which corresponds to ±.007 A wavelength.

b. Polarizing Prism Assembly. The polarizing prism is of the McNeille

type. It passes p wave light, light polarized parallel to the plane of

incidence, and reflects s wave light, light polarised perpendicular to

the plane of incidence. The right angle prism redirects the s wave

light parallel to the p wave but displaced about one centimeter. When

the modulator acts as a quarter waveplate at 45 0 to the p direction, it

converts right (left) circularly polarized light to linearly polarized

parallel to the p (s) directions. Switching the waveplate to - \/4

converts lef" (right) circularly polarized light to linearly polarized

light parallel to the p (s) direction. Therefore, the combination of

waveplate and prism produces a pair of beams which pass either RCP or

LCP and can be switched to the orthogonal states on command.

7. Fabry-Perot. The Fabry-Perot interferometer used in this system is, to

the best of our knowledge, unique. It is essentially two separate

etalons on a single substrate. Each of the etalons produces a standard

Fabry-Perot channel spectrum with 90 mA FWHM and 1.4 ° interorder

separation. However, the channel spectra are separated from each other

by 170 mA. The pair of etalons are adjacent along a diameter of a 50-

em diameter disk; that is, the etalons are U shaped. When either of

3
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Lhe 0'a are placed in front of a spectrograph si.i,t, a normal channel

spectrum is observed. Moving the sibstrate to Aserve the other t)

causes a aimi!ar spectrum but tihifted 171 mr°.. If t:he subtrate is

rotated so that ,31it covers bath D's, a double peaked spectrum it,

observed. `The double peaked spectrum, the solar spectrum near 1)302,

and the profile of :he blocking filter, are shown in Figure 3.

In the magnetograph, one D is in the E) beam and the other is in the :,

beam. When the etalon is at the proper temperature, the p beam channel

passes ,light in a 90 m, band centered +85 mA from the frou line at

1)302.5, while the s beam passes light in a 90 mA band centered at -n_i

ins, from OU2.5. 'These are referred to as the red and blue channels,

respectively.

8. Fabry Lenses. The Fabry lenses focus the essentially collimated beams

from the Fabry-Perot onto the detectors.

9. Detector. The diagram shows a pair of PIN diode detectors. The actual

experiments described below used photomultipliers in these positions.

2.2	 Principles of Operation

?.2.1	 Signal States

From the above description, the magnetograph optical layout produces a pair

of beams centered at plus and minus 85 mA from line center. Control of the

waveplate allows analysis for RCP in +AX and LCP in (-AX): 'State I; or analy-

sis of LCP in +AX and LCP in -A,: State II, or p polarized in +A, and s polar-

ized light in -AX: State III, or s polarized light in +AX and p polarized light

in -AX: State IV.



Table l

State	 Wave late
	

Iced Band	 Blue nand

I +1/4 RCP LCP

1i —\/A LCD' RCP

III Oft P S

IV \/ 2 S P

By proper addition and subtraction of the photo signal in both channels in the

various Qtates, sufficient information for longitudinal magnetic and velocity

field can be collected. For example, switching between States I and II yields

in both the plus and minus channels a magnetogram signal. Because the States I

and II send opposite circular polarization into opposite sides of the Line, the

signals in both wavelengths are in phase. For a pure magnetograph a single

detector would suffice which could collect light from either or both the plus

and minus delta lambda channels.

States III and IV can be used for velocity measurements. If the input light is

unpolarized, no transverse field, halt the light goes to each of the wavelength

samples. Thus, an imbalance J.n the channels measures velocity. The use of the

s ystem states is described in some detail in Sections 2.4 and 5.1 of Mosher's

report.

5
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, .' .:.Tile Tempera r are^^e lac ity Problem

.1	 sixth Uperation

The magnetograph was designed specttically to minimize the t^^tnl^er itttre -vel^^K^i t.y

problem. Operated oil 
Earth the 0olution i13 nearly optimal. Key to the ^lesi+;ll

is tit` use vi an atalon with two bandpasses on a single substrate.. Bovau je of

this, whatever the tilt of the etaloa or its temperature the pair of peaks

maintain their separation in wavelength. ik null velocity signal p an be ob-

tained without knowledge of either the absolute temperature or tilt of the

k, Lalon by balancing the signal that arrives in the p1u8 and minus Eiel t,i LlMbd,i

channels. Unfocussed sunlight provides a null or nearly null velocity oource-

The capability of switching from State xlx to State xv allows calibration for

internal polarization.

The bacadpass channels span (-130 m°, -40 m") and (+40 mR, +130 m°). Because

"' ._ ù has	 relative velocity withthe solar rotation rate is .°, km%sec, one ^.xm ^^uo

respect to the other of 4 km/sec which, at %6302, correspondu to a relative

wavelength shift of 64 mA. Therefore, it is necessary to shift the position

of the etalon angle only once to cover east and west halves of the solar

image.

The wavelength to temperature sensitivity of the atalan is .04a8 VO C or

.1.4 0 C/A. The velocity sensitivity to wavelength is 2.1 x lU-5^,/meter/sec.

Therefore, the temperature sensitivity to wavelength is 4.5 x 10-4Co/m/sec.

To detect a velocity of 5 meters per second requires temperature stability or

temperature knowledge of .0022 0 C. kor, a resistance thermometer at 30 11 G the

resistance change per degree is 160 .J o C. To measure 5 meters/sec, we must

detect a change in resistance of .377 ohms on a basic resistance of the sensor

of 4000 ohms. Thus, the measurement accuracy required is on part in 104.

This is straightforward and can be done with off-the-shelf 4 1/2 digit multi-

meters.

it should be emphasized that it is not necessary to stabilize the temperature

to 10-3 degree accuracy . It is only required that the temperature be moni-

tored. This has been done in the laboratory using a 4 1/2 digit multimeter

0



;atwehoa to resistanee thermometors in the astale 11	 The ti mporature

variation obcervod varied alowly and eould be easily oompecisa;ted for by the

motor iLael,t .

The digitat multimeter u ►ied was a Fluke 88oO calculating mul time ter. Thi;3

device can store a prograw and display and output a digital 
s
ignal based upon

the calculations. UsinP, the temr, ^rature resiatanre t^:ble.ti and ti ►e etalu ►a

properties, the meter was programm(A to read out resistance, tewperature,

wavelength,, and velocity offset. One 	 observe- that in ti ►e 5 to ;?,oe range

Cite velOCV.y la_d not, wary rapidly in time,

AS disoui:ised in the Moaher report, Liao temperature is nut a problem aor the

maagnetie measurements. A temperature stability of .l o C causes wavelength

stability of less than 5 mA which has virtually zero etto,,,t.

°1 1 ') ^f	 ^'...+...^.. r+n tit r\nerani h wUnAa ^.1.4.Iw	 Jtl (1 t^G4h6ai	 Vt

The principal problem of operation on a spacecraft is the potential for high

line—of—sight velocity. A circular near-Earth orbit implies ra tangential

velocity of 7,5 km/sec. Depending on the inclination of the orbit to the

ecliptic and the azimuth with respect to tine Earth—sun line, tine relative

velocity from sunrise to sunset can be as large as 15 km/sec. Fifteen

kilometers per second causes wavelength shift of 315 m p+ which can be

compensated by an etalon tilt of 0.810 degrees. This large tilt causes

considerable concern about the effective FWHM of tale etalon. For perfectly

collimated light, the change in FWHM is negligible for the tilt anglos of

interest. However, the finite size of the field stop results in imperfect

collimation by the field lens. The shift in wavelength with angle for a

Fabry—Perot is

2n'"

and the effective width with a beam of angular width ,S is

FWtIM(.) _ ((FWHM) ` + SPRF,AD(,^) `) i

i
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A WO ,,cTCpt ,, ::'a perOVnt broWening of the kWiI.t, theft the tolerance Lor

,i1t1ead( `) ist 5o m.;. To a good approximation

,ipread( )	 ^a^^: ,+ F ,44

NIl^

where	 is the widt'i of the quasi-collimat(W beam and a Is the tilt anglo, At

normal incidence, the allowed ^,is

^

,^'t1M(.41^^ 1
^ h 34la' 1

or

• - ,005f) radiants.

For a 25 mm ;vocal len,rth collimating field lens this implies as aperture

diameter

A - (- U '1 0(2)(25 x 103)

or

A * 281 microns.

Now, for the 15 km/sec case (a 	 .01414 radians), the value of F for a 50 m;,

beam spread is

.a

(.4)5)n.2

630::(µ)(.U1414)

or

s - 5.F x 10-4 radians.

This drops the acceptable maximum aperture size to about 28 microns,

The size of the aperture can be increased by increasing the focal length of

the collimating lens. Therefore, one effect of the high tilt is the ranee in

aperture size because it is not practical to use apertures much smaller than 5

microns.
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A much wore saorious problem 1rj t1144t tilt , otalon Inutit he oollstantly tilto(t

Olrolighout tlac: orbit to oenter the magnetograph. 'llitt grit o gat this is m4!oh-

.anival k-omplexity aand perhaps velovity 40 1 14edtly. The ,aa'ctatavy problem may bo

^aolvid, by prevision optioal +ent,oders Batt the tilt axis.

.;.1	 Modulators

The primary modulators used in ground based magnetographs are KHl' plates, Kerr

oells, and quartz acoustic modulators. The number of types used refleets the

tact that none of the modulators are entirely satisfactory. Both KDP plates

;and Kerr oella require tieveral thou8and volta tor	 u wave retardation: Tho

,err cello suffer thc; additional dissadvantappa that they are liquid tilled,

while KDV plates are notorious for being ultra, ;sensitive to thermal and met h—

anicaal ,shocks. The quartz modulators overate by mechanical, deformation of the

crystal which induces strain birefringence. Unfortunately they operate itt a

mechanical resonant mode at about 0 kliz. Thia i s rather higher than is

desirable in a simple signal chain. However, the quartz modulatorsi could be

successfully used.

In the c=-pact magnetograph we have chosen to use a PLZT modulator manufae--

turgid by Mocorola. These devices require about 200 volts for a half wave ct

1.6302. They have the disadvantage that the electrodes are in the aperturQ.

The electrode coverage is about 2 percent, so that in our collimated mode, we

suffer a 2 percent light loss. The devices were developed as the active

component of fast shutters in atomic blast goggles. In their intended appli-

cation, they are placed between crossed polarizers and are biased to ";; in

the mid visible.

The intended application of the PUT materials requires that they meet *;ever(,

military specifications for ruggedness, reliability, and uniformity. The

samples we have tested are quite uniform. They have proved satisfactory and

should be easily space qualified. because of their ruggedness and proven

reliability, we have decided to include them in the compact magnetograph.

r
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.,IS4	 ViIt(4.rt;

.1. ,4,1	 Blocking Fil,ters

Murca they 00011)40L MAV,11O tcegr aph w.ata r y a; i^;inaa l l y propoaed tlae best '411- 14 + 11„ , l Led

I i Uers teal HATIM's g at ^) to ti	 These, tit texa3 were of the three-rtavi ty d0;li, 1,4

,and had traansmissiuns betweva 40 to at() percent when blocked for tho IN and

ltto	 flee width of these; l uwr p , ^- wibiaed wi O,: the linesse Of l) i^o .y^) ► or

!-;olid eatalons required a tandem etalon design.

t)ii,cuasions with spe trofilm!, in iadover,	 indicated it mi.;'it two

ponaible to coastru4.t call-deposited lilters with I-MD['s less than 	 ,. Two

tiuch filters were manufactured, one with a FWliki of 1.3 "* and the other of

l,h °_. both filters are two-cavit y designu, are fully blocked, and have M5

percent transmission, These fil.turte allow goin}, to a single solid etalon

rather than the dual otaalona previously require=d. This is an immense simpli-

fication in the system. To eompe t,saate for opaacee;raft velocity would otherwise

require control of a pair of etaalons.

with new coating control techniques, which should be possible. with a dye laser

monitoring system on the coating chamber, it if; re asonable to hope that l

filters with greater than 50 pereeaL transmission Lan be made.

2. at . w	 Novel E1,110n

'rile novel OGalon has been discussed abOVP,,, but it is worth discussing of the

manufacturing technique. First, it must be tooted that before the 1.3 ", blucker

was available the split etalon could not be considered. A system of two split

etaalons would be too complex.

The split etalon was manufactured from an existing, 90 m,'• bandpaass solid Fabry-

Perot. The device was a freestanding wafer of tuned silica about l mm thick.

The etalon was returned to Perkin-Elmer and stripped of its dielectric mirrors.

The cleaned substrate was then coated with Sit),, and the rate of deposition,

monitored. Once the rate was known, a mask was inserted over halt the etalon.

After a time such that , ,90 ' of material was deposited, the source shutter was

10
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classed. This process resulted in an etalon whose halveH had slightly differ-

ent thicknesses and hence offset spectral. channels. The design objective was

that the channel spectra were separated by twice the 7WH.M. Because the

etalons are on the same substrate they will always be subject to the same

conditions, in particular, temperature and tilt.

The technique of preferentially coating a desired thickness vr 1 ;.iation on an

etalon is, we think, a significant advance.

2.5	 Operations

The initial plan was to operate the compac', magnetograph with a pair of PIN

diodes and synchronously detecting in phase with the quartz acoustic modula-

tor. The electronics built for this task simpxv did not perform as expected.

We feel that there is nothing fundamentally wrong with the design or the

diodes; however, time and the funds available under this contract did not

-!low 	 Ielo^	 s the 1' 4 h-fre uenc ampli
f
ier chain .a 	 EL	 , ment J^	 w L' ^^^ 5	 A	 y	 p	 iSA.i^

The second electronics chain was based upon a photomultiplier, a lock-in

amplifier, and PUT plane. The operating frequency was 30 Hz. From the

Mosher report, about 10 8 photons per second per 10-aresecond region were

received. Only one signal channel was used, plus delta lambda. The scans

were made by allowing the solar image to drift across the aperture with the

drive off. Because there was no velocity compensation, the magnetic

sensitivity d^O eased across the disk as the effective location of the plus

delta lambda channel with respect to line center decreased. In addition,

because of the operation in the spectrograph room, the solar beam reflected

off a heliostat and two folding flats.

Shown in Figure 4 are a series of scans across the solar image. The basic

triangular shape is due to the residual circular polarization introduced by

the non-normal reflection from the mirrors and the reduction of sensitivity as

the wavelength channel moves toward lies center. However, in the neighborhood

of a sunepot, a magnetic field is clearly detected.

11
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.,.o ititure iktivitaes

.1t the completion uk this contract a great deal remains to be dune to have it

wc)rkin); magnetograph. A raster scan control program must be developed and the

vloetronics chain must be unproved as tho minimum first stet>. `1.'heii some sophis -

ticated so.ttwtire needs to be develope=d to establish the ultimate aceuraoies

obt ,iina pale for the measurement of velocities.

110pefully ,funds will be found to place a compact magnetograph in operation.

However, this program has demonstraL#^d that a compact mao;i.etograph i,i io,tsible.



k^^*.urc 	 t,f^^! ^ 	 ,ur

Figure 1. Optical layout of compact mak*netograplt.

Figure 2. Photograph of magnet ogr aph on echel le spectrograph.

Figure 3. Solar spectrtun in the neighborhood of X6302.5 together with

spectral traces of both channels of the Fabry—Perot and 1.3 A

Mocker. All figures are to the same wavelength scale.

Figure 4. Drift scans across the solar image. Region of sunspot marked by

dots. Maj*netic signal region underVned.
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4; t)OIDERATIO,N'S' is 'riu:.	 or .l

COMPACT .tAGNE.TOGRAPH EMPLOYING FABRX — PENT FILTER:;

1.	 ^)_ b jet t'ives

The purpose of the proposed program is to demonsrrare the feasibilir y of

measuring solar magnetic and velocity fields by means of a comply syspell

using Mabry Perot .filters. The immediate goal is to conetruet a prototype

system capable of producing a Mount Wilson—like rarer scan of longitudinal

magnerie fields with a sampling aperture of 10-20 arc seconds and negligible

noise at the "S gauss" level. A two—i.nch entrance aperture is desired, but a

larger one may be used to compensare for the ineRirieney of the available
detectors.
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Vor -imaII sainplizt), it pert urvii, ,i ve.v,^ sItitple design is Gigs«iII)It,:

Ol	
D-_	

Al 
Tp A

2.1:	 Optical 'dements of a vompaer riagnerograph (horizoritial sralk,
hi^,hly vompressed) .

11 is the 10 arc second Lield 3rop placed at the prime focus of the objective

lens 01. FP is rho. Fabry Peror filter, A'' is ^i ; -menred quarter waveplave and

polarizing mask (see Figure 2-4a), while D is the derevror (rurrearly assumed

to be a 244 x 1+8 k^lemear C; :D .array with a faveplare -aeasuring 9 x 1 1 mm

Figure +...tea). The only elements nor shown are the blocking filters, whictY

would ptasumably be placed between the field srop and the, Fabry Perot.

As long as the aperture Al is small compared to both the objective

diameter and the diameter of the ":image" on the detector, the positions ')c FP,

A2, and D after the field stop are arbir°rary, permirtinp, a free manipulation

of the amount. "f filter and derert.or used b y the light path. to faer, the

polarization mask A2 Pan be placed anywhere in the 	 even La front of

the objevrive. None of the indicated parrs are iatendod ro -nuve, exrept for

purposes of alignment,. Different points on the sun are examined by changing

the pointing of the entire assembly, and the filters are tuned b y remperarure,

rather than tilting.

2.2 Properties of Fabry-Perot Filters

Arcording to ?Keod's book (Thin Film Opt_iral "Ilrers), the trrans"'Us,sion

coeffirient through a single element Fabry Peror	 ir, riven by:

ir;YYre
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whero '^' 	 ; the l-„;al rransmission ooetiiplenr (derormined lw alasorprive Io Hsos

In the mirror roarin },H and nubsrr;ire), anti the "Finesse", F t is an empiriv4

ooellfiolenr relarod ro Plitt reilooriviry, R H , ot riie parriall.v rranparanr
mi rrors. For ide al, plants, paral.l itl mirrora:

•'r It
H

:i ti 'Ind d, } .are the index of reFrivri,on and rliirltineHS of rtii,, subsrrare material

between the mirrors, and3 H is the angle of the l.ighr parh (inside the tit^b"

snare) relative to the normal direwri.on.

LaPhemarioa,lly . fo g moderate or lar ge values of F. this ac7uari©tl dos-

rribeH a aeries of sharp, widely-spared peaks. The peak wavelengPlis, 	 (k)

are determined by the rondirion char the sine-term should vanish:

Nn  d ros l
i o (k)	 W	 s gk	H	 k x 1,2,3,.	

..	 (12,20)

If Plitt general, equation is expanded about one of these points, a somewhat more

useful approximate .corm ran be obtained for the transmission coefficient:

T	 r

/	 of	 ry

1	
+^-1 -1 2. (%-%o)-	

. l.r

1{	 ^^	 e	
l ++;,	 sin ^ 	laths ^ 

	
,.

where

h
• M

^^^tt	 ^0
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is the full width of the transmission peak at lialf-maximum.

Using Phis notation, the sparing hctween successive peaks ran be written

a,) k
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1oit,, t^.w oxtini-ion ramr	 vi:

. R-: X, i

o,3 A

MAX r0 n
	 4 .3 }R

)r tats' ptreHont pur imtivs, one of r 1w moHr im 1 mrtaw fitllwott; ot , t!iv v,il)m

lkoror otiostrion is the dependenve of the transm'ismion ptro ilo in	 4"flnk,l^. 	 lr iti
ovidonr r-har f1w primary t,fferr will be it otlit'r gill rlie waveleng ths of t:he

tr^tnsmfwwlon peai,,s. Thita shift is determined by rlie condition rhea the ar^,u-

'lt f nh of txle 'idle p orn mtv"t by ILk!pr s ,qual to l• xr .	 to ^tppr^)x l.-,c o !ox—i 1'1&;

retpvli rt-i :
j

)	

aM Il

where ^i is the extewnai angle of inridenre (i.e., measured mirt,ide rile sub-

,rrare) and n. is the index of retraction of the aubsrrare.

For the design indicated ill the firsr figure, it is evident rhar eaoh

radial position in the deterror platle rorrespondi io a diftereut ,angle rhrongh

the Filrer and rherefore ro a different wavelew th of peak transmission. The

maximum angle is simply relared ro the i-number w rile beam through rile Fil l
-rer, which, in absence of vignerring and diffrarrion, would be rile same is the

f-number of the objective lens, i.e.;

li
max

(radians) x 0.5/f-number - 0.5*f-ratio 	 U • i)

Oiven rhis radial depeadenre of waveleng,rh the %ina);e ll on rile dererror plane

Is expev red rte look like:

JET ; '/. f./	

,^

d.	 1

10 

,ure 2.2.a. znrensiry parrern experred 011 deterror plane with difierenr
-numbers. rile shaded portions repres-.nr rile solar line absorption.
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w1101*o it h.at; he-rn ,issuried than rhe Fel absorpriota line ar 1002. q ; is being

ohsk?rved.	 Thi.tt lined has a rotal width of about 0.311, which is jusr covered

ar 0, 10. Ar 1/..0, the range of wavelength voverage is invrease-d ro where the

neighboring rellurir lines ran be seen. The outer: one is ro the red, and the

inner one ro the blue;. Tile nature of rile sperrral dispersion produced b y the

Vabry Perot operaring in this mode is sucl, that an egeaal area of the detector

i.s ,av,xilable for each Fixed invremenr (e.g., 0.1A) of wavelengths.

;lot only does each point in the image ot,rrespond to a specifir wavelength

of peak transmission, but- by Phe  ,kme L ay tracing argument, it oriKinat•es from

a speriiir point oft the objeetive l,^ns. That is, the rays forming rile outer

odge of rhea detecror planei, image originate from the oarvr edge of the ohJet -

rive f thutie onding in the renter began in the center, and so on. It Ls as if,

in order words, a soir.ably sealed image of the derect.or plane were marled on

each iAoment along the optical park (in partictilar, the ob jert.ive lens, the

filrer, and the polarizing; mask). A consequence is that radial non-uniformi-

ties or spl.utrhiness iea these elemeaars cannon easily be distinguishedfrom

genuine spectral irtformarion.

In order to maintain the equal area condition, a "properly" centered

spectral line should appear with its absorption core l// ' of the way from

center ho edge of the detection ft:a'ld. Under such rircumstanves, file princi-

pal transmitted wavelength ar. any point in the detector plane is given by.

N(r) - Xo - r2 Etamax.
	

(2.2^)

where 
Xo 

is the wavelength of the line core, r is the radial position (norma-

lizeu ro 1. car, the edge of the field), an :

0

- 1	 Amax	 ,
AX
	 ^ X1

0 (l -	 2	 (...Lk)
n

s

(r.f. equation 'x.21).

This ideal configuration can be disrupted by drifts in filter temperature

(which move the bandpass red-ward by approximately .03611/ oC due to tilt' expan-

sion of the :substrate), and by errors in the mounting of the filte, (if the

un^i ' -
;T
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angles are comparable to those in the cone of light):

T^ t!! p:.^,44 ^hl^k1: T¢ ►n ,!--±oQj-QW

Yex- iV91-4.lt	 Rata zntal.tJ

A	 t1

u

Figure 2.2b: Aberrations expected in the image plane for temperature and moun -
ting errors. The dashed lines represent the boundaries of the detection zones
(cf. Figure Z.4a). The temperature —associated changes could equally well be
induced by line —of —sight. velocities.

In the absence of the telluric lines as a reference, the "temperature too

high" case cannot,, incidentally, be distinguished from a motion of the solar

,absorbing material away from the observer, nor the "temperature too low" case

from a motion towards the observer.

3.3 Corrections Needed for Large Sampling Apertures

2.3.1 Te.lecent.rir Corrector Leans

If very large sampling areas are to be used, additional pre -

cautions have to be incorporated into the design. Ihese consist of the intro—

duct,ion of a telecentric corrector lens in front of the field stop, and of an

objective—imaging field lens between the t:ilt:er and the detector. The first

modification becomes necessar y if the size of Al is comparable to rile diameter

of 01:

0



At AL

IJ

r

t

Fi};urt^ 2. 1.1: Funcrion of relecenrric eorrecror lens (highl y exaggerated).
The Lens is placed immedia rely before the field stop. f.eft side = before
correction. Right side - afror rorrecrion.

The relecenrric correcror is a lens whose focal length is equal to its dis-

ranre from the objective lens. Withour it, the cones of light .forming the

outer portions of the solar image (at prime .focus) would have a slight syste-

matic tilt relative to those forming the center. This tilt. would be trans-

lated into a wavelength bias as the light passes through the Fabry Perot

filter.

If R is the radius of the objective (01), r the radius of the field stop

(Al), and Z their separation (which is equal to the focal length of 01), then

the basic, half angle of the cones forming the image is:

D rone - RA (radians)	 (2.3.1a)

(which determines the maximum wavelength range accessible to the detector if

the full Bone is utilized). Since the central, rays of all of the cones origi-

nate at the center of 01, the maximum systematic tilt imposed by the finite

size of Al is:

a tilt ' r/^ (radians)	 (2.3.1b)

and wavelength bias is roughly:

2n.'.	 o
s

1
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In general, this will be found to be ver y small. For example, for a 2" (5 cm)

fd35 objective one would have 'Z - 175 cm, and a 10 arc sec , (diameter) field

stop would have r - .004 cm. This would give a systematic- bias of only about

8 x 10 -7 A at a002.

liven if the wavelength bias were larger, it would not necessarily be

serious. It means that at, the detector, the line wi.11 not be equally well

"centered" for all possible positions in the samp.Ling aperture. For longitu-

dinal ' F eld measurements, this affects only the sensitivity (slightly) and nut

at all she zero. For Doppler measurements at a fixed solar position, ir, would

mean that there would be a slight apparent blue shift as the size of the

aperture Al was increased.

2.3.2 Lens to Reimage Objective

The second modification, the lens to re-image the objective

after the light pa8ses through the filter becomes necessary if the size of the

field stop Al is to be comparable to tha. f the detector., D, which would be

placed approximately at the focal point of this new lens:

P	 D

FP	 n

Figure 2.3.2: Function of the objective re-imaging lens (highly
exaggerated). The lens is placed between the filter and the detector. Upper
= without, correction. Lower = with correction. The views on the right show

the intensity pattern falling on the detector.

F•



As indicared, in that absence of the field lens, the Fabry Poror speorral ring

patterns generated by cones originating ar different points within Al would he

misregisrered on the detector. For a relerentric system, his lateral mis—

registration is exactly equal in magnitude to the lateral dispersion in their

sources at Al. Thus, the maximum misregisrrarion is equal to r, the radius of

Al. The amount of misregisrrarion which can be tolerated depends on the

amount of spectral resolution which is to be achieved in the detector plane.

For normal magnetic measurements, only a rather coarse segregation of wave -

lengths is required, and it would rert'ainly be more than suf f it i kent if the
various cones were registered to within, sa y , one— tenth of the detector radius

(which is assumed to be equal to the radius of any one of the cones). If the

distance from Al to D is V, then this radius will be R' - V R/Z ; and the
condition r < O.IR' is therefore equivalent to V > lOr k/R. For the 2" f/35

objer,tive with r - .004 cm, the auxilliary field lens would be unnecessary if

> 3 gy=m, that is, if R' > 0.4 mm.

While these two additional lenses add a certain thevretloa l niceness to

the design, they should be avoided if possible. Not only will their absence

improve the optical transmission of the system, but it will minimize the
possibility of dirt, optical imperfections, and secondary reflections inter-

fering with the interpretation of the spectral patterns.

2.4	 Extraction of Magnetic and Temperature Signals

The optical design described above provides a simple mechanism for dis -

persing the incident sunlight into its constituent wavelength components.

Given this dispersion, the presence of longitudinal. solar magnetic fields can

be detected by	 searching for a net circular polarization in the wings of a

magnetically-sensitive solar absorption line.

In most successful photoelectric designs of the past this has been ac -

complished by using the combination of a modulated electro —optic crystal and

fixed linear polaroid to act as a valve admitting alternately the two circular

polarizations at a fixed wavelength or bandpass in one line wing. If a flirk-

ering intensity is discovered, the presence of a field is inferred. The

photon statistics, which dictate the time required to measure this modulation

to a desired degree of accuracy ran generally be improved by b,oadening the

9



band.paos sty as admit a considerable portion of rile line wing about the point

of maximum modulation. The light level cart be further l.noreased with no

sacrifice in modulation by substituting a polarizing beam splitter for the

r,in;gle polaroid, so that instead of disoarding half rile light, the two wings

can be sampled simultaneously (rho right-handed component being passed in one

wing and rho lefr-handed component in the other) and the results combined with

suitable phasing. In principle, although this has evidently nor, been tried in

prarrice, it is also possible by means of a sufficiently complicated exit slit

arrangement. to photometrically combine the results from several lines (for

earth-based observations, as pointed out by Livingsr,on (A h. J. 153, 929,

1968), such a scheme is limited by the differential refraction of the earth's

atmosphere if high spatial resolution is being contemplated).

The Fabry Perot magner.ograph deviates from this accepted design in that

no modulating element, is contemplated (although one could be incorporated, as

indicated in section 4.8). Mather, the light originarIng at a specific point

in the wing of the line is to be ,eometrirally subdivided into two equal

portions whicli are to be monitored by separate detectors, one for right-handed

and the other for left-handed photons. Once the zero level has been deter-

mined, additional imbalances between the two detectors which arise as the

system is scanned across the sun will be interpreted as evidence for the

presence of fields of the appropriate sign and strength. The avoidance of

systematic biases unrelated to the presence of fields obviousl y requires

careful craftsmanship in the design and operation of instrument, the challenge

being rather comparable to that involved in attempting to obtain acceptable

magnetic cancellations by means of the "dual" exit slit spectroheliographic

cancellation technique of Leighton and the Aerospace Corporation.

Another important design consideration is that of keeping the bandpass of

the Fabry Perot filter properly centered on the wing of the line, so that

adequate sensitivity and a stable calibration can be maintained. At present,

it is felt, that in order to achieve this objective it will be necessary to be

able to monitor the position of the line core in real time which means that

the detector will have to hava both wings of the line accessible to it (by use

of suitably small f-number). This "small" f-number (small meaning a

divergent,/'convergent beam) is not particularly desirable for magnetic measure-

ments, for recalling that the detector plane geometry is effectively painted

r
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on rlie obje.crive lens a smaller and smaller portion of the ineidenr sunlight

is being used for the magnerir measurement as the range cif wavelength coverage

is increased. However, if it is dictated by the requirements of temperature

ronrrol, then it is rerrainly desireable to make the best of a bad siruarion

by performing the magnerir sampLinb in such a way that both wings of the line

ran be used, rather than ignoring one wing romplerely. The simplest

magnetir/t.emperarure sampling scheme involves four detector elements, and can

be indicated schematically as follows:

Figure 2.4a: A simple 4 sector scheme for sampling the magnetic and tempera-
ture (velocity) signals. The polaroid configuration shown here is later
referred no as ";task I".

The incident intensity pattern, centered on a spectral line, is passed first

through a fixed quarter wave plate, and then through a polaroid mask consis-

ting of two orthogonal linear polaroids whose axes are at 45 0 to those of the

quarter wave plate. One orientation of polaroid will pass right-hand circular

phonons, while the other will pass left,-hand circular. Detector segments

I(RHC) and II(LHC) are in the blue wing of the line, while III(RHC) and

IV(LHC) are in the red wing. The magnetic signal is obtained by combining the

polarization differences from the two wings (which can be thought of as inde-

pendent samples, and should be of equal magnitude, but opposite in sign). The

temperature signal is obtained by comparing the total intensities collected in

the two wings.

Magnetic signal	 ' ( (II - I II ) + (I IV	IIII ) )/Itor,	 (2.4a)

D
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Temperarure signal . ( (IL + I 11 ) 	(11LI + I LV ) Vitor
	 ('2.4b)

where Irot . I I + III + I III + IIN
	 ("_.4r)

These two signals are constructed in such a way as to be independent bath o

each other and of the overall intensity level. The division by I rot is neres-

sary to maintain the normalization (i.e., the "sensitivity") of the signals in

the presence of varying; light levels. The signals are coupled in the sense

that the sensitivity of the magnetic si„nal will fall off if the remperarure

(or velocity) is such that the filter is very far off line center (rf. Secrion

4.4).

Note that, a small part of the light, around the core of the line is indi-

cared as not being; sampled by the detert:ors. 
This 

is intentional, bert.uee, as

will become evident later, to include this weakly modulated light, would sligh-

tly degrade the signal to noise. This exclusion ran be accomplished either at

the detector, or by including a suitable occulting ring in the polarization

analyzing mask.

A slightly more complicated polarizing mask could also be used:

Figure 2.4b: "Mask II", an alternative polaroid configuration.

In this rase, the magnetic signal would be derived from (I I - III ) +

^rIII	 IIV ). The motivation for considering this more complicated mask is

explained in the following; figure, where, the expected intensity patterns are

12
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rihown (in exaggerared form) for (on the left) a O ruation in which the R1W,

absorption profile is shifted to the h1-u(, and the 1,110 profile to rile red, and

(on the right,) for one in which the mignetir hift,s are in the opposite direr-

rion. It, is evident, that if the simpler mask (I) is used, the expected pat-

terns are similar to those which could be produced if the filter were acciden-

tally tilted. .lore importantly, ?task II converts the mag neric blinking from

an annular to a ,left-right pattern which permits a very simple two dereo ror

sensing; system to be used (see Section 5.1).

M Q$

^ 4

\	 t1`. C

MM

Figure 2.4c: Inronsity patterns expected on the detector for a Zeeman-split
lii,a. Positive y ield (left), negative field (right,).

Although it has been suggested that. the dissection of the detector image

into the required sectors will be accomplished by sorting the readout from a

higher-resolution CID-type image plane readout, this is not an essential

feature of the scheme. Indeed, if the number of sectors is kept small, one

could imagine feeding the appropriate light, by means of prisms, to physically

separate devices (for example photodiodes or photomultiplier tubes - see

Section. 4.2, and the specific designs in Section 5).

Under some rirrumstanres, more derailed spectral information, that is,

the ability to dissect. the 'image" into finer wavelength rings, may be de-

sireable. For example, if observations ara made at high spatial resolution,

13
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rite variation of pol ♦arirarion with wavelength in sperrral line wings tarries

important information as ro rlae nature, of the fine srale, fields. In parriou-

lar, the poinr of maximum modulation is raaa indiii-arion of the true field

srrength Cif it is greater than abour 1000 gauss), and the magnir;ade of Hie

"ignal is an indirarion of the amount of Line weakening. t"nder the prese:nr

oLreumstarares, however, this would nor seem to he it very ;serious t onside,ra -

rion. :for only is the 2° aperture instrument inappropriate for high -

rasolu, ion observations, bur the field stop required for l art second resol.u -

riou would be objerrionahly small. With a diameter of only 0.8 mirronr, the

field stop would b€ in ro become the tilemenr derermi-wing (by dif r,arrion) the

,angle of the tone passing Through the filter. While this parti.-ular problem

could be ;torten around by adding extra lenses, the light level passed by the

small aperture would be insuffirienr to permit the measurements to be made in

.a reasonable time compared to the lifetime of the magnetic ol,emenrs.

zf the spectral information is not to be used for such purposes, there is

no persuasive reason to divide the basic sectors into Finer wa^relength rings.

14



I.	 I airularton of Experred "Lianerir Signal and I+anal Tnregr:irion Tines

The pra( , riral feasibiliry of any :p olar magne,rograph design hinges pri-

rnarily on two farror5;	 tilt experred light level and they strength t)i the

oxpoored magneri- signal. In general, the larter ran he prodiotod onl y if one

6 -,as ,I fairly ao( , urare picture of the true solar fields, and of rhea behavior o.:

rho magnetically sensitive line rep be.. used. In recent years, the dirfioulry

01 riaking sur't predirrions has beoome increasingly apparent, the primary

oomplirarions being (a) that with finite resolution the field ('annor be

regarded as being homogeneous, but rather is some nor-very-well determined

1 011 1)084re oaf sna^ll (possibly unresolved) areas o.	 8rrong I ield, inter, k rr eti

A rh muo;i larger portions W undisru-hed phorospherP; and (b) rhar in they
areas of strong field the line profile may be quire difkerenr from that

normally measured in undisturbed ;areas (due, presumably to differe'nre!s in

temperature, ions arioa balance and mass motions).

1.1 Approximate Determination of rile Vhvsiral. Conditions Corresoondine to

the Lower ;fount Wilson Contours

3.1.1 True vs. Apparent Strength of Weak Fields

Ir is generally appreriared that. when the Yount Wilson magne-

rograph registers "5 gauss" or any other field strength, what is actually

being registered is an ,average over its sampling aperture (currently about

'.3.0 arr sec). If the line profile is a function of rile field strength, the

weighting function in rile average ran be rompl.ioated.

In the simplest models, it is ;assumed char. whet is present is a mixture

of an area with -oro field, and an area with some moderate or large fixed

.field srrengr°i, ,end char the appearance of a spectrum of field strengths is

oreat;ed by a variation in the frarriori of area occupied by that .fixed strength

field from point raj point.. In other words, rile total intensity of l igh t- in

the aperture ran he represented as

)LAO - C1-r)-T 0 (l) '+' f o l M (%, a U )
	

(3.1.1)

where I ,) (i) ira the iiormal line profile in the Undisturbed photosphere,
T m ^:e, t.3,! is !:ie na aerioally disturbed line profile rhararteristir of a
spariall':	 '.vod .area with the true field strength B ,) , and f is the "fill
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,';to t or " , rhat 'is, the rr.rt'r itln of .ir e a, oovupi-t-d fw, t:, - ,	 'ie tl 3 "	 K V>

fttr iongLti;dinaI tit^ltla cheat .ore two magneV 11 0 profiles, twit , I  rhe righr-

3tanti o troitIar, ana one r o r r I.ie I k, t r —hand t irvitlar t 't impo tit , ii r	 li .ire' slii t nett

,lilitrtiitoIy in wave Ik^ngt	 from Ilie itntiisrti rho d posIti,tiit^.

lnformarion ui to rlie magneriv prof ilen is nor 'stet in .t tie.,inirive

g rat(A .	 D' or mosr phorospherio Tines rho magneriv profile teal he isatlmed rt) I %k'

!ihallower then the undisturbed ones (except in trunsnors, where rhe line!;

deepen) its evidenced by the facr rhat the nerwork poinrs rend ro he hri8hr'^tr

rhan their surroundings .tt most positions in Mw linen (t'.g., "llivelol!, Sol- tr

171, 191N,); :)vlloolman and Raritiev, 'iolar

' tvtrliall! O'g rablish rhe. pxoki.le I m (," 330 ) appearir,^, i-a tilt, pret°eodint ,, eqhiatton

by direct, observarion it would be necessary to obrain it tracing in a

virciil_ar polarizariun of rhe profile for in area on rile solar surt;ace whine, is

spatially resolved and uniformly occupied by a purely longit!idin,il field. A 

present, it is nor, even known if such an observar on i.; oven rheorericall",

t`ossible:.'

3.1.2 :formal and Disrurbed Profiles of \5150

The best indirect ob8ervar.i.onal evidence regarding rhe magne -

rirally disturbed profile of a single Zeeman compotienr of rhi^ `,5250 line

(w,ii.ch is used by the 'bunt Wilson magaerograph) is supposedly Char obtained

by llarvey and Livingston (Solar Phys., 1i), 283, 1969; Figure 3b), who studied

the variation in sensitivity of a magnetograph using this line as a function

of the exit slit position in the line wing. They inferred a moderare

broadening of the line profile in the magnetic elements, and a very grear lo-;,3

in central depth. In £act., they indicate than in the core of the line, rhe

magneic elemenrs would be three or more rimes as bright as their surroundings

(as a r,-ult, of line weakening and Zeeman splitting). This does not, appear to

be entirel, r• oasistent with ot:lier observations, and it seems possible that in

their analysis they may have confused the effects of sarurarion with those of

line weakening. A re —evaluation of their sensitivity curve in terms of an

inherently strong field might, lead to a much more modest,,  estimare of change in

rhe line profile.

Additional information on the

5250 is provided by Srenflo (Solar

moderate: loss in ventral intensity
i

rhe origin of his profiles is uncl

profile of a single Zeeman component of

Phvs., 4 , 79, 1975). Ile shows a much more

(70-100.. brightening in the line core), but

var.

lh



r-

vi r F i tlirNCt tr ,win>;s of rile profilt, in sp,ari,all y ro,4olveki t °utgiiet^—

.all  ^Iisttarhetl ro okn s, rhr. only resulr y to havo been puolished Okrvw., ,anti

I,ivila srtta , l9ra t) l'iKure .:; and >haapman and '^heeley, ^ t3lar Phys., ail, tfl,

ure z) appear to have, boom made wirhour polari: ins; oerir i, ohioli severeiv

limits rhe'ir tasefulnes i- Notierlieloss, rllese rwo restalts, one obrainetl phofo -

olectrioally and the t}Alex phorographicall y , are in very ,-,00d fia , ,reemenr. F,jr

rirrong non—sunspor r,,,tgneri,o fields t , bey show the	 5250 profile

hroade,ning from 75 ro lt)() mik FW11a (llarvey and hiving,iron) or KS to 1,t)'# -1A Y4d11%

Whapman and ShQeley). Both show the tandisrurbed oenrral inrensit y are being

,W) of the conrinuum. In the mragnerir F ap it rises tit) 4C (H trvcy ,intl

,Av;agston) or ` "i (Chapman and Sheeloy). It ono as,,iurien t hat t'he inrria.2;I-c

wiJtli tit rlae line profile is the satre in the mixgnerio and non—mtagnerit,

rogions, rhen in both rases the broadening could be explained by .a longi>ru--

din al n agneri,r field of .about 600 gauss. Under such an iarerpreration the

rrue loss in cetrrral inrensiry is less than it appears in the unpolari,zed

nrc^Hiln	 niatir!ta n::rh of HIP 1nxxs ip riii+ to rht; `.!ont,;:in g nl i t-Hna-	 Tho t<rctin

central intensi,ry for the individual Zeeman components would need to be 22 of

oontinuum(for Harvey and Livingston) or 48"; (for Chapman and Sheeley). This

tamounrs to an increase in central brightness of 23Y in the former rase and

48% in the latter (as compared to the undisturbed profiles of the same compo -

nents).

The published profiles of 5250 are all of a nearly "Gaussian" form:

r.^,	 n
I	 xo Cl — p© e

— . b93 
(FWkiri)

('l.l.2)

In this notation, the results for the various disturbed and undisturbed line

profiles can be summarized as follows:



rablu, 3: 1, 	^,:`^^! t.ittt+ 1'r^Ttilo^^t

t 'a sN	 1 min Ta Source

'Yorm.tt:	 - .; 3 g :, Kirr	 D oak	 Prol m.	 Arlfas

Sar	 1 aeitl,	 Arlas

148 Harvey and *.ivi, gston	 (Fig. 3.1)

b .72 83 .'. 5 Steliflo	 (Fig,	 `))

r ' -Ni SS N.o Chopman and Sheeley	 (Fig.	 -1)

I .1,1+ 111 1.8 4Iarv4-v	 ,Ind	 .ivi.ngsr'ol
l:	 ,t	 tr.!^^^d:	 a .15 :)3 , !far°,rey and	 '„i.ving.4ton 3o)

I} •53 0 .:0 Srenflo	 (Figure	 5)

*	 ^ .5 SS w,^' c.'h..apman	 and	 Sheeley	 (Fi};.	 I)
*	 ^I ,r^8 71 1.S Harvey and Livingston (Fig. 2)

.b to bl lti liai?,^r	
a. ..>	 1_... 7 t___ n 1	 1	 t-	 n'"'he 	 wo 4 ase s (mark- ed uy	 S l rhu ma,,nera,raily di sturbed parameters

have been guessed from the unpolarized profiles as explained above.

The two profiles derived from the figures of Harvey and Livingston (rases "all

,anti "d"), seem to represent the extremes of reasonable thought regarding the

possible extent of line weakening in 5250.

:3.1.3 Estimat-e of the Signal Strength Required to Register "5 Gauss"

Given these profiles, it is a fairly straightforward matter to raloul,ate

the anr.iripared response of the ,It,. Wilson mtagnerograph. A(vording ro Howard

and Stenflo (Solar Phys., 23, 402, 1972), the magnetograph operates at 1,5351)

in the Fashion indirared sehematirally in the following figure:

t
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Fig;e=ru° 3.1.3: Sampling of magnet•.irally-split, line by ttie .Mount Wilson mag-
na ograph. The profiles shown are for a pure longitudinal field of 500 gauss
with no line weakening. The difference signal is measured as the exit spec-
trum is modulated between the two rirrular polarizations.

that is, all of the ligtic falling between 9 and 84 mA of the nominal line core

is sampled sequentially in the right and left hand c.irr 	 polarizations

(actually, the two wings of the line are sampled independently, and the re-

stilts combined to improve statistics). The signal is defined as:

Smag M (Irhr - I lhc. )/(Z rhe + Ilhr)	
(3.1.3)

and converted into an equivalent field strength by comparison with a nominal

ralibration. The calibration, which is derived empirically, is the signal

expected if the undisturbed profile is artifi,r.ially displaced by an amount

corresponding to the specified field strength. For a 5-gauss field (whirh

shifts the line by t .193 mA), using the various "normal" profiles given in

the first part. of Table II, calibration signals of (2.2 - 2.7) x 10 -3 are

anticipated. The average is 2.5 x 10-3 . It is not known if this is the

actual empirical signal strength used as "5 gauss" at Mount Wilson, but it is

probably close.

i
1
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3.1.4 Combinations of 'Field Srren th and Fill F.-.(-tor 'rod

5 Gauss Si nal

If the t=rue intrinsic field strength, Bo , is anyt,hi

than about; 15 ;gauss it should be possible to find a "fill factor",

All reproduce exactly the nominal five-gauss signal. It we define

the "true average" field stength in the apert-are, then the following result, is

obtained:

Figure 3.1.4: True average field strength < B > required to produce a signal
of 5 gauss in the Mount Wilson magnetograph as a function of the intrinsic
strength of the unresolved magnetics elements. The letters refer to the dif-
ferent possible assumptions about the shape of the magnetic and non-magnetic
line profiles given in Table 3.1.2.

In all cases, the real average field strength has to be greater than 5 gauss

to compensate for the line weakening. If the true field strength is very

high, the average must be even higher to compensate for "saturation" as well -

that, is, the point of maximum signal is shifted out of the bandpass. The

Harvey and Livingston result of case (a) seems to be far out of line with the

other three, but it should be remembered that this is the one which most

nearly purports to be a "direct" measurement of the magnetically disturbed

profile (cf. § 3.1.2).
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The figure suggests that average field stt

likely to be encountered in the kind of features which produce "5-gauss"

rontours on t,lie ;bunt Wilson magnetograms. The true Field strength is not

very well known, but it is probably around IUUU gauss. Very much smaller

strengths can be ruled out by a comparison of the measured flux (which is a

lower limit on the true flux), with the observed size of the features (which

is an upper limit on the true size). Very much larger strengths ran be ruled

out by the absence of any obvious resolvable splitting in the high resolution

unpolari.zed spectra.

3.1.5 Confirmation of Znt.rinsir Field Strength from Choice of f•lount

Wilson Exit Slit Positions

The idea that the intrinsic field strengths are less than or

on the order of 1000 gauss also gains some support from the choice of exit

slit positions which have been found historically to produce the best magneto-

grams in the least time. As pointed out above, as the field strength in-

creases, the point of maximum modulation moves out in the wings, and the

optimum integration time for a fixed signal to noise is obtained by using a

bandpass "r..entered" on this peak signal, but incorporating a wide enough range

to include all the useable light around it. (What is meant. by "useable" is

difficult to define in general, but it is easily determined in practice by

moving the limits until the minimum integration time is found ). The choice of

optimum bandpass is, incidentally, very little affected by assumptions regard-

ing fill factor.

150

E	
/T5250

1.1 100-Cas¢ (d)

450 

0 2000	
r r r—r r

0	 1000	 2000

Figure 3.1.5a: Variation of point of maximum signal and optimum bandpass for
different inherent strengths of the magnetic elements. The optimum bandpass
is defined as that permitting the magnetic measurement to be made with fixed
signal to noise in the minimum time. A small fill factor is assumed.
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In the following figure, the integration tine required to bring out the

5-gauss contour with a fixed signal to noise ratio using the ;fount Wilson

magnetographs 9-84 mk bandpass is compared with chat, which would be required

if the optimum bandpass were used.

4.

A5250

9- 84 mA alit alit	
d

va. opHmum

a

d

a

O O	 two Br(^Yauas) 2000^ 
Figure 3.1.5b: Ratio of ;bunt Wilson integration time to that possible with
optimum bandpass for various true field strengths and the two extreme assump-
tions regarding line profile changes. A small fill factor is assumed.

It is clear that rehardloss of the assumptions about line profile behavior,

the magnetograph would be operating in a very inefficient mode if the true

field strength responsible for the weak fields were much over 2000 gauss. A

similar argument can be made for the Kitt_ Peak magnetograph, which, in its 40-

channel form (Livingston, Ap.J., L53, 929, 1968) used a bandpass 40-70 mA in

the 5250 wings. The motivation for this choice, which is never optimum, is

unclear (probably an effort to obtain a "linear" response), but once again

even greater inefficiency would be present if the true fields were over about

2 kilogauss.

r

3.

;2.

z
rk

1.
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3.2 Adoption of a Standard Weak Field Condition

Based can the results of the preceding section, the following combinations

of Inherent field strength and fill factor have been found to be consistent

with the registration of a 5-gauss signal by the ;fount Wilson magnetograph

under the two extreme assumptions regarding the variation of the 52.50 profile

from magnetic to non-magnetic elements (cases a & d of Table

Table 3.2; Combinations of Field Strength and Fill Factor which Could Exist

:it the :it. Nilson 5 Gauss Contour.

True Field (Gauss)
	

Fill Factor (a)
	

Fill Factor (d)

100
	

1.U8E-1
	

5.64E-2

	

500
	

3.44E-2
	

1.21E-2

	

1000
	

2.O1E-2
	

7.56E-3

	

1500
	

1.70E
	

7.19E-3

	

2000
	

2.00E-2
	

9.06E-3

	2500
	

2.73E-2
	

1.51E-2

These factors should be'useful in predicting the signal strengths for compact

magnetograph filter combinations using various lines since they are based on

actual observations of the sun by an instrument with a comparable sampling

aperture and represent roughly the weakest field strength which we wish to

measure. The numbers given are estimates of the true area occupied by mag-

netic field. For any specific line,-, the expected magnetic signal will be

additionally attenuated by the weakening of the line profile. For 5250, this

effect should be self-correcting; that is, the stated fill factors combined

with the profile changes of cases (a) and (d), as appropriate, should repro-

duce the observed signals very closely (even if the assumed profile changes

are not quite correct) (see end of Sec. 3.5.5). For other lines, the results

will be uncertain to the extent that the line weakenings are not well known.

In general, the effect of line weakening (which reduces the wing slope)

is very similar to that of assuming a smaller-than-true fill factor. If there

is no change in width. the effective fill factor is reduced in proportion to

the loss in central depth of the line.
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It may also be noted that for :almost any magnerograph design, if the fill

factor is very small, the predicted signal will be proportional to it, al-

though the constant of proportionality depends on the intrinsic field

Strength, and the design parameters. Also, with a small fill factor, the bulk

of the light comes from the cindi.sturbed profile, and is therefore nearly

Independent of the fill factor, so that the integration time required to

achieve a specific signal to noise level should be inversely proportional to

the square of the signal.

Alrhough, the intrinsic strength of the solar network elements (if

sin,;le-valued) and the weakening or the 5''250 profile in them are neither very

well established at present, to continue to treat these as free variables

makes unwieldy the number of possible combinations which need to be considered

in comparing various magnet.ograph designs. From the preceding section, ir, is

clear that much of the network field is probably in the range 500-1500

Cl a US$ . the therefore adopt as a standard weak field condition, a situation in

which spatially unresolved magnetic elements of intrinsic strength 1000 gauss

occupy .014 of the available area. According to Table 3.2, such a combination

(with a true average field strength of 14 gauss) should correspond fairly

closely to the 5-gauss nominal level of the rlount Wilson magnet,ograms.

In comparing various magnetograph designs, the choice of the fill factor

is not terribly important, since the design which is optimum for one small

fill factor should also be optimum for any other small fill factor. On the

other hand, a design which provides the optimum integration time for an as-

sumed field strength of 1000 gauss will not necessarily be the best if the

actual strength if 500 or 1500 (primarily because the bandpass apropriate to

one field strength will not be appropriate to the other). The most serious

design errors would arise if the true strength is much greater than about 1500

gauss in which the ease the point of maximum modulation begins to move signi-

ficantly out in the wings, making it desirable to reject light near the core,

and accept light. rarthur uut (rf. Figure 3.1.3). Observationally, this does

not seem very likeL . Ad,lit.ional design errors can occur if the behavior of

the line chosen is ver y .lifferent than expected in the magnetic elements.
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3.3 Possible Lines for Ilse with the

The most recent listing of good "reeman triplets is that of Ihirvev (Solar

Phys. 28 8 9, 1973). Because the displacement of each of the rirrularly pola-

rized components from the nominal line center (in Angstroms) is given by

AX x 4.0 x lU
-13 

b a2 B	 (3.3a)

with ,% in Angstroms and B in gauss, and since the turbulent width only in-

;reased in proportion to X, the preference tends to be for lines towards the

red end of the 3pecrrum. The following figure illustrates some of the lines

which have been frequently used or suggested. The profiles, which ropxesent

the inr.ensir.y of an undisturbed region at disk center, are taken from the Kitt.

Peak Preliminary Photometric Atlas (Brault, and Testerman, 1973 microfilm).

They are not corrected for the instrumental width of the spectrograph which is

on the order of lU mA. The lines all show a slight asymmetry, with the red

side (presumably formed by cool descending material) being slightly steeper

than the blue (formed by relatively hot, rising material).

By replotting the curves on graph paper it was determined that. (within

the uncertainty imposed by the asymmetry) each could be fit, by a simple ex-

pression of the form:

r	 D
I M x 1  Il -
	 2 a-ao1	

(3.3b)

1 +	
FWIii I 

n

where I o is the continuum intensity and Xo is the central wavelength. The

coefficients required to fit the indicated lines were:

^5
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Figure 3.3.1: Profiles of selected magnetirally-sensitive lines from the Kira
Peak Photomerric Atlas.
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Table 3.3: (Undisturbed Profiles of Hagnetirally Sensitive, Tines

27

X o (A) DO YWNM n 10 Tatn

5250.218 1).73 82 MA 3.0 3.86 E3 0.81

5324.198 .86 190	 IDA 1.9 3.77 E3 .81

6102.72 .78 152 MA 2.6 3.16 E3 .84

b302.56 .05 110 mA 2.5 3.03 E3 .86

8648.418 .62 184 mA 2.8 1.78 E3 .95

The unpolarized disk-renter continuum intensities (outside the earth's armos-

phere), which are in ergs/sr-cm2 -mA-set, are from Allen's Astrophysical

Quantities. They ran be converted into photons/second by observing that one

photon - 1.99 x 10-8 /a ergs if X is Angstroms. Tatm is the transmission

eoeffirient at the stated wavelength for a light path through 1 atmosphere of

"clear" air. The actual transmission is probably quite a bit lower.

3.4 Detailed Calculation of the Magnetic Signal and Integration Time for

a Perfect Detector.

Given the fill factors of Sec. 3.2, the line profiles of Sec. 3.3,

the Fabry Perot filter transmission properties of Section 2.2, and some as-

sumption about the behavior of the line profile in the magnetic regions, it is

a relatively straightforward matter to calculate the expected light levels in

the two circular polarizations for a compact magnetograph configuration. At

each angle in the detector plane, the filter profile (which is everywhere

essentially the same, but shifted in wavelength) has to be multiplied by the

incident solar intensity, and these answers added up over the range of angles

which are to be used.

3.4.1 Calculation of the Signal for a Specific Filter Combination

and Detector Plane Geometry

It can be shown that the number dN of photons available per second

in a narrow range of width d\ in the Fabry Perot ring plane is given by:

dN lhr -
	

465 ... Iront L`D`P Tatm Topt flhc TX (3.4.1a)



F_

where loont ^- continuum i:itensity (ergs-sr -l -rm-` -m A-l set, 	Table 3.3)

area of sampling aperture (in square arc seconds)

diameter of objective (rm), half of the area of which is used

for collecting each circular polarization

wavelength (A)

Tam transmission coefficient of atmosphere

Topt . transmission roeffirient of the optical cumponenrs, includiag

the filters (at their peak)

and	 AX	 - total wavelength range covered by the objective.

The values used are indicated in Section 3.4.3. The 
factor 

f is a normalized

convolution of the filter and spectral profile.o+

+00	 Incc M T	 (x, r) dA

f 
rho 

(r) a f	 the	 fil	
(3.4.1b)

lhc	 I	 cont

where T fil (a,r) is the transmission profile of the filter combination at the

radial position r in the detector plane (of. egns. 2.2d and '2.2j) and I]rh0 (X)

is the intensity profile of the spectral line in the area sampled, which

depends on the field strength and fill factor in the manner indicated in

equation 3.1.1 and has roughly the shape given in equation 3.3b. ,dote that

the maximum value of rho/front or Ilhc /front - 0.5 in the extreme wings of

the line since Iront includes both circular polarizations. The factor f is

dimensional, and has units of A. It vari^.s with position in the de'-ect.or

plane, because the line profile is constant, but the filter profile shifts.

,dow if the accessible range of wavelength in the detector plane is % 0 to

a,o-Aa angstroms, the actual measurement of magnetic signal will be based on

the comparison of right- and left-handed counts detected in some finite range,

say from ,'1 l to a 2 (where it understood that these fall within the accessible

range). The total rates accepted by the detector will then be:

the	 opt,
•4b5.. Icont ^, ^D` 1 Tatm T

	 F1hr
	 (3.4.1x)
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rho 1 	 r	 r}":,
where	

rho 
^` 7r	 ^	 fl1u1

l

I

r 1 and r, .ire the radial positions in nie derootor plane rorrespottdi!ig ro the

limiting "waveleng t hs and ,Ar is the ro y al range in the same unit ,;. ExioPly the

same rate would be obtained if (as is more likely the rase) the range o

coverage extends from \ o + AX to Xo - AX. This is beoause in the latter rase

one would be able to sample two wavelength ranges planed symmerrioal.ly in the

wings. Thar is, the same rare is obtained sampling -40 to -50 mA with a total

ooverago of 0 to -9H mA as that obtained s,unpling - w ro +50 mA IlLas -+»^ tO

- 730 mA with a total ooverage of +9u to -90 mA.

As with the :taunt Wilson magnet.ograph, the magnetio signal, S, is expres-

sed as a modulation factor, and defined as:

5	 (Rrlir - `tll'ir 1

	
(3.4-le)

(Rrhe + Rlhr)

Its magnitude depends, obviously, nor, only on the filter/line rombination, but

also on the limiting wavelengths which are selected, and on the magnetic,

field, which determines the amount of difference between Irhr M and

Ilhr(a). It does not depend on the overall normalization on factors.

3.4.2 Conversion of Signal Strength and Light. Level into an

Integration Time

Normally ) the rates of rollert,ion of right-handed and left-

handed photons will be very nearly equal:

Rncv 2^g R 1hr.	 o

	 (3.4.2a)

and also essentially equal to the rates which would be observed in a magneti-

rally undisturbed region (since the fill factor is low). Due ",) photon roun-

t,ing statistics, it is evident that even in absence o any re.•i: differk;nre

between Rrhr and Rlhr there will still be an observed signal. the rns value

of this null (noise) signal is:
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l in'^
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1 in 15,500
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T a 81(R *5o	 min)
(3.4.2d)

r .;K ^Te

where 7 is the sampl,inv "icne (in seconds). Tile errors from r:e,1surem0_1ir h)

measurement will be	 ibured normally, that is, we expect errors of various

mabnirudes wish the following f4 equancies :

T lhlo 3. .2: Probabi.liry of 1,xreeding Variuos Milriples of the rms Error.

In making a Mount Wilson —Like raster scan of the full oun with a l?.b arr

second aperture, there are approximately 18,200 independent measurements

involved, and the "threshold" field is generally taken as the lowest level

which can be plotted with a negligible probability of erroneous contours.

From Table 3.4.2 it is apparent. that this would be about 4 rimes the rms noise

level. That is, to be "useable" we have to require that the signal be dorecr -

able with a signal to noise of 4 or better:

5S ^ S min A
	

(3.4.2x)

In principle (for an ideal detector) this condition can be satisfied for any

signal strength, S, simply by extending sufficiently the integration rime:
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In pracrice, of course, the threshold ran only be reduced to the point ,ar

whicli the sysPemario ta,rrors begin to sliow.

3.4.3 Optical Parameters Used in the (1aleularions

In rite following calculations, rite estimates of expected

signal strengths and light levels are based on the following assumptions:

0	 *9 5.08 cm ('I inches)

L	 10 art seconds

Tops
	 ci .198

The solar line profiles and atmospheric transmission taken from Table

3.3, and the Fabry Perot, filter profiles are based on the parameters in Table

3.3, (the overall profile being taken as the product of the two treated sepa-

rarely, and the peak transmission being incorporated in Tnn d. The estimate
of Topt is based on 451% transmission, for the blocking filters, 70°; for each of

the rwo Fabry Perots and 905; for the analyzing polaroid in the "accepted"

direction.

The integration times so-calculated are then, in some sense "ultimate"

values. In reality the atmospheric; (and probably the opt{cal) transmission

coefficients will be less than assumed. Also, the detector will have a less

than perfect quantum efficiency and inject additional non-statistical noise.

To compensate for these "errors", the calculated integration times will need

to be increased, possibly by a large amount (see Section 4.2).

3.5 q2timization of the Magnetic. Signal

3.5.1 Available Filters

Two different sets of Fabry Perot filters are under consideration for use

in the compact magnetograph. Their characteristics are described in the

following table:

..
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Figure 3.5.1: Bandpass patterns of the two filter sets. The dashed portions
would be rejert,ed by the blorki.ng filters.

la the rase of the lloya filters, at least,, the two romponenrs would be physi—

tally ront.arred so that the two sharp, spectrally marrhed renrral peaks could

remain marrhed as the temperature is varied. If the rontarr,ing is performed

in surh a way that,,  the two elements inr,erarr coherently (which probably means

that the surfares have to be arrurately parallel) then the combination will

:Irr as a two tavir.y etalon. this gives a slightly different rransmission
I
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proti l o. than might be expecred from the product of the two filters treated

independently. In particular, it is expected Char the transmission would be

t,lighrly lower in fair wings, some of the missing light, showing; up in a

slightly squarer central peak. As indicated above, this would tend to improve

irs usefulness in the magneto;~aph, but since the exact, profile was not ratl-

cul,at.ed, the two elements were treated independently.

3.5.3 Optimization of the f-number

The ronsiderarions involved in securing the optimum magnetic performance

'minimum Integration time) are similar to those discussed in ronnerrion with

the performancti of the kbunt Wilson magnet.ograph (Section 3.1.5), but the

number of free parameters is somewhat larger. As with a spectrograph, in

order to obtain the optimum magnetic signal, some rare must be exercised in

the choice of both the width and shape of the filter profile and in selecting

the range of the output, to be sampled. A very broad filter will obviously

produce a poor signal, since the effective line profile will be washed out and

incapable of significant modulation. On the other hand, if the width is

reduced too much, the modulation will not increase after a point, but the

light lavel will go down, causing an increase in the integration time required

to measure the signal. Similarly, if the filter has too broad of wings, the

introduction of the -extra, umodulrted stray light,, will both decrease the

signal and increase the noise level, again leading to longer integration

times.

The range of transmitted wavelengths available to the detectors is deter-
l

minea, in the rase of therompac.t magner.ograph, by the £-ratio of the beam

through the filter. Ideally, one would want, to use a very large f-number

(i.e., nearly collimated light), and tune the filter so that the filter's

transmission peak for light falling anywhere in the detector plane (and equi-

valently for light originating anywhere on the objective) corresponds to the

optimum point of modulation in the wing of the spectral line. Unfortunately,

it is felt that active temperature control will be needed to hold the filter
a

within tolerances, and therefore, a smaller f-number (i.e. a divergent or

convergent) beam has to be used, so that a wide enough range of transmitted

wavelengths will be present at the detector plane to permit the core of the

line to be located. As indicated earlier, this would be done in such a way

d
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(3.5.))

that the filter would transmit. the oo re of the line ;it ;a point 0.707... of the

way from cenrer to edge, which would ,Hake light falling at the center .and

ourer edge of the det.ervor plane correspond to points symmetrically spaced in

rho red and blue wings (respectively). The total wavelength range from the

Peirer to the edge of the dercctor plane is given by:

How large should this wavelength range be? If it is too small, the only parr,

-)I the line accessible to oxaminarion will be that near the canter of the

Line, which is dim and not very sensitive to the magnetic splinting. On the

other hand, if the range is too large, much of the objective area will be

wasted in collecting light far out in the wings of the line, which is bright,

and again, not. very well modulated. Clearly there must be some optimum be-

tween these two unfavorable extremes. This optimum can most easily be evalua-

ted aumericaily by calculating the integration t,itnd required with various f'`

numbel:s. As with the Mount Wilson-type magnetograph (cf. Fig. 3.1.5x), the

integration time can also be somewhat improved by rejecting a little of the

light very cl , ise to the line core. E"s an example, with 6302, if the intrinsic

field strength is 1000 gauss or less, the minimum integration is typically

found by allowing the detector a.-) view the range -90 to 90 mA around line

center, which req;aires an f-number of about, 45.

The detailed dependence of the uptilnum range (which depends very little

on the assumed filter profile) is given in Figure 3.5.2 for a typical case as

a function of the intrinsic field strength.

d
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Fib;. 3.5.2: Optimum sampling range in the detector plane for a compact mag-
netograph viewing both wings of 6302 (as a function of field strength).

The nature of this optimum is such that if for some other reason (e.g., to

view a telluric line) the instrument- is designed so that a larger range is

available to the detector, it will actually be desirable (for purposes of the

magnetic measurements) to mask off or otherwise reject this additional

light.. The integration times will obviously need to be increased to compen-

sate for the area of the objective which is not being used but if the :addi-

r.ional light had not rejected they would have had to have been increased even

further to make up for the added noise introduced by the extraneous phonons.

In summary, if both wings of the line need to be viewed there will always

be some optimum range giving the best tradeoff between signal strength and

light. level. The f-number should be chosen to reproduce as nearly as possible

this range, and the detector should be designed to sample from near line

center to the extreme edge of the range. The optimum range depends, however,

on the inherent field strength.

0 L
0

f
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3.5.3 Importance of Profile Shy

The importance of the profile shape and the blocking o.t; the side

reflected in the following cable, where the performance of the magnet

has been evaluated imagining that we could substitute for the actual

Perrots an ideal filter having the same angular dependence, but varioe

tied  transmission profiles. The Fabry-Perot type peaks are assumed t

blocked for all wavelengths be yond the middle of the first free sped

range.

In each ease, the optimum %'W1Q1 for the configuration has been evaluated,

,ind the inte;ration rimes are on the assumption Him, the optimum wavelength

r,enge is sampled in the deterror plane. The signal strengths are based ern a

L000 gauss field with a fill, factor of .014. The line b302 is assumed to have

74. of its normal. depth in the magnetic features ('2b>o line weakening;). The

oounr rates are in photons/sec, and the integration times in seconds for an

ideal detector.

Table 3.5.3a: Performance of Various Ideal. Bandpasses in a Compact
P4ag;netograph Configuration at 6302A (Perfect Detector).

Range	 Rncf,	 Rlhr	 Smag	 T(S /Ns4)

Square Bandpass	 10-80	 8. 93 E7	 8.88OE7	 2.96E-3	 9.9'2E-3
(90 mA FWHM)

Two narrow Fabry	 10-90	 7.588E7	 7.549E7	 2.55E-3	 1.t)3"-..
Perot peaks in
series (90 mA each -
58 mA effective FWHIM)

One Fabry Perot 	 10-90	 7.917E7	 7.944E7	 2.05E-3	 2.40E-2
peak (40 mA FWHM)

The actual performance which could be obtained with the planned filters

(as specified in Table 3.5.1) under the same circumstances, but including the

full profile out to the blocking points at f 4A (see Figure 3.5.1) would be:
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Table 3.5.3bs Yerformance Obtainable with Available Filters Under the Same
t;ireumstanres

Range	
Rrile	 R1hr	 Smag	 T(S/` -4)

Hoya filters	 10-90 mA	 1.041E8	 1.037E8	 2.01E-3	 1.91E-2
(67 mA off. FWHM)

Existing filters	 10-90 mA	 1.089E8	 1.085E8	 1.63E-3	 2.79E-2

(51 mA eff. FWHM)

It is evident from the two tables that while the square bandpass is

certainly the best, some of the Fabry-Perot configurations don't finish very

far behind. In fact, if the Hoya filters were finished to a slightly higher

finesse, and so that, they had equal FWH:i's (rather than equal finesse), their

theoretical performance would be virtually indistinguishable from.that of the

"two narrow Fabry Perot peaks", the importance of the few additional unblocked

sidelobes being negligible; and if they were combined coherently, so as to

make a "two-cavity" etalon, their performance would probably be even close to

that of the ideal square bandpass.

The performance of the "existing" filters, which is to some extent

limited by the side-lobes, would not be significantly improved by going to a

higher finesse.

3.5.4 Optimization of Filter Width

The dependence of the integration time on the width of the filter trans-

mission peaks is shown in Figure 3.6b, where the performance of the Hoya

filters has been considered as a function of finesse (which is related to the

filter width via equation 2.2e). It is assumed that both filters are coated

to the same finesse, and that their transmission profiles can be combined

incoherently.

r

37

A_-A



50

^r

.05

u
V

."..04

at A6302

^ .05
O
d
^ .02
d
C

O L
O 10	 20	 au
	 w

Fine-t5e

Fioura 3.5.4: Integration time required to measure a weak magnetic signal
with Hoya filters coated to various degrees of finesse (and a perfect detec-

tor).

At each finesse the optimum wavelength range is used. Below a finesse of

about 15, the performance drops precipitously due to the large amount of stray

light. Abcve a finesse of about 30, the performance also drops, due to the

excessively narrow width and the consequent low transmission, but the effect

is surprisingly slight.

Again, the integration times have been calculated on the assumption that

we are trying to measure a field with an intrinsic strength of 1000 gauss and

a fill factor of .014 to a signal to noise of 4; and that the line 6302 has a

central depth 74% of its normal one in the magnetic regions ("'.6% line weaken-

ing).

3.5.5 Choice of the of Spectral Line

The preceding sections may have given the impression that the axpecr.ed

magnetic signal strengths and integration times can be predicted with great

precision. This is true only to the extent that we are willing; ro r.1ake some-

what arbitrary assumptions about the nature of the solar fields ans the be-

haviour of the spectral lines. That is, we can be fairly confiderir about the

relative performance of the various filter design choices, but -nw,',i less

confident about the absolute performance of any of them. Figur,? 3.5.5 ,ives a

more accurate picture of the actual uncertainties:
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Figure 3.5.5: Integration rimes required for various possible field and fill
factor combinations corresponding to Mt. Wilson 5 —gauss contour as a, function
of intrinsic field strength (perfect. detector).

The Figure has been calculated using the various combinations of field

strength and fill factor listed in Table 3.2. There is up to a factor of 7

uncertainty in the integration time which would be required to bring out this

threshold field. In addition, one has to make some assumption about the

behavior of the line selected. For example, in generating the figure we have

assumed that 002 is weakened (in central depth) by 50;0 in the magnetic

regions. If it were actually not weakened at all, then the integration times

might be four times shorter, whereas if it were even more strongly weakened,

the integration times might be longer than stated.

Given these large uncertainties, it is difficult or impossible to make

any definitive statement as to which spectral line will give the best,

results. A line which looks good on the basis of its splitting and nominal

undisturbed profile may in fact be a poor choice due to an unusually large

amount of weakening in the magnetic features. Moreoever, the line which seems
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best for one intrinsic, field strength will nor necessarily be the best,

rhoire U the real ini.rinsir field strength is something different (the Farrar

lines, like 6103, tend to do better if the true field is very strong; and the

skinny panes, like 5250, if it is weak) .

In the following Tables we have assumed that the intrinsic field strength

is 1000 gauss, and that there is a fill factor of .014. As was seen earlier,

this is a likely combination to exist in .areas registered as "5 gauss" (even

though the real field is 14) on the itount Wilson magnetograms. We have

however for simplicity of comparison uniformly ignored the possibility of line

weakening, which will matte the estimates of .signal strength and integration

time somewhat overly optimistic.

In Table 3.5.5a, the performance of the "exis t-tng filters" (see Table

3.5.1) lia,s been calculated at various possible wavelengths. The finesse has

been kept as stared, and the t 4 A blocking width increased or decreased in

proportion ru %ile square of the wavelength.

The count rates are for one circular polarization in photons/ser and the

integration times in seconds (for a signal-to-noise of 4).

Table 3.5.5a: Performance Obtainable with Existing Filters by Using Different

Lines (Perfect Detector and No Line Weakening)

Line (A) f-num Range Ro Smag T

5250 47.2 10 -	 70 mA 7.02 E7 3.10 E-3 1.18 ?.-2

5324 37.9 10 - 110 mA 4.88 E7 7.46 E-4 2.97 E-1

b103 42.6 10 - 100 mA 8.42 E7 2.48 E-3 1.55 E-

6302 45.6 10 -	 90 mA 1.09 E8 2.20 E-3 1.52 E-2

8468 39.7 20 - 160 mA 1.75 E8 2.15 E-3 9.92 E-3

For the Hoya filters, since they are not yet made, the finesse was also con-

sidered as a free variable. It was assumed that both pieces would be finished

to the same finesse and combined incoherently, which is not quite the optimum

situation (Section 3.5.3).
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Table 3.5.5b- 1 1 (1 rt"urmance Obrataable with the Uo^. ,a Filters Under the ;game
';onditions

Line(-A) finesse f-num Range k,) ''mag T

5255 31) 49.3 10 -	 oo m, 3.71 E7 5.34 E- 3 58 E-3

`>3'24 :Gl 3t).7 ll) -	 11.1) mR 4.;''. E7 '.04E-3 4.55 F%-.'.

51x)3 ^5 43.4 10 -	 90 m1`, 5.40 E7 3.93 E-3 9.57 E-3

o30-1 30 40. S 10 -	 30 mil 0.00 E7 3.73	 E-3 9. hO E=3

84 o 8 30 41.() 20 - 140 mA 9.74 E7 3.63 E-) 6 .	 4 !:-'3

The two tables suggest, that rhere is very little difference between the

three principal visible lines (5250, b103 and 6302); and rhar all of these are.

much better rhan. the line 5324 (which is included for comparison because in

spire of its poor signal it was used fairly successfully in early phorographit,

raurellations by Ramsey at Lockheed and in the Smithson videomagnerograph at

Bit, Bear) .

The additional' loss in performance due to line weakening is difficult to

generalize, except in the sense that signal will be reduced in proportion to

the loss in central depth, and the integration time increased, therefore, in

proportion to its square. For the line X5250, putting bark in the earlier

line weakening assumptions, one can estimate that. the likely signal with the

Hoya filters would be on the order of S mag - (1.6 - 2.2) x 10-3 (wh'ch is

slightly smaller than the Mr. Wilson "5 gauss" signal due to the less than

optimum spectral profile) dictating an integration time of T - (2.7 - 3.9)

x 10-2 second:, that. is 3.5 to 5 times longer than the snared time. The ocher

lines probably suffer less from line weakening.

As a final note regarding the selection of the spectral line we might

observe that there is a strong bias towards excluding from the standard lists

any line with a complicated Zeeman pattern. At least for measuring longitu-

dinal fields there is no particular reason to do this. The things that matter

are the shape of the normal and disturbed profiles and the strength of the

average splitting, not the detailed pattern. It is, therefore, quite possible

that some better lines have been overlooked. A more profitable approach would

probably have been to have thought first about what, line depths and shapes

41

k^



ainil4d bo oxpuored ro give the beer performaaok- (i,e., neither roo neirr <)w nor

too broad), then ro have looked Through the Al Iases Po iee what, was avatlaMo

with rhese shapes, and rhea finally to have a8ked how muoh they split ^nd

whether they are wead,ened in the nerwork.

Advantage of rising One. ¢linhx of the Line

It was earlier observed that ideally, to obrain Hie shortest inre;ration

rime, one wotili really prefer to work in only one wing of the line wbrh a

nearl y collimared beam. To indicate t Yvicrly slow mucdh is lost by usint ,l the

d+tal^,a:n;>, ring , dune oonfigurarion, the ^^'.,ilowin^; rablo indicrhtes 	 >r C 1 h4? 841V

11nes this performances which could be obrained b y operarijig ustag the Hoya

Filre_rs at the optimum point in one wing. At3ain, the signal str,^n tgths and

Banes are, bused on the assumption of 1000 gouss, . ;-)14 fill factor, and zero

line weakening	 (it is therefore direcrly comparable to fable 3.5.5b ), The

F-number, if indivaiud, would be very large.

Table 3.5.6: Integration Times Obtainable with the dioya Filters Using the
Enrire Objective at the O p timum Position in One fling (Perfect Detecr.or)

Line	 (,) Finesse Position P,o Smag T

5250 25 40 mA 5.91 E7 5.26 2-3 4.90 F-3

5324 20 70 mA 4.96 E7 2.31 E-3 3.02 E-2

6103 25 60 mA 6.60 E7 4.46 E-3 6.10 E-3

6302 30 50 mA 7.14 E7 4.25 E-3 b.18 F-3

8408 30 90 mA 1.19 E8 4.11 E-3 4.00 Il-3

The reduction in integration time in each case amount to a factor of a little

over 1.5.

3.b Effect of Sampling Aperture and Integration Time on the Threshold
Fie] d	 —~

All of the calculations up to this point have assumed (cf. Section 3.4.3)

somewhat arbitrarily (bur, for the sake of consistency, that the measurements

would be performed with a square sampling aperture measuring 10 arc seconds ,)n
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,t side,, wherkier or nor phis -is an oprimum rhoioe depencl4 on the purport? of

the program.

To the extent 
that 

there is no rigid requ 4 rement on spatial resolurion,

rher(i ran be in engineering rradeoff between light level and si;nal

y rr^,ngrli. Obsorvarions made with art envremely small ,aperture will rend ro

,ive larger ii ),n,ils by obtaining Con orrasion) a berru,r ratio of fii^ld ele -

°near8 to dead spare (i.e., a higher effective fill farr.or). Observations r^ado

with a very large aperture, on the other hand will rand to give smaller sig -

nals because of the ranrellarioa of opposite polarity featurs in the field (-)f

O'd. The following table, derived from a variety of sources, suggests r;

ripproximar.e dependence of observed field on Hie dimension, L, of the isamplinr,

aperture.

lable 3.6: @Maximum "Iansunspot Fields ;measured in 5250 by various
Nagnetographs

r

Source
	

Aperture (L)
	

Max. Field (B)

Kitt Peak
	

2.4 are see
	

lUO gauss

Mount Wilson
	

12.6 are sec
	

40 gauss

Stanford
	

180 are set,	 12 gauss

Stanford
	

1700 arc; 9er
	

0.5 gauss

As expected, these measurements show a fairly regular fall —off of field

strength with aperture.
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Figure 3. ba: Maximum Observed Non-Sunspot Fields in 5 1-50 with Vari',cAs
Sampling Apertures.

Sinre presumably alo effort has been made to ^orreet any of these values for

line weakening or saturation, they do not represent actual physical field

strengths. On the other hand, since they were all made with the same line

they should be fairly representative of the relative observed signal

strengths. That is, we ran say S - S. Likewise, for any fixed magnetograph

configuration (ignoring limb darkening) the basir light level will be propor-

tional r.,) the square of the sampling aperture: R o - L

As will be developed in Section 4.2, the implication of these relations

for the ability t^J detect the fields will depend on whether the detectors are

operating in a mode where they are limited in accuracy by the intrinsic

photon-counting statistics (the high light, level situation), or by fixed noise

contributions originating in the detector and electronics (the low light level

situation). In b,)th rases the time required to make a measurement of a given

accuracy is proportional to the square of the expected signal. In the F^)rmer

rase it is also inversely proportional to the light level (that is, a fixed

number of Photons need to be collected). In the latter case it varies with

the square of the light level. Thus we are likel y to have either:
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,)r nomerhing berween the two extremes. tising the values from 'r;,bia '3.h we oan

rherefor%, esrimart, the rolarive inregrarion, rimes which would be required ray

derecr,xnv non—sunspot field with the various apertures:

photon statistic limited

q	
^ mode
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Vigure 3.0b: Relative integration rimes required to detect any non—sunspor
field with various sampling apertures. The absolute rime scales depend on the
magnet.ograph, and the placement of the two curves is nor mean. to imply that

the "noise—limited" rimes are shorter than the "photon—limited".

lr is clear from the .figure rhat in either counting regime the increase in

light level obtained by increasing the sampling aperture will more than out—

weigh the loss in signal strength, at least.. up to apertures ofseveral arc

minutes. The moral is rhar one should never use an aperture smaller rhan

absolutely necessary to achieve the required spatial resolution.

While there is a definite physical limit to the strongest fields which

will be encountered, the weakest ones are limited only by one's patience and
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'i%itl in pertorming rhe :io;m1romear. In	 r%q ; )oiNk.̂  lovol w1-1,1 P!N

redtri s od in i)ra)i)orrit)n to the squ,jre root ))I rho g .impJAng rl'nW., and !daoo Hlo

rtrre^altol^l tiel-I strength will be proportional to the nolst} lovoi, it Is r"wre^
tort , apparent rlr.rr onr y rho minimum time ro see anv f lold has ^w oar oxoorrlerl,

rtzw 'aivnwito r;tnge" of rare magnerograiiii -,jho rid Wrrv.tso in proportion to rare

sqitare root of the addirionaii inregrarion rime.
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"4.	 Operational Cons iderarions

4.1 Maximum Time Arreptable for Full Disk Raster Scans

Since the solar magnetic xeatures change more rapidly when examined on a
fine than on a large scale, the maximum times which would be considered acrep-

t.able for completing; a map is also somewhat • a function of the nominal resolu-

tton. The Hount Wilson full disk maps, with a sampling aperture of 12.6 x

12.6 arc seconds are done in about 2 hours. During this time, features near

disk center will rotare by about 20 arc seconds, which is larger than the

resolution element, but this does not cause a perceptible shearing in the

ima;e sines the ;few scan lines including any particular features will have

been completed in a much shorter interval. For a spare application, it is not

inconceivable that in a continuously scanning mode times as long as 24 hours

might be permissible for the complete cycle.

In a ground-based operation, however, in order to have a significant

probability of completing the task without undue interruptions from clouds and

other problems it would certainly be wise to plan the program so that the scan

could be completed in less than, say, 4 hours. If a 10 by 10 arc second

aperture is used, it would require approximately 29,000 separate measurements

to cover the full disk. To do this in 4 hours, one could not spend more than

0.5 seconds on each point. It is, of course, possible to avoid some of the

time limitations by making smaller scans of selected regions rather than of

the whole disk.
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4.21 ';, ierrion of a Suitable Detector

The integration times ralrulated in the previous ,geetions have assumed

rhar an "ideal" detector could be used. A real. dereetor will, of course, mis.4

some of the photons and ridd tioise and background currents to the apparenr

light levels. For purposes of demonstrating the feasibility of the magneto-

graph concept, this is nor necessarily a critical problem, since most, such

defienries can be correcr.ed simply by extending the integration time. None-

rheless, it ;seems reasonable to try, as much as possible, to use the optimal

deteovor.

4.3.1 Expected Tight Levels

In general, the selection of a suitable detector will depend both on the

total quantity of light (photons/sec„) and on its expected intensity

(photons/cm`-sec; 'n s:he detector plane. In the rase of the compact magneto-

graph, the inreasiry ran he varied almost, arbitraril y by oh.nging the diameter

of the area into which the light is imaged, bur. the quantity of light

cannot. Av.eording to Table 3.5.3b for the line 6302 operating under optimal

oondirions (that is with the system operated at; the minimal range of wave-

length coverage, and with very clear skies) we expert to gather about, 1 x 108

photons/second in each circular polarization (using half of a 	 diameter

objective). This amounts to an available power of about 3.1 x 10 11 watts.

The spatial distribution of the intensity is reasonably uniform, the ratio

between the brightest and darkest parts of the image (i.e., t 90 mA vs. line

center) being about 1.5.
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4.2.2 CID Cameras

The CID camera being considered for use ronsisrs of 244 x 248 silicon

elements, or pixels, which ran be read out seque I lly in a Moral time of 0.5

secor.ds, with a readout, noise of * 500 counts/pixel. The faceplate geometry is

shown in Figure 4.2.2a:

248 columns

single Pixel:

L 
35,5,,u

N	 -	 4&0

11.4 min

Figure 4.2.2a: Faceplate geometry of the existing GE CID ra,3mera.

The sensitivity of the elements appears to increase as the charge builds up,

reaching a peak quantum efficiency of about 0.3 in the range between 4 x 105

ots/pixel (the "bias level") and 2.5 x 10 6 ctsipixel (saturation). In

general, according to the figure distributed by Aikens (AURA. Engineering

Technical Report 166, 1980), the relationship between the number of photons

striking a pixel (N in ) and the number of charges collected 
(Nout) can be

written in the form:

Nout	 1.8 x 10-7 vin	 for	 0	 < Nin < 4.9 x 105

Nout- - •195 N in - 5.23 x 10 `` Cor 4.9 x 10 5 < Nin < 1.33 x 10 6	 (4.2.2a)

Nout ' • 3 0 0N in - 1.93 x 10 5 for 1.33 x 10 6 < Nin < 8.77 x 106

,Nout- '- •44 x 106	 for 8.77 x 10 6 < vin

The quadratic behavior at low charge levels is so bothersome that in many

applications, it is considered desireable to "prefog" the elements up to the

bias level, so that reasonable efficiency and linearity of response can be

obtained. Such a mode would probably, however, be incompatible with the

rastering action of the magnetograph (see Section 4.2.3), since it would

require a shutter to block off the incoming light during the time it rakes to

pre-expose and readout the background level.
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'Elie dark current in the CID, or more precisely, the dark charge per pixel

builds up at a rare of about bOOU crs/sec at — 32 oC. As with other silicon

clevioes, this can be supressed factor of 2 for every 7-10 oC of additional

cooling.

The useability of the CID depends largely on the nature of the associated

olootronics, which determine the complexity of reading out a particular ele -

mk:nt. For the present purpose, we shall consider an idealized camera in which

it is possible to read out any element instantaneously (that is, with no time

lost For "addressing"). In particular we sliail consider a situation in which f:l

pixels ,ire used for detectingeach oircul,:r polarization, Sind in whirls thc:

total derector area of tim pixels is readout sequenrially in a total time o£ T

(seconds). The charge on any onLN pixel will look like:

2xIQ

	

	 't-.'I

H	 ^ ta	 1	 T--*-1

Figure 4.2.2b: Charge on a single CID pixel for a camera used in a continuous

scanning; mode.

As indicated, the charge on a particular pixel is read out in a short time T,,

and then reset. The maximum value of T is:

T	
T^	

(4.2.2b)
max	 2m

Since the effective integration time is T — 0.5T, it may under some circum-

stances be desireabl.e to shorten T so that a larger charge will b , available

for measurement. this would, however, increase the readout noise. Since the

readout noise is currently ± 500 counts for a sequential readout of the com-

ple=te 60,000 pixels in 0.5 sec (8 user/pixel), one 	 sses that the readout,

noise for an arbitrary T would be:

S tlsecrS n 	 's	 50	 `	 -°^'1 
0.5

	

Cts.	 (4.2.2c)
T

The total uncertainty, SN, in the number of charges measured is then:
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x---11
Sid	 r° N + Vin ` 	(4.`1.2r)

where N is the average number of charges recorded, which i(s related to the

input, number of photons io the time T — 0.5 -, by equation 4.2.2a.

In the case of the compact mag netograph, we will have Ra photons/sec of

right—hand circular, light falling on one set of m pixels, and R, ) photons/sec

of left —hand circular light falling on the other set, where R I = R2 = Ro and

will wish to measure the signal:

S = (R 1 — R,,)/(R 1 + R ' )
	

(4.2.2d)

If the dark current is negligible, it can be shown that the uncertainty uS in

the measured value of S will be given by:

K
0
(T'-5 C)	 2 g user 7

I	
f f 1----m	^ + (500) (	 T	 )(SS)^.	

R	 ,l'-5T)	
(4.2.2e)

f2 ^ m 1

where Ro (T - 0.5T)/m is the number of photons collected per pixel and f is

the function relating this to the number of counts registered (eqn. 4.2.2x).

Por any specified values of S and m, this equation can be investigated numeri-

cally to determine the readout, time which will give the minimum cycle time

T. The total number of photons of each circular polarization which must be

collected to make the stated measurement is then N =mRoT. By way of comp-iri-

son, for an ideal noiseless, and perfectly-efficient, detector, the number

required would be (cf. Sec. 3.4.2):

N	 =	 1	 2	 (4.`2. 2 r")
2(5S)`

In the following figure, the calculated integration times are given for rlte

idealized continuous-scanning CID camera with various siz^:e of image art'.a on

the assumption of an iurident rate of Ro=10 8 photons/second.
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Random Access CID (Ro= toe Ph/s«)

tn= 30,000

m} 1,250

x_50

tn. 2

ideal detector.

101

0.1%
p 1010
d
y 109

u I^
N

IOS

10^

le

lo'
le

1 OI

t n
O

10'

log ^

10 3 ^,i
10^' n
105

le 	 16-6

10-11 	 10"1

b,S ( rtvis noise level)

Figure 4.2.2x.. Minimum integration times required for various noise levels.
m is the number of CID pixels used for each circular polarization. Note that;
for magnetic measurements we want the noise level to be less than one-fourth

the expected signal at the threshold field.

In general, the optimum performance was found by using the longest pos-

sible readout times (that is, T - T./2m). The only exception occurred when a

high precision result was wanted using a very small number of pixels (m-2).

In that case, where relatively long integration times are called for., no

improvement in the noise level was found for readout times Longer than about

.001 sec; in fart longer times would cause a slight deterioration in perfor-

mance due to the smaller average number of charges which would be present

dur'ng the readout.

In using eqn. 4.2.2e, allowance must be made for the possibility that the

total number of charges accumulated per pixel between resets (-f(R oT)) may try

to exceed the saturation level. This occurred, for example, for m-2 when

SS < 3.5 x 10-4 . In such cases, the desired noise level can only be obtained

by averaging together a number of measurements made with cycle rimes short

enough to avoid saturation. This causes the curve of collection time vs.

noise level to become parallel to that for an ideal detector at low noise

levels (as shown in Figure 4.2.2c).
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The general vonclusioa would seem to be that when using a CID for the

kinds of light level available from the compact magnet,ograph it is desireable

to reduce the image area to the smallest number of pixels consistent with the

required spatial resolution. The smallest number of pixels which co Id be

used for each circular polarization for a rombiaed magnetic/temperature

measuring capability would be about m - 6:

0.184 mm

Figure 4.2.2d: A minimal, image scale permitting the 4 detection sectors to be
sampled for independent "velocity" and magnetic measurements (cf. Figure
2.4a).

However with a very small number of pixels, the performance would be addition-

ally degraded by the fact that some of the pixels would cross the boundaries

of the detection sectors, and others would be incompletely illuminated. That

is, the sectors are non-optimal and for geometric reasons the signal level,

would be somewhat lower, and the noise levels higher, than anticipated.

In summary, for the compact magnetograph, adequate resolution could

probably be obtained with m=10, and the noise level of SS = 5 x 10 -4 (which

according to Sec. 3.5 is that required to measure the Mount Wilson 5-gauss

fields with negligible error in 6302) could be obtained in an integration time

of about 0.2 seconds. 2 x 10 7 photons of each circular polarization would be

collected, which means that 2 x 10 6 photons would strike each of the active

pixels. According to eqn. 4.2.?a, this in turn means that a total of about

4 x 10 5 counts would be accumulated by each pixel between resets. Since this

is roughly equal to the room temperature dark charge per pixel for 0.2

seconds, some cooling would be required.

Since the existing CID cannot be used in a random access mode, a longer

integration time would obviously be required, but exactly how much longer is



somewhat unclear. Even if it were necessary to read our the entire picture

using T = 0.5 ser and -c - d user, we could still choose to use an image

covering m - 10 pixels (for each rirrular polarization) and ignore the

others. In such a rase, according to eqn. 4.2.2 the noise level would be

'5S =	 x l() -4 . This is more than good enough for the magnet,ir measurement.
Still closer to optimum performance might, be achieved if just a portion of the

pixture could be read our,, or if the unused pixels r.ould he stepped over more

rapidly than the "active" ones. The exart solution would depend on the opera-

ting possibilities.

For example, if it happened that,,  a few lines of rIie image could he read

out selert,ively, and if a polarizing mask of type 11 were used (Figure 2.4b)

so that longitudinal magnetic, fields produce a pure left-right blinking, it

would be possible to use a cylindrical lens to focus the detector plane image

down onto those few lines with essentially no loss in magnetic signal:

Mask II	 cylindrical
I'	 r	 /'l	 I ensa	 iabsorption

dip

x
^J D2
^l

linear detector

Figure 4.2.2e: Use of a cylindic,al lens to compress the detector plane image
onto a linear detector array. The picture on the right shows the intensity
profile along the length of the detector.

The magnetic signal could then be derived in the usual way, by comparing the

intensities in two halves of the detector. The temperature information would

be derived from the motion of the intensity dip (due to the line absorption)

in the linear image:
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Fipro 4.'2.2f: Extraction. of magnetic and remperature si nals from the oom-
pressed image.

The temperature signal would be considerably diluted, bur. it, is much stronger

to start with and does not need to be measured as frequently or as accurately

as the magnetic signal. The effect of the cylindrical lens could probably be

simulated electronically b y tying tnuerhkir some of the CID lines so that one

could rapidly read out the accumulated intensities in complete columns, rather

than in individual pixels:

T

Figure 4.2.2g: Electronic simulation of the integrating effect of a cylin-
drical lens.

Presumably, however, little real advantage in noise or sensitivity would be

gained unless one actually used a smaller physical portion of the detector.

4.2.3. Problem of Compatibility of CID Cameras with Raster Scans

An implicit assumption in the design of the compact magnetograph is that

for a given point on the sun one has simultaneous access to the light levels

in the various sectors of the detector plane. For a CID operating in a con-

tinuously scanning mode, the measurements would clearly not be simultaneous,

so that brightness fluctuations between the times at which the right and left-
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handed polarisarions are sampled introduce an additio,

s i8nal .

In drift,,  scans, the solar image would move by about 8 arr seconds in the

0.5 soronds it takes to readout, the existing; camera. Although, the important

motion is really that occurring berween the start. and end of the readout of

the "active" pixels (which may constitute a much shorter time if in 1- 10, some

worry may still persist, about, light level changes during; the readout. I  can

be minimized by orienting the: polarizing mask so that the scan lines will Oho p

between the two circular po l,arizarions as rapidl,, as ^^ossible , rattler r.h;tn

reading; out all right,-handed and then all left-landed pixels. The oliminarion

will not be perfect, however, and even if one used a seep scan, pausing at

each point, there might, still be problems of non-simultaneity associated with

seeing and transparency fluctuations between the readouts of the right,- and

left-handed pixels. Such effects will raise the effective noise level of the

CID detection syjt.em by an unknown amount..

4.1.4 Photodiode Detectors

Since it turns out that the most efficient mode of operation of the CID

is with the smallest, possible number of pixels, it seems natural to inquire

whether even better performance might not be obtained by using single physi-

cally separate detectors for the four detection zones of Figure 2.4a. Likely

candidates would be the silicon photodiode devices marketed by United Detector

Technology. Physically, these are very similar to the CID elements, but

operated in a continuous current rather than a charge integrating/reset

mode.* This capability would allow one to avoid entirely the problems rit.ed

in the preceding section.

The main drawbacks of the photodiodes appear to be their higher dark

currents and noise levels, both the result of their large physical dimensions

(compared to a CID pixel). The noise rharacteristior, of these devices are

specified by a "noise equivalent power" (NEP - dimensions of joules/^).

*Berause of the very tiny currents generated, the associated electronics
would probably actually be operated in an integrating mode where the

accumulated charge is digitized to 1 part in 10 4 at the end of each sampling
period. However, the digitzations could be performed simultaneously, and in
anv event., the net effect, would be the same as if they were operated in a

continuous differential current measurement mode.

a
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1
T (4.2.44)

Acrording ro t1lis definiti(m, the ttoise in it h.indwWI'll 13 (Ilz) har p .111 amplitude

roughly equal to the 4jAn^tl whicli the device, would hroduee t.)r ;in inptir powo,,

Af:

P in - 
XF. P ^ !)	 (4.2--4a)

Thus, if the quantum efficiency of the device is (^, ,it.J the, oner,^y assooiared

with one input photon is r (joules), the total noise char,;c, -wviirlularod in a

sampling time T will be on the order of:

(,4.2.4b)
since

At, 002A, c - 3.15 x 10-19 . The square-root of two has been inserted in

(4.2.4a) somewhat arbitrarily and possibly erroneously due ro uncertairlries on

the part of the author as to exactly what is meant by tle NE.P. It is possible

that the detectors are slightly ' a ss noisy than assumed here.

In any event, if we propose to perform a differential photometric

measurement of the sort, described by equation 4.21.2d, and if R () is the basic

incident rate in photons per second (of each circular polarization) and R d is

the dark current in charges/second (1 charge - 1.6 x 10 -19 roulombs), then it

can be shown that the noise level (i.e., the rms uncertainty in the meaoure-

ment) will be given by:

(SS) 2 -	 1	 R° + Rd + 2 (;r'EP)`'	
(4.2.+d)

2Rc ` T	 Q2

This is the equivalent of equation (4.2.2e) for the photodiodes, or other

similar devices. In general, the dark current term can be reduced to neglible

importance by cooling. The NEP, on the other hand, can be only very slightly

reduced.

It should be noted that in equation 4.2.4d it has been assumed that the

stated NEP contains only noise contributions in excess of the ultimate photon-
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oouilring Pompoll4nr. That is, an ideal h000ror would have ','F11 r 41. In rho,

mono common deflnirioa, whlrh we m4v demignare am NEV* ) it appears rh.ir even .t

perferr dererror would be ^Mven it fi.nire vnloe^, wh1oh is presumah1v the phonon

k-ouneing, rontriburlon .ir the "minimum florerrablt, " input tl,ix, Rmin 0li,.r is,

the ono w111, 1 1 gl es "a signal ro nolso yak V or SS	 1). From eiluarion 4..1.µd

R'71111 " lr": , J for an Weal riorerror. To explain Phis errlre.ly by it noisv vvrm,

we would have to have NEV*ideal 11	 This would inrrodure an arbitrary

trequenry-dependenr term into the definition of NEP* whirli would not seam ro

-nake much sense if it,. rould be avoided.

,,r the silircin	 avail,ible from UDT, rhe, two most inroresrin;,

randi ' lare,y seem ro be rhk= PIN Spar/:;l) and PIN-20A dererrors. The former

provides two closely spared recrangular sensors. The larter is ;i singlk;

dererror, and is said to provide "the lowest leakage current and lowest,,  noise

on the marker". Their spevi,f;irarions are as follows:

Table 4.3.4: Characreristirs of Commerrial Photodiodes

Area	 NgP(Joule/ser1)'5)	 Rd (rllarges /aer 13 `'SoG)

P1.1-Spor/2D	 .033 rm"	 .75	 9x10-14	 1XI010
(one element)

PIN-30A	 .030 rm3 	 .75	 6xl0-15	 3x10$

For an incident rare of R o = 1 x 10 8 p1titons/sec, the PIN-Spot/2D would have

to be cooled essetirially to

make the dark current small

only need to be cooled slig

negligible, equation 4.2.4d

4.2.2o showing the expected

its minimum

compared to

qtly. On thi

ran be used

performance

operating temperature of -55 0 C to

the incident rare. The PIN-20A would

assumption that- the dark rurrent is

to generate a figure analogous to

of the photodiodes:
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Figure 4.2.4: Noise level as a function of integration time for phorodiodes

with stated specifications (R	 108 photons/sec). '£he curves will move

closer to the ideal for high .0 and further away for lower Ro.

From the figure, it is evident that the PIN-Spot/2D is considerably

inferior to the PIN-20A, and it appears that for weak signals the latter

offers essentially the same performance as the idealized CID with a small

number (m - 10) of active pixels. That is, a noise level of 65 - 5 x 10 -4 can

be achieved with an integration time of slightly under 0.2 sec,. The reasons

for this coincidence are not fundamental to the detection mechanism. The CID

uses a much smaller physical. area, and for that small number of pixels has

negligible, or at least manageable, readout. noise. It is limited mainly by

its relatively low quantum efficiency. The photodiode uses a much larger area

and is strictly noise-limited.

For coarser measurements, the PIN-20A gains an increasing advantage over

the CID. This is because if only a rough measurement is needed, d short

integration time (or equivalently, a small number of collected phonons) is

called for. This condition places the CID in a regime where it has an even

lower effective quantum efficiency. The photodiodes supposedly don't suffer

from this problem, and are linear over many orders of magnitude.
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4 , 2 . 5 11110ri,mulripliers

-For very low light Levels, phUrr^rltilri,plier rubies, whioli have noise e-qui-

valent powers as low as 5 x 10`17 jouleiser'S ' S Uor a 1 p .:1 at -55')C), are

,;enerally considered to be the besr. rhoire. Their main disadvantage is a

relatively low quantum effirienry (- .1) and an inability to rope with very

lli^,h count rates. For the rompavr magnerograph, with duxes ", l x trig

photons/ser, the maximum routit , rare would be about 10 .illz whirls is towards the

upper end of the ar.cesprable range.

The noise level in a phoromulriplier-based dererrion system would be

governed by the some ronsiderarions as for photodiodes (i.e., eqn. 4.2.4d).

xis the present rase, however, it is the phonon counting rather than the noise-

term whirls supplies the limiting favror. The net result (berause oL rile latY^^r

quantum efEirienrv) is that the predi.oted performatire curve is essenrially

ident,iral to that of the PIN- 200 in Figure 4.2.4.

The problem with using photomulr,ipliers would most likely be rho ditii-

rulty of finding; separate rubes so rlosely matrhed that meaningful diff,!re-,-

rial intensity measurements could be made over any extended period. ;'hi!,

problem would disappear if the system round be modula t-ed so that the H,l^,,,

dererr_or could be used alternately for the two rirrular polarizations.
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4.2.0 Conclusions Regarding Derert,or Ghoice

The results of the preceding; section suggest that avalLable deterrors

will fall short by about, an order of magnitude of the optimum possible time

for derecring the small signals produced by the compact magaerograph.

Ideally, a differential measurement good to 6S - 5 x 10
-4
 would require the

collection of only about 2 x lo o photons of each sign, which at a basic light

level of about 1 x 10 8 photons/set would require on .y .02 seconds of time. At

the same light level, a very low noise photodiode (the PIN-20A) or it photo-

multiplier would require about, lOx as many photons, or 0.2 seconds to make a

measurement, of the same accuracy. The existing CID camera would .also be

capable of achieving this noise level in a single 0.5 second readout, provided

the image is confined to a small portion of the available area.

For purposes of setup and demonstrating the feasibility of the overall

concept, it may would sufficient, to make a few measurements at a leisurely

pace with fixed telescope pointing. Under such circumstances, where effi-

ciency is not a major concern, the CID 'would seem rn be the logical choice.

It would permit one to actually examine the ring pattern and to arbitrarily

vary the zones used for sampling.

For an actual operational system in which the measurements are to be made

in the smallest possible time, discrete photodiodes of very small area would

appear to be a more attractive choice. The principal difficulty would be in

development of adequate peripheral electronics to deal with the very small

signals. If the signal is to be modulated, photomultipliers might also be

considered.

4.2.7 Ramifications of Detector Choice on Previously Calculated

Integration Times, and on Profile Shaping and Threshold Field

In Section 3, the theoretical integration times required to detect

various expected magnetic signals were evaluated on the assumption that one

could use an ideal detector, that is one with unit quantum efficiency and zero

intrinsic noise. In addition, various filter configurations were suggested

which would minimize this time. Those considerations may require some modifi-

oation depending on the choice of detector.
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For in imperterr de;rerror whose performance (like r,liat of the photomulti-

p tier) is limi.r' ed by photon statistivs, rar6r.er than by Urernally-generated

noise, the integration time specified by equation 4.2.4d (for a sperified

noise level) is a simple fixed mulrip,l.e of that given by equation 3.4.2b.

Thus the same optitnum will be ;ele(, ted and all previously ralrulated integra-

tion times need simply to be multiplied by the appropriate vorrert.ion factor.

On the other hand, for sz detector (such as the photodiode), whose perfor-

manre is limited by .internal noire, equation 4.2.4c says that

The tradeoff between Ro and signal strength OS) is slightly different, than,

for the ideal detector, or in other words, the rorrect,ion factors implied by

Figure 4.2.4 are rate-dependent. (dote that. the NEP is an equivalent input.

power, and therefore includes the quantum efficiency of the detector).

To exnlore the effect of noiaeiwss in the detectors on the optimization

of the design the integration rimes previously provided in Table 3.5.5b and

3.5.6 were re-examined using the noise equation 4.2.4d with the NEP for the

VIN-20.1 photodiode (,from Table 4.2.4) and assuming negligible dark current.

The (,alrulati.ons are for a signal to noise of 4 at a signal strength eoures-

pondin3 to 1000 gauss with a fill fncator of .014. That is, for a quantum

efficiency of Q, a basic rate of Ro (in each circular polarization), and a

.^aloulated signal strength S, the time will be.

T	 $
QR0S -

+ 5.9 x 109
^a

Ro S
(4•'•S)

:Again, the undiw;tiurbed profiles are used, and the possibility of line

weakening is ignored.

6 4

it



fable 4.2.7x; Por.tormanre tlbrainahlo wirh llova Filters Using PINK- '.'.0A
Photodiode Derecrors (ot. Table 3.5.5h1.

Line(A) t2 finesse f-num Range RO Smag T

5'350 . oo 10 40.3 10- 90 MA 3.04 E8 1. 5o %-3 8.41 E-3

532 4 .01 8 29.5 10- 170 mA 3. "W %8 6.33 IE-4 3. t)'3 E- 1

o103 . o4 10 33.() o- 1311 mA 3.79 E8 1,17	 1.-3 8. 7 3 1,- 3

0303 .05 15 39.9 0-110 ,1A 1.78 l.8 1.82 E-3 7. o1 E- 2

8468 .52 15 35.2 10-190 mA 3.75 tab 1.81 E-3 4.05 E-2

fable 4.3.7b; Performance Obtainable with the Roya Filters and PIN--20A
Phorodiode Derectors Using One Wing of the Line Onl y (of. Table 3.5.6)

Line(A) t^ Finesse Position Ro Smag '
5250 .60 15 50 mA 1.211w E8 3.53 E-3 4.59 E-2

5334 .01 7 110 mA 3.61 E8 6.08 E-4 3.1.9 E-1

6103 .64 10 80 mA 2.81 E8 1.55 E-3 4.91 E-2

6303 b5 15 70 mA 1.88 E8 2.29 E- 3 4.38 E-2

8468 .52 15 120 MSS 3.03 E8 2.21 E-3 2.33 E-3

It will be observed that•, under these real-life circumstances the derec-

tors are very hungry for light. and are w{lling to give up signal strength to

get, it. On the average, the optimum finesse's turn out. to be less than half

of what formerly appeared to be optimum, and in some cases the effective FWHM

of the best, filter combination actually exceeds that of the line.

On the average, the integration times required with the PIN-ZOA photo-

diodes are found to be 3.5 times longer than those calculated For a perfect

detector, which is fairly close to the factor indicated in Figure 4.2.4.

It is also evident that when noisy derecrors must be used, the single-

wing mode of operation is even more advantageous than before. In the present

rase, the Integration times are reduced, on the average, by a factor of 1.75.

I
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,.+,3 'Calibration of the Detector

4.3.1 Calibration Prior Po Use

Wharever detertur is selected, it is exrreviely important, th,ar, it be well

ralibrated.

In most magner.ographs the signal on a fixed dererror is alrernared be -

rweearti right and left—hand oiroular polarizations so that, roughly speaking one

needs only the capability of meFa^uring fluctuations, and nor the capability of

measuring absolute light levels. In the compact magner.ograph it, is proposed

ro measure the two light levels by means of! physically separate. derarrors, and

it is apparent r.hsar if differenres are to be measured over any si-,niticanr

ratige of light, levels that the relative phot.ometrir properties or the two

detectors must, be very well established. That is, liven the reading in one

detector, one must be able to anticipate very accurately what the. reading;

should be in the other, detector if the same light level were falling, on it.

Indeed., the prediction has to be ar. least as good as the experted signal; thar

is, we would like to be within 1 parr, in 103 or better.

An obvious difficulty in producing such a calibration is than of devising

a source in which the overall intensity on the two detectors ran be varied

with minimal probability of altering the pattern. For example, if we

developed a sufficiently uniform source of illumination and then tried to vary

the intensity on the two detectors by placing a neutral density filter in

front of them, it would not be obvious how much of the observed imbalance

could be due to non—uniformities in the filter. Similarl y ; an ordinary light

bulb can be varied in intensity by rhanging the voltage, but one wonders how

uniformly the filament will brighten.

A possible solution would be to use a pinhole aperture illuminated by a

laser, as shown in Figure 4.3.1

r-

64



n666
f`ilt.rrs

100 MW He -xffl	 col
tzpd^

t^

A63ZS loser beam
(I w 44km)

11961-+ ,jt tube	 baffles

1' cone

de+telor chip
(quiz rnre)

30°, one
)l

61 cnn	 _._	 — --!

Figuro 4.3.1: Possible li,lit, SOUrce for performing,* a phor,omtdt • ric calibration
01' cietcc tors .

In general, if the diameter of the pinhole is D, and the distance to the

derer.tor is 4, then the intensity incident on the detector plane will be given

by:

21 
( ;rD sin r/i

1 aI	 Io	 7D sin r/14
1	 a	 2	 (4.3.1a)

I o [ 1 - 2.47...(20 ).

where r is the radial coordinate from the optical axis. For example, for the

situation illustrated, the intensity would be uniform to about 0.15% from

center to edge.

The light level can be easily varied by introducing neutral density

filters. If the incident intensity is Iinc, then the intensity in the center

of the diffraction pattern is given by:

.6:59... 
04 I

I o 	^,	 )	 2 
inc	

(4.3.1b)

X' %

For a 100 mW laser with a uniform I mm diameter beam, the dimensions indicated

in the .figure would give I o = 9.10 x 1.0-10 watts/CM2 . This compares favorably

with the 5 x 10-11 watts/=") which would Le obtained if the entire 2 x 108

photon/ r-pond compacr magnetograph image at 6302 ware spread over a 9mm dia-

merer (the size of the CID chip), but is considerably less than the intensi-

65



•k

ties which might be obtained if that. image were refocussed onto a very small

portion of the CID.

While the central axis of the diffraction cone would rend to move with

the direction of the input beam, deflections of up to about 1 arc minute would

produce less than a 1 x 10
-4
 change in the intensity at any fixed point in the

detector. Similarly, lateral motions of the pinhole of up to about, .007"

would have negligible effect,. Thus, the intensity of the image over the

entire detector would be varied by inserting density filters in the input

beam. Density variations over the dimensions of the pinhole, even if presenr,

would have negligible effect, on the image; however, it would be wise the

jiggle or rotate the filter a little to ma'-o. sure that there is nor wedging or

inhomogeneities in the index of refraction (i.e., phase errors) which would

rend to tip the output.

4.3.2 Calibration in Use

It is obviously not practical to calibrate a solar magnetograph in the

sense of checking the output for a known test field. In general, "calibra-

tion" refers rather to an empirical determination of the average line profile

by measuring the Doppler signal corresponding to a known line shift. For the

compact magnetograph this kind of calibration would presumably be accomplished

by measuring the offset between the east and west limbs at a fixed filter

temperature.

For the compact magnetograph calibration is also necessary in the sense

of keeping track of the photometric properties of the separate detectors which

are used to extract the difference signals. The primary effect of calibration

errors will be to shirt the zero of the magnetic scale. A fingerprint on one

side of the objective, for example, would cause a permanent apparent imbalance

between the two circular polarizations. Fortunately, the sun provides its own

null, signal, since at a resolution of 10 arc seconds large areas of the sun

should appear at close to zero field strength. Thus it should be a fairly 	 j

straightforward matter to shift the magnetic scale by a suitable amount to

compensate for the fixed calibration errors. Indeed, ability to pick out 	 ?

visually the "true" zero is, after all, the rationale behind the Leighton

technique of displaying "white" and "black" fields against a "gray" back- 	
J

ground. The only strong requirement would seem to be that the calibration not

change significantly during the rime it takes to complete a raster scan.

6b



4.4 Temperature Conrrol Kequirerienrs

in ortier to keep me turer assemoiy properly rearerca on me soar

sperrral liae it is necessary ro maintain it. in an actively controlled Thermal

environment. Typical wavelength shifts, which are a function of the expansion

roefficienr of the subsrrare material, are about 36 mA/ o(.' according to rile

proposal.

Th precision with which the remperature needs to be ronr.rolled is indi -

oared in Figure -+.4a:
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Figure 4.4a: Magnetic and temperature signals for a decentered detection

system.

This indicates the magnetir signal (for — "5 gauss") calculated for the Hoya

filters operated at, 6302 using the detection scheme of Figure 2.4a, but allow-

ing t')e central wavelength to drift by the indicated amount. The assummptions

are the same a, in Table 3.6b. With no shift, the detectors sample 10 — 90 mA

in each wing. It is apparent that a shift of as much as 20 mA, which would

produo..e a remperatu'.:e signal of 0.10 (in terms of eqn. 3.4b), would cause

negligible deterioration in the magnetic sensitivity. This means that tem-

perature control is only needed to about 1- 0.5 o C, and that. the signal indica -

r.ng such an error would ^z quite easily detectable.

On r.he other hand, the operating temperature has to be varied to rompen -

sar.e for solar rotation as the instrument is scanned across the sun. This
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motion corresponds to about ^ 1.89 kmisec at the equarorial limb;j, and for a

rigid rotaror, varies linearly with apparent distance from rh ,t cear,ral m(!ri—

di.u1. At	 this corresponds to a Doppler shift of f 4o m"A, whii1 h if

uncompensated, would severely weaken the magnetic signals already weakened by

geometric effects.

The need for rapid temperature control can I)e minimized by performing the

raster scans along lines parallel to rte central meridian, rarhor than paral-

lel to the equator (as seems to be traditional):

I

Figure '+.:+b: Raster scan pattern to minimize iioed for Vemperar.ure idjusrment,.

Using this pattern, the temperature can be varied slowly and continuously over

the time it rakes to vomplera the raster, rather than needing; to he completely

,' ,vcled on each line.
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4.5 Requiremears on the Uniformity of Bandpass and • Temperarure over the
Aperrure of the Filter

The resulrs illustrated in Figure. 4.4a apply also, but in a more compli-

rated way, to the losses in sensitivity which occur if the thickness of the

filter, or its remperatue are non-uniform over the aperture used by the

beam. Roughly speaking, fixed errors of less than about ± ;10 mR from point ro

point would have little effect on the sensitivity of r.he ins"rumdnr for deter-

ring the changes associated with magnetic fields, but depending on their exacr

pattern (that is, where they lie with respect to the desertion servos:;) they

^ould have an extremely large effect oil the uclro Of r1b" magneri" stale.

The same argument applies to the effect of fixed temperarure ;;radients.

The problem is char the magnitude of the temperature ',radienrs is likely to

change as the controller applies more or less heat, and also, possibly as the

brightness of the solar beam (whloh governs how much hear is dissipated at

that point.) varies. If we is;nore convection, the efforts nF these gradient-s

ran be minimized by raking rare that. the beam passes through the axis of

symmetry. In that rase, the (radial) temperature gradients will simply cause

a non-linear stretching oZ the wavelength scale in the detector plane. To

first order, this would be i, terpretted solely as a temperature error, and be

rejected from the magnetic signal (see Figures 2.2b and 2.4c).

The problem with convection is that it is likely to cause the temperature

to stratify vertically inside the oven, and this would cause a linear gradient

to develop in the filter, whose magnitude would vary with the heating. The

effect in the detector plane of the temperature being too high on the top and

too low on the bottom would be very much like that of the vertical tilt shown

in Figure 2.2b (except upside down). Although the magnitude of this effect is

likely to be very small, the magnetic signal is also very tiny. To minimize

the chance of this being interpretted as a magnetic imbalance, care should be

taken that the vertical axis of the polarizing ma A is suitably aligned.

4.6 Seeing Problems

A potential difficulty with a magnerograph of the compact, Fabry Perot

design is that atmospheric inhomogenei ties between the instrument. and the sun

will cause fluctuating differences in the intensity distribution over the

ob3ert.ive which could be misinterpreted as magnetic or temperature signals.

r-
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To anricipare how large this source of noise might be, one would like to know

r,he rms magnitude of the short - rime-period fl.uc+-uari.ons in the lighr level,

from a 11) arc -sec portion of the gun viewed through a I" objecrive. The

differential measurement betwoon rwo closely spaced	 (,ZS llt3ed by rho

oompact magnetograph) sho-ild show Jess fluctaariou, bur probably nor by a

,;rear deal.

An upper limir is presumably provided by rho, observations of shadow bands
,5r,i !. is_, 5"o ^7,	 1) .•16)

ar, solar eclips e/.' These indicare roughly sinusoidal inr.ensiry variations of

about 5%' wirti a wavelength of 5 em and a speed of abour 10 3 cm/sec. Af r,er a

rime T (;iet , onds), r.he poak to peak intensity f"„urr,uarions over a 2" ,aperr,ire

should be on the order of;

To reduce this below the desired photometric noise level of ,5S - 5 x 10-4
would rake T - .2 sec. However, only a small part ok r.he shadow band effect

is thought to be due to genuine transparen c y variations (they probably mostly

come from "seeing"). Thus, even though the compact magnetograph could poten-

tially act as a very sensitive probe of atmospheric iahomogeneities it does

not seem likely that this will prove a limiting factor.

4.7 Feasibility of a Doppler !4ode

The Fabry Perot magnetograph is not particularly well suited for the

measurement of solar velocities over prolonged periods because of the confu-

sion between temperature and velocity signals. The spatially and time--varying

components of the solar velocity field (5-minute oscillations and supergranu-

lation), are expected to have an amplitude or at most a few tenths of a km/ser

when viewed with a 10 arc sec aperture. According to Section 4.4, this would

cause shifts of less than 5 mA in the position of the line in the detector

plane, which in themselves would not be meaningful unless one were confident

that the temperature of the filter was stable to considerably better than

0.loc.

To make useable velocity measurements over any extended time it woul

Hierefore be necessary to use a differential signal based on the relati.vo

positions of a solar and a telluric line. Since the nearest telluric line to
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o30-1 is 280 mA ro the red, rhis would require increasing the coverage avail.-

able to the derecror from the normal -90 to +90 mil up to abour -90 ro +390

mA- This oan easily enough be arromplished by lowering the f-number of the

hoam rhrough the filrer (i.e., by using a more divergent beam - of. Figure

:;..'a), bur it would be at the expense ok a significant loss in mtgneric sensi-

^ f	 riviry. For the coverage range indicared above, only abour 40 of rlie area of

the objective would be useable for the mag,nerir measuremenr. This 'means tllat

ro achieve a specified noise level the inregrarion rimes would leave ro be

increased by about 2.5 rimes (for an ideal derecror). For a real dererror,

rho, incroase would be even greater due ro the added imporranve of V: I u. fixed

noise rerms ar low light , levels.

Since the solar bear, t,hrough the filrer is expected ro have quire small

physical dimensions, a possible solution to this problem would be to use a

completely separare beam rhroug h a neighboring portion of the filter for

purposes of temperature control. A suitably t,ilr.ed and slig;hrly divergent

Ile-Ne laser beam might be used, for example (rf. § 5.3). The surress of such

a scheme would, of course, depend on the remperat;ure changes being reasonably

uniform over the distance separating; the beams.

4.8 I:lertro-Optic Modulators

The possibility of using elertro-optic modulators in the design has not

been considered up to this point, borh because such devices require high

voltages, and because they are considered roo failure-prone for prolonged

periods of unattended operation (as on a long; spaceflight).

These failures are primarily associated with the der.eriorar,ion of the

transparent electrodes, and for the compact, magnetograph this may not be such

a serious objection. At least with a 10 arc see sampling aperture, the physi-

cal size of the light beam is quite small (rf. § 5.4) and if the KDP were

plared at that point a device with an open-work metallic grid, or even one

with specially-construrred solid electrodes having a small clear aperture in

the middle, could be used (the beam passing through a clear poitlr in either

ease).

There are obviously many advantages to be gained by substituting an

electrically modulated crystal for the fixed quarter waveplate (which explains

why this procedure has been aiiopted in virtually every successful groundbased

it



ma)',nerograph). `Cie .idvanrages derive primaril y from Hie r,tcr rhar the :nodu-

laror reduces by a factor of two rhe number of derecrorr, which are required r^:

monitor the magnetic signal. Fo r example, in rhe desir,n of Figure 7.1,

i,nsread of using, half rh;; objecrive so that borh rirrular polarizariom can he

monir.ore%l simultaneously by physically separart^ dererrors, wish rhe UP rhe

entire objecrive would be used alrernarely for the rwo cirrul,ar poL:,rizarionr;

an fl only one detector would be needed (rhe magnetic si,,nal being; derived from

rhe AC component of its output.).

This reduction ^;rearly alleviares rhe requiremears 011 r'uv y r;tbiliry Of

rhe derecr,,, rs: iasread of having rwo separate devi(,es .411Vt must r om;tia

phoromerrically matched over the length of the complete rasrer scan (.end over

the variety of light, levels which will be encountered), one has only one

device which need nor be particularly linear nor stable over much more rhar

the rime it rakes to make a single measurement,.

A mace subtle, but possibly equally important advantage, is rhar one has

effectively doubled the intensity of light (phonons/set) available to the

detector. As ran be seen from Section 4.2.7, if the light. level is very low

to start, with, so that the noise originates primarily in the detector rather

than in the intrinsic phonon statistics, the signal derived from a single

fully illuminated detector will be r2 less noisy than that from two partially

illuminated ones, allowing measurements to be made in half the integration

time.

Final^'y, by being able to use the full aperture one avoids also the

problems (intrinsic to the two-detect )r designs) of transient non-uniformities

(such as shadows, dirt and temperature gradients) being mistaken for magnetic

signals.

It should perhaps be noted that by using the KDP one does nor, give up the

possibility (described in Sections 5.5 and 5.6) of still further reducing the

integration times by doubling the light level with a polarizing beam-

splitr.er. Although the KDP itself could obviously not be fabricated in the

complicated segment quarter waveplate designs of Section 5.5, these patterns

can be precisely simulated by using a simple modulated ± quarter-waveplate in

conjunction with a suitable fixed, segmented half-waveplate.
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Figure 3.1: A compact mae.netograph desi gn using two detectors. The shaded
portions of the detectors are those on whieli no light. falls.

A polarizing mask of the varier.;! ahot n in Fig-ire 2.4b is used. This design

provides the optimum trade-oft bev,;ue.n magn.eric_ ;signal and detector sensiti-

vity, bur sacrifice, the capabilit y 2'or oonrinuous temperature monito4iag.

To che(!k the t.emperaruve, an 	 oirr ular polarizer would be

inserted i.n front of the objerriv,-, Ions in eirher of two configurations
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In the first-, design (Figure 5.2a), which is a simple variation of Figure 5.1,

a small amount of r,he light. is stolen to permit the remperat-ure measurement.

T o	based on Hit. observation that the temperature signal is much largsr, and

it does not needed to be evaluated as frequently. The two small derec-

z;, D3 and D4 obviously do not make r.lie most efficient use of the reflecr.ed

light, and a more elaborate scheme (involving a diagonal mirror as in Figure

5.2b) oovld be used if necesssary.

To achieve any .fixed noise level,, the aonfigurar,i,on of Figure 5.2a would
require a longer integration time than that of Figure 5.1 in direct proportion

ro Hie amount of light, lost, by reflection and absorption (i.e., ttie effective

transmission or quantum efficiency is lower).

In the second design (Figure 5.2b) a diagonal mirror is used to physi-

cally ropy rate the inner and outer parts of the ring plane image. Eirher

version of the polarizing mask could be used, but that of Figure 2.4.1 was

chosen for clarity. The design suffers from a relatively inefficient, use of

the rectangular detectors which is likely to increase the noise and dark

current problems. Since the two independent measurements of the field

strength can be averaged together, the individual measurements can be a factor

of 3T coarser than required in design 5.1, however, the light level. is only

half as much, and for a noise-limited photodiode, according to equation 4.2.7,

the intrinsic noise level would be twice as great. The upshot is that if the

same diodes are used in both cases, twice as long an integration time would be

required to achieve the same noise level. On the other hand, if a photon-

counting-limited detector were used, no increase in integration time would be

needed.

5.3 A Design Using Only One Wing

As indicated in Section 3.5.6, and again in Section 4.2.7, ti« re is for

any line and field strength a reasonable advantage (a factor of 1.5 - 1.75 in

integration time) to be gained by operating the magnetograph in one wing

only. Figure 5.3 suggests one possible de-Agn in which this is done:

r
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Figure 5.3: A design using the ,filter in a single wing of the solar sine.
The laser reference source: is added for temperature control.
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Since two detectors are used for

gratioa time would be relative t

dent of those suggested so far.

cannot be used in a Doppler mode

temperature control. In the one

used. Since it is unlikely that

the magnetic signal, the advantage in inte-

3 design 5.1, which :.s already the most ef.i-

The disadvantage of the design is that it

and therefore needs some auxilliary means of

suggested, a slightly divergent laser beam is

there will be a bandpass exactly at the

wavelength of the laser light when the filter temperature is correct for the

solar U ne, the laser beam is passed through at an angle. The transmission

pattern will then be a somewhat flattened annulus whose diameter varies with

the temperature and whose width depends on the FWHM of the filter. The laser

light annulus is monitored by the detectors D3 and D4 wh.Lch are connected by a

servo mechanism to the temperature controller. The operating temperature is

varied by shifting the lateral position of D3 and D4. The temperarliva control

requirements are similar to those in the full ring plane mode (Section 4.4).

An error of 20 mA would decrease the magnetic signal by about 15%. The pro-

blem is that one would need to have a table giving the operating position for

each point on the Sun.

When using a single wing there should be a slight additional advantage to

using the blue one, since the absorption core from the undisturbed photosphere

will be shifted in that direction relative to the profile of r..he magnetic

features. Thus, in the blue wing a lower background level will be found at

the point of maximum magnetic, modulation.
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If the laser idea is unacceptable, a modification is possible (r£.

Section 5.6) in which a segmented quartar-waveplat.e is placed over the objec-

tive and a polaxizin, prism is used to produce two appropriately skewed but

individually collimated beams which could be passed through the Fabry Perot at

slightly different angles, one corresponding to the red wing, and the other t,(,

the blue. Each transmitted beam could then be sampled in the fashion indi-

rated in Figure 5.3 and they would provide independent est'mates of the mag-

rnet,ic field. Temperature information could 	 be extracted from the dif-

ference in the two total int,nslties, in the same manner as indicated in

Figure 5.o.

5.4 Clarification of the Designs

5.4.1 What, are the Detectors?

As indicated in Section 4.2 there are a number or possibilities for what.

the detectors might be, and the fact that they happen to have been represented

b- two neiohboring re.etaneulat areas does not mean to imply that the PIN-

Spot/2D detector has been chosen. Figure 5.4.1a illustrates a number of ways

in which combinations of photodiodes or photomultipliers could be used to

equivalently sample the detertinn sectors;

Figure 5.4.1x: Four practical possibilities for the detector pairs.

They would equally well be portions of the CID image plane, either obtainea by

software by summing over the appropriate pixels, or by a hardware modifica-

tion:
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Fi;;ure 5.4.1b: An electronic modification of the CID to obrain a dererror

Flair.

').4.2 flow Lar;;e are They`

The figures are also somewhat, unclear in that, they seem to show the

der,ecrors as being about, the same size as the objective lens. In faor, the

actual physic°.l dimensions are likely to be extremely small (of. Table 4.2.4

and Figure 4,2.2d). For example, to provide a scale one migh t- note that for a

2" objective and ;jq .t'/45 be;un the actual Size or the 10 arc second field stop

would be about 0.1 mm. The ring plane image will be larger, of course, depen-

ding on how far back is is placed. If too large, it ran be reduced down to

the size of the detectors by means of an additional converging lens. On the

other hand, it is desireable for the polarization analyzer to really be of

reasonable size, so that it can be easily fabricated. This can be accom-

plished by placing It in a more appropriate position (such as in front o£ the

objective), or by adding even more lenses.

5.5 Reciprocity Between Polaroids and Waveplar,es

For purposes of clarity , in all the figures the polarization anal yzer has

been shown as consi.s:'Ang of the combination of a single simple quarter wave-

plate and a segmented polaroid. While this is much easier to draw, this

eon£iguration is optically completely equivalent to a segmented quarter wave-

plate followed by a single simple polaroid:
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Figure 5.5: Demonsrrar,ion of reciprocity between polaroids and quarver-
waveplares. The configurations on right and lef are optically equivalent.

5.6 A Method for Doubling the Light, Level

In the designs of Sections 5.1 thru 5.3 half of the light, incident, on the

objective is lost by absorption in the polaroid element of the polarization

analyzer. If we use the r.otivept, of Section 5.5, that element, could as easily

as not be a single simple sheet of linear polaroid; and if that is the case it

could equally well be a polarizing beam splitter, in which case both r„le

transmitted and the reflected beams would provide complementary and equally

useable polarized ring-plane images. Figure 5.6 indicates how this modifica-

tion could be applied to design 5.1, in which the simple polaroid has been

replaced by a segmented quarter-waveplate of the configuration shown in Figure

5.5b cemented to a suitably oriented polarizing beamsplitter.

(a)

(b)
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Figure 5.6: Desi n 5.1 modified to permit dual, simultaneous focal planes.

If there are no losses in the beamsplitt.er, the noiseness of the averaged

measurement would be ►^ better than that•, for either focal plane separately,

which means that the integration time could be reduced by a factor of 2. If

the detertors were of the noise-limited variety governed by equation 4.2.7,

and if it were possible optically to invert and superimpose the two Enral

plane images on the same detector, so that the intensity as well as the light

level is increased by a factor of 2, then in even greater improvement in

integration time could .,e realized (up to a faor.or of 4).

A further advantage of the beamsplit design is that erroneous signals due

to non-uniformities over the aperture (shadowing, temperature gradients,

fingerprints and atmospheric: effects) will tend to appear in the two channels

with opposite signs, and therefore cancel in the average.
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11.	 (,o nolus ion a

1. The basic outlook for the success of a compact Fabry Perot magneto -

;,raph is favorable.

2. Although currently referred to as ^ "relerenrric" system, rkte only

oorreoror 'lens which is likely to be needed is the one to re—image the ob,jeo -

rive, and that only in cases where (to a000modare the derecr.ors) it-. is

desired to have a final "ring plane" image smaller than, or comparable in size

to the field stop (S 2.3).

1. Oi the specrral lines, which might be used in the visible,	 "3de.ns

to be abour as good as ai1Y, and much better rhan some which have been used

successfully in the past (x5324). The only better lines, at least among the

simple Zeeman triplets, seem to be in the infra-zed (§§ 3.5 & 4.2.7).

4. Efforts to supress the filter wings help slightly in improving the

magnetic response; however, atX6302, for a given signal to noise, the existing

filter pair is already within 2.8X of the ultimate integration time whicft

could be achieved with a perfectly square bandpass. The Hoya filters, if

successful and combined incoherently would be within l.bX of it (finesse

20). If combined coherently they would presumably be slightly closer still

(§ 3.5.3).

5. If the position of the line center must be monitored to maintain

temperature control, then at 6302 the best magnetic. response ran be obtained

by having the objective lens (and hence the ring plane "image") correspond to

a wavelength range of approximately f 90 mA about line center, which dictates

a beam of about, f/45 through the filter. Portions of the objective lens

transmitting light outside this band (and also within d: 10 mA of lire center)

are counter-productive, and would be rejected at the detector, if present,

(§ 3.5.2).

b. If the temperature can be monitored separately, the f-number could be

increased (i.e. the beam made more parallel) so the whole objective would be

used near the point of maximum sensitivity in one wing of the line. This

would reduce the integration times required for a fixed signal-to-noise by

about a factor of 1.5 - 1.8 (§§ 3.5.6 and 4.2.7).

7. +in the other hand, it might for some purposes by desireable to de-

crease the f -number (i.e. make the beam more divergent) so that one of the
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ao;irby Telluric, lines cotild be used as an absolute veracity referenre. This
would require a minimum spectral range ok ibour 400 mA, which would reduve the

l.it;tar ravail;1ble for 1"'abneric measurements and invraase, the inregraPtori tirhos

by ,t ^arror of 2 to 5, depending )i t 	 durf,^rrors (§ 4.7). A better way to

!Jjal^v velooiry measurements wo ,ald be to rise it separare temperarrnre monirori.ag

System M 4. 71 and 5.3).

8. The m.Jor source of uncertainties regarding the predirrod performance

of the instrument are (a) knowledge of the true weak field configuration or

the sun; and (b) uncertainties regarding the behavier of the spectral lines ^n

Hie unresolved magnetic elements M 3.1 ,ind 3.5.5).

9. Nonerheless, it is clear rhar. the basir prob.Lem is nor so murta wh,ct

is or how to improve the expected signal, bur rarher, how to efficiently

r3,imple and process it. At 6302, the expected magnetic signal rorrespondin 'g to

the lowest contours on the Mount Wilson daily magnetograms ("5 gaus") Li tabour

a x 10 -3 (Tablo 3.5.3b) . We would like to be able to detect this with it

signal to noise of 4, that is, with a noise level of about 5 x 10-4

0 3.4.2). With a 2 inch aperture, a 10 arr ser sampling area, and oprmist.i.r

assumptions about the obtainable atmospheri.r and optical transmissions

0 3.4.3) we would expert, to have, in the optimum ring-plane mode, a light

level of about 1 x 10 8 photons/sec for each cirrular polarization (using half

Pal' the objective). With an ideal detector, the desired noise level could be

rcacheC1 in abour. .02 seconds (Table 3.5.3b).

10. Actual detectors will be limited by quantum efficiency and noise.

If the detector is in a quantum efficiency (photon statistic) limited mode,

the %nt,egration tim-as required will be in (inverse) proportion to the light

level. In the noise Limited regime (vent low light. levels), the integration

times are (inversely) proportional to the square of the light level. The

behavior, of the CID is even more ccmplirated because the effective quantum

efficiency depends on the charge level. In general, the best results, both

from the standpoint of noise and dark current will be achieved by using deter-

tors of the smallest possible physical area. For available detectors, even if

the design is modi!'ied towards higher	 leve.is ar the expense of signal

strength, the best achievable integration tires are about an order of magni-

rude larger than the ultimate ones ("i »..).
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11. In geiier,al,, exoepr possibly Or purposes of ser—up land demonsrr.i-

Pion, ,a Pomplete ring—plane deterrloa system would not b ye required. By .appro -

p>iiaro choice of the polarization analyzing mask, only two simple ilerevrors

would be, required ro measure longitudinal magnerir field st.en,grh g , and four

rya extracr both temperature and m,agnerio i.iformarion ( S 2.4 .andi5).

12. One projerr of modest srienrixir interest wtiirh could be performed

a.asing the basic no ,nparr, magnerograph with a full ring —plane ronfigurarion and

QT) dererror would be the simultaneous measurement of the srrengrh of rirrular

polrarizcarion throughour i Line profile; which would require is much longer

inre,gearioa rime ;and/ gar 1arr,er aperture.	 If the t,ampliag aro,i 13 suffioiearl;+

small, the shape of the magneticall y disturbed profile r;.an be inferred. t-ven

for large sampling areas, regions in which the majority of the field is above

,about„ 1500 gauss would show a distinerive: signature. It is di,fficulr ro sea,

however, how these results would improve over those which could be obrainod by

the mirrodensiromerry of photographic spectra obtained simultaneously in the

two cirrular polarization.

13. 'file temperature—monitoring problems do not seem to he as severe as

might be imaged. At X6302, signals of as large as — 10"') ('-• 0.5%) could be
allowed to develop without noticeably affecting the magnetic sensiriviry

(§ 4.4).
Yh^

14. Because of d intensity—dependence of the relative detector noise

l,c vcls, not all foral pliaia configurations arc equivalent. To achieve the
optimum integration time, care should be taken to make the most efficient

possible use of the available light, and to minimize the number of detectors,

particularly if phorodiudes are used (§ 5).

15. The introduction of a KDP crystal to modulate the magnetic signal

would offer many potential advantages, both in terms of reducing the number

and complexity of the detectors, and in alleviating the possibility of extra -

neous imbalances. The disadvantages are minimal, and it would seem that this

option should be reconsidered (§ 4.8).

16. In all cases, the efficiency can be improved by substituting

polarizing beam—splitters for the polaroid elements. In effect, two indepen -

dent focal planes are created, the results from which can be averaged (§ 5.6).
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I	 It sparialF resoLurion is nor a primary ronrvorn, r!te dynamik , ritc,ko gat

r%e ^noeasuro omenrs (for a given inre.grarion rime) oan be inrreasod coon4iderahl°a

V Ft l ar;er sampling aperrure is oviei, parrirularhy for phorodi , nic upriortors

1A 3.1)), ,'fin ^nr re-ase ill the size .)f rhu Ojeorive would have a sifiil^tr

o l ! f ek' G
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Fĵ y hookup

tMCTI ll A(S ►ONe4

I ens Iuattuta.tirnnl;
Feedhat,1.,ontrlll %0,11=
t 1, aldJn.e i Siems

1.P1't IC k"11ONS	 1.w.r ,Ih;^e ►ntent
'^ta.lune tlltil alignment
Targeting
Process Itiadullery alignment

10(CYl sYIlroNIE vt. UNIFENATul

C

Z

>r

^y

w	 ' N	 ^

kr	
t

,

O	 '
1	 6

100	 )00	 A00	 A00 A00	 900	 100	 )00	 1000	 1100
WAVEIlt10TN INAN0001111"Allil

7

T `

•

z

N
A,
G

Tt Mf ERATUll €rf

L;^—AIaITAryI:L V• n IAa VV6l I ll qk%l
IQ^

1.+rF

^ –s: ♦ -	 ..a w..w	 v._-x-.YM .N=.^.'t-a=}.v-1.4;.

Y Ice

Z
	

-	 -iron 74 —̂  +--
v

10
	

spot 40 .

I ,"

	

1 tl	 r0	 i^L
Rut V0VAGt IVI

2644 30TH STREET, SANTA IONICA, CA 90405 91 TELEPHONE (213) 396-3175 n TELEX 652413



ORIGINAL,. PACE E3
OF POOR QUALITY

ELECTRICAL CHARACTERISTICS

	

I> iw•S h Irtl2l)	 PIti splIt 41)

	

1'!R',^II Th(t AND (UNITS)r .IY	 1
1A

	

\tlti	 1	 - 1 	 1AX  

(^ r.nunended 11Gade al-1 0- —

	

Op rItioti	 Photovoiiair:, Photoconductive	 Plu,t^rsr^ltatc I'ltrrt^,.^+n+^rl,usc

__ A 

rt	 t Peak ( iil s Wat( 

^V1 ral IL live Y . Peak (nm) 	 ^	 150 1100

Resp	

^^	 -	 m, ' St) 1 lr)U{	 _	 _.»
^u u r v a	 \ a p	 1	 10 4	 q S

1'niturmi(\ Ill Resp^ulse (wtth 1 nittt plat dIa)

Dail, Current per element ()Ja)	
r 10V Bias	 --	 0 002	 U 0^	 -	 l Uli ;	 1J () w

^OV Blis I	 0.006	 0.1 S	 0 Uun .1._

S,—urnS, -ijrne Re istance per element	 60	 "0

	

-^ .!	 Its 4	
t)ti" lira	 '`t

Llrcakd^lwrt VGlltaa;c ^ 10 Ja (sr^ 1	 _	 "U	 lU0	 -	 ^U	 11)1 	 ^,I

	

51	 S1	 -	 4
C,ipaertaiwe per element (pF)!OV BIaS I 	 1S	 '? 

	

z SOV BLS	 6 7	 10	 4 	 t1

Rise nine at 02.; run	 (
I )V Bias _	 _	 ] I l	

--10 0	
a-

iU'' X 11) ' tnsl	 ^  ,
_ 	 1 ^OV Bras -	 -^	 _1O. U	 111

Fall Time it x32.8 nrrt	
IUV Eiw 	 I	 1 p 0	 lt)I	 (	 ^-	 .^

9 1 0'	 1) (ns)	
w SOV Bias	 I	 10.0	 a	 10',

	

_	
Bras ^_ 	

j^,,^.^.1. =ĝ .
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MECHANICAL SPECIFICATIONS

SPECIFICATION PIN-Spot/2.0 PIN-Spot/4D

Active Area/Element
Area (cm 2 ) 0.032 0.016
Dimensions (in.) 0.05x0.1 0,05x0.0 5

Package

I'vpe TO-5 TO-5

Winnow Glass Glass

-Field of View
Full Angle

q60 q60

Temperature Range
Operating ( 00 -55 to +125 -55 to +125
Storage ( 110 -55 to +125 -55 to +125

Y %TPUT
SIG'IAL

X OUTPUT
5 1 G1 NA I.

TYPICAL CONNECTIONS FOR PIN•SPOT^40
TO MO'' tr'IED UDT 301A AMPLIFIER'
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"	 I	 --ToACTIVE005 
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SCHEMATIC DIAGRAMS

OUTPUT301.0	 SIGNAL
GND

TYPICAL CONNECTIONS FOR PIN•SPOT'2D
SINGLE AXIS DETECTOR TO UDT 301A AP,IPLIFIER
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UM,LOW "BOISE ;Ert
UNITED DETECTORTECHNOLOGY INC.

r

PIN SILICON PHOTODIODE
ULTRA LOW DARK CURRENT
ULTRA LOW NOISE

Description

The UDT Luw Noise Series (Model 020 A, B and
Model 040A, B) of PIN photod:odes offer the lowest
leakage current and lowest noise on the market.They
are planar passivated and hermetically sealed. The
detector active element is electrically isolated from
the case.

The quantum detection efficiency is constant over
ten decades of light intensity, providing a linear out•
put current signal with input light level. The speed of
response is less than 5 nanoseconds, allowing the
observation of laser pulses of a few nanoseconds, The
frequency response extends from do to over 100 MHz,
Both biased (photoconductive) and unbiased (photo-
voltaic) operation give excellent results with this
device.

• 50 x 10712 A leakage (PIN--020A)

• 200 x 10-12 A leakage (PIN-040A) -.

UNIQUE-	 •' 6 x 10 -15W N.E.P, (PIN-020A)
FEATURES	 •' Planar Passivated

•	 Hermetically Sealed TO 18 Metal Can 	 OF POUR Qjj,l'lL 1'

•	 Photodiode Isolated from Case

Applications

Because of their unrivaled low leakage current and low noise,
these devices are especially suited to low light level detection
systems. They are currently being used in star trackers, earth
resources scanners, and spectrophotometers.
Specials

0.4	 0.6	 0.8	 1,0	 1.2
WAVELENGTH (MICRONS)	 The low leakage characteristics of these devices can be built

into many custom array geometries by UDT,
PIN SILICON PHOTODIODE ULTRA LOW DARK CURRENT ULTRA LOW NOISE

4 UNITED DETECTOR TECHNOLOGY INC.
2644 30TH STREET, SANTA MONICA. CA 90405 • TELEPHONE (213) 450 .8585• TELEX 65-2413
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20 pF
16 pF
12 pF

5 ns

25 1	 V
.040	 in.

8X 10- 3	cm2

GLASS
WINDOW

89
55

97

) MIN

—TO-18 HEADER
CATHODE (+)
ANODE(—)
(CONNECTED
TO BASE)

ELECTRICAL AND OPTICAL. CHARACTERISTICS

,.	 Pin-020A	 Pin-0208	 Pin-040A
Dark Current 	 Min Typ Max Min Typ Ax Min Typ Max

—5 V	 50 150	 800	 200 400
—10 V	 75 250	 1000	 300 600

t Responsivity Peak	 42	 .42	 .42

Mir! Typ Max
4000
	 pA

6000	 PA
.42
	

A/W

r	N.E.P.
1000 C.P.S. Center
1 c.p.s. Bandwidth
1 .5 V	 Bias 6 x 10-15
8500

Capacity
--5 V 5
--10 V 4p	 --20 V 3

Re%wnse Time
20 V, 50 St 5

Maximum Steady
Reverse Voltage 25

Active Diameter .020
Active Area 2 x 10-3

2x 10•x14	 10-14

	

5	 20

	

4	 16

	

3	 12

	

5	 5

	

25	 25

	

,020	 .040
2 x 10-3 	8 x 10-3

9 x 10-14	 1	 w

MECHANICAL DETAIL 	 EQUIVALENT CIRCUIT

R5

gn it Rp CP

,C 	 Signal current ~ 0.5 µA/µW

i n	Shot noise current

< 3 x 10-15 A/Hz 1n PIN-020A

< 10— 14 A/HZ 1R PIN-040A

Dark current

R	 z 10 11 Q
P

R S Y	 < 50 12

I	 UNITED DETECTOR TECHNOLOGY, INC.
a

L.-
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AX (MA)
A Qocio of the slope of the 5350.3 A line profile in non-magnetic rcgivn3 to the Slope if,

OkMc:ia rtrtiu as a function of the position of the magnetograph exit slit. This is the factor by
—h:h `2S%' wngitudinal magnetic measurements with Babcock- tyrc magnetographs should be

nl, -1fiI,ii.ct to correct for line profile changes in magnetic regions outside of Sunspots.
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0	 20 40 60 80 100 120

Half - width (m AO)

Fig. 3. One half of the width of the 5350.3 A line as a function of intensity relative to the Lv
continuum in tb) and out (a) of magnetic regions. Curve (a) is derived from direct o,,scr31,'"
Cure tb) is derived indirectly (see test). About fi, 0 ,; of the magnetic region line profiles fall

the range indicated about curve (b).
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4,	 -O p tical _I if'icion oy o f in Actual MwznLCo^,.raph

(a) W, C. Livingston, J , Harvey, A .K, Pieroo, , D, Sc'tlrage, B I Gill t^s") W,
J. Si=ions, and Co. Slaughter ( 1q 6i) : "Kirt poak X10- cr, C';zonum

Tei,eseope," xjptj	 33.

^.^'y .n	 zNe—	 kla Nn t

r	 ,.R'W
CN`}

_.	 apC;'R...RAP.

.. .RAT N:i

wI^NCtA^RIPN

_ -RCRR ^C'eL	 ..
— A 4 P, Al(

1

r	 OT

r % Sr•rr^ w.AT

Fz 6 Wh, •e do the photons go? Measured transmission
tclaticopu, spectrograph, and accompanying magnetograph.

(b) W.C. Livingston, J. Harvey, C. Slaughter, D. Trumbo (1976):
"Solar :iagnetograph Employing Integrated Diode Arrays,"
Appliedied Optics 15, 40.

Tabtt!I. Optical Transmission at \0.8688 /1m

Clemen t 	Transmission (Total) Trans.

ITr:r 0.40
hr n r 0.90
HG " 0.9,3

l	 . 0.9'2

P,	 ,... 7.5 0.45
`n analyzer) 0.34

0.97
L.:.... ..., 0.82 x 0.82
Grat 0.45

0.90
0., :5

TT. _ n,92
nbly1 0.70

Tu'.1{ 0.028	 ^—

5.

1 .zanon effect not removed.
F•° :: manufacturer's data.



In the firsr design (Figure 5._a), which is a simple vartar ion of Figure 5. 1,

.1 small amounr of the light is stolen to permit the remperar • ire rr.easuremenr.

It is based on the observation that the temperature signal is much larger, ,Ind

r it does not needed ro he evaluared as fregnentIv. The rwo small derer -

.s D3 and D4 obviousl y do nor make the most etfirienr use of rile reflected

ight, and a more elaborate scheme (involving a diagonal mirror is in Figurer

5.2b) could be used if neresssarv.

To achieve any fixed noise level, the ronflgurarion of Figure 5.2a would

require a longer integrarion time than that of Figure 5.1 in dirert proportion

to the amount of light lost b y reflection and absorption (i.e., rile effective

rransmission or qu.inrum efficiency is lower).

In the second de-3ign (Figure 5.2b) a diagonal mirror is used to physi-

rally separare the inner and outer parrs of rile ring; plane image.	 Eirher

verslon of the polarizing mask could be used, but that of Figure 2.4.1 was

rhosen for clarity. The design suffers from a relatively inefficient use of

the rerrangular detectors which is likely to increase the noise and dark

current problems. Since the two independent measurements of the field

strength ran be averaged togerher, rile individual measurements ran be a factor

of 3 T' roarser rhan required in design 5.1, however, the lighr level is only

Half as much, and for a noise-limired phorodiode, acrordilg t, I equation 4.2.7,

the intrinsic noise level would be twice as great. The unshor is char if the

same diodes are used in bath cases, twice as long an integration time Mould be

required to achieve the same noise level. On the other hand, if a phoron-

counring-limired detector were used, no increase in integration time would be

needed.

5.3 A Design lasing Gnly une Wing

As indicated in Sect-ion 3.5.6, and again in Section 4.2.7, there is for

any line and field strength a reasonable advantage (a fa7tor of 1.5 - 1.75 in

integration rime) to be gained by operating the magnetograph in one .ring

onl y . Fi g ure 5.3 suggesrs one possible design in which this is done:
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collimated
solar beam

heater control"-------- 4------)t

D1 D2

6302.
RHC LHC

FP
diverging

(\ /	 laser beam. V
$	 Dl - DZ.

Dl •D2

Figure 5.3:	 A design using the filter in a single wing of the solar line.
The laser referenre sourre is added for temperature rontrol.

Sinre two derertors are used for the magnetic signal, the advantage in inre -

grarion rime would he relative to design 5.1, which is .alread y the most N tfi -

clenr of those suggested so far. The disadvantage of the design is that it

i-annor be used !n a Doppler mode and therefore needs some auxilliary means of

remperarure conrrol.	 In the one suggested, a slightly divergent laser beam is

used. Sinre it is unlikely that there will be a bandpass exactly at the

.tavelength of ri le laser light when rile ti lter temperature is rorrert for rile

solar line, the laser beam is passed through at an angle. The transmission

parr -n will rhen be a somewhat flartened annulus whose diameter varies with

the remperarure and whose width depends on rile FWHM of rile filter. The laser

light anmilus is monitored by the detectors D3 and D4 which are connerred by a

servo :aerhanism to the remperarure ronrroller. Tile operating remperarure is

varied by shifting the lateral position of D3 and D4. The remperarure ronrrol

requirements are similar to those in the full ring plane mode (Sertion 4.4).

An error of 20 mil would decrease the magnerir signal b y ,about 15%. The pro-

blem is that one would need tc have e table giving the operating position for

each poi:-ir on the Sun.

When using a single wing there should be a slight additional ,advanrage to

using the blue one, sinre the absorption core from the undisturbed photosphere

will be shifted in that direction relative to the profile of the magnetic

features. Thus, in the `i'ue wing a lower harkground level will be found at

the point of maximum :nagnerir modulation.
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(c)
^^ci.^ ► ^.,9	 (d)	 D1	 D2(b)

If the laser idea is unacceptable, a mod ifit-arion is possible (rf.

^•	 Section 5.t)) in which a segmented quarter-waveplare is placed over the objer-

rive and a polarizing prism is used to produce two approprlarel.' skewed but

1 idividually -ollimared beams which . •,)uld be passed through rlie Fabcv Perot at

slightl y different angles, one corresponding to the red wing, and the other to

the blue. Fitch rransmirred beam could then be sampled in rh,- fashion indi-

cared in Figure 5.3 and they would provide independent esr:`mares of the !nag-

netic field. Temperature information could	 be extracted from the dif-

ferenre in the two total intensities, in the same manner as indicated in

=lgure 5.r,.

5.4	 ClartI it , arion of rtie Designs

5.4.1 Whar are the Detectors'.

As indicated in Section 4.2 there are a number of possibilities for what

the detectors might be, and the fact that they happen ro have been represented

by two neighboring rerransulat areas dues nor mean to imply thir the PIN-

Spot/2D detector has been chosen. Figure 5.4.1a illustrates a number of ways

in which rombinarlons of phorodiodes or photomultipliers could be used to

ryuiva lent Iv sample the de rNrrion ~errors:

Dl	 prism,	 DL	 error D2

D2
ibtr

`I 	 f0ics

I

Figure 5.4.1x:	 Four practical possibilities for the derecro- pairs.

They could equally well be portions of the CID image plane, either obtained by

software by summing over the appropriate pixels, or b y a hardware modifira-

rion:

Dt
r DZ

r 1	 DIM Sp op
dtfrclor
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Dl DZ

Fi,r,ure ).J.1h:	 An electronic moditirition of the CID to obtain it detector
pair.

5.4.2	 How !.. ► r;;e .ire Thee'

The figures are also somewhat unclear in that rhev seem to show the

lerecrors as heing ,hour the same si.!e as the objective lens.	 In fact, the

actual physical ,i:mensions are likely to be extremel y small (rt. rable +.2.r

„nd Figure •.2.2d). 	 For example, to prov'de it 	 one mihtt note rhar tar	 a

2" objective and +in f/45 beam the actual size of the lei arc second field crop

would be about 0.1 mm. The rang plane Image will he larger, of rourse, depen-

ding on how far bark I.; is placed.	 If too large, it can be reduced down to

the size of the detectors by means of an additional converging lens. Jn the

other hand, it is desireable for the polarization analyzer to reall y be of

reasonable size, so thar it ran be easily fabricared. This can he acrom-

plished by placing It in a more appropriate position (such as in front of the

objective), or by adding even more lenses.

5 Keci p rocir y Between Polaroids and Waveplates

For purposes of clarit y , in all the tigures the pularizarlon anal y zer has

heen shown as cunsis:ing of the romhinarion of a single simple quarter wave-

plare and a segmented polaroid. While this is much easier to draw, this

configuration is optically eomplerel y equivalenr to a segmented quarter wave-

plate followed h^ ? a single simple polaroid:

U
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+	 _	 •.

Figure 5.5: Demonstration of reriproviry berween polaroids and quarter-
waveplares. The Contigurarions on righr and left are oprlrally equivalent.

5.n A 'ierhod for Doublin g the IAi., hr ..evel

In the designs of Serrions 5.1 rnru 5.3 half of ri le light invidenr cn the

,bjerrive is lost by absorprion in rile polaroid element of rile polarization

analyzer.	 If we use ri le ronCepr of Serrion 5.5, rhar elemenr could as easily

as nor he a single simple sheer. of linear polaroid; and if rha+ is the case it
Could equally well be a polarizing beam splitter, in whi•-h case both rile

rransmirred and rile reflerred beams would provide romplemenrary and equally

useable polarized ritig-plane images. Figure 5.0 indioares how rhis modifira-

rion could be applied to design 5.1, in which the simple polaroid has been

replaced by a segmenred quarter-waveplare of rile ronfi,gurarion shown In Figure

5.5b remenred ro a suitably orienred polarizing heamspl.itter.
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Polarising
btumt;P^iMer	 Dl D2

L R;

0 	 / Di - D2 1 + ( P4	 1
n D3 D4	 t D1+D2/ ` D%+D4/

y
iR L

Figure 5.6:	 Desi,, n 5.1 modified to permit dual, simulraneous focal planes.

If rhere .ire no losses in the beamsplitrer, the noiseness of the averaged

measuremenr would be .T better than rhar for either focal plane separately,

4hirh means chat rile integration rime could he reduced b y a factor of 2.	 If

ri l e de rertors were :f the iauise — limired variety governed b y equarion 5.2.7,

and if it were possible optically to invert and g nporimn-?tce the quo

plane images on rile same detector, so rhar. rile intensity as well as the light

level is increased by a factor of 2, then an even grearer improvement in

integration rime soul be realized (up to a factor of 5).

1 further advantage of rile beamsplir design is that erroneous signals due

to non —uniformiries over the aperture (shadowing, temperature gradients,

fingerprints and armospherir effects) will rend to appear in the two channels

with opposite signs, and therefore ranee: in the average.

Ff
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b. Cone lusions

1. The ha-ii- ou'look for rite suvress of a rampart Fabry Perur magnero-

graph is favorable.

2. Although currently referred ro as . ► °relei-enrrie" s y stem, the only

eorrecror lens which is likel y ro he needed is the One to re-image rite objec-

rive, and rhar onl y in cases where (to arromodare the deractors) ir. is

desired to have a final "rink plane" image smaller than, or comparable in size

to rite field stop 0 2. 1).

3. Of the spectral lines whi, • h m1,;hr he used in the visible, k6302 see.ns

to be thour as good as art y , .ind much better rhan some which have been used

surressfully in the past (X5324).	 The )nly better lines, at least among r!ie

simple Zeeman triplets, seem to be in ri te infra-red M 3.5 6 4.2.1).

4. Efforts to supress the filter wings help slighrly in improving rite

magnetic response; however, a0b302, for a given signal to noise, the exisr.ing

filter pair is already within 2.8X of rite ultimate integration ri:ne which

could be achieved with a perferrly square bandpass. 	 The Iloya filters, if

surressful and combined incoherently would be within l.bX of it (finesse -

2U).	 if combined roherenrly they would presumably be ilighrly closer still

0 3.5.3).

5. If the position of the line renter must be monitored ro maintain

remperarure control, then at 6302 the best magnetic response can be obtained

b y having the objective lens (and hence the ring plane "image") correspond to

• wavelength range of approximatel y t 90 mA about line renter, which dirrares

• beam of about f/45 through rite filter. 	 Portions of rite objerrive lens

transmit ring light outside this band (and also within t 10 mA of line renrer)

are rounrer-produrrive, and would be rejected at the dererror, if present

(5 3.5.2).

b.	 If the temperature can be monitored separately, the f-number could he

increased (i.e. the beam made more parallel) so rite whole objective would be

used near rite poinr of maximum sensitivit y in one wing of the line. This

would reduce the integration rimes required for a fixed signal-ro-noise b%

about a factor of 1.5 - 1.8 (49 3.5.6 and 4.2.1).

1. On rite other hind, it might for some purposes b y desireable to de-

rrease the f-number (i.e. make rile beam more divergent) so that one of r!ie
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nearby tellurie lines , - ould be used as in absolute velocit y refere.nre. This

would require a minimum sperrr.il r.inge of abour 400 mA, whirls would rr_durr the

light .ivailable for magnetic measurements and inrrease the integration rimes

by s factor of 2 to 5, depending on the dererrors (S 4.7). 1 better wa y to

make velocit y measure ,nenrs would be to use ,i separare remperature monitoring

Pysrem (9S 4.7 and 5.3).

`i. The major source of unvertainries regarding the predicted Fertormanre

of the in:irrument .ire (a) knowledge of the rrue weak field , onfigurarion tin

the y on; and (b) unverrainries regarding the hehav'..or of the ipevrral lines it,

the unresolved nagnerir olements (SS 3.1 .ind 3.5.5).

9. Nonetheless, it is clear that the basic 	 is not so much .hat

is or how to improve the experred signal, but rarher, how to effirienrly

simple and process it. At 6302, the expected magnerir signal rorresponding to

the lowest eonrours on the "fount Wilson daily magnerograms ("5 gaus") is about

'_' x 10-3 (Table 3.5.3b). We would like to be able to dererr this wirh a

signal to noise of 4, that is, with a noise level of abour 5 x 11) -4

0 3.-4.2). With a 2 inch aperture, a 10 arr ser sampling area, and optmisrlc
assumprion, i abour the obtainable atmospheric and opiiral transmissions

(9 3.4.3) we would expert to have, in the optimum ring-plane mode, a light

level of abour 1 x 10 8 photons ser for each cirrular polarization (ising half

of the objeerive). With an ideal detertur, the desired noise level could be

r cjc h,:V in about .02 seconds (Table 3.5.3b).

10. A-real dererrors will be 1lmired by quantum efftrienr y and noise.

If the detector is in a quantum effir_ienry (photon statistic) limited mode,

the integration times riquired will he in (inverse) proportion to the light

I evel.	 In the noise limired regime (very low light Levels), the integration

rimes are (inveriel y ) proportional to the sguaro of the light level. The

behavior of the CID is even mute complicated herause the effective quanrun

effi,ienr y depends on the charge level.	 In General, the best results, both

from the standpoint of noise and dirk • urrenr will be achieved by using deter-

tors of the smallest possible physical irea. For available derevror'7, even if

the design is modified rowards higher light levels it the expense of sign.•i

srrength, the best arhierable integration time-; ire abour an order of magni-

rude larger rhan the ultimare ones 0	 ')
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11. In general, except possibly for purposes of ser-up and de-lotlorra-

rion, a complete ring-;Mane dererr ion system would not be required. By appro-

pria • e . • hoi c e of the polarization analyzing mask, only two simple detectors

would be required to measure lungirudinal magnerir- field y iretigrhr, .and four

to extract both remper:trure and magnerir infor^iarion ( 1 -'. y andI5).

12. One pro)ert of modest srienrifir interest which could be performed

using rho bast- romparr magnerograph with a full ring-plane configuration and

CID detector would he rile slmulraneous measurement of the strength of eirlular

polarization throughout a line protile; whl- • h would require a much longer

integration time and /or larger aperture.	 11: the sampling area is suffirienrly

small, the shape of the magnetically disturbed profile rapt be inferred. Fven

for large sampling .areas, regions in which rile majority of the field is above

.about 1500 gauss would show a distinrrive signature.	 Ir is diffi'ulr to see,

However, how these results would improve over those which could be obrainN•.1 by

the mirrodensi t o>merr y of photographic spectra obtained simultaneously in the

two -irrul.ar polarization.

13. The remperarure-monitoring problems do not seem to be as severe as

mighr he imaged. At ,16302, signals of as la..ge as	 10% (v 0.5 0 C) could he

allowed to develop withour norl r eably affecting rile magneti c gensitiviry

14. Herause of l intensiry-dependence of the relative dererror noise

levels, not all foral pl,.ne ronfigu:arions art' equivalent. 	 To achieve rile

optimum integration rime, rare should be taken to make the most efficient

possible use of the available light, and to minimize rile number of detectors,

partirularly if photodiudes are used 0 5).

15, The introdurrion of a KDP crystal to modulate rile magnetic signal

would offer many potential advantages, bor.h in terms of reducing the number

and complexity of the detectors, and in alleviating the possibilit y of extra-

neous imbalances. The disadvantages are minimal, and it would seem rhat this

option should he reconsidered (4 4.8).

lb.	 In all rases, the effirienry rail he improved by substituring

polarizing beam-splitrers for the polaroid elements. 	 In efferr, two indepen-

dent focal planes are rreared, ri le results from which ran he averaged 0 5.b).
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17. If ►► parlal retolurion is nor a primar y ronrern, r ho dynamic ring* of 	 1C)rho moasuroments (for a given intograrton rime) can be increased ron0derably

if a lar;er sampling . ►enure is used, parrirulerly for phorodinde dererrors

0 3.0. :1n increase in the Qz• of rho objective would have a sKilar

effect.
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( • aPacttan.e Per elenICIII (pF) 	 L	 10V BI AS

1+ 50V Bias

- 54 81 - 'a	 +4

-	 1 15 _22 -	 I I	 10

- o.7 10 - 4 I	 o

Rise Time at t132	 nm	 w IUV drat
10'7- 1)0 " (ns)	 50V Bias

- 100 - -	 10

- 10.0 - -	 10	 -

Fall Time it 63:.8 nn1

p0` - - I O'	
I pV Bias ^(ns l	

w 50V Bras

10 - 100 -
- 10.0 - 10	 -

Frequency , Resp-nse at o3..8 nit	
101' Bias	 -

I into 50Q Load i'dliz)	 —
5 O Bias	 -

I	 35
35

%la\ Output for	 _ OV Bias
10," Linearity (mat 	 I01' Bras

— 0.2 — — 0.5	 —

^—
0 :5

y\ 10 14

-
—

-^-	 ! 0
—	 \ 1U - ' + 	-Y	 Peak ,X. 1 011. IOV ( W /Fil' • I

- UV liras	 —
Noise Current (rms .rnpr 	
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501' Bias
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MECHANICAL SPECIFICATIONS
SPECIFICATION	 I	 PIN-Spot/2101 PIN•Spo /tD
1cti%e Area/Elem ent

Area (cr	 ► 0.032 O.0 I o

Dimensions ( in	 0 05 \0.1	 0 0 5XO.05

Packace

Type	 TU•5 T0.5

Window ,ass C, ass

Field	 )t View
Full .angle

of o yhU

Temperature Ranee

Operating I oC) -55 to +125 -55 to +I_5

Storage WC)	 _L-55 to +I _5

_
-55 to +l=5

OUTPUT
SIGNAL

xOUTPUT
SIGNAL

TY PI CAL CONNECT I ONS FOR PIN SPOT 4D
TO '.10 I `' E 0 J OT 301A 44IPLIFIER'

• AI,IPLIFIER BI A S P OLARITY MUS T SE CHANGED

	

OUTLINE DIMENSIONS	 T A
^ TOO ACTIVE

PIN SPOT;20 I	 AREA 0 109"
ACTIVE	 I	 t=J6AREA

?ZO=- 0 05".0.1"	 t=
^ PER

ELEMENT	 ^	 t=

GAP	 I
005"	 -+I t82 ^1 501

PIN SPOT

ACTIVE
S6	 AR E A
F240	 0 05 ' .005'

J PER
ELEMENT

	

I	

b

„AP	 rnNOOw
005'	 I 4, TO ACTIVE

AREA 0'09'

SCHEMATIC DIAGRAMS

GNC	 JUTPUT30ta	 SIGNAL

TYPICAL CONNECTIONS FOR PIN SPOT :0
SINGLE AXIS DETECTOR TO UOT 30 1 A A.VPLIFIER

,PLC,F!LATIONS SUBJECT TO CHANGE :+I T +OUT NOT I CE	 0 -01 7y'-TT

LU
L!NITED DETECTOR TECHNOLOGY INC.

2644 30TH STREET, SANTA VONICA, CA 90405	 n TELEFHO%E	 1213' 396-3175	 11	 TELEX u:	 _-:13



50 x 10 -12 A leakage (PIN-020A)

200 x 10 -12 A leakage (PIN-G40A)

6 x 10 -15 W N.E.P. (PIN•020A)

e	 Planar Passivated

Herme • ically Sealed TO-18 Metal Can

Photodiode Isolated from Case

UNIQUE
FEATURES

Data Sheet No 9F 010

UN/TED DETECTOR LE91 TECHNOLOGY PNC, 
LOW 1401sE ;PI,

Description

The UDT Low Nose Series (Model 020 A. 8 end
Model 040A B) of PIN photodiodes offer the lowest
leel,age current and lowest noise on the market. They
.ire planar pass voted and hern,e!ically	 sealed	 The
detector active element	 is -lectncally isolated from
the case

The Quantum detection efficiency is constant over
tell of light intensity, providing o linear out-
put current signal with input light level The speed Of
response is less than 5 nanoseconds, allowing the
obse!vation of laser m 0ses of a few nanoseconds. The
frequency response extends from do to over 100 MHz.
Both biased (photoconductive) and unbiased (photo-
voltaic) operation give excellent results with this
device.

PIN SILICON PHOTODIODE
ULTRA LOW DARK CURRENT
ULTRA LOW NOISE

ORIGINM P
OF POOR QUqur'>f

Applications

Because of their unrivaled low leakage current and low
these devices are especially suited tL low light level del
sy stems. They are currently bung used in star trackers
resources scanners, and spectrophotometers.

LITJ UNITED DETECTOR TECHNOLOGY !NC
2644 30TH STREET. SANTA MONICA CA 90405 • TELEPHONE (213) 4508585 • TELEX 65-2413

to	 ELECTRON)
X 0.1-

r

02
.01	 1	 .

0.4	 0.6	 0.8	 1.0	 1..
WAVELENGTH (MICRONS)

PIN SILICON PHOTODIODE

Specials

The low leakage character stics of these devices can b
into many custom array geometries by UDT.

ULTRA LOW D A RK CU p RENT ULTRA LOA' NOISE



N.E.P.

I	 1000 C.P.S. Center
1 c.p.s. Bandwidth

11	 1 5 V	 Bias	 6 x 10 — t 5

8500

Capacity
Ì 5V	 5

I	 --10 V	 4
--20 V	 3

Re%oonse Time
20 V, 50 12	 5

Maximum Steady

{	
Reverse Voltage	 25

2 x 10 -14	 10-14

5	 20

4	 16

3	 12

5

25

9x 10 -14	 W

20	 pF

16	 pF

12	 pF

5

25

5	 ns

25	 V

ORIGIN4!- F; A .- ^'^	 ITOF POOR QUALITY

ELECTRICAL AND OPTICAL CHARACTERISTICS

Pin-020A	 Pin-020B	 Pin .040A	 Pin-040B	 Units

Dark Current	 Min Typ Max Min Typ %x Min Typ Max Mil • Typ Max
—5 V	 50 150	 800	 200 400	 4000	 pA
_10V	 75 250	 1000	 300 600	 6000	 pA

Responsivity Peak	 ,42	 .42	 .42	 .42	 A,%

0

Active Diameter	 .020	 .020	 .040	 .040	 in.

Active Area	 2 x 10 -3	 2 x 10 -3	 8 x 10 -3	 8 x 10 -3	 cm2

MECHANICAL DETAIL 	 EQUIVALENT CIRCUIT

0.189
—0155

RS

GLASSi n 	it	 Rp	 CP
WINDOW

0.197	

II
j	 1.50 MIN	 j	 i,-•	 Signai current = 0.5 µA/µW

i	 —70-18 HEAf1FP

1	

^- CATHODE I *)
ANODE 1—)
(CONNECTED
TO BASE)

i	 Shot noise current
n

< 3 x 10—t5 A/Hz12PIN-020A

< 10— 
14 

A/HZ"2 PIN-040A

i=
	

Dark current
r

R
	

x 10 11 :Z
p

RS	 < 50 .`2

F LNJ1 T T HNOLOGY INC.UNITED DETECTOR EC
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Line and `laknetograph Characteristics



ORIGINAL DUALITY
OF POOR Q

1.	 1'npolarized 5250 Profiler

(a) J. Harvev 6 W.C. Liv ingston (1(69): "`!apnetograph `:ea
with Temperature Sensitive Lines", Sola: Phys. 10, 28

.I

r	 l__ i^-

I V 2	 Double-pass photoelectric %:an% of 3230 22 .l cleft) and 3_5063 t right) ,kith one ^n
,mond toolullon in r,4lOns Nlth aafious longitudinal ntagr.vi field strength, ,% nwasuleJ s„ih t•r
'I." 	 A Ilnc and yncn in units of you%% It is sers llAcis that the 5371 - l Itne is lerltper.11+'r
,envu,e and thctoore the nijgnet : field, arc "Fohabi^ underestimated b% a taaor of two Or 11103

(b) G.A. Chapman & N.R. Sheeley. Jr.. 	 (1977):	 "An Improved ', '.ea stir ement
of a Spectrogram of a 'Gap	 Solar Phvs.	 51, 61.

!„ v,	 t v

to ,—^,	 !I	 i^^l^ oe

01 I /	 III,	 N 06

C6 t-	 I	 1	 II 104

I	 I	 I

00

Fig 2	 The ,rv%ctrurn of the juiet Sun .Ind the gap' cosc"ny :hc reywn from '_ t ' 1 to 323) Jia in three
parts Th::., —ir spectrum is shitted upward: b) 0' In 11, fur Glarus The ,.a,elength scale is J 3611
bet%cen ea.n irate t cl, mat ► un the ahxtssa .,nd runs !cft to right on ea.n T he ,rrj%% mdt:ate the correct

scale for that portion of the •pe:trum

r	 _^
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URIGINAL	 ;3
OF POOR QUALITY

I.	 Inferred Single-Component Profile from Harvey and Livingston(1969?
(based on a weak-field interpretation')

	

IAV%t TIM. M \ ► H ku .11 Mr k it 1, 7% 14 IT 	 n smr Pt%TL At • %I %fit I ^ IF LIVS
	

_91

6 r-- --

s.

4

S nmr	

^r
S mr

2'

I

0	 ^-
0	 2C	 40	 60	 80	 100 120

0

	

D	 (mA)
Qoti. of the %lope of the !_N)	 line p(vrti'e .n non-magneti: regions to the ,lope in

n	 L r..ou as a function of the posuion of the magnoc iltraph csrt slit This is the factor b>
:twn '15L wngrtudlnal magnetic measurements with BahcocA•t .spe magnetographs should be

1 1 _It. 1 4,.q to correct for line profile changes in magncti.. regions outside of sunspots.

1 90	 ) H^R.IV ..o W. LIVI%CSTON

I
Ic

0
C	 2C 4C 60 80 ;CC 120

Haif -width (rnz)

Fig. 3. One half of the width of the 1 2!0 2A line as a function of intensity relatise to t

continuum in Ibi and out tat of msgnetic regions. Curse tat it denser from direct obser
Curnc ibl I% derrsed ndircctls free tests About 67 * „ of the magnetic region :ine profi':s fa

the ranee indi,ated about :une ih
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ORIGINAL F'%r ' _"p

OF POOR QUALITY

3.	 Meoretical (?) 5250 Prot i.es 	 0
from J.U. Stenflo (1974): "A Model of the Suptr ranulaLion Network
and of Fictive Region Plagei	 Solar Phys. 42. 79.

)0	 l.r, gn.II,,

10

0.e

0.1

	

0.0 	̀ 1	 1	 1	
'

- 100	 J	 1J0

pa (ma)

	

f , !. Line pr,hlc% of re	 n5o caIiuijlcJ :tom our	 and ncl%%or\ model for %irn o u, %iluc%
of the field slrcnp ti I)r,hed hne B r. 0 G. I)mml Lnc B IM) G. UJ,hcd • JoIled line: B :JUO G.

Solid fine. and murl cd pnowsphcrc 011RAI, 17 0 G.



ORIGUiAl I' :rE {$
OF POOR QUALI rY

tOptical Efficiencv of an Actual `lagnrtograph

(a) W.C. Livingston, J. Harvey, A.K. Pierce, D. Schrage, B. Gillespie,
J. Simmons, and C. Slaughter (1976): "Kitt Peak 60-cm Vacuum

Telescope," Applied Optics 15, 33.

•_ ^ .:. ^ r tcee^ter.

^ttN

.•te

ct«
+ ^Li,^

^.h
^// Kart

.th seeN

 0r^
i

^: b Wh• a do the photons tto" \Insured trnnsmi.swn

W,?̂  cops .pectro4 • aph. and acrompensing marnetorraph

(b) W.C. Livingston, J. Harvey, C. Slaughter, D. Trumbo (1976):
"Solar `lagnetoRraph Employing Inteiarated Diode Arrays,"
Applied Optics	 13, 40.

ra» a 'I. O p tical Transmission at \0.8688 µm

Qterncn •.	 Transmission (Total) Trans

-_	 0.30
0.90
0.9 2

0.9.
?	 U.35

n analyzer)	 0 33
0.9"
O.S^ . 0.82
0.35

ah1	 0.-9
0. 94)
0.15
0.92

ably)
	

0."0
0.025	 ^—

.on effect not emoved.
F '	 c^anuiacturer s data.
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